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ABSTRACT

The proliferation of large language models has raised growing concerns about
their misuse, particularly in cases where AI-generated text is falsely attributed to
human authors. Machine-generated content detectors claim to effectively identify
such text under various conditions and from any language model. This paper
critically evaluates these claims by assessing several popular detectors (RADAR,
Wild, T5Sentinel, Fast-DetectGPT, GPTID, LogRank) on a range of domains,
datasets, and models that these detectors have not previously encountered. We
employ various prompting strategies to simulate adversarial attacks, demonstrating
that even moderate efforts can significantly evade detection. We emphasize the
importance of the true positive rate at a specific false positive rate (TPR@FPR)
metric and demonstrate that these detectors perform poorly in certain settings, with
TPR@.01 as low as 0%. Our findings suggest that both trained and zero-shot
detectors struggle to maintain high sensitivity while achieving a reasonable true
positive rate.1

1 INTRODUCTION

Large language models (LLMs) are becoming increasingly accessible and powerful, leading to
numerous beneficial applications (Touvron et al., 2023; Achiam et al., 2023). However, they also pose
risks if used maliciously, such as generating fake news articles or facilitating academic plagiarism
(Feng et al., 2024; Zellers et al., 2019b; Perkins, 2023). The potential for misuse of LLMs has become
a significant concern for major tech corporations, particularly in light of the upcoming 2024 elections.
At the Munich Security Conference on February 16th, 2024, these companies pledged to combat
misleading machine-generated content, acknowledging the potential of AI to deceptively influence
electoral outcomes (Accord, 2024). As a result, there is a growing need to develop reliable methods
for differentiating between LLM-generated and human-written content. To ensure the effectiveness
and accountability of LLM detection methods, continuous evaluation of popular techniques is crucial.

Many methods have been released recently that claim to have a strong ability to detect the difference
between AI-generated and human-generated texts. These detectors primarily fall into three categories:
trained detectors, zero-shot detectors, and watermarking techniques (Yang et al., 2023b; Ghosal et al.,
2023; Tang et al., 2023). Trained detectors utilize datasets of human and AI-generated texts and train
a binary classification model to detect the source of a text (Zellers et al., 2019b; Hovy, 2016; Hu et al.,
2023; Tian & Cui, 2023; Verma et al., 2023). Zero-shot detection utilizes a language model’s inherent
traits to identify text it generates, without explicit training for detection tasks (Gehrmann et al., 2019;
Mitchell et al., 2023; Bao et al., 2024; Yang et al., 2023a; Venkatraman et al., 2023). Watermarking is
another technique in which the model owner embeds a specific probabilistic pattern into the text to
make it detectable Kirchenbauer et al. (2023). However, watermarking requires the model owner to
add the signal, and its design has theoretical guarantees; we do not evaluate watermarking models in
this study.

In this paper, we test the robustness of these detection methods to unseen models, data sources, and
adversarial prompting. To do this, we treat all model-generated text as a black box generation. That
is, none of the detectors know the source of the text or have access to the model generating the text.

1All code and data necessary to reproduce our experiments will be released publicly post-review.
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This presents the most realistic scenario where the user is presented with text and wants to know if it
is AI-generated or not. Specifically, we contribute:

• We conduct a thorough evaluation of AI-generated text detectors on unseen models and tasks,
providing insights into their effectiveness in real-world settings.

• We analyze the performance of various detectors under adversarial prompting, exploring the extent
to which prompting can be used to evade detection.

• We demonstrate that high AUROC scores, which are often used as a measure of performance
in classification tasks, do not necessarily translate to practical usage for machine-generated text
detection. Instead, we motivate using the metric of true positive rate (TPR) at a 1% false positive
rate (FPR) threshold as a more reliable indicator of a detector’s effectiveness in practice.

Due to space limitations, the discussion of related work and background is deferred to Appendix A.

2 BENCHMARKING PROCEDURE

Our benchmarking method involves compiling datasets that have not been encountered by any of
the detectors during their training or evaluation phases. This approach ensures that the datasets
represent new, unseen data and prevents the possibility of data leakage. For zero-shot detectors, this
methodology eliminates the risk of using cherry-picked datasets that may bias the evaluation. For
trained detectors this reduces the risk of data leakage and tests on out of domain data. Furthermore,
we assess the model’s performance across a diverse range of domains that the detectors may not have
been previously evaluated against. This comprehensive evaluation strategy allows for a more robust
assessment of the detectors’ generalization capabilities. Additionally, we evaluate the detectors on
a variety of language models that they have not encountered before. This approach enables us to
examine the detectors’ performance on unfamiliar language models, providing a more comprehensive
understanding of their effectiveness and adaptability.

