
Under review as a conference paper at ICLR 2024

FORM FOLLOWS FUNCTION: TEXT-TO-TEXT CONDI-
TIONAL GRAPH GENERATION BASED ON FUNCTIONAL
REQUIREMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This work focuses on the novel problem setting of generating graphs conditioned on
a description of the graph’s functional requirements in a downstream task. We pose
the problem as a text-to-text generation problem and focus on the approach of fine-
tuning a pretrained large language model (LLM) to generate graphs. We propose
an inductive bias which incorporates information about the structure of the graph
into the LLM’s generation process by incorporating message passing layers into an
LLM’s architecture. To evaluate our proposed method, we design a novel set of
experiments using publicly available and widely studied molecule and knowledge
graph data sets. Results suggest our proposed approach generates graphs which
more closely meet the requested functional requirements, outperforming baselines
developed on similar tasks by a statistically significant margin.

1 INTRODUCTION

Many concepts can be described by graphs; including molecules (20), abstract syntax trees (19),
knowledge graphs (27), and project schedules (18). Each of these concepts is used in downstream
tasks where graph structure has a direct impact on task performance. For example, some molecules can
be used as medicine for a disease while others cannot and this is partially determined by the molecules’
graphs. It would be useful if we could describe the functional requirements of a graph using natural
language and query a model to conditionally generate a graph which meets these requirements. For
example, a model using the prompt "generate a molecule with 47 valency electrons" would generate
a valid molecule graph with 47 valency electrons. With such models we could speed up and improve
the processes of drug discovery, software development, project management as well as many other
applications of graphs.

In this work, we focus on the problem of generating graphs where node and edge features are strings
of text and term this type of graph a text graph. Text graphs are a fairly flexible data format and can
be used in most applications of graph-structured data including those listed above. To the best of our
knowledge, text graph generation conditioned on text has only been studied in the fields of knowledge
graph generation (8; 12; 14; 26; 27; 38) and explanation graph generation (33). In both setups the
conditional text explicitly describes the graph. These explicit descriptions give an imperative "recipe"
with step-by-step instructions of how to generate the graph. Contrary to giving explicit imperative
descriptions, this work focuses on the case where the conditional text is a functional description of
the graph, specifically for a downstream task. Additionally, in the case of imperative conditional text,
there is an injective mapping between conditional text and the graph that should be generated, which
means that methods can be evaluated by comparing the generated graph to the ground truth graph in
terms of its structure. By contrast, many graphs might correspond to the same functional description
and hence a new experimental design is required to study the problem.

We propose solving this problem by fine tuning a large language model (LLM) to generate a serialized
text description of a graph. This is motivated by the strong performance pre-trained LLMs have
shown when fine-tuned to perform a specific task (6; 17; 34), including the task of text-to-serialized
graph generation (8). However, prior work on serialized graph generation does not generalize to all
domains containing text graph structured data. To further this approach, we propose a serialization
method which is expressive enough to reversibly serialize any graph and a method to incorporate

1



Under review as a conference paper at ICLR 2024

graph structure into the LLM’s generation process motivated by the observation that the structures
of generated graphs have a direct impact on their functional properties and consequently on model
performance. While LLMs are probably expressive enough to learn to incorporate graph structure
into their generation process, it is more efficient to provide the model with the ability to do so.

However, it is also a non-trivial challenge because modern LLMs perform autoregressive sampling to
generate text (4; 5; 6; 17; 28; 31; 34). This involves a multi-step sequential process, where at each
step a forward pass is performed and then a new token is sampled. A token is an atomic unit of text
like ’dog’, ’ ’, or ’ch’. The generation process exhibits high computational complexity and cost due to
the requirement of performing a forward model pass for each generated token. Consequently, LLMs
are typically trained to generate text without actually performing generation at training time. Only
a single forward pass is performed at each training step without sampling and the entire sequence
(conditional plus desired text) is fed into the LLM for that forward pass. As such, an LLM has access
to the full sequence at training time, while at generation time it only has access to the conditional
text and the part of the sequence that has already been generated. This means that during training an
LLM could learn to rely on information that it will not have access to at generation time. This issue
is overcome by using causal masking, which guarantees the LLM cannot pass information backwards
in the token sequence ensuring that generation conditions are simulated at training time.

In Section 3, we propose a method of incorporating graph structure into an LLM’s generation process
which passes information between tokens in a sequence. Our key contribution is demonstrating how
to do so without passing information backwards in the sequence. Specifically, we propose to extend
LLMs to process and generate sequences of text and graphs. For this we provide the LLM with
the ability to deserialize graphs incorporated into input token sequences and introduce message
passing layers into the LLM to calculate representations of graph structure in a manner that is
conducive to autoregressive generation.

In this work, we specifically focus on the problem of generating text graphs from functional require-
ments within the range of those seen at training time (interpolation), instead of extrapolating outside
the training set’s domain, which we leave as future work. We propose a novel experiment design to
evaluate methods in this new problem setting using the publicly available data sets WebNLG+ 2020
(10) and PCQM4M (20). Results suggest that our proposed model outperforms previous work on
text graph generation conditioned on text by a statistically significant margin. And that our proposed
approach for incorporating graph structure into the language model’s generation process leads to
models which generate examples which on average more closely meet their conditional functional
requirements. All code used to perform experiments is publicly available at ...

2 PRELIMINARIES

A text graph G = {V, E} is composed of a set of N nodes vi ∈ V each with an associated text string
describing the node and a set of M directed edges (vi, vj) ∈ E each with an associated text string
describing the edge. Each text graph G is associated with text Df containing a functional description
of G. Our goal is to train a model to accurately predict pθ(G|Df ) with parameters θ, describing the
distribution over text graphs G conditioned on a specific functional description Df . Importantly, this
distribution may be multimodal as multiple graphs may have the same functional properties.

