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Abstract

This study reports an unintuitive finding that positional encoding enhances learning of re-
current neural networks (RNNs). Positional encoding is a high-dimensional representation
of time indices on input data. Most famously, positional encoding complements the capa-
bilities of Transformer neural networks, which lack an inherent mechanism for representing
the data order. By contrast, RNNs can encode the temporal information of data points
on their own, rendering their use of positional encoding seemingly redundant/unnecessary.
Nonetheless, investigations through synthetic benchmarks reveal an advantage of coupling
positional encoding and RNNs, especially for handling a large vocabulary that yields low-
frequency tokens. Further scrutinization unveils that these low-frequency tokens destabilizes
the gradients of vanilla RNNs, and the positional encoding resolves this instability. These
results shed a new light on the utility of positional encoding beyond its canonical role as a
timekeeper for Transformers.

1 Introduction

Since their invention in 2017, Transformer neural networks (Vaswani et al., 2017) have taken over as the gold
standard processor/generator of time series data, from the more traditional models in the form of recurrent
neural networks (RNNs; Elman, 1990). One of the most striking differences between the two models is the
way they represent the temporal information of the data (i.e., the order of individual data points, or tokens,
in the time series). On the one hand, RNNs encode temporal information by updating their internal state
based on the input observations as well as the previous state. On the other hand, Transformers per se do
not have a mechanism to represent the temporal order of data points; consequently, they rely on an external
“clock” called positional encoding.

Positional encoding is a high-dimensional representation of time indices on input data (Gehring et al., 2017).
For instance, its most basic and popular implementation utilizes sinusoidal waves of various predefined
frequencies (Vaswani et al., 2017). Positional encoding “timestamps” input tokens by addition/concatenation
of these vectors to the corresponding input embeddings. Unlike RNNs, the time representation via positional
encoding is invariant to input values (i.e., autonomous) until they are processed together by a network.

Although positional encoding has been considered as an alternative form of time representation that replaces
RNNs (in combination with Transformers), positional encoding and RNNs are not fundamentally incom-
patible; that is, inputs to RNNs can be “redundantly” augmented by position-encoding vectors. Indeed,
autonomous activities of biological neurons—such as neural oscillations—are thought to play an important
role in time perception (Matell & Meck, 2004; Buhusi & Meck, 2005), as well as other perceptual processes
(including vision, Milner, 1974; Eckhorn et al., 1988; Gray et al., 1989; and odors, Milner, 1974; Eckhorn
et al., 1988; Gray et al., 1989; Wehr & Laurent, 1996; Perez-Orive et al., 2002) and motor control (Marder
& Bucher, 2001; Gross et al., 2002; Proctor et al., 2010).
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Accordingly, the present study explores “redundant” positional encoding on inputs to RNNs, utilizing syn-
thetic benchmarks. The experiments will unveil that positional encoding aids RNNs in handling a wider
variety of discrete inputs (i.e., a larger vocabulary) than those without positional encoding.

The contributions of this study are summarized as follows:

• Difficulties in training RNNs on a large vocabulary are demonstrated through systematically designed
benchmark tasks. This problem has not been identified in the previous studies—or at most has
received little attention from the research community—despite its potential relevance to empirical
applications.

• This identified problem with training RNNs on a large vocabulary is elucidated by the gradient insta-
bility induced by low-frequency tokens, which necessarily arise from the expansion of the vocabulary
size.

• A novel efficacy of positional encoding—besides its timestamping function for Transformers—is
shown by coupling it with RNNs. Specifically, positional encoding will be shown to mitigate the
large-vocabulary problem by stabilizing the gradients of RNNs against disruptions caused by low-
frequency tokens.

2 Related Studies

2.1 Theoretical and Empirical Computational Power of (Vanilla) RNNs

Mathematically, RNNs are known to be Turing-complete; they can simulate Turing machines if their weights
have infinite precision and are ideally tuned (Siegelmann & Sontag, 1992; 1994; 1995; Siegelmann, 1996;
1999; Chen et al., 2018).1 Indeed, even RNNs with random recurrent and input-to-hidden weights (called
reservoir computers; Maass et al., 2002; Jaeger & Haas, 2004) can achieve the universal approximation
property if their hidden-to-output weights are idealized (Grigoryeva & Ortega, 2018; Gonon & Ortega,
2020). These theoretical results have motivated the use of RNNs for processing complex time series such as
human languages (Sundermeyer et al., 2012; Graves, 2013) and weather (Shi et al., 2015).

In practice, however, RNN weights are bounded by finite precision and must be optimized based on finite
observations of data. These settings impose limitations on the empirical capabilities of RNNs (Chen et al.,
2018; Weiss et al., 2018). For example, empirical RNNs cannot store infinitely many observations in their
memory, or state vector(s), and the memorized information decays over time. This latter problem with
the memory duration has attracted the interest of researchers, leading to extensive exploration of RNN
architectures for a longer-lasting memory (Hochreiter & Schmidhuber, 1997; Arjovsky et al., 2016; Neil
et al., 2016; Chang et al., 2017; Jing et al., 2017; 2019).