2.1 DATASETS

We evaluate each of the detectors on seven different tasks with three of the tasks, question answering,
summarization, and dialogue writing, including multilingual results. The datasets chosen for each
domain are as follows:

• Question Answering: The MFAQ dataset (De Bruyn et al., 2021) was used for this domain.
It contains over one million question-answer pairs in various languages. We used the English,
Spanish, French, and Chinese subsets.

• Summarization: We used the MTG summarization dataset (Chen et al., 2021) for this task. The
complete multilingual dataset comprises roughly 200k summarizations. We utilized the English,
Spanish, French, and Chinese subsets.

• Dialogue Writing: For this task, we utilized the MSAMSum dataset, a translated version of the
SAMSum dataset(Feng et al., 2022; Gliwa et al., 2019). This dataset consists of over 16k dialogues
with summaries in six languages. We utilized English, Spanish, French, and Chinese for consistency
with the other multilingual domains.

• Code: We used the APPS dataset (Hendrycks et al., 2021), which contains 10k code questions and
solutions. The subset used was randomly selected from all the data included in APPS.

• Abstract Writing: For this task, we utilized the Arxiv section of the scientific papers dataset
(Cohan et al., 2018) to avoid potential bias, as some detectors have previously been exposed
to PubMed data. Additionally, we only selected papers published in 2020 or earlier to remove
potential LLM influence.

• Review Writing: The PeerRead dataset was used for the review writing task (Kang et al., 2018).
PeerRead contains over 10k peer reiviews written by experts corresponding to the paper that they
were written for.

• Translation: We used the Par3 dataset (Karpinska et al., 2022), which provides paragraph level
translations from public-domain foreign language novels. Each paragraph includes at least 2 human
translations of which we selected only one to represent human translation.
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2.2 LARGE LANGUAGE MODELS

Our objective is to evaluate the detectors on models they they have not previously been trained or
assessed on to gauge their generalization capabilities. We evaluated 4 different models across every
task. The models we use are Llama-3-Instruct 8B (AI@Meta, 2024), Mistral-Instruct-v0.3 (Jiang
et al., 2023), Phi-3-Mini-Instruct 4k (Abdin et al., 2024), and GPT-4o.

2.3 DETECTION MODELS

The detection models were chosen from the newest and highest performing detectors in their respective
categories. Our goal was to represent both trained and zero-shot detectors. As previously mentioned,
the trained detectors we are using are RADAR (Hu et al., 2023), Detection in the Wild (Wild) (Li et al.,
2024), and T5Sentinel (Chen et al., 2023). The zero-shot detectors we are using are Fast-DetectGPT
(Bao et al., 2024), GPTID (Tulchinskii et al., 2024), and LogRank (Mitchell et al., 2023).

Notably, we did not include any watermark detectors. The primary reason for this is that the evaluation
techniques we use over various models would not work with watermark detection. While watermark
detection has shown strong performance (Kirchenbauer et al., 2023), they have a significant drawback
in that they only work if a model applies a watermark. In this paper, we assume a scenario in which
no watermark is applied or it is unknown whether a watermark is applied. Therefore, we must turn to
other detection methods.

2.4 EVALUATION METRICS

In this study, we evaluate machine-generated text detectors using AUROC and TPR at a fixed FPR.
Our findings, consistent with prior research (Krishna et al., 2024; Yang et al., 2023a), suggest that
AUROC alone may not reflect a detector’s practical effectiveness, as a high AUROC score can still
correspond to significant false positive rates. This is critical since false positives, particularly in fields
like academia and media, can have severe consequences. We argue that TPR at a given FPR should
be the standard evaluation metric, as demonstrated by a detector achieving a 0.89 AUROC but less
than 20% TPR at a 1% FPR on a task.

2.5 RED TEAMING

We employ two different methods of prompting for every task: plain prompting and adversarial
prompting. Plain prompting involves using a typical assistant system prompt and providing the model
with the same input that was given to the human for human-generated content. Adversarial prompting,
on the other hand, requests that the model try to act more like a person. Examples of the question
answering plain and adversarial prompts2 are shown as follows:

Plain Prompt Example: Question Answering

You are a helfpul question answering assistant that will answer a single quesetion as completely as
possible given the information in the question. Do NOT using any markdown, bullet, or numbered list
formatting. The assistant will use ONLY paragraph formatting. **Respond only in {language}**.

Adversarial Prompt Example: Question Answering

{Question answering prompt} Try to sound as human as possible.