This work focuses on the case where the parameterized model pθ(·) is a language model that generates
a serialized text description of the graph. Hence, if DG is the serialized graph, then the language
model predicts pθ(DG |Df ). This requires an injective serialization function g : G → DG with a
known inverse mapping g−1 : DG → G from the serialized description DG back to the graph G such
that G = g−1(g(G)). g(·) is used at training time to transform graphs G into serialized graphs DG
and the deserialization function is used at generation time to recover the graph G from the serialized
graph DG (see Figure 1 top row). With this approach, we pose the problem of generating graphs
conditioned on functional descriptions as a text conditioned on text generation problem and can
consequently use LLMs to conditionally generate text graphs based on functional descriptions.

Prior state-of-the-art work on serialized graph generation uses a bag-of-edges approach (8;
33), which describes each edge using a string with special tokens for delimiting graph elements
and then lists out the edges in a predefined order. For example, the popular smiles molecule
serialisation algorithm uses depth-first search traversal (39) to order chemical bonds (edges) in a

2



Under review as a conference paper at ICLR 2024

Figure 1: At generation time (top) the input to the model is the graph’s functional description Df and
the output is a serialised description of the graph DG . During training time (below top) the input is a
functional description, serialized graph pair (Df ,Dg); the output is the probability p(Dg). Graph
serialization method g(·) is used to serialize input graphs before training, while the deserialization
method g−1(·) is used to deserialize the generated serialized graph Dg as well as to help perform
message passing within the LLM. Block A describes the proposed architecture interleaving message
passing layers between LLM layers. Block B depicts how information is passed between LLM and
MP layers. The bottom visualization depicts the masked matrices used in the types of attention
performed within LLM and message passing (MP) layers.

3



Under review as a conference paper at ICLR 2024

molecule. Then each edge is described with the syntax <PN>predecessor node feature
string<E>edge feature string<SN>successor node feature string, where
<PN>,<E>,<SN> are special tokens used to delimit the different components of the edge.

Using LLMs, a description D is represented in three ways: 1) as a string (text), 2) as a sequence of
token indicators, and 3) as a sequence of feature vectors / embeddings. To distinguish between these
three representations, we use DS to denote the string representation, DT to denote the sequence of
token indicators and DF to denote the sequence of feature vectors. For the serialized graph DG , its
string representation is denoted by DG,S , its sequence of token indicators representation by DG,T and
its sequence of feature vector representation by DG,F .

3 METHOD

The datasets LLMs are pre-trained on do not contain much, if any, data on generating serialized graphs
(4; 6; 31; 34). Consequently, it is unlikely they could generate text graphs without further training.
We provide evidence supporting this hypothesis in experiments where we evaluate a pretrained LLM
without further fine-tuning. As shown in the results in Appendix D, an LLM without fine-tuning did
not generate a single valid serialized graph. Hence, we propose fine-tuning an LLM on a training and
validation set of (functional description, graph) pairs to generate serialized graphs conditioned on
functional descriptions. While LLMs are probably expressive enough to learn to incorporate graph
structure into their generation process, it is more efficient to provide the model with the ability to do
so. State-of-the-art models for performing inference on graph structured data use message passing
(MP) layers (15; 35). As such, we propose interleaving MP layers between language modelling layers
in an LLM (Figure 1 block A). Any message passing layer can be used with our proposed approach 1.

3.1 FINE-TUNING OBJECTIVE

For fine-tuning, we propose minimizing the negative log-likelihood of serialized graph sequences DG
as described in equation (1):

Loss =
1

nbatch

nbatch∑
i=1

(
− log pθ(d

1,i
G,T |D

i
f ) +

ni
seq∑

j=2

− log pθ(d
j,i
G,T |d

1:(j−1),i
G,T ,Di

f )
)

(1)

where di,jG,T ∈ Di
G,T , the superscript i is the index in a batch, the superscript j indicates the position

of an element di,jG,T in the sequence Di
G,T , nbatch is the number of elements in the batch, and ni

seq is
the number of elements in the sequence of example i in the batch. This objective differs from the
traditional LLM fine-tuning objective of maximizing the average likelihood of the next token for each
token in a batch of sequences as described in equation 2;

Loss =
1∑nbatch

i=1 ni
seq

nbatch∑
i=1

(
− log pθ(d

1,i
G,T |D

i
f ) +

ni
seq∑

j=2

− log pθ(d
j,i
G,T |d

1:(j−1),i
G,T ,Di

f )
)

(2)

The difference between the two objectives is the red term in both equations. We can view the reciprocal
of this term as a weight placed on the importance of an example in the training set with respect to
the training objective. For the standard training objective in equation 2, the term

∑nbatch

i=1 ni
seq in red

changes from batch to batch, because batches contain randomly sampled examples which differ in
sequence length. This means across batches, examples in the data set are weighted differently by
the loss function. For the same reason, the loss of an example in the training set will be weighted
differently across epochs based on the batch it falls in. Note that this is not an issue when training or
fine-tuning on text data, because in most cases all training examples in a batch have the same length.
A comparison in the performance of models trained with these objectives can be seen in Tables 2 and
3. The baseline regen only differs from our proposed model SGG-LLM without message passing
in that it was trained using equation 2 instead of 1. We also report additional experiments shown
Appendix D which suggests what is causing the difference in performance.

1We used GraphSAGE (15) in all experiments

4



Under review as a conference paper at ICLR 2024

Figure 2: Top: the correspondence between a graph and its edge graph. Middle: the graph’s
bag-of-edges serialisation with special tokens <PN>, <SN>, <E> and <D>. Bottom: Examples
of functional requirements used for condition graph generation for the molecule above.

