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ABSTRACT

This work focuses on the novel problem setting of generating graphs conditioned on
a description of the graph’s functional requirements in a downstream task. We pose
the problem as a text-to-text generation problem and focus on the approach of fine-
tuning a pretrained large language model (LLM) to generate graphs. We propose
an inductive bias which incorporates information about the structure of the graph
into the LLM’s generation process by incorporating message passing layers into an
LLM’s architecture. To evaluate our proposed method, we design a novel set of
experiments using publicly available and widely studied molecule and knowledge
graph data sets. Results suggest our proposed approach generates graphs which
more closely meet the requested functional requirements, outperforming baselines
developed on similar tasks by a statistically significant margin.

1 INTRODUCTION

Many concepts can be described by graphs; including molecules (20), abstract syntax trees (19),
knowledge graphs (27), and project schedules (18). Each of these concepts is used in downstream
tasks where graph structure has a direct impact on task performance. For example, some molecules can
be used as medicine for a disease while others cannot and this is partially determined by the molecules’
graphs. It would be useful if we could describe the functional requirements of a graph using natural
language and query a model to conditionally generate a graph which meets these requirements. For
example, a model using the prompt "generate a molecule with 47 valency electrons" would generate
a valid molecule graph with 47 valency electrons. With such models we could speed up and improve
the processes of drug discovery, software development, project management as well as many other
applications of graphs.

In this work, we focus on the problem of generating graphs where node and edge features are strings
of text and term this type of graph a text graph. Text graphs are a fairly flexible data format and can
be used in most applications of graph-structured data including those listed above. To the best of our
knowledge, text graph generation conditioned on text has only been studied in the fields of knowledge
graph generation (8; 12; 14; 26; 27; 38) and explanation graph generation (33). In both setups the
conditional text explicitly describes the graph. These explicit descriptions give an imperative "recipe"
with step-by-step instructions of how to generate the graph. Contrary to giving explicit imperative
descriptions, this work focuses on the case where the conditional text is a functional description of
the graph, specifically for a downstream task. Additionally, in the case of imperative conditional text,
there is an injective mapping between conditional text and the graph that should be generated, which
means that methods can be evaluated by comparing the generated graph to the ground truth graph in
terms of its structure. By contrast, many graphs might correspond to the same functional description
and hence a new experimental design is required to study the problem.

We propose solving this problem by fine tuning a large language model (LLM) to generate a serialized
text description of a graph. This is motivated by the strong performance pre-trained LLMs have
shown when fine-tuned to perform a specific task (6; 17; 34), including the task of text-to-serialized
graph generation (8). However, prior work on serialized graph generation does not generalize to all
domains containing text graph structured data. To further this approach, we propose a serialization
method which is expressive enough to reversibly serialize any graph and a method to incorporate
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graph structure into the LLM’s generation process motivated by the observation that the structures
of generated graphs have a direct impact on their functional properties and consequently on model
performance. While LLMs are probably expressive enough to learn to incorporate graph structure
into their generation process, it is more efficient to provide the model with the ability to do so.

However, it is also a non-trivial challenge because modern LLMs perform autoregressive sampling to
generate text (4; 5; 6; 17; 28; 31; 34). This involves a multi-step sequential process, where at each
step a forward pass is performed and then a new token is sampled. A token is an atomic unit of text
like ’dog’, ’ ’, or ’ch’. The generation process exhibits high computational complexity and cost due to
the requirement of performing a forward model pass for each generated token. Consequently, LLMs
are typically trained to generate text without actually performing generation at training time. Only
a single forward pass is performed at each training step without sampling and the entire sequence
(conditional plus desired text) is fed into the LLM for that forward pass. As such, an LLM has access
to the full sequence at training time, while at generation time it only has access to the conditional
text and the part of the sequence that has already been generated. This means that during training an
LLM could learn to rely on information that it will not have access to at generation time. This issue
is overcome by using causal masking, which guarantees the LLM cannot pass information backwards
in the token sequence ensuring that generation conditions are simulated at training time.

In Section 3, we propose a method of incorporating graph structure into an LLM’s generation process
which passes information between tokens in a sequence. Our key contribution is demonstrating how
to do so without passing information backwards in the sequence. Specifically, we propose to extend
LLMs to process and generate sequences of text and graphs. For this we provide the LLM with
the ability to deserialize graphs incorporated into input token sequences and introduce message
passing layers into the LLM to calculate representations of graph structure in a manner that is
conducive to autoregressive generation.