We also conducted experiments using the LLMs as writing assistants. Specifically, we requested
that the model rewrite the human response and improve upon its clarity and professionalism. This
represents a scenario where a person will write down an answer first and then request that a model
make their answer better before presenting it. The specific prompt we used it as follow:

2The others can be found in the appendix Table 12.
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Task AI Avg AI Min Human Avg

Code 502.16 15 4496.88
QA 508.19 19 1052.37
Summ 411.57 16 191.00
Dialogue 378.26 15 402.13
Reviews 549.51 24 796.06
Abstract 425.89 32 2081.88
Translation 525.43 9 772.75

Table 1: Average and minimum token counts of machine-generated and human-generated text for
each task, tokenized using the Llama2-13B tokenizer (Touvron et al., 2023). Minimum token counts
for human-generated text are omitted as they were previously described.

Rewriting Prompt

You are a helpful writing assistant. Rewrite the following text to improve clarity and professionalism.
Do not provide any other text. Only provide the rewritten text.

3 EXPERIMENT

Dataset Processing. Each dataset undergoes additional processing to prepare it for detection tasks.
Research indicates that detectors of machine-generated text are more effective with longer content
(Yang et al., 2023b). To leverage this, we aimed to use human samples of maximum possible length.
However, the minimum length needed to obtain sufficient samples varied by task. We randomly
selected 500 samples of human text from filtered subsets with the following lengths: 500 tokens for
question answering, 400 tokens for code3, 150 tokens for summarization, 275 tokens for dialogue,
500 tokens for reviews, 500 tokens for abstracts, and 500 tokens for translation (Table 1). These 500
samples served as human examples. From them, prompts from the first 100 samples were chosen
for use in the generator model, using the input given to the human author as the model prompt. This
resulted in a dataset of 500 human examples and 100 machine-generated examples per model for a
total of 400 machine-generated examples for each task. This slight data imbalance is intentional to
ensure a more accurate TPR@FPR metric.

Detection methods show improved performance with longer text sequences (Wu et al., 2023) so we
show the statistics of the text in Table 1. Our primary focus was on detectors’ ability to identify
AI-generated text while maintaining a low FPR. The longer length of human-generated text is likely
to enhance the TPR@FPR by making it easier to detect as human. We considered the AI-generated
text sufficiently long for two reasons. First, Li et al. (2024) reports an average AI generation length of
279.99, which is much lower than our average token lengths. Their extensive training and evaluation
data support the adequacy of this length for AI content. Second, our models, with a maximum
generation length of 512 tokens 4, produced responses indicative of real-world lengths.

3Length limited to 2500 tokens
4The averages can exceed this number due to different tokenizers and additional tokens to keep text coherent
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Figure 1: Pipeline for prompting and evaluation. Adversarial prompting and rewriting are applied to
the LLMs. After collecting machine-generated text, AUROC and TPR@FPR are measured for each
detector.

Detector TPR@0.01 TPR@0.05 TPR@0.1 AUROC
Radar 0.06 0.17 0.29 0.6085
Fast-DetectGPT 0.48 0.60 0.67 0.8376
Wild 0.13 0.20 0.30 0.6888
PHD 0.00 0.02 0.05 0.3204
LogRank 0.00 0.01 0.02 0.2235
T5Sentinel 0.02 0.06 0.12 0.4798

Table 2: Performance of different detectors across the entire dataset

Text Generation and Detection Process. Once the prompt samples were selected, we needed to
generate positive examples. The process for this can be seen in Figure 1. We employ three different
strategies for prompting the models. The first strategy involves using a basic prompt for each domain
that explains the goal of the model and the desired output format. The second strategy consists of
requesting that the model be as human as possible. The third strategy requests that the model rewrite
and improve upon the human written response 5. The first strategy aims to simulate a basic system
prompt that would generally be in place on a model someone is using to generate content. The second
strategy simulates the case where a user might try to get the model to generate content that closely
resembles human-generated content. The third strategy simulates a scenario where the user writes
their own response and simply wants the model to clean it up or make it easier to understand. The
outputs of the models were taken as is with no editing. After generating the positive examples, we
passed all of the machine-generated and human-generated examples through the detectors. RADAR,
Fastdetectgpt, Wild, and T5Sentinel all return a percentage probability for each class, and GPTID and
LogRank return a value representing their score. We do not use any thresholds and take the scores as
is for AUROC and TPR@FPR metrics.

4 RESULTS AND ANALYSIS

Table 2 shows the overall performance of each detector across the entire dataset. In this section, we
break down the performance of each detector across tasks, languages, and prompt techniques.