3.2 NODE DISAMBIGUATION DURING SERIALIZATION

One special case of graph-structured data, which is not handled by prior work on generating serialized
graphs, is when a subset of nodes in a graph are described by the same feature string2. However, this
special case occurs in many domains, such as molecule data. For example, the molecule with multiple
carbon atoms depicted in Figure 2 top row. To address this issue, we add a disambiguation token <D>
to the feature strings of nodes with identical feature strings followed by a unique integer. An example
of node disambiguation is shown the bottom row of Figure 2, where the three carbon atoms’ feature
strings are modified from C, C, C to C<D>0, C<D>1, C<D>2. With the addition of a disambiguation
token, the serialization method becomes expressive enough to reversibly serialize any graph. In
conjunction with this serialization function and special token <D>, we also add special tokens <PN>
(predecessor node) <E> (edge) and <SN> (successor node) to the tokenizer of the pre-trained LLM,
as well as additional rows to the embedding layer of the LLM for all four special tokens before
fine-tuning. See our publicly available code for implementations of the proposed serialization g(·)
and deserialization functions g−1(·).

3.3 MESSAGE PASSING WITHIN A LANGUAGE MODEL

Our proposed architecture requires passing information from an LLM layer to an MP layer, then to
the following LLM layer, and so on as shown in block B in Figure 1. As such, we need to convert
the serialized graph representation outputted by an LLM layer into a representation of the graph
that can be fed into an MP layer and vice versa. The inputs to an MP layer are node feature vectors
DV,F ∈ RN×H for each node in a graph, where H is the dimensionality of a feature vector, and the
graph’s adjacency matrix A ∈ RN×N . An obvious choice for constructing DV,F would be simply
using the feature vectors of DG,F . However, in DG,T , each node in the graph is described by multiple
tokens and consequently multiple feature vectors in DG,F . For example, in Figure 2, the predecessor
node of edge 1 is described by four tokens [<PN>, C, <D>, 0]. We can calculate a single node
vector from its multiple token feature vectors in DG,F by selecting the feature vector of the last
element describing the node in DG,F because the last vector contains information about all previous
tokens in the sequence including all those describing the node because of the causal attention layers
in an LLM.

2Prior work on generating graphs conditioned on text focused on tasks requiring graphs that did not contain
sets of nodes with the same feature string (8; 27; 33)

5



Under review as a conference paper at ICLR 2024

In addition, if a node has a degree greater than one, it will be described more than once in DG
3. While

a node may occur more than once in a serialized graph, using our proposed serialization method, an
edge will only occur once. In a graph G = {V, E}, let there be a set ek for each edge (vi, vj) ∈ E
where the superscript k indicates the position of the edge in DG and the set contains the two nodes
the edge connects {vi, vj} ∈ ek. For the graph G and graph serialization DG pair depicted in Figure
2, e2 would be the set of nodes {C<D>1,N} contained in edge 2 because edge 2 is the second
edge (k = 2) described in the serialization DG . As a slight abuse of notation, we denote elements of a
graph’s edge set E either by (vi, vj) or by ek. Hence, we define a new graph Gedge = {Vedge, Eedge}
where the edges in the original graph are treated as nodes Vedge = E and nodes in the original graph
define edges in the new graph Eedge = {(ej , ek)|ej , ek ∈ E ∧ ej ∩ ek ̸= ∅∧ j ̸= k}. We call this new
graph an edge graph. Figure 2 shows an example of transforming a graph into its edge graph where
the four edges in the original graph become the nodes in the edge graph. Let findex : Z+ → Z+ be a
mapping from the index of an edge in the sequence DVedge,F to the index of the last token describing
the edge in DG,F . To construct the sequence of feature vectors for the nodes in an edge graph Gedge,
for each MP layer we use the last token’s feature vector of each edge in the serialized graph, so that
dkVedge,F

= d
findex(k)
G,F .

MP layers pass information between nodes in a graph by aggregating feature vectors from neighboring
nodes. To ensure that an MP layer does not pass information backwards in DG,F , the MP layer should
only aggregate information for a node from nodes that are earlier in the sequence as depicted in
causal graph attention in block D in Figure 1. causal attention, shown in block C in Figure 1,
only attends to elements previous to the query element in the sequence. graph attention only attends
to elements in the sequence which are neighboring nodes to the query element in the sequence based
on a reference graph. causal graph attention respects both of these constraints. We propose MP
layers to pass information on a graph’s edge graph. To ensure information is not passed backwards in
DG,F we must add an additional constraint when constructing the edge set of an edge graph which
is ∀(ej , ek) ∈ Eedge, k > j. This constraint has been applied to the edge graph shown in Figure 2.
After passing an edge graph through an MP layer, we add each resultant edge feature vector to the
token feature vector immediately after its description in the serialized graph as described in equation
3;

dtG,F =

{
dtG,F + dkVedge,F

tanh a, if findex(k) = t− 1;

dtG,F , otherwise.
(3)

During the development of this method, we found it necessary to multiply element-wise the output
of an MP layer by a gating term tanh a when incorporating the output back into DG,F as shown
in equation 3. a is a learned gating parameter of the MP layer initialized to 0. Without the gating
term, we could not fine-tune an LLM with message passing incorporated to generate valid graphs as
demonstrated by the results shown in Appendix D. We hypothesize this is because the gating term
allows an LLM to gradually learn to take into account graph structure. Without it, the model most
likely starts fine-tuning at a position on the loss landscape from which it cannot converge to a useful
local minima. The use of the gating term is inspired by the work of (1), which faced a similar issue.

