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Abstract

Hallucination, the generation of factually in-001
correct information, remains a significant chal-002
lenge for large language models (LLMs), es-003
pecially in open-domain long-form generation.004
Existing approaches for detecting hallucination005
in long-form tasks either focus on limited do-006
mains or rely heavily on external fact-checking007
tools, which may not always be available.008

In this work, we systematically investigate009
reference-free hallucination detection in open-010
domain long-form responses. Our findings re-011
veal that internal states (e.g., model’s output012
probability and entropy) alone are insufficient013
for reliably (i.e., better than random guessing)014
distinguishing between factual and hallucinated015
content. To enhance detection, we explore vari-016
ous existing approaches, including prompting-017
based methods, probing, and fine-tuning, with018
fine-tuning proving the most effective. To fur-019
ther improve the accuracy, we introduce a new020
paradigm, named RATE-FT, that augments fine-021
tuning with an auxiliary task for the model to022
jointly learn with the main task of hallucina-023
tion detection. With extensive experiments and024
analysis using a variety of model families &025
datasets, we demonstrate the effectiveness and026
generalizability of our method, e.g., +3% over027
general fine-tuning methods on LongFact.028

1 Introduction029

With the recent advancements in model scale and030

pretraining data, large language models (LLMs)031

have demonstrated remarkable capabilities in var-032

ious natural language processing (NLP) tasks033

(Brown et al., 2020). Despite these successes, hal-034

lucination, where models tend to produce content035

that conflicts with real-world facts, remains a sig-036

nificant challenge (Zhang et al., 2023). Most ex-037

isting research on hallucination detection has fo-038

cused on short-form tasks, where the output con-039

sists of one or a few tokens. While these meth-040

ods are effective for short-form content (Manakul041
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Figure 1: Comparison between Fine-Tuning and RATE-
FT for hallucination detection. RATE-FT improves
Fine-Tuning by incorporating rationales and an auxiliary
task (question answering) into the training process.