4.1 PLAIN PROMPTING

We evaluate the AUROC and TPR at 0.01 FPR for machine-generated texts from direct prompting
using identical prompts as human written texts. A simple prompt was employed to ensure the
generated text was in the correct format and language for the multilingual tasks.

Figures 2a and 2b show the results for the multilingual tasks and 3a and 3b show the results for the
only English tasks. A significant difference is observed in detector performance across languages
and tasks, particularly in the multilingual setting. Fastdetectgpt consistently performs well overall
but encounters challenges in summarization tasks, especially in languages other than English. Other

5Prompts and templates in appendix
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(a) AUROC results for multilingual
tasks with normal prompting

(b) TPR@0.01 results for multilin-
gual tasks with normal prompting

(c) AUROC results for multilingual
tasks with template prompting

(d) TPR@0.01 results for multilin-
gual tasks with template prompting

(e) AUROC results for multilingual
tasks with rewrite prompting

(f) TPR@0.01 results for multilin-
gual tasks with rewrite prompting

Figure 2: Comparison of AUROC and TPR@0.01 results for multilingual tasks across all detectors
using different prompting styles (normal, template, and rewrite).

(a) AUROC results for English
tasks with normal prompting

(b) TPR@0.01 results for English
tasks with normal prompting

(c) AUROC results for English
tasks with template prompting

(d) TPR@0.01 results for English
tasks with template prompting

(e) AUROC results for English
tasks with rewrite prompting

(f) TPR@0.01 results for English
tasks with rewrite prompting

Figure 3: Comparison of AUROC and TPR@0.01 results for English tasks across all detectors using
different prompting styles (normal, template, and rewrite).

detectors show similar patterns: while they achieve strong results in English tasks, their performance
becomes more inconsistent with non-English tasks. The AUROC graph suggests robust performance
for Fastdetectgpt, but when examining the TPR@0.01 graph, we observe that it struggles to maintain
low false positive rates, particularly in summarization tasks where it falls below 0.25 for most
languages, except for English dialogue and French question-answering, where it exceeds 0.8.
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For the English-only tasks, most detectors show improved performance. In these tasks, Wild and
Radar demonstrate competitive performance with Fastdetectgpt, which struggles in the translation
domain. Despite expectations that the translation domain would be the most challenging due to lower
entropy in translated texts, detectors performed reasonably well. While the AUROC graph indicates
promise, the TPR@0.01 graph highlights ongoing challenges in maintaining low false positive rates.
Additionally, while Radar and Wild outperform Fastdetectgpt in the review domain based on AUROC,
they fall short in TPR@0.01 compared to Fastdetectgpt’s performance.

4.2 TEMPLATE PROMPTING

Figures 2c and 2d show the results on the multilingual tasks where the model was instructed to
be "as human as possible." Interestingly, this request had little effect on performance. In the few
instances where changes occurred, scores generally increased, suggesting that asking the model to
"sound human" may have made its output easier to detect. This aligns with expectations, as large
language models are already trained on predominantly human-written texts, and generating more
conversational output can make detection more straightforward, as evidenced in dialogue generation
tasks.

On the English tasks, as shown in figures 3c and 3d, the results were similarly unaffected by the
human-like request, with some slight score increases where changes were observed. This is especially
expected in domains such as reviews, code, and abstracts, which follow specific writing conventions,
while tasks like question answering and dialogue generation exhibit more variability and creativity.

4.3 REWRITING

Finally, we show the results for the rewriting prompt for the multilingual tasks in figure 2e and 2f and
for the English tasks in figures 3e and 3f. We observe a notable decrease in AUROC performance
for detectors that previously performed well, such as Fastdetectgpt, Radar, and Wild, while Phd
and LogRank see an increase in performance, with T5Sentinel remaining largely unaffected. This
performance decline is even more pronounced in TPR@0.01, where none of the detectors show
improvement. Despite these shifts, the relative performance across tasks remains consistent, indicating
an inherent variability in detectability based on the type of task and language.

4.4 TPR@FPR VS AUROC

Figure 4: Correlations between various FPR rates
and the overall AUROC score. AUROC score is
much more representative of the middle FPR rates,
while this detection task is much more concerned
with the lower end of FPR.

In this paper, we utilize both the AUROC and
TPR@FPR metrics. However, we also argue
that TPR at a low FPR is a much more important
metric for this detection task. Figure 4 shows
the correlation between TRP scores at various
FPR rates and the AUROC score for all tasks,
detectors, and models used in this research. The
AUROC correlates much higher with FPR rates
in the 0.4 to 0.6 range and much lower with
FPR rates at the edges, less than 0.2 and greater
than 0.8. While the 0.75 is still a reasonable cor-
relation value, the AUROC is still much more
representative of the middle FPR’s while we
are really concerned with the lower FPR’s for
this task. This is why we report the TPR@0.01,
which is much more representative of the appli-
cability of a detector than the AUROC.