More recently, research into prolonged memory retention has shifted towards continuous-time models (Voelker
et al., 2019; Gu et al., 2020). Instead of representing the memory of an input sequence through discrete-time
modifications of a latent state, these models approximate the input history by a linear combination of or-
thogonal polynomials in continuous-time space. Consequently, the coefficients of these polynomials yield a
finite-dimensional representation of the input sequence (termed the High-Order Polynomial Projection Op-
erator, or HiPPO) and the dynamics of these coefficients can be articulated through an ordinary differential
equation (ODE; Gu et al., 2020). This concept of continuous-time memory representation has subsequently
been extended to neural state-space models by replacing the fixed state matrix in the ODE—corresponding
to a manually selected basis of polynomials—with a learnable one, while constraining its structure to a diag-
onal (plus a row-rank) matrix (Gu et al., 2021; 2022a;b; Gu & Dao, 2024). Most strikingly, with additional
refinements, the latest state-space model has achieved superior language modeling performance, rivaling that
of Transformer-based models.

1In order to be Turing-complete, RNNs must also be allowed to read an entire input prior to their output emission; they are
at most context-sensitive if they have to return an output at each time step upon the receival of an input token (Chen et al.,
2018; Weiss et al., 2018).
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2.2 Positional Encoding

Positional encoding is a high-dimensional representation of temporal structures in input data (Gehring
et al., 2017). The primary demand for this representation scheme comes from Transformers. Unlike RNNs,
Transformers lack an inherent mechanism for representing input arrangements. Accordingly, input tokens
to a Transformer are “time-stamped” via addition/concatenation of a position-encoding vector.

In the original implementation of Transformer, token positions were encoded by sinusoidal waves of various
predefined frequencies (Vaswani et al., 2017). While this original encoding scheme is powerful enough for a
wide range of tasks, researchers have explored for other possibilities as well. For example, the well-known
BERT pretraining for natural language processing employed learnable embeddings to encode token positions
(Devlin et al., 2019). Some studies also suggested that the combination of the sinusoidal and learnable
encoding improves model performance (Dai et al., 2019). There is also an option to encode the distance
between tokens rather than the elapsed time from the sequence onset (Shaw et al., 2018; Dai et al., 2019).

Besides Transformers, positional encoding is also used to represent the elapsed time in diffusion processes
(Ho et al., 2020; Song et al., 2021). Moreover, the effectiveness of positional encoding is not limited to tem-
poral information; previous studies in three-dimensional mesh/point-cloud modeling report that sinusoidal
transformation of spatial data improves model performance compared to the raw coordinate representation
(Mildenhall et al., 2020; Jun & Nichol, 2023).

Despite the widespread use of positional encoding in various areas of machine learning today, its applications
to pure RNNs remain largely unexplored. To the best of the author’s knowledge, only two studies have
previously explored position-encoded RNNs.2 Karanikolos & Refanidis (2019) reported that a position-
encoded LSTM outperformed a vanilla LSTM as well as a shallow Transformer (with four layers) in text
summarization. In another study—predating the proposal of sinusoidal positional encoding in the deep
learning community—Vincent-Lamarre et al. (2016) showed that oscillatory signals at random frequencies
improved the performance of a random RNN (i.e., reservoir computer) in a timing task, assessing the model’s
memory duration by its ability to produce a (smoothed) output pulse after a specified time interval from an
onset signal.

Similarly, the time index in time series data has rarely been utilized directly by RNNs, presumably because
of its “redundancy” along the functionality of RNNs. As an exception, Neil et al. (2016) proposed a periodic
gating mechanism for updating the state and memory cell of LSTM. This periodic gating was scheduled
according to a triangular wave interspersed with a plateau at the floor value (= 0.0; the frequency, phase,
and the duration of the wave phase were learnable parameters).

3 Methods

3.1 Task

Effects of positional encoding on RNNs were investigated through the reverse-ordering task;3 given a sequence
of random integers, RNNs were trained to reconstruct them in reverse order (e.g. 8, 29, 2, 11 7→ 11, 2, 29, 8;
Fig. 1).

3.2 Model Architecture

The investigations in this study were based on single-layer gated recurrent unit (GRU; Cho et al., 2014)
and long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997) combined with input-embedding
and output-projection layers (Fig. 1). Besides these RNNs, a neural state-space model, S4D (i.e., S4 with a
diagonal state matrix; Gu et al., 2022a), was also investigated. Each of the integers in the input sequences
was first embedded and concatenated with the positional encoding, and then fed to the RNN/S4D.4 After

2In other studies, positional encoding and RNNs have served as submodules within more complex models, typically in
conjunction with an attention mechanism (Kim et al., 2018; Song et al., 2020).