et al., 2023; Mahaut et al., 2024; Yehuda et al., 042

2024; Zhang et al., 2024a), extending them to open- 043

domain long-form generation presents additional 044

complexities and new challenges. Unlike short- 045

form tasks, long-form responses can span hundreds 046

or even thousands of tokens, requiring models to 047

generate detailed and nuanced answers to broad 048

fact-seeking prompts (Wei et al., 2024). This ne- 049

cessitates that LLMs synthesize information across 050

multiple knowledge domains, increasing the risk 051

of generating content that sounds plausible yet is 052

factually incorrect. For example, when answering 053

a question like ‘What is the significance of the Am- 054

ber Room?’, LLMs may generate responses that 055

mix accurate historical information with fabricated 056

details, complicating the task of distinguishing fact 057

from hallucination. 058

Recent efforts have sought to address hallucina- 059

tion detection in long-form tasks. However, they 060

either focus on limited domains, e.g., biography 061

generation (Min et al., 2023; Fadeeva et al., 2024) 062

or rely heavily on external fact-checking tools or 063

knowledge bases, e.g., Google Search (Wei et al., 064

2024). While these tools offer valuable support, 065

they are not always available or scalable. This 066

raises an important question: can we develop hal- 067

1



lucination detectors that rely solely on the model068

itself, without the need for external fact-checking069

resources? So far, little attention has been given070

to systematically exploring how the model’s own071

mechanisms can be used for detecting hallucina-072

tions in open-domain long-form generation.073

To address this gap, we start by investigating074

hallucination detection in open-domain long-form075

responses using the model’s internal states, e.g.,076

output probability and entropy. Specifically, we de-077

compose long-form responses into atomized claims078

using the model and verify each claim’s correctness079

using Google Search to construct benchmark data080

following Wei et al. (2024). Our analysis reveals081

that these internal states alone are insufficient for082

reliably (i.e., better than random guessing) distin-083

guishing between correct and incorrect claims, indi-084

cating that the mechanisms for detecting hallucina-085

tions in long-form outputs differ significantly from086

those in short-form tasks. To enhance detection, we087

explore several existing methods, including prompt-088

ing, probing, and fine-tuning LLMs. Our experi-089

mental results show that fine-tuning LLMs is the090

most effective method to detect hallucinations.091

Building on this, we introduce a novel method092

Rationale and Auxiliary Task Enhanced Fine-093

Tuning (RATE-FT) (Figure 1). Specifically, we094

convert the original claims into auxiliary question095

answering (QA) examples for augmentation, pro-096

viding a complementary learning perspective for097

the model, which enables better generalization. Ad-098

ditionally, we incorporate collected rationales into099

the training process for better reasoning. Extensive100

experiments and analysis using different models101

demonstrate the effectiveness and generalizability102

of our approach. Furthermore, we investigate the103

integration of model uncertainty into hallucination104

detection. By allowing the model to classify claims105

as “unknown” when uncertain, we open the door106

for incorporating external tools when needed, en-107

abling a more robust, hybrid detection pipeline (de-108

tailed in Appendix A.5).109

2 Are LLMs’ Internal States Sufficient for110

Open-Domain Long-Form Generation?111

The internal states of LLMs, such as output prob-112

ability and entropy, have been shown to be ef-113

fective in detecting hallucinations in short-form114

tasks, where outputs are typically limited to only115

a few tokens. By analyzing these signals, models116

can often differentiate between factual and hallu-117
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Figure 2: Detection results based on token probability.

cinated information. However, their applicability 118

in open-domain long-form generation remains un- 119

derexplored. A key question is whether LLMs 120

can depend solely on their internal states to iden- 121

tify hallucinations in long-form generation, without 122

using external fact-checking tools. To answer it, 123

we conduct some pilot experiments on LongFact 124

(Wei et al., 2024), a long-form generation dataset 125

spanning 38 different domains. Specifically, for 126

each prompt in the sampled subset (200 prompts), 127

we obtain a long-form response from Llama-3-8B- 128

Instruct with greedy decoding. Following Wei et al. 129

(2024), we employ the model to decompose long- 130

form responses into atomized claims and label them 131

as ‘factual’ or ‘hallucinated’ together with the rea- 132

sons (see Appendix A.2 for construction details). 133

For each claim, we mainly focus on two types of 134

internal states to estimate factual confidence: the 135

probability or the entropy (uncertainty) of output 136

tokens. Specifically, we examine the arithmetic 137

and geometric averages of all tokens,1 the aver- 138

age of tokens with the top-K lowest probability or 139

highest entropy (K = 1, 3, 5), and the average of 140

tokens with the top-P% lowest probability or high- 141

est entropy (P = 5, 10, 15). The results in Figure 142

2 and Appendix A.3 suggest that neither internal 143

state reliably, i.e., better than random guessing, pre- 144

dicts the correctness of a given claim, which may 145

be due to the presence of numerous insignificant 146

tokens within the claim, such as stop words. To 147

address this, we consider variants that focus only 148

on output tokens related to entities. The results, 149

shown in Appendix A.3, reveal similar patterns. 150

We analyze the underlying reasons as follows. In 151

open-domain long-form generation, claims are not 152

limited to a few tokens, which introduces multiple 153

sources of uncertainty. Specifically, the probability 154

or entropy reflects the model’s confidence in how a 155

claim is expressed, i.e., its confidence in the claim 156

1The geometric mean of the output token probabilities is
commonly known as perplexity.
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as a sequence of output tokens, rather than in the157