In this work, we specifically focus on the problem of generating text graphs from functional require-
ments within the range of those seen at training time (interpolation), instead of extrapolating outside
the training set’s domain, which we leave as future work. We propose a novel experiment design to
evaluate methods in this new problem setting using the publicly available data sets WebNLG+ 2020
(10) and PCQM4M (20). Results suggest that our proposed model outperforms previous work on
text graph generation conditioned on text by a statistically significant margin. And that our proposed
approach for incorporating graph structure into the language model’s generation process leads to
models which generate examples which on average more closely meet their conditional functional
requirements. All code used to perform experiments is publicly available at ...

2 PRELIMINARIES

A text graph G = {V, E} is composed of a set of N nodes vi ∈ V each with an associated text string
describing the node and a set of M directed edges (vi, vj) ∈ E each with an associated text string
describing the edge. Each text graph G is associated with text Df containing a functional description
of G. Our goal is to train a model to accurately predict pθ(G|Df ) with parameters θ, describing the
distribution over text graphs G conditioned on a specific functional description Df . Importantly, this
distribution may be multimodal as multiple graphs may have the same functional properties.

This work focuses on the case where the parameterized model pθ(·) is a language model that generates
a serialized text description of the graph. Hence, if DG is the serialized graph, then the language
model predicts pθ(DG |Df ). This requires an injective serialization function g : G → DG with a
known inverse mapping g−1 : DG → G from the serialized description DG back to the graph G such
that G = g−1(g(G)). g(·) is used at training time to transform graphs G into serialized graphs DG
and the deserialization function is used at generation time to recover the graph G from the serialized
graph DG (see Figure 1 top row). With this approach, we pose the problem of generating graphs
conditioned on functional descriptions as a text conditioned on text generation problem and can
consequently use LLMs to conditionally generate text graphs based on functional descriptions.

Prior state-of-the-art work on serialized graph generation uses a bag-of-edges approach (8;
33), which describes each edge using a string with special tokens for delimiting graph elements
and then lists out the edges in a predefined order. For example, the popular smiles molecule
serialisation algorithm uses depth-first search traversal (39) to order chemical bonds (edges) in a
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Figure 1: At generation time (top) the input to the model is the graph’s functional description Df and
the output is a serialised description of the graph DG . During training time (below top) the input is a
functional description, serialized graph pair (Df ,Dg); the output is the probability p(Dg). Graph
serialization method g(·) is used to serialize input graphs before training, while the deserialization
method g−1(·) is used to deserialize the generated serialized graph Dg as well as to help perform
message passing within the LLM. Block A describes the proposed architecture interleaving message
passing layers between LLM layers. Block B depicts how information is passed between LLM and
MP layers. The bottom visualization depicts the masked matrices used in the types of attention
performed within LLM and message passing (MP) layers.
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molecule. Then each edge is described with the syntax <PN>predecessor node feature
string<E>edge feature string<SN>successor node feature string, where
<PN>,<E>,<SN> are special tokens used to delimit the different components of the edge.

Using LLMs, a description D is represented in three ways: 1) as a string (text), 2) as a sequence of
token indicators, and 3) as a sequence of feature vectors / embeddings. To distinguish between these
three representations, we use DS to denote the string representation, DT to denote the sequence of
token indicators and DF to denote the sequence of feature vectors. For the serialized graph DG , its
string representation is denoted by DG,S , its sequence of token indicators representation by DG,T and
its sequence of feature vector representation by DG,F .

3 METHOD

The datasets LLMs are pre-trained on do not contain much, if any, data on generating serialized graphs
(4; 6; 31; 34). Consequently, it is unlikely they could generate text graphs without further training.
We provide evidence supporting this hypothesis in experiments where we evaluate a pretrained LLM
without further fine-tuning. As shown in the results in Appendix D, an LLM without fine-tuning did
not generate a single valid serialized graph. Hence, we propose fine-tuning an LLM on a training and
validation set of (functional description, graph) pairs to generate serialized graphs conditioned on
functional descriptions. While LLMs are probably expressive enough to learn to incorporate graph
structure into their generation process, it is more efficient to provide the model with the ability to do
so. State-of-the-art models for performing inference on graph structured data use message passing
(MP) layers (15; 35). As such, we propose interleaving MP layers between language modelling layers
in an LLM (Figure 1 block A). Any message passing layer can be used with our proposed approach 1.