3Investigations of additional tasks are reported in Appendix A.
4The concatenation of the positional encoding and input embeddings inflates the number of learnable parameters in the

input-to-hidden weights of RNNs in comparison to the vanilla models. However, this additional parameterization is designed
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Figure 1: Illustration of the model structure and the reverse-ordering task.

reading the entire input sequence, the network received a command to return the output. This command
was represented in the form of a time-invariant learnable vector, and fed to the RNN in place of the input
embedding (cf. Arjovsky et al., 2016). The outputs from the RNN/S4D module were linearly projected into
the classification logits, whose cross-entropy loss against the target sequence was used to optimize the entire
network. Model predictions in the testing phase were defined by the argmax of these logits for each time
step.

This study adopted the canonical sinusoidal positional encoding designed for Transformers (Vaswani et al.,
2017, see Appendix D for discussions on alternative implementations); specifically, each time step t was
encoded by the Dpos-dimensional vector, (PEt,1, . . . , PEt,Dpos

)T , defined as follows:5

PEt,2i := sin
(

t − 1

10000
2(i−1)
Dpos

)/√
Dpos

2 (1)

PEt,2i+1 := cos
(

t − 1

10000
2(i−1)
Dpos

)/√
Dpos

2 (2)

For the sake of learning stability, the positional encoding was divided by
√

Dpos/2 so that the encoding
vectors had the unit L2-norm. Note that the time step t increased throughout both the input and output
phases (i.e., t = 1, . . . , L, L + 1, . . . , 2L where L represents the input length), without any hard-coded
association between the input and output positions (i.e., no shared timestamps).

3.3 Implementation Details

Across the experiments, the dimensionality of the hidden layer of the RNNs was set to 512. The embedding of
the input integers and the memory cell of the LSTM also had the same dimensionality of 512. Similarly, the

not to impact the learning of input embeddings. Appendix C experimentally demonstrates that merely increasing the model
size does not enhance the performance of RNNs.

5The adjustment of the time and frequency indices (“t − 1” and “i − 1”) in Eqs. 1 and 2 aligns the 1-based indexing in this
paper (adopted for better readability) with the 0-based indexing in Python.
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Figure 2: Token-wise accuracy (left) and sequence-wise reconstruction errors (right) of the reverse-ordering
task performed by GRU/LSTM/S4D with and without positional encoding (labeled as “Position-Encoded”
and “Vanilla” respectively). The input length was fixed at 64. The error bars represent the 95% confidence
interval estimated from 10,000 bootstrapped samples of five training-test trials with different random seeds.
Each of the five trials held out 1024 random sequences (= 65,536 tokens) for computing the test accuracy.

hidden dimensionality of S4D was set to 512, while its state size (or the order of the Legendre polynomials)
was maintained at the default value of 64.6

The models were trained for 300,000 iterations using the Adam optimizer (Kingma & Ba, 2015) with the
parameters (β1, β2) := (0.9, 0.999) and no weight decay. The learning rate was linearly warmed up from
0.0 to 0.001 for the first 1,000 iterations, and then annealed according to the cosine schedule (Loshchilov &
Hutter, 2017). The batch size was 512.

All the experiments were implemented in PyTorch (ver. 2.1.1; Paszke et al., 2017; 2019) and each training-
test trial was executed on a single NVIDIA A100 GPU (with 80GB VRAM) hosted by the Academic Center
for Computing and Media Studies, Kyoto University. The source code is available in https://github.com/
tkc-morita/position-encoded_rnn.

4 Results

4.1 Key Findings

As a result, positional encoding improved the ability of RNNs to handle a larger vocabulary in the reverse-
ordering task (Fig. 2). The position-encoded GRU and LSTM successfully reversed the input sequences of

6The S4D was implemented based on the official code provided in https://github.com/state-spaces/s4/blob/main/
models/s4/s4d.py.
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64 integers7 drawn uniformly at random from the vocabularies of size 32–256 and 256–16,384, respectively,
achieving the token-wise accuracy above 95%. By contrast, the performance of the vanilla models without
positional encoding degraded as the vocabulary size increased. Similarly, positional encoding enhanced the
capacity of S4D to handle large vocabularies. These improvements are also evident in the reduced sequence-
wise reconstruction errors, measured by the Damerau-Levenshtein distance. It is of note that neither extra
training iterations nor greater batch sizes improved the performance of the vanilla models.

4.2 Frequency Matters

The most apparent consequence of the increased vocabulary size was the reduced chance of observing indi-
vidual vocabulary items (e.g., 1/256 → 1/16,384). Accordingly, additional experiments were conducted with
non-uniformly distributed tokens to investigate the relation between their frequency vs. RNN performance.
Specifically, the input vocabulary was evenly divided into Frequent and Rare groups, and the Frequent
tokens had three times the probability of the Rare tokens; that is, the probability of each Frequent token
was 7/8 × 2/K (where K denotes the total vocabulary size and was set to 64, 1024, 2048 for GRU, LSTM,
and S4D respectively) whilist the probability of each Rare token was 1/8 × 2/K.