correctness of the claim. Different surface forms of158

the claim yield different confidence levels, leading159

to unreliable estimates.160

Considering the unreliability of LLMs’ inter-161

nal states in hallucination detection, there are sev-162

eral promising alternative approaches, including163

prompting, probing and fine-tuning LLMs, which164

we explore in the next section.165

3 Prompting, Probing and Fine-Tuning166

Based on a review of the research area, we iden-167

tify three groups of existing hallucination detection168

methods, which we discuss below.169

Prompting Prompting-based approaches involve170

directly prompting LLMs to assess the correctness171

of a given claim without additional training. We172

investigate the following three different methods:173

(i) Prompting the model to output ‘True’ or ‘False’174

for a given claim, referred to as PromptTF. The175

probability assigned to the token ‘True’ represents176

Pfactual, while the probability assigned to ‘False’177

represents Phallucinated. (ii) Prompting the model to178

output the probability that it considers the given179

claim to be correct, referred to as PromptProb. This180

number directly represents Pfactual. (iii) SelfCheck-181

GPT, which detects hallucinations by sampling ad-182

ditional responses from the model and assessing183

inconsistencies between each response and the tar-184

get claim. The proportion of responses that support185

the claim is taken as Pfactual. Following Manakul186

et al. (2023), we sample 20 responses for detection.187

Probing Following Su et al. (2024), we train a188

multilayer perceptron (MLP) on the contextualized189

embeddings of LLMs to perform binary classifica-190

tion for hallucination detection, while keeping the191

base LLM frozen. The trained MLP outputs Pfactual192

as an indicator for classification.193

Fine-Tuning We fine-tune the base LLM with194

LoRA to enhance its ability to output ‘True’ or195

‘False’ for a given claim (Kapoor et al., 2024). Sim-196

ilar to PromptTF, the probabilities assigned to the197

tokens ‘True’ and ‘False’ correspond to Pfactual and198

Phallucinated, respectively.199

Following the data construction process outlined200

in Appendix A.2, we conduct experiments on the201

full set of LongFact using Llama-3-8B-Instruct.202

This process yields 2,711 factual and hallucinated203

claims, which are subsequently split into training204

(70%), validation (20%), and test (10%) sets. For205

all three types of methods, we use Pfactual as the206

Dataset Method

PromptTF PromptProb SelfCheckGPT Probing Fine-Tuning

LongFact 69.9 53.4 69.1 74.4 76.1
Biography 72.3 56.3 71.9 77.0 78.2

Table 1: BAcc (%) of existing hallucination detection
methods on LongFact and biography generation.

classification indicator. Specifically, a claim is 207

classified as ‘factual’ if Pfactual exceeds a prede- 208

fined threshold; otherwise, it is classified as ‘hal- 209

lucinated’. The optimal threshold is determined 210

through a search on the validation set. Consistent 211

with Tang et al. (2024); Chen et al. (2024b), we em- 212

ploy balanced accuracy (BAcc) as the evaluation 213

metric: BAcc = 1
2(

TP
TP+FN + TN

TN+FP), where TP, TN, 214

FP, and FN stand for true/false positives/negatives. 215

The results of different methods on the test set, 216

as shown in Table 1, indicate that fine-tuning LLMs 217

is the most effective among all existing methods. 218

While both PromptTF and SelfCheckGPT achieve 219

decent performance, Probing yields notable im- 220

provements by incorporating additional training. 221

Fine-Tuning further enhances performance by up- 222

dating the internal features of LLMs, enabling more 223

effective learning. In contrast, PromptProb performs 224

significantly worse, likely due to LLMs’ tendency 225

to output high probabilities for hallucinated claims, 226

leading to overconfidence. Additionally, we extend 227

the experiments to biography generation (Min et al., 228

2023). The results presented in Table 1 demon- 229

strate that the observations and conclusions can be 230

generalized to different datasets. 231

Building on these findings, a natural question 232

arises: can Fine-Tuning be further improved to 233

develop more effective hallucination detectors? We 234

answer this question by incorporating rationales 235

and an auxiliary task into the training process. 236

4 Rationale and Auxiliary Task Enhanced 237

Fine-Tuning (RATE-FT) 238

While hallucination detection is not regarded as a 239

reasoning task in the conventional sense, incorpo- 240

rating Chain-of-Thought (CoT) (Wei et al., 2022) 241

explaining the judgment can still be beneficial for 242

distinguishing factual content from hallucinated in- 243

formation as it enables LLMs to better evaluate the 244

correctness of claims by systematically analyzing 245

underlying components. To examine the impact 246

of rationales, we prompt the model to generate 247

a reasoning path before making a judgment (i.e., 248

‘True’ or ‘False’), referred to as PromptCoT-TF. This 249

approach improves performance from 69.9 (using 250
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Dataset Method

PromptTF PromptCoT-TF Probing Fine-Tuning RATE-FT

LongFact 69.9 74.9 74.4 76.1 79.6
Biography 72.3 74.8 77.0 78.2 80.9

Table 2: BAcc (%) of RATE-FT and baseline methods.