3.1 FINE-TUNING OBJECTIVE

For fine-tuning, we propose minimizing the negative log-likelihood of serialized graph sequences DG
as described in equation (1):
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the number of elements in the sequence of example i in the batch. This objective differs from the
traditional LLM fine-tuning objective of maximizing the average likelihood of the next token for each
token in a batch of sequences as described in equation 2;
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The difference between the two objectives is the red term in both equations. We can view the reciprocal
of this term as a weight placed on the importance of an example in the training set with respect to
the training objective. For the standard training objective in equation 2, the term

∑nbatch

i=1 ni
seq in red

changes from batch to batch, because batches contain randomly sampled examples which differ in
sequence length. This means across batches, examples in the data set are weighted differently by
the loss function. For the same reason, the loss of an example in the training set will be weighted
differently across epochs based on the batch it falls in. Note that this is not an issue when training or
fine-tuning on text data, because in most cases all training examples in a batch have the same length.
A comparison in the performance of models trained with these objectives can be seen in Tables 2 and
3. The baseline regen only differs from our proposed model SGG-LLM without message passing
in that it was trained using equation 2 instead of 1. We also report additional experiments shown
Appendix D which suggests what is causing the difference in performance.

1We used GraphSAGE (15) in all experiments
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Figure 2: Top: the correspondence between a graph and its edge graph. Middle: the graph’s
bag-of-edges serialisation with special tokens <PN>, <SN>, <E> and <D>. Bottom: Examples
of functional requirements used for condition graph generation for the molecule above.

3.2 NODE DISAMBIGUATION DURING SERIALIZATION

One special case of graph-structured data, which is not handled by prior work on generating serialized
graphs, is when a subset of nodes in a graph are described by the same feature string2. However, this
special case occurs in many domains, such as molecule data. For example, the molecule with multiple
carbon atoms depicted in Figure 2 top row. To address this issue, we add a disambiguation token <D>
to the feature strings of nodes with identical feature strings followed by a unique integer. An example
of node disambiguation is shown the bottom row of Figure 2, where the three carbon atoms’ feature
strings are modified from C, C, C to C<D>0, C<D>1, C<D>2. With the addition of a disambiguation
token, the serialization method becomes expressive enough to reversibly serialize any graph. In
conjunction with this serialization function and special token <D>, we also add special tokens <PN>
(predecessor node) <E> (edge) and <SN> (successor node) to the tokenizer of the pre-trained LLM,
as well as additional rows to the embedding layer of the LLM for all four special tokens before
fine-tuning. See our publicly available code for implementations of the proposed serialization g(·)
and deserialization functions g−1(·).

3.3 MESSAGE PASSING WITHIN A LANGUAGE MODEL

Our proposed architecture requires passing information from an LLM layer to an MP layer, then to
the following LLM layer, and so on as shown in block B in Figure 1. As such, we need to convert
the serialized graph representation outputted by an LLM layer into a representation of the graph
that can be fed into an MP layer and vice versa. The inputs to an MP layer are node feature vectors
DV,F ∈ RN×H for each node in a graph, where H is the dimensionality of a feature vector, and the
graph’s adjacency matrix A ∈ RN×N . An obvious choice for constructing DV,F would be simply
using the feature vectors of DG,F . However, in DG,T , each node in the graph is described by multiple
tokens and consequently multiple feature vectors in DG,F . For example, in Figure 2, the predecessor
node of edge 1 is described by four tokens [<PN>, C, <D>, 0]. We can calculate a single node
vector from its multiple token feature vectors in DG,F by selecting the feature vector of the last
element describing the node in DG,F because the last vector contains information about all previous
tokens in the sequence including all those describing the node because of the causal attention layers
in an LLM.

2Prior work on generating graphs conditioned on text focused on tasks requiring graphs that did not contain
sets of nodes with the same feature string (8; 27; 33)
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In addition, if a node has a degree greater than one, it will be described more than once in DG
3. While

a node may occur more than once in a serialized graph, using our proposed serialization method, an
edge will only occur once. In a graph G = {V, E}, let there be a set ek for each edge (vi, vj) ∈ E
where the superscript k indicates the position of the edge in DG and the set contains the two nodes
the edge connects {vi, vj} ∈ ek. For the graph G and graph serialization DG pair depicted in Figure
2, e2 would be the set of nodes {C<D>1,N} contained in edge 2 because edge 2 is the second
edge (k = 2) described in the serialization DG . As a slight abuse of notation, we denote elements of a
graph’s edge set E either by (vi, vj) or by ek. Hence, we define a new graph Gedge = {Vedge, Eedge}
where the edges in the original graph are treated as nodes Vedge = E and nodes in the original graph
define edges in the new graph Eedge = {(ej , ek)|ej , ek ∈ E ∧ ej ∩ ek ̸= ∅∧ j ̸= k}. We call this new
graph an edge graph. Figure 2 shows an example of transforming a graph into its edge graph where
the four edges in the original graph become the nodes in the edge graph. Let findex : Z+ → Z+ be a
mapping from the index of an edge in the sequence DVedge,F to the index of the last token describing
the edge in DG,F . To construct the sequence of feature vectors for the nodes in an edge graph Gedge,
for each MP layer we use the last token’s feature vector of each edge in the serialized graph, so that
dkVedge,F

= d
findex(k)
G,F .