The training data consisted of 64 independent samples from this dual-frequency vocabulary. By con-
trast, the test data were systematically constructed so that each sequence included a single “target” token
(Frequent/Rare) whose retrieval was evaluated for accuracy assessment, along with 63 “disturbants” that
were either all Frequent or all Rare.

The experiment revealed that it was the disturbant tokens whose frequency significantly impacted the per-
formance of the vanilla RNNs and S4D (Fig. 3). On the one hand, the Rare targets were successfully
retrieved as long as they were surrounded by the Frequent disturbants. On the other hand, the vanilla
GRU struggled to recover the Frequent targets when the other input tokens were filled with the Rare
disturbants. The LSTM performance was also degraded, especially when the targets were positioned in the
first quarter of the input sequence (1 ≤ t ≤ 16). Similarly, the Rare disturbants were detrimental to the
S4D; unlike the RNNs, however, the accuracy was worst when the targets were located in the middle of the
input sequences (17 ≤ t ≤ 32).

By contrast, the position-encoded RNNs exhibited robustness to the frequency of the target and disturbant
tokens. They achieved nearly perfect accuracies in most cases, except when the GRU processed the fully
Rare data whose target was located in the first half of the sequence (1 ≤ t ≤ 32). Likewise, positional
encoding enhanced the resilience of the S4D against the influence of Rare disturbants.

4.3 Analysis of Gradient Stability

To delve deeper into the influence of token frequency on the RNN performance, the gradients of the RNN
latent states were scrutinized. In the analysis, pairs of input sequences were processed by the RNNs trained
on the dual-frequency vocabulary (comprising Frequent and Rare items; Fig. 4). Each pair of sequences
shared the same initial token (t = 1; “target”) but varied in the subsequent tokens (2 ≤ t ≤ L; “disturbants”).
Then, gradients were computed for the distant mapping between the first and last updated states (i.e., at
time t = 1 and 2L) of the RNNs using backpropagation through time. The stability of RNN learning was
assessed by measuring the dot-product similarity of the gradients between the paired input sequences (after
normalization over output dimensions).

Formally, the paired input sequences, denoted as A and B, established two distinct, but ideally similar map-
pings, f (A) and f (B), from the first to the last latent state of the RNNs (h⃗(s)

2L = f (s)(⃗z1), where s ∈ {A, B}).
The gradient stability of the RNNs was defined by the dot-product similarities between the normalized
gradients of these paired mappings:

7See Appendix B for a discussion of robustness to variable input length.
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Figure 3: Token-wise accuracy of the reverse-ordering task performed by GRU/LSTM/S4D with and without
positional encoding (labeled as “Position-Encoded” and “Vanilla” respectively). The vocabulary was evenly
split into Frequent and Rare groups (32+32 for GRU, 512+512 for LSTM, and 1024+1024 for S4D),
and the former was sampled three times more frequently than the latter. The input length was fixed at
64. The error bars represent the 95% confidence interval estimated from 10,000 bootstrapped samples of
five training-test trials with different random seeds. Each of the five trials held out 4096 test sequences
(= 262,144 tokens), consisting of a single “target” token (frequent or rare) surrounded by 63 “disturbants”
(all frequent or all rare). That is, sixteen test sequences were held out for each condition (frequent/rare
target × frequent/rare disturbants × target positions).
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Figure 4: Schematic illustration of the analysis of gradient stability. The RNN trained on the reverse-
ordering task processed a pair of input sequences that shared the initial token (t = 1; blue) but differed in
the rest (2 ≤ t ≤ L; referred to as “Disturbant A/B”, and colored in orange/purple). For each dimension i

of the final RNN output h2L,i at time 2L, the distant gradient
(

∂h2L,i

∂z1,1
, . . . ,

∂h2L,i

∂z1,(2)D

)T

at the first updated
latent state z⃗1 (= h⃗1 in GRU; = concatenation of the hidden and cell states in LSTM, doubling the total
dimensionality to 2D) was computed per input sequence via backpropagation through time (dashed lines).
The gradient stability was defined by the dot-product similarity of the paired gradients normalized over the
output dimensions by the coefficients α

(s)
i (s ∈ {A, B}), whose definition is provided in Eq. 4.

Stability(A, B) :=
D∑

i=1
⟨α(A)

i ∇f
(A)
i (⃗z1), α

(B)
i ∇f

(B)
i (⃗z1)⟩ =

D∑
i=1

α
(A)
i α

(B)
i

(2)D∑
j=1

∂h
(A)
2L,i

∂z1,j
·

∂h
(B)
2L,i

∂z1,j
(3)

where the coefficients α
(s)
i normalized the raw gradients ∇f

(s)
i (⃗z1) over the output dimensions i := 1, . . . , D

(i.e., over the row vectors of the Jacobian matrix):

α
(s)
i := ∥∇f

(s)
i (⃗z1)∥∑D

k=1 ∥∇f
(s)
k (⃗z1)∥

=


√√√√(2)D∑

j=1

∣∣∣∣∣∂h
(s)
2L,i

∂z1,j

∣∣∣∣∣
2
/ D∑

k=1

√√√√(2)D∑
j=1

∣∣∣∣∣∂h
(s)
2L,k

∂z1,j

∣∣∣∣∣
2
 (4)

Consequently, the stability metric emphasizes the consistency of the paired gradients that both have a greater
L2-norm across the output dimensions.