4 RELATED WORK

4.1 INCORPORATING OTHER MODALITIES INTO TEXT GENERATION

This work proposes incorporating graph structure, an additional modality, into an LLM’s text
generation process (where the generated text is a serialized graph). There have been many works
on incorporating other modalities into the text generation process. Speech-to-text can be posed as a
sequence to sequence problem (16) and so similar methods to those used for text-to-text generation
have been used to incorporate the modality of sound into language generation (2; 30; 37). Another
widely studied problem is image-to-text generation, where most works focus on calculating dense
sequence representations of images (21; 22; 24; 29; 40; 1) to pose image-to-text generation as a

3This makes it difficult to introduce graph information into the early elements in the graph serialization
sequence. For a node with a degree greater than one, if we passed the feature vector outputted from an MP layer
into its earliest instance in the graph serialization, we would be passing information backwards in the sequence

6



Under review as a conference paper at ICLR 2024

sequence-to-sequence generation problem as well. From this field of work, our proposed method is
inspired by (1) which incorporates image information into the text generation process by representing
sequences of images as sequences of dense vectors and interleaving special layers for combining the
modalities of image and text between language modelling layers in an LLM. Inspired by this approach,
we propose interleaving additional layers in-between language modelling layers in a pretrained LLM
and incorporating additional tokens for representing the other modality. Unlike (1), we incorporate
the modality of graphs as opposed to images into the generation process, and use a modified LLM to
generate graphs rather than text.

4.2 GENERATING GRAPHS CONDITIONED ON TEXT

In the field of natural language processing, there have been many works on parsing natural language
into syntax trees, some of which pose the problem as a serialized graph generation conditioned on
text (9; 36). However, these works use a domain specific serialization method and do not incorporate
graph structure into their proposed models’ generation processes. There is one recent work (33)
focused on generating explanation graphs from text which proposes a contrastive learning objective
for fine-tuning the LLM T5 (31) to generate graphs, however the contrastive objective requires
additional labels created by an expert. There is also a recent work published on generating protein
graphs conditioned on text (25), however it cannot generalize past the domain of protein graph
generation because the proposed method generates sequences of characters describing amino acid
sequences.

Most prior work on text to graph generation focuses on generating knowledge graphs from text
(8; 12; 14; 26; 27; 38). The best performing method on benchmark tasks is regen (8), which
uses the LLM T5 (31) to generate knowledge graphs and is fine-tuned using the standard objective
of predicting the next token in a sequence (equation 2). The second best performing method on
benchmark knowledge graph generation tasks is grapher (27) which uses a combination of T5
and a recurrent neural network to generate graphs. This method differs from ours in the use of an
additional model besides the LLM to predict edges and generate edge features as well as a training
objective similar to equation 2.

5 EXPERIMENTS

Prior work on text graph generation conditioned on text does not provide an experimental design
for evaluating methods that generate graphs based on functional descriptions. To do so, a dataset
containing (functional requirements, graph) pairs is required for a task where it is possible to
automatically calculate the functional properties of newly generated graphs. To generate such a
dataset, we took the open graph benchmark large scale molecule dataset PCQM4M (20) and used the
open source Python package rdkit (13) to generate two functional descriptions for each molecule:
number of valency electrons in it and quantitative estimated-likeness (QED) (3). These are commonly
used functional properties of a molecule’s graph and are described in more detail in Appendix C.

5.1 DATASETS

For evaluation we created two datasets, each dataset is composed of all the molecules in the original
PCQM4M (20) dataset with less than 20 atoms, which is still more than 2 million examples. One of
the two datasets contains (number of valency electrons functional description, graph) pairs and is
called Valency dataset. The other dataset contains (QED functional description, graph) pairs and is
called QED dataset. To evaluate the impact of amount of data on model performance, we created
three subsets for each of the datasets. Each subset had 1000 randomly selected molecules in its test
and validation sets. Importantly, these were the same across the three subsets and then the training
sets of the three subsets were another 25, 000, 100, 000 and 400, 000 randomly chosen examples.
The training set of the smaller subsets was contained in the training set of the larger subset sets. See
Figure 2 for examples of input output pairs for the constructed data sets.

7



Under review as a conference paper at ICLR 2024

Minimum Maximum Mean Standard
Deviation Median Interquantile

Range
Number of Valency
Electrons 2 122 77.3 13.3 80 70 - 88

QED 0.06 0.98 0.764 0.133 0.78 0.68 - 0.88

Table 1: Summary statistics about functional requirements in datasets used in experiments. The
standard deviations reported for both data sets provide context for evaluating Table 2 below.

Model Message Passing Training Set Size Mean Absolute Error
QED Valency

SGG-LLM none 100,000 0.044± 0.011 0.060± 0.018
SGG-LLM edges 100,000 0.036± 0.005 0.035± 0.014
SGG-LLM correspondences 100,000 0.039± 0.007 0.045± 0.017
SGG-LLM none 25,000 0.062± 0.008 1.703± 0.074
SGG-LLM none 400,000 0.020± 0.001 0.076± 0.034
grapher N/A 100,000 0.157± 0.004 1.268± 0.229
regen N/A 100,000 0.149± 0.018 2.282± 1.156

Table 2: Model performance in terms of MAE on QED and Valency datasets. The first, second, and
third best performing models are highlighted using the colors shown here. Experiments were repeated
three times to estimate standard error. All fine-tuned variants of SGG-LLM outperform baselines by a
statistically significant margin. Models below the boldface line are from prior work.

5.2 METRICS AND EVALUATION

To evaluate models, we calculated three metrics on the test sets of the datasets described above:
parsability, diversity, and most importantly mean absolute error (MAE) with respect to the conditional
functional property. A generated graph is parsable if no error is thrown when calculating its functional
property. If a molecule is parsable (i.e. it follows correct serialization syntax and doesn’t violate basic
laws of physics), it is given a score of 1, otherwise 0. In all experiments we use the following metrics:

• Parsability is the mean parsability score of samples in the test set.