MP layers pass information between nodes in a graph by aggregating feature vectors from neighboring
nodes. To ensure that an MP layer does not pass information backwards in DG,F , the MP layer should
only aggregate information for a node from nodes that are earlier in the sequence as depicted in
causal graph attention in block D in Figure 1. causal attention, shown in block C in Figure 1,
only attends to elements previous to the query element in the sequence. graph attention only attends
to elements in the sequence which are neighboring nodes to the query element in the sequence based
on a reference graph. causal graph attention respects both of these constraints. We propose MP
layers to pass information on a graph’s edge graph. To ensure information is not passed backwards in
DG,F we must add an additional constraint when constructing the edge set of an edge graph which
is ∀(ej , ek) ∈ Eedge, k > j. This constraint has been applied to the edge graph shown in Figure 2.
After passing an edge graph through an MP layer, we add each resultant edge feature vector to the
token feature vector immediately after its description in the serialized graph as described in equation
3;

dtG,F =

{
dtG,F + dkVedge,F

tanh a, if findex(k) = t− 1;

dtG,F , otherwise.
(3)

During the development of this method, we found it necessary to multiply element-wise the output
of an MP layer by a gating term tanh a when incorporating the output back into DG,F as shown
in equation 3. a is a learned gating parameter of the MP layer initialized to 0. Without the gating
term, we could not fine-tune an LLM with message passing incorporated to generate valid graphs as
demonstrated by the results shown in Appendix D. We hypothesize this is because the gating term
allows an LLM to gradually learn to take into account graph structure. Without it, the model most
likely starts fine-tuning at a position on the loss landscape from which it cannot converge to a useful
local minima. The use of the gating term is inspired by the work of (1), which faced a similar issue.

4 RELATED WORK

4.1 INCORPORATING OTHER MODALITIES INTO TEXT GENERATION

This work proposes incorporating graph structure, an additional modality, into an LLM’s text
generation process (where the generated text is a serialized graph). There have been many works
on incorporating other modalities into the text generation process. Speech-to-text can be posed as a
sequence to sequence problem (16) and so similar methods to those used for text-to-text generation
have been used to incorporate the modality of sound into language generation (2; 30; 37). Another
widely studied problem is image-to-text generation, where most works focus on calculating dense
sequence representations of images (21; 22; 24; 29; 40; 1) to pose image-to-text generation as a

3This makes it difficult to introduce graph information into the early elements in the graph serialization
sequence. For a node with a degree greater than one, if we passed the feature vector outputted from an MP layer
into its earliest instance in the graph serialization, we would be passing information backwards in the sequence
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sequence-to-sequence generation problem as well. From this field of work, our proposed method is
inspired by (1) which incorporates image information into the text generation process by representing
sequences of images as sequences of dense vectors and interleaving special layers for combining the
modalities of image and text between language modelling layers in an LLM. Inspired by this approach,
we propose interleaving additional layers in-between language modelling layers in a pretrained LLM
and incorporating additional tokens for representing the other modality. Unlike (1), we incorporate
the modality of graphs as opposed to images into the generation process, and use a modified LLM to
generate graphs rather than text.

4.2 GENERATING GRAPHS CONDITIONED ON TEXT

In the field of natural language processing, there have been many works on parsing natural language
into syntax trees, some of which pose the problem as a serialized graph generation conditioned on
text (9; 36). However, these works use a domain specific serialization method and do not incorporate
graph structure into their proposed models’ generation processes. There is one recent work (33)
focused on generating explanation graphs from text which proposes a contrastive learning objective
for fine-tuning the LLM T5 (31) to generate graphs, however the contrastive objective requires
additional labels created by an expert. There is also a recent work published on generating protein
graphs conditioned on text (25), however it cannot generalize past the domain of protein graph
generation because the proposed method generates sequences of characters describing amino acid
sequences.

Most prior work on text to graph generation focuses on generating knowledge graphs from text
(8; 12; 14; 26; 27; 38). The best performing method on benchmark tasks is regen (8), which
uses the LLM T5 (31) to generate knowledge graphs and is fine-tuned using the standard objective
of predicting the next token in a sequence (equation 2). The second best performing method on
benchmark knowledge graph generation tasks is grapher (27) which uses a combination of T5
and a recurrent neural network to generate graphs. This method differs from ours in the use of an
additional model besides the LLM to predict edges and generate edge features as well as a training
objective similar to equation 2.