It deserves special note that the mapping from the first to the last RNN state was conditioned on the
disturbant tokens occurring at 2 ≤ t ≤ L. Nevertheless, the reverse-ordering task trained the networks to
retrieve the initial token as their final output whatever tokens intervened in the middle. Thus, a well-trained
RNN would maintain invariance in its final state over the disturbants. Conversely, consistent gradient
directions across varied disturbants would lead to successful learning, which premises the proposed analysis.

Unlike the RNN models, both the vanilla and position-encoded S4Ds achieved high accuracy over 96% for
the initial target token (t = 1), regardless of the frequency of the target and disturbants. Accordingly, for the
analysis of S4D, the target token was positioned in the middle at t = 23, where the vanilla model exhibited
its poorest accuracy with the Rare disturbants. The disturbants were prefixed and suffixed to this target
to construct input sequences. The prefix disturbants were shared between the paired sequences, thereby
ensuring that the latent dynamics of the model remained identical up to the target token.

It should also be noted that the latent states of S4D are complex-valued (while its outputs are real-valued),
and consequently, the gradients and their dot-product similarities are also complex-valued. For the sake of
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Figure 5: Gradient stability of GRU/LSTM/S4D trained on the reverse-ordering task with and without
positional encoding (labeled as “Position-Encoded” and “Vanilla” respectively). For the GRU and LSTM,
the stability was defined by the dot-product similarity of latent-to-latent gradients after normalization over
the output dimensions, conditioned on two input sequences sharing the initial “target” token (whose Fre-
quent vs. Rare distinction is represented by the line color), followed by Frequent or Rare disturbants
(represented by the solid vs. dashed lines). For the S4D, the target token was positioned at t = 23, where
the vanilla model scored the worst accuracy with the Rare disturbants. The disturbants were prefixed and
suffixed to the target to construct input sequences. The prefix disturbants were shared between the paired
sequences, ensuring that the latent dynamics of the model was guaranteed to remain identical up to the
target token. The total input length was 1 + 63 = 22 + 1 + 41 = 64. The average similarity over 1024 input
pairs times five trials is plotted for every 5000 training iterations.

the present analysis, the complex-valued gradients were treated as the double-sized real arrays, and a real-
valued similarity was defined by Eq. 3. This is equivalent to taking the real component of the complex-valued
similarity, and is intuitively natural given that a perfect alignment between complex gradient directions yields
a real-valued score of 1.0 (= the norm of a normalized complex vector). Additionally, the extra dimension in
the latent states representing the order of the Legendre polynomials was merged with the channel dimension,
and the entire state was treated as a flattened vector.
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Monitoring the gradients at training checkpoints revealed that Rare disturbants destabilize the learning of
vanilla RNNs (Fig. 5). The similarity of the paired gradients decreased gradually (GRU) or rapidly (LSTM)
when the networks were exposed to the Rare disturbants.

And most remarkably, positional encoding endowed the RNNs with robustness to these Rare disturbants.
Both the GRU and LSTM maintained the high similarity of the paired gradients across the different tar-
get/disturbant conditions.

By contrast, the impact of positional encoding on the gradient stability of the S4D was marginal; unlike
the RNNs, the vanilla S4D was highly stable by itself against Rare disturbants throughout the training,
even though there was a visible relative destabilization due to Rare disturbants compared to Frequent
disturbants in the early stages of training, as well as an observable improvement by positional encoding. It
is also noteworthy that the difference between the Frequent vs. Rare disturbants diminished after 10,000
training iterations. Consequently, gradient stability does not fully account for the decline in the accuracy of
S4D in the presence of Rare disturbants, nor does it explain the enhancement brought about by positional
encoding.

5 Discussion

5.1 Difficulties in Handling a Large Vocabulary

The present study introduced a novel challenge in training (vanilla) RNNs: large vocabularies. While inves-
tigations into the manageable vocabulary size of RNNs appear to be a pertinent research area—being crucial
for empirical applications such as natural language processing—previous studies were primarily dedicated
to evaluating and improving the memory duration of RNNs, and the vocabulary size in these studies was
typically set small (= eight; Arjovsky et al., 2016; Neil et al., 2016; Chang et al., 2017; Jing et al., 2017;
2019; Voelker et al., 2019; Gu et al., 2020).