• MAE is the mean absolute error between the generated graph’s functional property value
and the requested property value averaged over samples in the test set. To interpret the
magnitudes reported for MAE results see Table 1 describing some summary statistics about
functional properties of graphs in the datasets used in experiments.

• Diversity is a measure of the multimodality of the distribution pθ(DG |Df ) that the LLM
learns. A sampled graph is assigned a diversity score of 1, if it, a second sampled graph
and the ground truth do not share the same node and edge sets; and is assigned a score of 0
otherwise. Diversity is the average of diversity scores of samples in the test set.

5.3 CURRENT STATE-OF-THE-ART

We implemented current state-of-the-art models from prior work as baselines: specifically we
implemented the version of grapher (27), which generates edge features instead of classifying
them and regen (8). We had to make two modifications to both approaches so they could generalize
to molecule data: we added node disambiguation from Section 3.2 to their serialization methods and
updated their language models to a more recent model BLOOM (34), which is the same LLM used in
experiments by our proposed approach. See Appendix A for a description of the training process
used to train grapher, regen and variants of our proposed approach.

6 RESULTS

On the task of generating graphs to meet functional requirements, the ideal model can generate a
diverse set of parsable graphs with functional properties equal to the requested functional property.
Tables 2 and 3 describe the results of our proposed approach on the QED and Valency datasets. Our

8



Under review as a conference paper at ICLR 2024

Model Message
Passing

Training
Set Size

Parsability Diversity
QED Valency QED Valency

SGG-LLM none 100,000 1.000± 0.000 0.999± 0.001 0.845± 0.017 0.506± 0.031
SGG-LLM edges 100,000 0.998± 0.001 0.999± 0.000 0.836± 0.029 0.540± 0.016

SGG-LLM
correspo-
ndences 100,000 0.995± 0.001 0.998± 0.000 0.839± 0.008 0.608± 0.054

SGG-LLM none 25,000 0.997± 0.002 0.991± 0.003 0.799± 0.008 0.518± 0.078
SGG-LLM none 400,000 0.998± 0.001 1.000± 0.000 0.857± 0.006 0.542± 0.051
grapher N/A 100,000 1.000± 0.000 1.000± 0.000 0.745± 0.038 0.410± 0.045
regen N/A 100,000 0.984± 0.008 0.991± 0.007 0.854± 0.031 0.446± 0.124

Table 3: Model performance in terms of parsability and diversity on QED and Valency datasets.
The first, second, and third best performing models are highlighted using the colors shown here.
Experiments were repeated three times to estimate standard error. Models below the boldface line are
from prior work. All models achieved a parsability near 1.0.

proposed approach is referred to as SGG-LLM standing for serialized graph generator large language
model. All variants of our approach and the baselines grapher, and regen achieve a parsability
score near or at 1. The SGG-LLM variant with correspondences message passing (described in
Appendix B) is another method of incorporating the MP layers into an LLM by passing messages in
DG based on node correspondences rather than edges.

Results in table 2 suggest that all variants of SGG-LLM outperform baselines by a statistically
significant margin, using the unpaired t-student test and a threshold p-value of 0.05, in terms of
generating examples with functional properties close those requested. In addition, results suggest
that all variants of SGG-LLM outperform grapher by a statistically significant margin in terms of
generating a diverse set of candidates on the Valency dataset. Finally, the two variants of SGG-LLM
that use MP layers outperform the variant that does not utilise MP layers.

The high performance of all variants of our approach over regen suggest the importance of the
proposed loss function and of weighting tokens equally across batches during training. The high
performance of all variants of our approach over grapher could be for the same reasons as regen,
as it is trained with a similar loss, or it could be that single model which jointly estimates the existence
of nodes, edges, and their features is more effective at generating graphs than a dual module model.

To demonstrate the generality of our proposed approach beyond generating molecules, we also
evaluate it on the benchmark knowledge graph generation dataset WebNLG+ 2020 (10) using a
different language model T5 (31). Note this task is generating graphs conditioned on an imperative
description of the graph, so is not directly linked to the focus of this paper. See Appendix E for a
description of the experiments and discussion of the results.

7 DISCUSSION

The main limitation of our proposed approach is its reliance on fine-tuning a pre-trained autoregres-
sive LLMs, which are computationally expensive, slow at generation time and require substantial
computational resources even to fine-tune. This limitation would become even more difficult when
applying this method to tasks containing larger graphs or graphs containing elements with long
feature strings. Hence an interesting next step from this method would be using quantized pre-trained
models and low rank adapters on LLM layers for more efficient fine tuning (7).

In terms of societal impact, our proposed approach might help speed up and improve processes
such as drug discovery, software development and project planning. But at the same time requires
oversight to ensure it is not used for nefarious applications like the design of chemical weapons. In
addition, if this approach is applied to a task in the social sciences, analysis should be required to
ensure that the biases learned by the model are understood and any unfair preferences learned for a
certain demographic or group should be mitigated.

9



Under review as a conference paper at ICLR 2024

REFERENCES

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick,
Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual
language model for few-shot learning. ArXiv, abs/2204.14198, 2022.

[2] Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko,
Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei. SpeechT5: Unified-modal
encoder-decoder pre-training for spoken language processing. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5723–
5738, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.acl-long.393. URL https://aclanthology.org/2022.acl-long.393.

[3] Richard Bickerton, Gaia Paolini, Jérémy Besnard, Sorel Muresan, and Andrew Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4:90–8, 02 2012. doi:
10.1038/nchem.1243.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
URL https://arxiv.org/abs/2005.14165.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language
modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[8] Pierre L. Dognin, Inkit Padhi, Igor Melnyk, and Payel Das. Regen: Reinforcement learning for
text and knowledge base generation using pretrained language models, 2021. URL https:
//arxiv.org/abs/2108.12472.