5 EXPERIMENTS

Prior work on text graph generation conditioned on text does not provide an experimental design
for evaluating methods that generate graphs based on functional descriptions. To do so, a dataset
containing (functional requirements, graph) pairs is required for a task where it is possible to
automatically calculate the functional properties of newly generated graphs. To generate such a
dataset, we took the open graph benchmark large scale molecule dataset PCQM4M (20) and used the
open source Python package rdkit (13) to generate two functional descriptions for each molecule:
number of valency electrons in it and quantitative estimated-likeness (QED) (3). These are commonly
used functional properties of a molecule’s graph and are described in more detail in Appendix C.

5.1 DATASETS

For evaluation we created two datasets, each dataset is composed of all the molecules in the original
PCQM4M (20) dataset with less than 20 atoms, which is still more than 2 million examples. One of
the two datasets contains (number of valency electrons functional description, graph) pairs and is
called Valency dataset. The other dataset contains (QED functional description, graph) pairs and is
called QED dataset. To evaluate the impact of amount of data on model performance, we created
three subsets for each of the datasets. Each subset had 1000 randomly selected molecules in its test
and validation sets. Importantly, these were the same across the three subsets and then the training
sets of the three subsets were another 25, 000, 100, 000 and 400, 000 randomly chosen examples.
The training set of the smaller subsets was contained in the training set of the larger subset sets. See
Figure 2 for examples of input output pairs for the constructed data sets.
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Minimum Maximum Mean Standard
Deviation Median Interquantile

Range
Number of Valency
Electrons 2 122 77.3 13.3 80 70 - 88

QED 0.06 0.98 0.764 0.133 0.78 0.68 - 0.88

Table 1: Summary statistics about functional requirements in datasets used in experiments. The
standard deviations reported for both data sets provide context for evaluating Table 2 below.

Model Message Passing Training Set Size Mean Absolute Error
QED Valency

SGG-LLM none 100,000 0.044± 0.011 0.060± 0.018
SGG-LLM edges 100,000 0.036± 0.005 0.035± 0.014
SGG-LLM correspondences 100,000 0.039± 0.007 0.045± 0.017
SGG-LLM none 25,000 0.062± 0.008 1.703± 0.074
SGG-LLM none 400,000 0.020± 0.001 0.076± 0.034
grapher N/A 100,000 0.157± 0.004 1.268± 0.229
regen N/A 100,000 0.149± 0.018 2.282± 1.156

Table 2: Model performance in terms of MAE on QED and Valency datasets. The first, second, and
third best performing models are highlighted using the colors shown here. Experiments were repeated
three times to estimate standard error. All fine-tuned variants of SGG-LLM outperform baselines by a
statistically significant margin. Models below the boldface line are from prior work.

5.2 METRICS AND EVALUATION

To evaluate models, we calculated three metrics on the test sets of the datasets described above:
parsability, diversity, and most importantly mean absolute error (MAE) with respect to the conditional
functional property. A generated graph is parsable if no error is thrown when calculating its functional
property. If a molecule is parsable (i.e. it follows correct serialization syntax and doesn’t violate basic
laws of physics), it is given a score of 1, otherwise 0. In all experiments we use the following metrics:

• Parsability is the mean parsability score of samples in the test set.

• MAE is the mean absolute error between the generated graph’s functional property value
and the requested property value averaged over samples in the test set. To interpret the
magnitudes reported for MAE results see Table 1 describing some summary statistics about
functional properties of graphs in the datasets used in experiments.

• Diversity is a measure of the multimodality of the distribution pθ(DG |Df ) that the LLM
learns. A sampled graph is assigned a diversity score of 1, if it, a second sampled graph
and the ground truth do not share the same node and edge sets; and is assigned a score of 0
otherwise. Diversity is the average of diversity scores of samples in the test set.

5.3 CURRENT STATE-OF-THE-ART

We implemented current state-of-the-art models from prior work as baselines: specifically we
implemented the version of grapher (27), which generates edge features instead of classifying
them and regen (8). We had to make two modifications to both approaches so they could generalize
to molecule data: we added node disambiguation from Section 3.2 to their serialization methods and
updated their language models to a more recent model BLOOM (34), which is the same LLM used in
experiments by our proposed approach. See Appendix A for a description of the training process
used to train grapher, regen and variants of our proposed approach.