4.5 OUTPUT QUALITY AND DETECTION

Measuring the quality of LLM outputs, especially in creative tasks, remains challenging, making it
difficult to determine if higher-quality outputs are harder to detect. Table 3 compares various models’
performance scores and rankings from Chatbot Arena (Chiang et al., 2024), allowing us to explore if
output quality affects detectability. The data shows little difference in detectability across models of
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Code Reviews Abstract QA Summ Dialogue Trans. Arena Score
Detector TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC

GPT-4o 0.05 0.56 0.00 0.64 0.05 0.55 0.01 0.54 0.00 0.49 0.00 0.55 0.00 0.52 1339
Llama-3 0.01 0.53 0.00 0.60 0.01 0.58 0.00 0.57 0.00 0.53 0.00 0.56 0.00 0.55 1152
Mistral 0.04 0.56 0.00 0.63 0.02 0.52 0.00 0.57 0.00 0.50 0.01 0.57 0.00 0.54 1072
Phi-3 0.04 0.57 0.00 0.63 0.01 0.59 0.00 0.51 0.00 0.52 0.00 0.55 0.00 0.56 1066

Table 3: Model performance (AUROC and TPR@0.01) across tasks compared with model generation
quality. The Chatbot Arena score is utilized to measure the quality of a model. The higher scores do
not correlate with lower detectability of generated content.

varying quality, with AUROC and TPR@0.01 scores remaining consistent. This suggests that output
quality does not significantly impact the difficulty of detection, though further research is needed for
a fuller understanding.

5 CONCLUSION

This study evaluates six advanced detectors across seven tasks and four languages, revealing notable
inconsistencies in their detection capabilities. We also examined three different prompting strategies
and their impact on detectability, finding that requests for more "human-like" output do not make the
text harder to detect, while rewritten human content proves more difficult to identify.

Additionally, this research highlights the limitations of relying on the AUROC metric for assessing
machine-generated content detectors. Our findings emphasize the need for robust evaluation methods
to develop more reliable detection techniques. The study underscores the challenges in detecting
machine-generated text, particularly when human written text was only modified by a language
model, and advocates for TPR@FPR as the preferred evaluation metric to better capture detector
performance.

6 LIMITATIONS

A limitation of this method is the settings in which the human data was collected may vary from
the settings in which these detectors will be used. Additionally, some of the datasets we used had
collected their data from the internet which raises a concern that some of that data is not completely
human generated. This is a challenge that all future detectors will also struggle with when training
and evaluating. These results pose the risk of emboldening users to use AI generated content when
they otherwise should not because they know detectors cannot be confidently trusted. However,
acknowledging this is important to encouraging research into new detection methods and improving
current methods.
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A RELATED WORK AND BACKGROUND

There is a variety of related work that discusses text detectors. These works cover different aspects,
such as the text detectors themselves, their types, evaluation, and red-teaming of detectors.

Text Detectors. Machine-generated text detectors can be divided into trained classifiers, zero-shot
classifiers, and watermark methods (Yang et al., 2023b; Hans et al., 2024; Ghosal et al., 2023; Jawahar
et al., 2020). (1) Trained detectors use classification models to determine if the text is machine-
generated or human-written (Zellers et al., 2019b; Hovy, 2016; Hu et al., 2023; Tian & Cui, 2023;
Verma et al., 2023). However, the increasing prevalence of machine-generated content (European-
Union, 2022) makes it difficult to label human-generated work for training, as even humans find it
hard to distinguish between the two (Darda et al., 2023). (2) Zero-shot detectors leverage intrinsic
statistical differences between machine-generated and human-generated text (Gehrmann et al., 2019;
Mitchell et al., 2023; Bao et al., 2024; Yang et al., 2023a; Venkatraman et al., 2023). Proposed
methods include using entropy (Lavergne et al., 2008), log probability (Solaiman et al., 2019), and
more recently, intrinsic dimensionality (Tulchinskii et al., 2024). (3) Watermark-based detection,
introduced by Kirchenbauer et al. (2023), involves embedding a hidden but detectable pattern in the
generated output. Various enhancements to this method have been suggested (e.g., (Zhao et al., 2023;
Lee et al., 2023)). This paper focuses on the black-box setting, which closely resembles real-world
detection scenarios. Watermarking is not tested due to its guaranteed detectability and low false
positive rates (e.g., (Zhao et al., 2023)). The primary concern is detecting un-watermarked text, as it
is the most commonly encountered and poses the greatest threat.