This study examined the RNN gradients and identified their destabilization when processing low-frequency
tokens, which are necessarily included in a large vocabulary. Specifically, inputs that do not contribute to
gradient-based optimization at a target time step (e.g., tokens at 2 ≤ t ≤ L upon the retrieval of the initial
token at t = 2L in the reverse-ordering task) were found to be detrimental.

In general cases of time series processing, data points carrying crucial information for specific time steps
become irrelevant otherwise. Consequently, each token exhibits a dual nature—both crucial and noisy—
throughout the task, and processing rare tokens is particularly challenging presumably because they are
irrelevant at most of the time while making a large impact on the learning through the greater loss to
compensate for their fewer learning opportunities. Dealing with such “unignorable noise” presents a pervasive
challenge for RNNs.

5.2 Functionality of Positional Encoding beyond the Timekeeper for Transformers

Although low-frequency tokens destabilize the gradient-based learning of RNNs, the present study also dis-
covered that this issue can be alleviated by positional encoding. This enhancement of RNNs via positional
encoding is noteworthy because RNNs were specifically designed to process time series data on their own;
hence, unlike Transformers, they are presumed to function without relying on an “external clock” (Siegelmann
& Sontag, 1992; 1994; 1995; Siegelmann, 1996; 1999). Consequently, position-encoded RNNs have remained
largely unexplored, with only two exceptions to the best of the author’s knowledge (Vincent-Lamarre et al.,
2016; Karanikolos & Refanidis, 2019). The findings of the present study—namely, the improvement in the
manageable vocabulary size due to the enhanced gradient stability—broaden the currently limited under-
standing of the impact of positional encoding on RNNs.

Additionally, the results of this study shed a new light on the utility of positional encoding. While positional
encoding has been viewed as nothing more than input timestamps for Transformers, the present study
demonstrated its efficacy in stabilizing the gradients of RNNs against disruption by low-frequency tokens.
This novel functionality of positional encoding would not have been visible in Transformer studies, as the

10



Published in Transactions on Machine Learning Research (11/2024)

model can dynamically adjust the relevance of input tokens through their attention mechanism and thus
inherently mitigate the impact of disturbant tokens.

5.3 Limitations and Future Directions

A primary unresolved question in this study pertains to the mechanism behind the gradient stabilization
by positional encoding. All the findings here are based on experimental investigations, lacking rigorous
mathematical explanations for how and why the gradients of RNNs are destabilized by infrequent tokens
and stabilized by positional encoding. Moreover, the present study primarily focused on the canonical
implementation of sinusoidal positional encoding designed for Transformers (Eqs. 1,2), leaving it open which
parameters of the sinusoidal waves (i.e., frequencies and phases) are critical for gradient stabilization. Future
research may broaden its scope to encompass more general forms of positional encoding, such as wavelets
and non-periodic signals (see Appendix D for a preliminary comparison among sinusoidal, learnable, and
randomly-fixed encodings).

Moreover, the analysis of gradient stability did not fully address the enhanced performance of the position-
encoded state-space model (S4D). In terms of accuracy, the positioned-encoded S4D exhibited greater ro-
bustness to infrequent tokens compared to the vanilla model, resembling the behavior observed in RNNs.
However, the gradients of the vanilla S4D were too stable to account for this descline in performance. This
leaves the question open how positional encoding influences gradient-based learning of state-space models.
Additionally, future studies may investigate a broader range of state-space models—including the state-of-
the-art architecture of Mamba (Gu & Dao, 2024)—to achieve a comprehensive understanding of the interplay
between positional encoding and these models.

In addition to these scientifically oriented questions, future studies could also address practical applications
of position-encoded RNNs and neural state-space models. Although positional encoding enhanced model
performance across different synthetic tasks (see Appendix A), the extent of this enhancement is task-
dependent. Indeed, while Karanikolos & Refanidis (2019) reported the effectiveness of positional encoding
for an LSTM text summarizer, the present study found no empirical advantage for the language modeling
task, aside from a slightly more rapid decline in training loss (see Appendix E). Thus, positional encoding is
not a panacea for arbitrary tasks, and further investigations are necessarily to determine when it is effective.
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A Other Tasks

This section demonstrates the effectiveness of positional encoding on RNNs across different tasks, besides
the reverse ordering task discussed in the main text.

A.1 Reverse-Ordering + Delayed-Addition

This section reports the performance of position-encoded RNNs on a more complicated, combinatorial task
than the reverse ordering of input sequences. Extending the reverse-ordering task, the models received
additional random input integers during the output phase, and added each of them to the corresponding
token in the reverse-ordered input sequence (modulo the vocabulary size, so that the output range was
bounded; Fig. 6).

