
Safe Generative AI Workshop @ NeurIPS 2024

AN EXAMINATION OF AI-GENERATED TEXT DETEC-
TORS ACROSS MULTIPLE DOMAINS AND MODELS

Brian Tufts
Carnegie Mellon University
btufts@cs.cmu.edu

Xuandong Zhao
UC Berkeley
xuandongzhao@berkeley.edu

Lei Li
Carnegie Mellon University
leili@cs.cmu.edu

ABSTRACT

The proliferation of large language models has raised growing concerns about
their misuse, particularly in cases where AI-generated text is falsely attributed to
human authors. Machine-generated content detectors claim to effectively identify
such text under various conditions and from any language model. This paper
critically evaluates these claims by assessing several popular detectors (RADAR,
Wild, T5Sentinel, Fast-DetectGPT, GPTID, LogRank) on a range of domains,
datasets, and models that these detectors have not previously encountered. We
employ various prompting strategies to simulate adversarial attacks, demonstrating
that even moderate efforts can significantly evade detection. We emphasize the
importance of the true positive rate at a specific false positive rate (TPR@FPR)
metric and demonstrate that these detectors perform poorly in certain settings, with
TPR@.01 as low as 0%. Our findings suggest that both trained and zero-shot
detectors struggle to maintain high sensitivity while achieving a reasonable true
positive rate.1

1 INTRODUCTION

Large language models (LLMs) are becoming increasingly accessible and powerful, leading to
numerous beneficial applications (Touvron et al., 2023; Achiam et al., 2023). However, they also pose
risks if used maliciously, such as generating fake news articles or facilitating academic plagiarism
(Feng et al., 2024; Zellers et al., 2019b; Perkins, 2023). The potential for misuse of LLMs has become
a significant concern for major tech corporations, particularly in light of the upcoming 2024 elections.
At the Munich Security Conference on February 16th, 2024, these companies pledged to combat
misleading machine-generated content, acknowledging the potential of AI to deceptively influence
electoral outcomes (Accord, 2024). As a result, there is a growing need to develop reliable methods
for differentiating between LLM-generated and human-written content. To ensure the effectiveness
and accountability of LLM detection methods, continuous evaluation of popular techniques is crucial.

Many methods have been released recently that claim to have a strong ability to detect the difference
between AI-generated and human-generated texts. These detectors primarily fall into three categories:
trained detectors, zero-shot detectors, and watermarking techniques (Yang et al., 2023b; Ghosal et al.,
2023; Tang et al., 2023). Trained detectors utilize datasets of human and AI-generated texts and train
a binary classification model to detect the source of a text (Zellers et al., 2019b; Hovy, 2016; Hu et al.,
2023; Tian & Cui, 2023; Verma et al., 2023). Zero-shot detection utilizes a language model’s inherent
traits to identify text it generates, without explicit training for detection tasks (Gehrmann et al., 2019;
Mitchell et al., 2023; Bao et al., 2024; Yang et al., 2023a; Venkatraman et al., 2023). Watermarking is
another technique in which the model owner embeds a specific probabilistic pattern into the text to
make it detectable Kirchenbauer et al. (2023). However, watermarking requires the model owner to
add the signal, and its design has theoretical guarantees; we do not evaluate watermarking models in
this study.

In this paper, we test the robustness of these detection methods to unseen models, data sources, and
adversarial prompting. To do this, we treat all model-generated text as a black box generation. That
is, none of the detectors know the source of the text or have access to the model generating the text.

1All code and data necessary to reproduce our experiments will be released publicly post-review.

1

Safe Generative AI Workshop @ NeurIPS 2024

This presents the most realistic scenario where the user is presented with text and wants to know if it
is AI-generated or not. Speci�cally, we contribute:

• We conduct a thorough evaluation of AI-generated text detectors on unseen models and tasks,
providing insights into their effectiveness in real-world settings.

• We analyze the performance of various detectors under adversarial prompting, exploring the extent
to which prompting can be used to evade detection.