Evaluation of Text Detectors. The most commonly utilized metric in evaluating detectors is the area
under the receiver operating curve (AUROC) (Mitchell et al., 2023; Sadasivan et al., 2023). Although
it offers a reasonable estimate of detector performance, research by Krishna et al. (2024); Yang
et al. (2023a), and our experimental results demonstrate that there can be a substantial difference in
performance between two models with AUROC values nearing the maximum of 1.0. Consequently,
the true positive rate at a fixed false positive rate (TPR@FPR) presents a more accurate representation
of a detector’s practical effectiveness.

Redteaming Language Model Detectors. AI text detectors are increasingly evaluated in red teaming
scenarios, with recent contributions from Zhu et al. (2023); Chakraborty et al. (2023); Kumarage
et al. (2023); Shi et al. (2024); Wang et al. (2024). Shi et al. (2024) identifies two main evasion
techniques: word substitution and instructional prompts. Word substitution includes query-based
methods, which iteratively select low detection score substitutions, and query-free methods, which
use random substitutions. Instructional prompts, akin to jailbreaking, instruct the model to mimic
a human-written sample. Query-based word substitution proved most effective, reducing the True
Positive Rate (TPR) to less than 5% at a 40% False Positive Rate (FPR) against DetectGPT.

Wang et al. (2024) explores robustness testing with three editing attacks: typo insertion, homo-
glyph alteration, and format character editing. Typo insertion adds typos, homoglyph alteration
replaces characters with similar shapes, and format character editing uses invisible text disruptions.
Paraphrasing attacks, noted by Krishna et al. (2024), include synonym substitution (model-free
and model-assisted), span perturbations (masking and refilling random spans), and paraphrasing at
sentence and text levels.

Evaluated Detectors and Datasets. In our paper, we evaluate six representative detectors: RADAR
(Hu et al., 2023), Detection in the Wild (Wild) (Li et al., 2024), T5Sentinel (Chen et al., 2023),
Fast-DetectGPT (Bao et al., 2024), GPTID (Tulchinskii et al., 2024), and LogRank (Mitchell et al.,
2023). RADAR, Wild, and T5Sentinel are trained detectors, while Fast-DetectGPT, GPTID, and
LogRank are zero-shot detectors. To ensure a fair comparison and assess the detectors’ ability
to generalize to new data, we carefully select datasets that have not been used in the training or
evaluation of these detectors. Table 4 presents an overview of the datasets and domains on which each
detector has been evaluated. Several datasets, such as Xsum, SQuAD, and Reddit Writing Prompts,
have been used in the evaluation or training of multiple detectors. Although these detectors achieve
strong Area Under the Receiver Operating Characteristic (AUROC) scores on these datasets, they do
not report the True Positive Rate at a set False Positive Rate (TPR@FPR), which is a crucial metric
in real-world scenarios. To address this gap, we aim to evaluate all six detectors on the same datasets
using both AUROC and TPR at FPR metrics.
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Method Datasets
RADAR OpenWebText Corpus (Gokaslan et al., 2019), Xsum (Narayan et al., 2018), SQuAD (Rajpurkar et al.,

2016), Reddit Writing Prompts (Fan et al., 2018), and TOEFL (Liang et al., 2023)

Wild Reddit CMV sub-community comments (Tan et al., 2016), Yelp Reviews (Zhang et al., 2015), Xsum
(Narayan et al., 2018), TLDR_news6, ELI5 dataset (Fan et al., 2019), Reddit Writing Prompts (Fan
et al., 2018), ROCStories Corpora (Mostafazadeh et al., 2016), HellaSwag (Zellers et al., 2019a),
SQuAD (Rajpurkar et al., 2016), and SciGen (Moosavi et al., 2021)

T5Sentinel OpenWebText Corpus (Gokaslan et al., 2019)

Fast-DetectGPT Xsum (Narayan et al., 2018), SQuAD (Rajpurkar et al., 2016), Reddit Writing Prompts (Fan et al.,
2018), WMT16 English and German (Bojar et al., 2016), PubMedQA (Jin et al., 2019)

GPTID Wiki40b (Guo et al., 2020), Reddit Writing Prompts (Fan et al., 2018), WikiM (Krishna et al., 2024),
StackExchange (Tulchinskii et al., 2024)

LogRank Xsum (Narayan et al., 2018), SQuAD (Rajpurkar et al., 2016), Reddit Writing Prompts (Fan et al.,
2018)

Table 4: Datasets used for training and evaluation by each model. To avoid data leakage and cherry-
picking, these datasets are excluded from the current study.