This task was too challenging to GRUs—even after reducing the input length to L = 16—so only the results
from LSTMs are reported below. Also, the network was trained for 600,000 iterations (i.e., twice longer
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Figure 6: Illustration of the reverse-ordering + delayed-addition task. The modulus K of the addition is
equal to the vocabulary size.
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Figure 7: Token-wise accuracy of the reverse-ordering + delayed-addition task performed by the LSTM
with and without positional encoding (labeled as “Position-Encoded” and “Vanilla” respectively). The input
length was fixed at L := 16. The error bars represent the 95% confidence interval estimated from 10,000
bootstrapped samples of five training-test trials with different random seeds. Each of the five trials held out
1024 random sequences (= 16,384 tokens) for computing the test accuracy.

than the other tasks) for ensuring the convergence. The other conditions/hyperparameters were the same
as reported in the main text.

Consequently, positional encoding improved the model performance as the vocabulary size grew from 896 to
1088 (Fig. 7).

A.2 Sorting

In the reverse ordering task, the order of input integers was important information for accomplishing the
task. Thus, positional encoding may play its originally intended role in encoding the temporal information.
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Figure 8: Token-wise accuracy (left) and sequence-wise reconstruction errors (right) of the sorting task
performed by RNNs with and without positional encoding (labeled as “Position-Encoded” and “Vanilla”
respectively). The input length was fixed at L := 64. The error bars represent the 95% confidence interval
estimated from 10,000 bootstrapped samples of five training-test trials with different random seeds. Each of
the five trials held out 1024 random sequences (= 65,536 tokens) for computing the test accuracy.

This section reports the effectiveness of positional encoding for a task in which the order of input observations
was completely irrelevant; the learning objective was to simply sort the input integers in their inherent
ascending order (e.g. 8, 29, 2, 11 7→ 2, 8, 11, 29). The input integers were uniformly randomly sampled with
replacement, allowing for ties in the sorting process.

As a result, positional encoding also proved effective for RNNs to handle a larger vocabulary in the sorting
task (Fig. 8), though the improvement remained marginal compared to the reverse-ordering task.
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Figure 9: Illustration of the precedent-query task.

A.3 Predecessor Query

Finally, this section presents benchmark results for the predecessor-query task, illustrated in Fig. 9. The
network first received a sequence of non-repeating random integers, x1, . . . , xL. Subsequently, one of the
non-initial input integers, xtquery(2 ≤ tquery ≤ L), was randomly selected and reintroduced to the network at
time t = L+1. The learning objective is to return the predecessor of the reviewed integer (= xtquery−1). The
predecessor-query task evaluates the capacity of RNNs to integrate information regarding both the order
and content of input sequences.

As in the reverse-ordering + delayed-addition task, the input sequence was reduced to L = 16 due to the
complexity of the task, and the experiment focused on the LSTM. The number of training iterations was
maintained at 300,000.

Similar to the other benchmarks, positional encoding improved the LSTM’s capacity to manage the larger
vocabularies.

B Robustness to Variations in Input Length

So far, all the tasks were experimented using fixed-length inputs (L = 64). One might wonder if positional
encoding is exceptionally effective under this setting, informing RNNs with the exact timing when each input
token should be returned as the output. Thus, it remains unclear whether or not position-encoded RNNs
can also handle a larger vocabulary even when the input length is variable and, thus, the exact timing of
the output emission is not identifiable from the positional encoding attached to the inputs.

To assess the robustness to variations in the input length, an additional experiment was conducted on the
LSTM, with the input length varied between 32 and 64. In this setup, the maximum input length (= 64)
covers the entirety of the shortest input sequence plus its reversed reconstruction (= 32+32). Consequently,
the positional encoding per se cannot even distinguish the input vs. output phases at t = 33, . . . , 64. The
vocabulary size was set to 16,384.

As a result, the positional encoding still improved the LSTM’s performance on the reverse-ordering task
against the perturbations in the input length (Fig. 11). This result suggests that the effectiveness of the
positional encoding for RNNs is not limited to strictly scheduled tasks.
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Figure 10: Accuracy of the precedent-query task performed by the LSTM with and without positional
encoding (labeled as “Position-Encoded” and “Vanilla” respectively). The input length was fixed at L := 16.
The error bars represent the 95% confidence interval estimated from 10,000 bootstrapped samples of five
training-test trials with different random seeds. Each of the five trials held out 1024 random sequences
(= 65,536 tokens) for computing the test accuracy.

C Effects of Additional Parameters in Position-Encoded RNNs

The concatenation of positional encoding with input embeddings inflates the number of learnable parameters
in the input-to-hidden projection weights. This additional parameterization per se does not influence the
learning of the input embeddings, and therefore does not elucidate the enhanced performance of position-
encoded RNNs. This section substantiates this argument by equalizing the number of learnable parameters
between the vanilla and position-encoded models.

Specifically, the equalization was achieved by concatenating two identical copies of the input embeddings and
feeding them to the LSTM. This configuration—henceforth termed “double vanilla”—effectively doubled the
size of the input-to-hidden weight for each gate in the LSTM, aligning it with that of the position-encoded
LSTM, while maintaining all other parameters, including the dimensionality of the (non-repeated) input
embeddings.