10

https://aclanthology.org/2022.acl-long.393
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2108.12472
https://arxiv.org/abs/2108.12472


Under review as a conference paper at ICLR 2024

[9] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural
network grammars, 2016.

[10] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. Creating
training corpora for NLG micro-planners. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 179–188, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1017.
URL https://aclanthology.org/P17-1017.

[11] Heming Ge, Mihir Sanjay Kale, Oshin Agarwal, Rami Al-Rfou, Siamak Shakeri, and Yunhsuan
Sung. Machine translation aided bilingual data-to-text generation and semantic parsing. In 3rd
Workshop on Natural Language Generation from the Semantic Web, 2020.

[12] Heming Ge, Mihir Sanjay Kale, Oshin Agarwal, Rami Al-Rfou, Siamak Shakeri, and Yunhsuan
Sung. Machine translation aided bilingual data-to-text generation and semantic parsing. In 3rd
Workshop on Natural Language Generation from the Semantic Web, 2020.

[13] Greg Landrum Hans De Winter Gianluca Sforna, deric4 (github handle). rdkit, 2023. URL
https://www.rdkit.org/.

[14] Qipeng Guo, Zhijing Jin, Xipeng Qiu, Weinan Zhang, David Wipf, and Zheng Zhang. Cyclegt:
Unsupervised graph-to-text and text-to-graph generation via cycle training, 2020. URL https:
//arxiv.org/abs/2006.04702.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[16] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep
speech: Scaling up end-to-end speech recognition. CoRR, abs/1412.5567, 2014. URL http:
//arxiv.org/abs/1412.5567.

[17] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/
abs/2203.15556.

[18] Vahan Hovhannisyan, Peter Zachares, Yael Grushka-Cockayne, Alan Mosca, and Carlos
Ledezma. Data-driven schedule risk forecasting for construction mega-projects. Available at
SSRN 4496119, 2023.

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[20] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-
lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,
2021.

[21] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. CoRR, abs/2102.05918, 2021. URL https://arxiv.
org/abs/2102.05918.

[22] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without
convolution or region supervision, 2021.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

11

https://aclanthology.org/P17-1017
https://www.rdkit.org/
https://arxiv.org/abs/2006.04702
https://arxiv.org/abs/2006.04702
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2102.05918
http://arxiv.org/abs/1412.6980


Under review as a conference paper at ICLR 2024

[24] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A
simple and performant baseline for vision and language. CoRR, abs/1908.03557, 2019. URL
http://arxiv.org/abs/1908.03557.

[25] Shengchao Liu, Yutao Zhu, Jiarui Lu, Zhao Xu, Weili Nie, Anthony Gitter, Chaowei Xiao, Jian
Tang, Hongyu Guo, and Anima Anandkumar. A text-guided protein design framework, 2023.
URL https://arxiv.org/abs/2302.04611.

[26] Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, and Hua
Wu. Unified structure generation for universal information extraction, 2022. URL https:
//arxiv.org/abs/2203.12277.

[27] Igor Melnyk, Pierre Dognin, and Payel Das. Knowledge graph generation from text, 2022. URL
https://arxiv.org/abs/2211.10511.

[28] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022. URL https://arxiv.org/abs/2203.02155.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. CoRR,
abs/2103.00020, 2021. URL https://arxiv.org/abs/2103.00020.

[30] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision, 2022.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN 1532-4435.

[32] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mization towards training A trillion parameter models. CoRR, abs/1910.02054, 2019. URL
http://arxiv.org/abs/1910.02054.

[33] Swarnadeep Saha, Prateek Yadav, and Mohit Bansal. Explanation graph generation via pre-
trained language models: An empirical study with contrastive learning, 2022. URL https:
//arxiv.org/abs/2204.04813.

[34] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow,
Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas
Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel
Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier,
Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay,
Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji,
Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev,
Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni,
Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu
Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny
Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhat-
tacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long
Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud,
María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian
Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora
Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas,
Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi
Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel,
Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh

12

http://arxiv.org/abs/1908.03557
https://arxiv.org/abs/2302.04611
https://arxiv.org/abs/2203.12277
https://arxiv.org/abs/2203.12277
https://arxiv.org/abs/2211.10511
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2103.00020
http://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2204.04813
https://arxiv.org/abs/2204.04813


Under review as a conference paper at ICLR 2024

Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick,
Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq,
Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si,
Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma,
Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan
Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo
Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak,
Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon
Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang,
Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts,
Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan,
Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang,
Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhan-
dari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed
Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian,
Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina
Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-
Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken
Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg
Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann,
Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz,
Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov,
Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar
Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Are-
zoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade,
Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe
Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline
Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko,
Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio,
Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna,
Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott,
Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh,
Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le,
Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan,
Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo Wang, Caio
Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel
Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyased-
din Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John
Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani,
Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A
Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Wein-
berg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha
Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick
Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra,
Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati,
Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh
Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye,
Mathilde Bras, Younes Belkada, and Thomas Wolf. Bloom: A 176b-parameter open-access
multilingual language model, 2022. URL https://arxiv.org/abs/2211.05100.

[35] Petar Veličković. Everything is connected: Graph neural networks. Current Opinion in
Structural Biology, 79:102538, 2023.

[36] Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.
Grammar as a foreign language. Advances in neural information processing systems, 28, 2015.

[37] Changhan Wang, Anne Wu, Juan Miguel Pino, Alexei Baevski, Michael Auli, and Alexis
Conneau. Large-scale self- and semi-supervised learning for speech translation. CoRR,

13

https://arxiv.org/abs/2211.05100


Under review as a conference paper at ICLR 2024

abs/2104.06678, 2021. URL https://arxiv.org/abs/2104.06678.

[38] Chenguang Wang, Xiao Liu, and Dawn Song. Language models are open knowledge graphs,
2020. URL https://arxiv.org/abs/2010.11967.

[39] David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28(1):31–36, feb 1988. ISSN 0095-
2338. doi: 10.1021/ci00057a005. URL https://doi.org/10.1021/ci00057a005.