6 RESULTS

On the task of generating graphs to meet functional requirements, the ideal model can generate a
diverse set of parsable graphs with functional properties equal to the requested functional property.
Tables 2 and 3 describe the results of our proposed approach on the QED and Valency datasets. Our
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Model Message
Passing

Training
Set Size

Parsability Diversity
QED Valency QED Valency

SGG-LLM none 100,000 1.000± 0.000 0.999± 0.001 0.845± 0.017 0.506± 0.031
SGG-LLM edges 100,000 0.998± 0.001 0.999± 0.000 0.836± 0.029 0.540± 0.016

SGG-LLM
correspo-
ndences 100,000 0.995± 0.001 0.998± 0.000 0.839± 0.008 0.608± 0.054

SGG-LLM none 25,000 0.997± 0.002 0.991± 0.003 0.799± 0.008 0.518± 0.078
SGG-LLM none 400,000 0.998± 0.001 1.000± 0.000 0.857± 0.006 0.542± 0.051
grapher N/A 100,000 1.000± 0.000 1.000± 0.000 0.745± 0.038 0.410± 0.045
regen N/A 100,000 0.984± 0.008 0.991± 0.007 0.854± 0.031 0.446± 0.124

Table 3: Model performance in terms of parsability and diversity on QED and Valency datasets.
The first, second, and third best performing models are highlighted using the colors shown here.
Experiments were repeated three times to estimate standard error. Models below the boldface line are
from prior work. All models achieved a parsability near 1.0.

proposed approach is referred to as SGG-LLM standing for serialized graph generator large language
model. All variants of our approach and the baselines grapher, and regen achieve a parsability
score near or at 1. The SGG-LLM variant with correspondences message passing (described in
Appendix B) is another method of incorporating the MP layers into an LLM by passing messages in
DG based on node correspondences rather than edges.

Results in table 2 suggest that all variants of SGG-LLM outperform baselines by a statistically
significant margin, using the unpaired t-student test and a threshold p-value of 0.05, in terms of
generating examples with functional properties close those requested. In addition, results suggest
that all variants of SGG-LLM outperform grapher by a statistically significant margin in terms of
generating a diverse set of candidates on the Valency dataset. Finally, the two variants of SGG-LLM
that use MP layers outperform the variant that does not utilise MP layers.

The high performance of all variants of our approach over regen suggest the importance of the
proposed loss function and of weighting tokens equally across batches during training. The high
performance of all variants of our approach over grapher could be for the same reasons as regen,
as it is trained with a similar loss, or it could be that single model which jointly estimates the existence
of nodes, edges, and their features is more effective at generating graphs than a dual module model.

To demonstrate the generality of our proposed approach beyond generating molecules, we also
evaluate it on the benchmark knowledge graph generation dataset WebNLG+ 2020 (10) using a
different language model T5 (31). Note this task is generating graphs conditioned on an imperative
description of the graph, so is not directly linked to the focus of this paper. See Appendix E for a
description of the experiments and discussion of the results.

7 DISCUSSION

The main limitation of our proposed approach is its reliance on fine-tuning a pre-trained autoregres-
sive LLMs, which are computationally expensive, slow at generation time and require substantial
computational resources even to fine-tune. This limitation would become even more difficult when
applying this method to tasks containing larger graphs or graphs containing elements with long
feature strings. Hence an interesting next step from this method would be using quantized pre-trained
models and low rank adapters on LLM layers for more efficient fine tuning (7).

In terms of societal impact, our proposed approach might help speed up and improve processes
such as drug discovery, software development and project planning. But at the same time requires
oversight to ensure it is not used for nefarious applications like the design of chemical weapons. In
addition, if this approach is applied to a task in the social sciences, analysis should be required to
ensure that the biases learned by the model are understood and any unfair preferences learned for a
certain demographic or group should be mitigated.
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A HYPERPARAMETERS AND TRAINING

For experiments on the molecule data sets, all variants of our proposed approach and the implemented
baseline grapher (27) and regen (8) used the pretrained version of BLOOM (34) with 560 million
parameters as their language model. For experiments on the WebNLG2020+ data set (10), all models
used the pretrained version of T5 (31) with 770 million parameters as their language model. All
models were trained for up to ten epochs and checkpointed based on minimizing validation loss.
Model’s were trained using the ADAM optimizer (23) with a learning rate of 3e− 5, a β1 of 0.9, a
β2 of 0.999 and a regularization weight of 1e− 7 as well as a linear learning rate schedule. During
training, model parameters’ gradients norms were clipped to a value of 1.0. The models were trained
with a batch size of 18 using stage 2 data parallelism using the method described in (32). All models
were trained and evaluated on machines with 3 NVIDIA A100 GPUs. Variants of our proposed
approach which incorporated message passing into the LLM by interleaving message passing layers
in the LLM used a single GraphSage (15) layer in each message passing layer with an embedding
size equal to the token embedding size of the LLM they were incorporated into.