Comparison to Previous Works. There are some other papers that have explored similar work to
ours, specifically Wang et al. (2024) and Dugan et al. (2024). Our work differs from theirs in some
important ways. We do not focus as much on the various methods of red-teaming the detectors in
complicated ways. Rather, we explore some more natural methods that an average person might
utilize in practice. We also explore in more depth the variability in detector capabilities across various
tasks and languages with discussion on potential sources of that difference. And lastly, we utilize
newer models, which gives insight into the adaptability of the detectors.

B MORE RESULTS AND PROMPTS

This section contains results for detections by models and tasks. It also includes the prompts used in
plain prompting.

B.1 RESULTS BY MODEL

B.2 PLAIN PROMPTS

Table 12 shows the prompts used for each task in the plain prompting.
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Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.00 0.4621
Fast-DetectGPT 0.01 0.8501
Wild 0.01 0.4797
PHD 0.00 0.4809
LogRank 0.00 0.2774
T5Sentinel 0.01 0.4930

Llama-3

Radar 0.00 0.5501
Fast-DetectGPT 0.01 0.9089
Wild 0.01 0.6428
PHD 0.00 0.7830
LogRank 0.00 0.5217
T5Sentinel 0.01 0.7524

Mistral

Radar 0.00 0.5387
Fast-DetectGPT 0.01 0.8628
Wild 0.01 0.4679
PHD 0.00 0.8599
LogRank 0.00 0.4219
T5Sentinel 0.01 0.8640

Phi-3

Radar 0.00 0.4837
Fast-DetectGPT 0.01 0.0939
Wild 0.01 0.2640
PHD 0.00 0.9326
LogRank 0.01 0.9930
T5Sentinel 0.01 0.0568

Table 5: Code

Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.03 0.3139
Fast-DetectGPT 0.47 0.9468
Wild 0.03 0.5078
PHD 0.01 0.5297
LogRank 0.00 0.4098
T5Sentinel 0.04 0.4996

Llama-3

Radar 0.15 0.6884
Fast-DetectGPT 0.85 0.9873
Wild 0.08 0.6405
PHD 0.00 0.2532
LogRank 0.00 0.1682
T5Sentinel 0.01 0.5269

Mistral

Radar 0.06 0.6081
Fast-DetectGPT 0.77 0.9626
Wild 0.01 0.5751
PHD 0.00 0.3283
LogRank 0.00 0.2540
T5Sentinel 0.01 0.4767

Phi-3

Radar 0.09 0.6485
Fast-DetectGPT 0.54 0.9143
Wild 0.19 0.6586
PHD 0.00 0.2330
LogRank 0.00 0.1445
T5Sentinel 0.01 0.3599

Table 6: Question Answering
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Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.00 0.1771
Fast-DetectGPT 0.14 0.7731
Wild 0.15 0.5088
PHD 0.00 0.4984
LogRank 0.00 0.2668
T5Sentinel 0.03 0.5675

Llama-3

Radar 0.01 0.5823
Fast-DetectGPT 0.23 0.7735
Wild 0.22 0.7099
PHD 0.00 0.2366
LogRank 0.00 0.0887
T5Sentinel 0.04 0.5816

Mistral

Radar 0.00 0.3128
Fast-DetectGPT 0.09 0.5419
Wild 0.20 0.6657
PHD 0.00 0.4590
LogRank 0.00 0.2042
T5Sentinel 0.07 0.5721

Phi-3

Radar 0.16 0.8151
Fast-DetectGPT 0.17 0.5707
Wild 0.70 0.9491
PHD 0.00 0.0785
LogRank 0.05 0.1095
T5Sentinel 0.01 0.5638

Table 7: Summarization

Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.05 0.6134
Fast-DetectGPT 0.69 0.9712
Wild 0.00 0.5466
PHD 0.00 0.3366
LogRank 0.00 0.2094
T5Sentinel 0.06 0.4982

Llama-3

Radar 0.14 0.6936
Fast-DetectGPT 0.82 0.9850
Wild 0.00 0.6513
PHD 0.00 0.2364
LogRank 0.00 0.1562
T5Sentinel 0.01 0.4590

Mistral

Radar 0.35 0.8280
Fast-DetectGPT 0.60 0.9392
Wild 0.00 0.5945
PHD 0.02 0.2799
LogRank 0.01 0.2483
T5Sentinel 0.01 0.5036