[40] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander
Kolesnikov, and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. CoRR,
abs/2111.07991, 2021. URL https://arxiv.org/abs/2111.07991.

A HYPERPARAMETERS AND TRAINING

For experiments on the molecule data sets, all variants of our proposed approach and the implemented
baseline grapher (27) and regen (8) used the pretrained version of BLOOM (34) with 560 million
parameters as their language model. For experiments on the WebNLG2020+ data set (10), all models
used the pretrained version of T5 (31) with 770 million parameters as their language model. All
models were trained for up to ten epochs and checkpointed based on minimizing validation loss.
Model’s were trained using the ADAM optimizer (23) with a learning rate of 3e− 5, a β1 of 0.9, a
β2 of 0.999 and a regularization weight of 1e− 7 as well as a linear learning rate schedule. During
training, model parameters’ gradients norms were clipped to a value of 1.0. The models were trained
with a batch size of 18 using stage 2 data parallelism using the method described in (32). All models
were trained and evaluated on machines with 3 NVIDIA A100 GPUs. Variants of our proposed
approach which incorporated message passing into the LLM by interleaving message passing layers
in the LLM used a single GraphSage (15) layer in each message passing layer with an embedding
size equal to the token embedding size of the LLM they were incorporated into.

B MESSAGE PASSING BETWEEN NODE CORRESPONDENCES

Most nodes appear at least twice in a bag-of-edges serialization. We can define a correspondence
graph from a serialized graph DG by treating each instance of a node in a serialized graph DG as its
own node in the correspondence graph. Then the correspondences between instances define edges in
the correspondence graphs. An example of a correspondence graph is shown in the graphic below;

In the graphic, the node C<D>0 occurs more than once in DG and each instance is treated as its
own node in the correspondence graph, so the node C<D>0 corresponds to C<D>0 edge 1 and to
C<D>0 edge 3 in the correspondence graph. Edges are constructed by connecting nodes in the
correspondence graph which correspond to the same node in the original graph i.e. in the graphic
C<D>0 edge 1 is connected to C<D>0 edge 3 because they refer to the node C<D>0 in the
original graph. Nodes in the correspondence graph are only connected if they are adjacent occurrences
in the serialized graph. By constructing edges such that they always point from an earlier instance of
a node to a later instance we ensure the message passing layer does not pass information backwards
in the serialized graph sequence at training time. As additional method, we propose incorporating MP
layers into an LLM where the MP layers pass information based on a graph’s correspondence graph.

14

https://arxiv.org/abs/2104.06678
https://arxiv.org/abs/2010.11967
https://doi.org/10.1021/ci00057a005
https://arxiv.org/abs/2111.07991


Under review as a conference paper at ICLR 2024

C FUNCTIONAL DESCRIPTIONS OF MOLECULES

We used two functional descriptions of molecules to generate datasets for our experiments - number
of valency electrons and QED. The number of valency electrons in a molecule is the sum of the
number of valency electrons in its atoms. Importantly, this property is a result of only a graph’s node
composition, but not its full structure. To generate descriptions of a functional property of a graph’s
full structure, we calculate a metric called quantitative estimated drug-likeness (QED) (3). QED
quantifies multiple properties of a molecule which are attractive for applications in drug design and
then calculates a single metric from these properties using a weighted logarithmic sum. The properties
used to calculate QED are molecular weight, octanol–water partition coefficient, topological polar
surface area, number of hydrogen bond donors and acceptors, the number of aromatic rings and
rotatable bonds, and the presence of unwanted chemical functionalities. For experiments we set
the weight of the properties: molecular weight, number of hydrogen bond donors and acceptors,
and presence of unwanted chemical functionalities to zero in the QED calculation, because they
are mainly determined by node composition instead of the entire graph structure. The functional
descriptions generated were of the format "a molecule with number of valence electrons equal to ..."
and "a molecule with a weighted quantitative estimation of drug-likeness equal to ...".

D ADDITIONAL RESULTS OF MOLECULE GENERATION EXPERIMENTS

Below, we provide three tables describing the full results of experiments on the molecule data sets
including ablation studies to empirically justify some design choices in our proposed method. Our
proposed model is referred to as SGG-LLM. There are three additional models in the tables below;
1) SGG-LLM w/out fine-tuning, 2) SGG-LLM w/ special loss, and 3) SGG-LLM with edge based
message passing without a gating term. The table below describing performance of models in terms
of the parsability of generated examples shows that SGG-LLM w/out fine-tuning and SGG-LLM with
edge based message passing without a gating term both did not produce a single parsable example
on molecule datasets’ test sets. These results suggests that both fine-tuning and a gating term (when
incorporating message passing into an LLM) are required to achieve good performance with our
proposed method. Note if a model cannot generate parsable examples, then the metric mean absolute
error cannot be calculated and the diversity of generated examples is not a useful measure of model
performance. Consequently, we do not report mean absolute error or diversity for SGG-LLM w/out
fine-tuning and SGG-LLM with edge based message passing without a gating term.