PromptTF) to 74.9, highlighting the effectiveness251

of incorporating CoT reasoning.252

Augmenting Fine-Tuning with Rationales253

Building on the above observation, we augment254

the fine-tuning dataset with rationales generated255

by the model during data construction, explaining256

whether the search results support the claims.257

Notably, we adopt the ‘label-rationale’ format to258

maintain the same inference cost as the baseline259

Fine-Tuning. This allows us to directly derive260

Pfactual from the first output token without requiring261

the generation of the complete reasoning path.262

Consolidating knowledge through repetition in263

diverse contexts is a fundamental principle of ef-264

fective human learning (Ausubel, 2012). For exam-265

ple, medical students deepen their understanding266

of anatomy by studying diagrams, practicing in267

simulations, and engaging in hands-on dissections,268

each offering a unique perspective on the same269

foundational knowledge. Drawing inspiration from270

this paradigm, we introduce an auxiliary question271

answering (QA) task into the fine-tuning process272

to further strengthen the model’s understanding273

and enhance its generalization capabilities. This274

auxiliary QA task serves as a complementary com-275

ponent to the primary hallucination detection task,276

offering the model an alternative but closely related277

perspective on the problem.278

Augmenting Fine-Tuning with QA Task Specif-279

ically, for each claim, we first prompt the model280

to generate a question about the key information281

within it. If the claim is factual, we ask the model282

to extract the correct answer directly from the claim283

and provide an explanation, forming a QA exam-284

ple. For hallucinated claims, we leverage the aug-285

mented rationale to guide the model in generating286

an appropriate correct answer along with an ex-287

planation. After constructing these QA examples,288

they are combined with the original training data289

for fine-tuning.290

By integrating these two strategies, we pro-291

pose Rationale and Auxiliary Task Enhanced Fine-292

Tuning (RATE-FT) (Figure 1). RATE-FT requires293

the model to systematically analyze and explain its294

judgments and allows the model to benefit from295

complementary learning perspectives, reinforcing296

Model Method

PromptTF PromptCoT-TF Probing Fine-Tuning RATE-FT

Llama-3.1-70B-Instruct 73.2 76.8 79.4 80.6 83.8
Mistral-7B-Instruct 61.8 64.1 68.4 70.8 73.4
Qwen2.5-7B-Instruct 72.8 75.5 77.0 78.4 81.1

Table 3: Results using different models.

its understanding of claims through diverse yet in- 297

terconnected tasks. Following the experimental 298

setup described in Section 3, we show the compar- 299

ison between RATE-FT and baseline approaches 300

in Table 2, which demonstrates the superiority of 301

RATE-FT across different datasets. 302

4.1 Further Analysis 303

Generalization to Different Models Our experi- 304

ments and analysis so far use Llama-3-8B-Instruct 305

as the backbone model. To verify whether the per- 306

formance gain of RATE-FT is consistent across 307

different backbone models, we extend the exper- 308

iments to Llama-3.1-70B-Instruct (Dubey et al., 309

2024), Mistral-7B-Instruct (Jiang et al., 2023), and 310

Qwen2.5-7B-Instruct (Yang et al., 2024) on Long- 311

Fact. From the results shown in Table 3, we can 312

observe that RATE-FT consistently outperforms 313

baseline approaches across all models, demonstrat- 314

ing its robustness and generalizability to diverse 315

model architectures and scales. 316

In addition, we provide related work, ablation 317

studies, results of incorporating uncertainty for hal- 318

lucination detection, all prompts used in our exper- 319

iments, and implementation details in Appendix 320

A.1, A.4 ∼ A.9, respectively. 321

5 Conclusion 322

In this work, we systematically investigate 323

reference-free hallucination detection in open- 324

domain long-form generation. Our study begins 325

with an analysis of the model’s internal states, 326

demonstrating that these states alone cannot reli- 327

ably detect hallucinations. We then evaluate several 328

existing approaches, including prompting, probing, 329

and fine-tuning, with fine-tuning emerging as the 330

most effective method. Building on these findings, 331

we introduce Rationale and Auxiliary Task En- 332

hanced Fine-Tuning (RATE-FT), a novel approach 333

that leverages rationales and an auxiliary task to 334

achieve significant improvements in detection per- 335

formance across two datasets and various LLMs. In 336

the future, we would like to develop a more compre- 337

hensive benchmark for hallucination detection in 338

open-domain long-form generation, covering more 339

diverse domains for greater applicability. 340
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Limitations341

One limitation of our work is its focus solely on342

improving the performance of the hallucination343

detector. A further improvement could be to ex-344

plore leveraging the detector’s feedback as a reward345

signal to guide LLMs to generate more factual re-346

sponses.347
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A Appendix 552

A.1 Related Work 553

Large Language Models (LLMs) often generate 554

content that appears plausible but is factually un- 555

supported, a phenomenon commonly known as hal- 556

lucination (Zhang et al., 2023). Based on whether 557

the hallucinated content contradicts read-world 558

facts or the input context, hallucination can be cat- 559

egorized into two main groups: factuality halluci- 560

nation and faithfulness hallucination (Huang et al., 561

2023). Extensive research has been conducted on 562

exploring the causes (Onoe et al., 2022; Kang and 563
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Choi, 2023; Wei et al., 2023; Liu et al., 2024), de-564