Phi-3

Radar 0.06 0.7626
Fast-DetectGPT 0.73 0.9005
Wild 0.23 0.7253
PHD 0.00 0.1350
LogRank 0.00 0.0407
T5Sentinel 0.00 0.2644

Table 8: Dialogue
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Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.00 0.2464
Fast-DetectGPT 0.46 0.9547
Wild 0.03 0.6328
PHD 0.05 0.7846
LogRank 0.00 0.3659
T5Sentinel 0.02 0.6542

Llama-3

Radar 0.43 0.8694
Fast-DetectGPT 0.92 0.9849
Wild 0.59 0.9388
PHD 0.01 0.2668
LogRank 0.00 0.0844
T5Sentinel 0.00 0.1827

Mistral

Radar 0.00 0.1914
Fast-DetectGPT 0.48 0.9385
Wild 0.04 0.5701
PHD 0.00 0.6644
LogRank 0.00 0.2980
T5Sentinel 0.00 0.4285

Phi-3

Radar 0.69 0.9252
Fast-DetectGPT 0.45 0.7116
Wild 0.26 0.9232
PHD 0.00 0.2642
LogRank 0.03 0.3134
T5Sentinel 0.06 0.6680

Table 9: Abstract

Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.14 0.9800
Fast-DetectGPT 0.98 0.9986
Wild 0.00 0.9844
PHD 0.00 0.1159
LogRank 0.00 0.0109
T5Sentinel 0.00 0.2526

Llama-3

Radar 0.53 0.9701
Fast-DetectGPT 0.97 0.9870
Wild 0.44 0.9933
PHD 0.00 0.0230
LogRank 0.00 0.0061
T5Sentinel 0.00 0.3243

Mistral

Radar 0.44 0.9830
Fast-DetectGPT 1.00 0.9990
Wild 0.55 0.9948
PHD 0.00 0.0729
LogRank 0.00 0.0080
T5Sentinel 0.00 0.2331

Phi-3

Radar 0.72 0.9100
Fast-DetectGPT 0.65 0.7642
Wild 0.48 0.9815
PHD 0.00 0.0452
LogRank 0.10 0.1912
T5Sentinel 0.01 0.4959

Table 10: Reviews
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Model Detector TPR@.01 AUROC

GPT-4o

Radar 0.02 0.6151
Fast-DetectGPT 0.05 0.6543
Wild 0.11 0.5532
PHD 0.00 0.4469
LogRank 0.00 0.4135
T5Sentinel 0.03 0.5792

Llama-3

Radar 0.15 0.9057
Fast-DetectGPT 0.40 0.7819
Wild 0.38 0.7178
PHD 0.00 0.2781
LogRank 0.00 0.2876
T5Sentinel 0.02 0.4769

Mistral

Radar 0.02 0.8374
Fast-DetectGPT 0.09 0.6568
Wild 0.19 0.6400
PHD 0.00 0.3826
LogRank 0.01 0.4333
T5Sentinel 0.03 0.5486

Phi-3

Radar 0.18 0.9735
Fast-DetectGPT 0.06 0.5191
Wild 0.44 0.7872
PHD 0.00 0.2601
LogRank 0.02 0.4431
T5Sentinel 0.09 0.5473

Table 11: Translation
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Task Prompt
Code You are a helpful code assistant that can teach a junior developer how to

code. Your language of choice is Python. Don’t explain the code, just
generate the code block itself.

Question Answering You are a helfpul question answering assistant that will answer a single
quesetion as completely as possible given the information in the question.
Do NOT using any markdown, bullet, or numbered list formatting. The
assistant will use ONLY paragraph formatting. **Respond only in
{language}**

Summarization You are a helfpul summarization assistant that will summarize a given
article. Provide only the summarization in paragraph formatting. Do not
introduce the summary. **Respond in {language}**

Dialogue You are a helpful dialogue generation assistant that will generate a
dialogue between people given a short paragraph describing the people
involved. Provide only the dialogue. Do not introduce the dialogue.
**Respond in {language}**

Abstract Writing You are a helpful abstract writing assistant. You will write an abstract
given the content of a paper. Do not provide any other text. You will
only provide an abstract.

Review Writing You are a helpful conference paper review assistant. Please provide a de-
tailed review of the following paper, including its strengths, weaknesses,
and suggestions for improvement.

Translation You are a helpful translation assistant that will translate a given text into
English. Provide only the translation and nothing else.

Rewriting You are a helpful writting assistant. Rewrite the following text to improve
clarity and professionalism. Do not provide any other text. Only provide
the rewritten text.

Table 12: The table shows the prompts used in the plain prompting. For GPT, these were used as
system prompts, and for huggingface models they were prepended to the questions.
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