B MESSAGE PASSING BETWEEN NODE CORRESPONDENCES

Most nodes appear at least twice in a bag-of-edges serialization. We can define a correspondence
graph from a serialized graph DG by treating each instance of a node in a serialized graph DG as its
own node in the correspondence graph. Then the correspondences between instances define edges in
the correspondence graphs. An example of a correspondence graph is shown in the graphic below;

In the graphic, the node C<D>0 occurs more than once in DG and each instance is treated as its
own node in the correspondence graph, so the node C<D>0 corresponds to C<D>0 edge 1 and to
C<D>0 edge 3 in the correspondence graph. Edges are constructed by connecting nodes in the
correspondence graph which correspond to the same node in the original graph i.e. in the graphic
C<D>0 edge 1 is connected to C<D>0 edge 3 because they refer to the node C<D>0 in the
original graph. Nodes in the correspondence graph are only connected if they are adjacent occurrences
in the serialized graph. By constructing edges such that they always point from an earlier instance of
a node to a later instance we ensure the message passing layer does not pass information backwards
in the serialized graph sequence at training time. As additional method, we propose incorporating MP
layers into an LLM where the MP layers pass information based on a graph’s correspondence graph.
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C FUNCTIONAL DESCRIPTIONS OF MOLECULES

We used two functional descriptions of molecules to generate datasets for our experiments - number
of valency electrons and QED. The number of valency electrons in a molecule is the sum of the
number of valency electrons in its atoms. Importantly, this property is a result of only a graph’s node
composition, but not its full structure. To generate descriptions of a functional property of a graph’s
full structure, we calculate a metric called quantitative estimated drug-likeness (QED) (3). QED
quantifies multiple properties of a molecule which are attractive for applications in drug design and
then calculates a single metric from these properties using a weighted logarithmic sum. The properties
used to calculate QED are molecular weight, octanol–water partition coefficient, topological polar
surface area, number of hydrogen bond donors and acceptors, the number of aromatic rings and
rotatable bonds, and the presence of unwanted chemical functionalities. For experiments we set
the weight of the properties: molecular weight, number of hydrogen bond donors and acceptors,
and presence of unwanted chemical functionalities to zero in the QED calculation, because they
are mainly determined by node composition instead of the entire graph structure. The functional
descriptions generated were of the format "a molecule with number of valence electrons equal to ..."
and "a molecule with a weighted quantitative estimation of drug-likeness equal to ...".

D ADDITIONAL RESULTS OF MOLECULE GENERATION EXPERIMENTS

Below, we provide three tables describing the full results of experiments on the molecule data sets
including ablation studies to empirically justify some design choices in our proposed method. Our
proposed model is referred to as SGG-LLM. There are three additional models in the tables below;
1) SGG-LLM w/out fine-tuning, 2) SGG-LLM w/ special loss, and 3) SGG-LLM with edge based
message passing without a gating term. The table below describing performance of models in terms
of the parsability of generated examples shows that SGG-LLM w/out fine-tuning and SGG-LLM with
edge based message passing without a gating term both did not produce a single parsable example
on molecule datasets’ test sets. These results suggests that both fine-tuning and a gating term (when
incorporating message passing into an LLM) are required to achieve good performance with our
proposed method. Note if a model cannot generate parsable examples, then the metric mean absolute
error cannot be calculated and the diversity of generated examples is not a useful measure of model
performance. Consequently, we do not report mean absolute error or diversity for SGG-LLM w/out
fine-tuning and SGG-LLM with edge based message passing without a gating term.

Model Message Passing Training Set Size Parsability
QED Valency

SGG-LLM none 100,000 1.000± 0.000 0.999± 0.001
SGG-LLM
w/out fine-tuning none 100,000 0.000± 0.000 0.000± 0.000

SGG-LLM
w/ special loss none 100,000 0.986± 0.003 -

SGG-LLM edges 100,000 0.998± 0.001 0.999± 0.000
SGG-LLM
w/out gating term edges 100,000 0.000± 0.000 0.000± 0.000

SGG-LLM correspondences 100,000 0.995± 0.001 0.998± 0.000
SGG-LLM none 25,000 0.997± 0.002 0.991± 0.003
SGG-LLM none 400,000 0.998± 0.001 1.000± 0.000
grapher N/A 100,000 1.000± 0.000 1.000± 0.000
regen N/A 100,000 0.984± 0.008 0.991± 0.007

The model SGG-LLM w/ special loss is a version of SGG-LLM without message passing that was
trained using equation 1, but instead of letting nbatch = batch size as proposed in section 3.1, we
equal nbatch = E[

∑nbatch

i=1 ni
seq] which is the expected value of the differing term in equation 2

from equation 1. This is to determine whether it is the magnitude of the differing term causing the
difference in performance or the fact that

∑nbatch

i=1 ni
seq changes from batch to batch. In experiments,

some summary statistics for the term
∑nbatch

i=1 ni
seq in equation 2 were mean = 4053, max = 4676,

median = 4060, and inter-quartile range = 3915 − 4199. There was a marginal difference in
performance in terms of all three metrics when comparing the performance of SGG-LLM w/ special
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loss and SGG-LLM without message passing. The marginal difference in performance suggests that
the changing weighting between batches and across epochs is what hurts the performance of models
trained with the objective described in equation 1. regen is a model trained with equation 1.