tection (Min et al., 2023; Zhao et al., 2023; Chen565

et al., 2024a; Fadeeva et al., 2024; Wei et al., 2024),566

and mitigation (Gao et al., 2023; Ji et al., 2023; Tian567

et al., 2024; Zhang et al., 2024b; Kang et al., 2024;568

Lin et al., 2024) of hallucination in LLMs. How-569

ever, most existing hallucination detection methods570

have primarily focused on short-form tasks, where571

the output consists of one or a few tokens. In this572

work, we shift the focus to the more challenging573

problem of reference-free hallucination detection574

in open-domain long-form generation, where out-575

puts are substantially longer and require a more576

nuanced evaluation of actuality.577

A.2 Benchmark Construction Details578

For each prompt in the sampled subset (200579

prompts), we obtain a long-form response from580

Llama-3-8B-Instruct with greedy decoding. Fol-581

lowing Wei et al. (2024), we employ the model582

to decompose long-form responses into atomized583

claims and assess whether each claim is relevant to584

answering the corresponding prompt. For each rele-585

vant claim, we use the model to generate multi-step586

Google Search queries and reason about whether587

the search results support the claim. Claims sup-588

ported by the search results are labeled as “factual”,589

while those contradicted by the results are cate-590

gorized as “hallucinated”. After construction, we591

obtain 2394 factual claims and 223 hallucinated592

claims, respectively. We then randomly selected593

an equal number (223) of factual and hallucinated594

claims for experiments.595

A.3 Hallucination Detection Results using596

Internal States597

We show the hallucination detection results using598

different internal states in Figure 3 ∼ 5599

A.4 Ablation Study600

We analyze the contribution of different compo-601

nents of RATE-FT by investigating the variant of602

RATE-FT without the auxiliary task (w.o. aux). Ta-603

ble 4 presents the performance of different methods,604

highlighting that each component plays an impor-605

tant role in achieving the overall performance.606

A.5 Incorporating Uncertainty for607

Hallucination Detection608

To enhance hallucination detection, we propose609

incorporating model uncertainty into the detec-610

tion process, enabling a hybrid pipeline that com-611
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Figure 3: Hallucination detection results based on token
entropy (uncertainty).

Dataset Method

Fine-Tuning w.o. aux RATE-FT

LongFact 76.1 77.5 79.6
Biography 78.2 79.4 80.9

Table 4: Results of different ablations.

bines the strengths of the model and external tools. 612

Specifically, when the model is uncertain about 613

whether a claim is factual or hallucinated, we lever- 614

age external tools to handle ambiguous cases, im- 615

proving overall performance. The process involves 616

setting two thresholds, αlow and αhigh, for classifi- 617

cation. A claim is classified as ‘factual’ if Pfactual > 618

αhigh and ‘hallucinated’ if Pfactual < αlow. Claims 619

falling between these thresholds are classified as 620

‘unknown’ and delegated to external tools for fur- 621

ther evaluation. Assuming the external tools’ out- 622

put is the ground truth, predictions classified as 623

‘unknown’ are treated as correct. To evaluate the 624

hybrid pipeline, we define the BAcc-unknown met- 625

ric as follows: 626

BAcc-unknown =
1

2
(

# Correct Factual Predictions
# Total Factual Claims

+
# Correct Hallucinated Predictions

# Total Hallucinated Claims
)

(1) 627

The optimal thresholds, αlow and αhigh, are deter- 628

mined through a search on the validation set. This 629

process ensures that BAcc on the validation set ex- 630

ceeds 70%, while also maximizing BAcc-unknown. 631

The goal is to strike a balance between performance 632

and efficiency by achieving high BAcc-unknown 633

without generating an excessive number of ‘un- 634

known’ predictions, which could substantially in- 635

crease detection costs. We conduct experiments 636

on LongFact using Llama-3-8B-Instruct and report 637

the results in Table 5, which demonstrate that in- 638

corporating model uncertainty greatly enhances 639

hallucination detection, as evidenced by the BAcc- 640
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Figure 4: Hallucination detection results based on
the probability of entity-related tokens.
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Figure 5: Hallucination detection results based on
the entropy of entity-related tokens.

PromptCoT-TF Probing Fine-Tuning RATE-FT

80.4 81.1 82.4 85.0

Table 5: BAcc-unknown (%) of different methods on
Longfact with Llama-3-8B-Instruct.