Model Message Passing Training Set Size Parsability
QED Valency

SGG-LLM none 100,000 1.000± 0.000 0.999± 0.001
SGG-LLM
w/out fine-tuning none 100,000 0.000± 0.000 0.000± 0.000

SGG-LLM
w/ special loss none 100,000 0.986± 0.003 -

SGG-LLM edges 100,000 0.998± 0.001 0.999± 0.000
SGG-LLM
w/out gating term edges 100,000 0.000± 0.000 0.000± 0.000

SGG-LLM correspondences 100,000 0.995± 0.001 0.998± 0.000
SGG-LLM none 25,000 0.997± 0.002 0.991± 0.003
SGG-LLM none 400,000 0.998± 0.001 1.000± 0.000
grapher N/A 100,000 1.000± 0.000 1.000± 0.000
regen N/A 100,000 0.984± 0.008 0.991± 0.007

The model SGG-LLM w/ special loss is a version of SGG-LLM without message passing that was
trained using equation 1, but instead of letting nbatch = batch size as proposed in section 3.1, we
equal nbatch = E[

∑nbatch

i=1 ni
seq] which is the expected value of the differing term in equation 2

from equation 1. This is to determine whether it is the magnitude of the differing term causing the
difference in performance or the fact that

∑nbatch

i=1 ni
seq changes from batch to batch. In experiments,

some summary statistics for the term
∑nbatch

i=1 ni
seq in equation 2 were mean = 4053, max = 4676,

median = 4060, and inter-quartile range = 3915 − 4199. There was a marginal difference in
performance in terms of all three metrics when comparing the performance of SGG-LLM w/ special

15



Under review as a conference paper at ICLR 2024

loss and SGG-LLM without message passing. The marginal difference in performance suggests that
the changing weighting between batches and across epochs is what hurts the performance of models
trained with the objective described in equation 1. regen is a model trained with equation 1.

Model Message Passing Training Set Size Mean Absolute Error
QED Valency

SGG-LLM none 100,000 0.044± 0.011 0.060± 0.018
SGG-LLM
w/ special loss none 100,000 0.046± 0.004 -

SGG-LLM edges 100,000 0.036± 0.005 0.035± 0.014
SGG-LLM correspondences 100,000 0.039± 0.007 0.045± 0.017
SGG-LLM none 25,000 0.062± 0.008 1.703± 0.074
SGG-LLM none 400,000 0.020± 0.001 0.076± 0.034
grapher N/A 100,000 0.157± 0.004 1.268± 0.229
regen N/A 100,000 0.149± 0.018 2.282± 1.156

Model Message Passing Training Set Size Diversity
QED Valency

SGG-LLM none 100,000 0.845± 0.017 0.506± 0.031
SGG-LLM
w/ special loss none 100,000 0.831± 0.003 -

SGG-LLM edges 100,000 0.836± 0.029 0.540± 0.016
SGG-LLM correspondences 100,000 0.839± 0.008 0.608± 0.054
SGG-LLM none 25,000 0.799± 0.008 0.518± 0.078
SGG-LLM none 400,000 0.857± 0.006 0.542± 0.051
grapher N/A 100,000 0.745± 0.038 0.410± 0.045
regen N/A 100,000 0.854± 0.031 0.446± 0.124

E RESULTS OF KNOWLEDGE GRAPH GENERATION EXPERIMENTS

To demonstrate the generality of our proposed approach beyond generating molecules, we also
evaluate it on the benchmark knowledge graph generation dataset WebNLG+ 2020 (10) using a
different language model T5 (31). Like in prior work, model performance is evaluated using the
metrics of F1-score, precision and recall when comparing a generated graph to the ground truth
knowledge graph. See (8) for a more detailed explanation of these metrics. We compare our proposed
method to the three best performing models on this data set; regen (8), grapher (27), and bt5
(11).

On the WebNLG+ 2020 data set, results in the table below suggest that the incorporating message
passing into an LLM is not useful to the task of knowledge graph generation from an imperative
description, but also that using edge message passing does not degrade performance. Interestingly,
SGG-LLM without message passing was able to achieve state-of-the-art performance on the bench-
mark task of generating triples in a knowledge graph. regen’s implementation for experiments on
WebNLG2020+ was identical to SGG-LLM without message passing, except that SGG-LLM was
trained with a different training objective (see equation 1 in the main paper), a more aggressive
learning rate and a linear learning rate schedule. So the state-of-the-art performance of SG-LLM
on WebNLG2020+ may be attributed to better hyperparameter selection or the modified training
objective.

16



Under review as a conference paper at ICLR 2024

Exact Partial Strict
Model F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec.

bt5 0.682 0.670 0.701 0.713 0.700 0.736 0.675 0.663 0.695
regen 0.723 0.714 0.738 0.767 0.755 0.788 0.720 0.713 0.735
grapher 0.683 0.675 0.695 0.713 0.702 0.730 0.681 0.673 0.693
SGG-LLM
none

0.747
±0.005

0.743
±0.003

0.765
±0.007

0.779
±0.006

0.771
±0.005

0.798
±0.004

0.726
±0.005

0.720
±0.007

0.731
±0.012

SGG-LLM
edges

0.754
±0.003

0.748
±0.002

0.762
±0.004

0.786
±0.001

0.779
±0.000

0.795
±0.003

0.733
±0.005

0.729
±0.004

0.741
±0.003

SGG-LLM
correspo-
ndences

0.743
±0.008

0.738
±0.009

0.752
±0.005

0.774
±0.005

0.769
±0.009

0.787
±0.002

0.683
±0.067

0.693
±0.081

0.691
±0.069

Model performance on knowledge graph data set WebNLG+ 2020. Note: baseline model results do
not report standard deviations because they were not reported in prior work and we felt it was more
appropriate to report baseline results based their published results as opposed to reimplementing the
baselines ourselves. Experiments with variants of our proposed approach were repeated three times
to estimate standard error.

17


	Introduction
	Preliminaries
	Method
	Fine-Tuning Objective
	Node Disambiguation during Serialization
	Message Passing Within a Language Model

	Related Work
	Incorporating other Modalities into Text Generation
	Generating graphs conditioned on text

	Experiments
	Datasets
	Metrics and Evaluation
	Current State-of-the-Art

	Results
	Discussion
	Hyperparameters and Training
	Message Passing Between Node Correspondences
	Functional Descriptions of Molecules
	Additional Results of Molecule Generation Experiments
	Results of Knowledge Graph Generation Experiments