Model Message Passing Training Set Size Mean Absolute Error
QED Valency

SGG-LLM none 100,000 0.044± 0.011 0.060± 0.018
SGG-LLM
w/ special loss none 100,000 0.046± 0.004 -

SGG-LLM edges 100,000 0.036± 0.005 0.035± 0.014
SGG-LLM correspondences 100,000 0.039± 0.007 0.045± 0.017
SGG-LLM none 25,000 0.062± 0.008 1.703± 0.074
SGG-LLM none 400,000 0.020± 0.001 0.076± 0.034
grapher N/A 100,000 0.157± 0.004 1.268± 0.229
regen N/A 100,000 0.149± 0.018 2.282± 1.156

Model Message Passing Training Set Size Diversity
QED Valency

SGG-LLM none 100,000 0.845± 0.017 0.506± 0.031
SGG-LLM
w/ special loss none 100,000 0.831± 0.003 -

SGG-LLM edges 100,000 0.836± 0.029 0.540± 0.016
SGG-LLM correspondences 100,000 0.839± 0.008 0.608± 0.054
SGG-LLM none 25,000 0.799± 0.008 0.518± 0.078
SGG-LLM none 400,000 0.857± 0.006 0.542± 0.051
grapher N/A 100,000 0.745± 0.038 0.410± 0.045
regen N/A 100,000 0.854± 0.031 0.446± 0.124

E RESULTS OF KNOWLEDGE GRAPH GENERATION EXPERIMENTS

To demonstrate the generality of our proposed approach beyond generating molecules, we also
evaluate it on the benchmark knowledge graph generation dataset WebNLG+ 2020 (10) using a
different language model T5 (31). Like in prior work, model performance is evaluated using the
metrics of F1-score, precision and recall when comparing a generated graph to the ground truth
knowledge graph. See (8) for a more detailed explanation of these metrics. We compare our proposed
method to the three best performing models on this data set; regen (8), grapher (27), and bt5
(11).

On the WebNLG+ 2020 data set, results in the table below suggest that the incorporating message
passing into an LLM is not useful to the task of knowledge graph generation from an imperative
description, but also that using edge message passing does not degrade performance. Interestingly,
SGG-LLM without message passing was able to achieve state-of-the-art performance on the bench-
mark task of generating triples in a knowledge graph. regen’s implementation for experiments on
WebNLG2020+ was identical to SGG-LLM without message passing, except that SGG-LLM was
trained with a different training objective (see equation 1 in the main paper), a more aggressive
learning rate and a linear learning rate schedule. So the state-of-the-art performance of SG-LLM
on WebNLG2020+ may be attributed to better hyperparameter selection or the modified training
objective.
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Exact Partial Strict
Model F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec.

bt5 0.682 0.670 0.701 0.713 0.700 0.736 0.675 0.663 0.695
regen 0.723 0.714 0.738 0.767 0.755 0.788 0.720 0.713 0.735
grapher 0.683 0.675 0.695 0.713 0.702 0.730 0.681 0.673 0.693
SGG-LLM
none

0.747
±0.005

0.743
±0.003

0.765
±0.007

0.779
±0.006

0.771
±0.005

0.798
±0.004

0.726
±0.005

0.720
±0.007

0.731
±0.012

SGG-LLM
edges

0.754
±0.003

0.748
±0.002

0.762
±0.004

0.786
±0.001

0.779
±0.000

0.795
±0.003

0.733
±0.005

0.729
±0.004

0.741
±0.003

SGG-LLM
correspo-
ndences

0.743
±0.008

0.738
±0.009

0.752
±0.005

0.774
±0.005

0.769
±0.009

0.787
±0.002

0.683
±0.067

0.693
±0.081

0.691
±0.069

Model performance on knowledge graph data set WebNLG+ 2020. Note: baseline model results do
not report standard deviations because they were not reported in prior work and we felt it was more
appropriate to report baseline results based their published results as opposed to reimplementing the
baselines ourselves. Experiments with variants of our proposed approach were repeated three times
to estimate standard error.
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