Prompt
Your task is to extract the original text corresponding to the given claim from the original response. When presented with an original response and a claim, 
reply with the original text. Make sure that your response is exactly the same as the original text and enclosed in \boxed{}.

Original response: {response}
Claim: {claim}

Figure 6: Prompt for extracting the original output given
an atomized claim.

unknown metric’s superior performance compared641

to standard BAcc in resolving ambiguous cases.642

Moreover, RATE-FT continues to outperform all643

other methods with respect to the BAcc-unknown644

metric, highlighting its robustness and effective-645

ness.646

A.6 Prompt for Output Extraction647

After decomposition, the atomized claims may dif-648

fer from the original expression in the response. To649

address this, we use the prompt shown in Figure 6650

to retrieve the original output corresponding to a651

given atomized claim.652

A.7 Prompts for Baseline Approaches653

Figure 7 illustrates the prompts used for different654

prompting methods. The prompt used for construct-655

ing training data in Probing and Fine-Tuning is the656

same as the prompt employed by the PromptTF657

method.658

A.8 Prompts Used in RATE-FT659

Figure 8 presents all the prompts used in RATE-FT.660

A.9 Implementation Details661

For PromptTF and PromptProb, we obtain the re-662

sponse from the model with greedy decoding. Fol-663

PromptCoT-TF
Your task is to determine the correctness of the given claim. When presented with a claim, first explain the solution and then enclose the ultimate answer 
('True' or 'False') in \boxed{}.

Claim: {claim}
Response: 

PromptProb
Your task is to provide the probability that the given claim is correct. When presented with a claim, reply with a number between 0.0 and 1.0. Make sure that 
your response is exactly a number between 0.0 and 1.0 without any extra commentary whatsoever.

Claim: The sun rises in the east and sets in the west.
Response: 1.0

Claim: Humans have four arms and three heads.
Response: 0.0

Claim: The human nose can detect over 1 trillion different scents.
Response: 0.82

Claim: The next president of South Korea will be a woman.
Response: 0.29

Claim: {claim}
Response: 

SelfCheckGPT
Context: {context}

Sentence: {sentence}

Is the sentence supported by the context above? Answer Yes or No.

Answer: 

PromptTF
Your task is to determine the correctness of the given claim. When presented with a claim, reply with 'True' or 'False'. Make sure that your response is 
exactly 'True' or 'False' without any extra commentary whatsoever.

Claim: {claim}
Response: 

Figure 7: Prompts for different prompting methods.

lowing Manakul et al. (2023), we set the tempera- 664

ture to 1.0 and generate 20 additional responses for 665

SelfCheckGPT. 666

We evaluate 4 different types of contextualized 667

embeddings for Probing: (1) the final token from 668

the last layer (type1), (2) the average of all tokens 669

in the last layer (type2), (3) the average of the final 670

token across all layers (type3), and (4) the average 671

of type1 and type2 (type4). The optimal embed- 672

ding type, along with other hyperparameters, e.g., 673

learning rate, is selected through a search on the 674

validation set. For Fine-Tuning and RATE-FT, we 675

leverage the LLaMA-Factory library (Zheng et al., 676

2024) and perform a search on the validation set 677

for important hyperparameters. 678
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Prompt for 'label-rationale' Format
Your task is to determine the correctness of the given claim. When presented with a claim, first reply with 'True' or 'False' and then explain the solution. 
Make sure that your response starts with 'True' or 'False'.

Claim: {claim}
Response: {True/False}. {explanation}

Prompt for Question Generation (Correct Claim)
Given a correct claim and why it is correct, first identity the key information in the claim, then transform it into a question and a correct answer (keep the 
answer as concise as possible) about the key information, finally give the explanation (keep it different from the given reason). Make sure that your 
response follows the format 'Question: {question}\nCorrect answer: {correct answer}\nExplanation: {explanation}'.

Correct claim: {correct claim}
Reason: {reason}
Response: 

Prompt for Question Generation (Wrong Claim)
Given a wrong claim and why it is wrong, first identity the key information in the claim, then transform it into a question and a correct answer (keep the 
answer as concise as possible) about the key information, finally give the explanation (keep it different from the given reason). Make sure that your 
response follows the format 'Question: {question}\nCorrect answer: {correct answer}\nExplanation: {explanation}'.

Wrong claim: {wrong claim}
Reason: {reason}
Response: 

Prompt for Question Answering
Answer the following question and provide the explanation.

Question: {question}
Answer: {answer}
Explanation: {explanation}

Figure 8: Prompts for different components of RATE-
FT.
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