As illustrated in Fig. 12, the double vanilla LSTM did not yield any improvements in the reverse-ordering
or sorting tasks. These results affirm that the reported enhancement of RNNs is not merely attributable to
the additional parameterization associated with the positional encoding.

D Alternative Implementations of Positional Encoding

While this study implemented positional encoding by sinusoidal waves (Vaswani et al., 2017), there are
alternative implementations proposed in the previous studies. For instance, the BERT-based models typically
encode each token position by a learnable embedding (Devlin et al., 2019). Moreover, the original study
of Transformer pointed out that even random vectors can function as positional encoding (Vaswani et al.,
2017).

Accordingly, these two alternative forms of positional encoding were tested on the LSTM performing the
reverse-ordering task. The random position-encoding vectors were uniformly and independently sampled
from the (512−1)-dimensional hypersphere. The learnable embeddings were implemented using the canonical
embedding module of PyTorch (torch.nn.Embedding). The input length and vocabulary size were set to 64
and 16,384 respectively. As shown in Fig. 13, both the random vectors and learnable embeddings improved
the performance of LSTM.
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Figure 11: Token-wise accuracy of the reverse-ordering task performed by the LSTM with and without
positional encoding (labeled as “Position-Encoded” and “Vanilla” respectively). During training, the input
length was randomly selected from a range of 32 to 64. The vocabulary size was set to 16,384. The error
bars represent the 95% confidence interval estimated from 10,000 bootstrapped samples of five training-test
trials with different random seeds. Each of the five trials held out 1024 random sequences per length for
computing the test accuracy.
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Figure 12: Token-wise accuracy of the reverse-ordering and sorting tasks performed by the LSTM with and
without positional encoding. The “double vanilla” model concatenated two copies of the identical input
embeddings to match the number of parameters with the position-encoded model. The input length was
fixed at L := 64. The vocabulary size was set to 16,384. The error bars represent the 95% confidence interval
estimated from 10,000 bootstrapped samples of five training-test trials with different random seeds. Each of
the five trials held out 1024 random sequences (= 65,536 tokens) for computing the test accuracy.
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Figure 13: Token-wise accuracy of the reverse-ordering task performed by the LSTM with and without
positional encoding. Three variants of positional encoding (sinusoidal, randomly fixed vectors, and learnable
embeddings) were tested. The input length was fixed at L := 64. The vocabulary size was set to 16,384.
The error bars represent the 95% confidence interval estimated from 10,000 bootstrapped samples of five
training-test trials with different random seeds. Each of the five trials held out 1024 random sequences
(= 65,536 tokens) for computing the test accuracy.

Among the different implementations of positional encoding, the sinusoidal encoding outperformed the two
alternatives. The advantage of the sinusoidal encoding became more apparent when the input length was
variable between 32 and 64 (Fig. 14); the sinusoidal encoding was more robust to the variations in the input
length than the others.

E Language Modeling

This section reports benchmark results for the language modeling task. Single-layer LSTMs with and with-
out sinusoidal positional encoding were trained and tested on the WikiText-103 dataset (Merity et al., 2017).
Due to constraints in computational resources, the vocabulary was reduced from the original size of 267,735
to 32,768 by retokenizing the raw data using SentencePiece (Kudo & Richardson, 2018). The headings were
removed, and the main text was segmented by paragraphs (separated by the line break). Additionally, only
the first 1024 tokens of each paragraph were utilized for training and testing, ensuring that the absolute posi-
tional encoding always aligned with the beginning of each paragraph. The hyperparameters were configured
as specified in §3.3.

As illustrated in Fig. 15, positional encoding proved effective only for marginally faster learning during the
initial phase of training. The difference diminished around 10,000/30,000 iterations, and the test perplexities
of the position-encoded model were inferior to those of the vanilla model.
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Figure 14: Token-wise accuracy of the reverse-ordering task performed by the LSTM with and without
positional encoding. Three variants of positional encoding (sinusoidal, randomly fixed vectors, and learnable
embeddings) were tested. During training, the input length was randomly selected from a range of 32 to 64.
The vocabulary size was set to 16,384. The error bars represent the 95% confidence interval estimated from
10,000 bootstrapped samples of five training-test trials with different random seeds. Each of the five trials
held out 1024 random sequences per length for computing the test accuracy.

22



Published in Transactions on Machine Learning Research (11/2024)

104 105

Training Iteration

102

4× 101

6× 101

P
er
p
le
x
it
y

Vanilla LSTM

Position-Encoded LSTM

Figure 15: Training perplexities on the WikiText-103 dataset. Each of the five trials with a different random
seed is represented by a single line.

Table 1: Test perplexities on the WikiText-103 dataset. The minimum, mean, and maximum are obtained
from five trials with different random seeds.

Model Min Mean Max
Vanilla LSTM 36.8257 37.7731 38.916589
Position-Encoded LSTM 38.0685 38.5384 38.893656
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