• We demonstrate that high AUROC scores, which are often used as a measure of performance
in classi�cation tasks, do not necessarily translate to practical usage for machine-generated text
detection. Instead, we motivate using the metric of true positive rate (TPR) at a 1% false positive
rate (FPR) threshold as a more reliable indicator of a detector's effectiveness in practice.

Due to space limitations, the discussion of related work and background is deferred to Appendix A.

2 BENCHMARKING PROCEDURE

Our benchmarking method involves compiling datasets that have not been encountered by any of
the detectors during their training or evaluation phases. This approach ensures that the datasets
represent new, unseen data and prevents the possibility of data leakage. For zero-shot detectors, this
methodology eliminates the risk of using cherry-picked datasets that may bias the evaluation. For
trained detectors this reduces the risk of data leakage and tests on out of domain data. Furthermore,
we assess the model's performance across a diverse range of domains that the detectors may not have
been previously evaluated against. This comprehensive evaluation strategy allows for a more robust
assessment of the detectors' generalization capabilities. Additionally, we evaluate the detectors on
a variety of language models that they have not encountered before. This approach enables us to
examine the detectors' performance on unfamiliar language models, providing a more comprehensive
understanding of their effectiveness and adaptability.

2.1 DATASETS

We evaluate each of the detectors on seven different tasks with three of the tasks, question answering,
summarization, and dialogue writing, including multilingual results. The datasets chosen for each
domain are as follows:

• Question Answering: The MFAQ dataset (De Bruyn et al., 2021) was used for this domain.
It contains over one million question-answer pairs in various languages. We used the English,
Spanish, French, and Chinese subsets.

• Summarization: We used the MTG summarization dataset (Chen et al., 2021) for this task. The
complete multilingual dataset comprises roughly 200k summarizations. We utilized the English,
Spanish, French, and Chinese subsets.

• Dialogue Writing: For this task, we utilized the MSAMSum dataset, a translated version of the
SAMSum dataset(Feng et al., 2022; Gliwa et al., 2019). This dataset consists of over 16k dialogues
with summaries in six languages. We utilized English, Spanish, French, and Chinese for consistency
with the other multilingual domains.

• Code: We used the APPS dataset (Hendrycks et al., 2021), which contains 10k code questions and
solutions. The subset used was randomly selected from all the data included in APPS.

• Abstract Writing: For this task, we utilized the Arxiv section of the scienti�c papers dataset
(Cohan et al., 2018) to avoid potential bias, as some detectors have previously been exposed
to PubMed data. Additionally, we only selected papers published in 2020 or earlier to remove
potential LLM in�uence.

• Review Writing: The PeerRead dataset was used for the review writing task (Kang et al., 2018).
PeerRead contains over 10k peer reiviews written by experts corresponding to the paper that they
were written for.

• Translation: We used the Par3 dataset (Karpinska et al., 2022), which provides paragraph level
translations from public-domain foreign language novels. Each paragraph includes at least 2 human
translations of which we selected only one to represent human translation.

2

Safe Generative AI Workshop @ NeurIPS 2024

2.2 LARGE LANGUAGE MODELS

Our objective is to evaluate the detectors on models they they have not previously been trained or
assessed on to gauge their generalization capabilities. We evaluated 4 different models across every
task. The models we use are Llama-3-Instruct 8B (AI@Meta, 2024), Mistral-Instruct-v0.3 (Jiang
et al., 2023), Phi-3-Mini-Instruct 4k (Abdin et al., 2024), and GPT-4o.

2.3 DETECTION MODELS

The detection models were chosen from the newest and highest performing detectors in their respective
categories. Our goal was to represent both trained and zero-shot detectors. As previously mentioned,
the trained detectors we are using are RADAR (Hu et al., 2023), Detection in the Wild (Wild) (Li et al.,
2024), and T5Sentinel (Chen et al., 2023). The zero-shot detectors we are using are Fast-DetectGPT
(Bao et al., 2024), GPTID (Tulchinskii et al., 2024), and LogRank (Mitchell et al., 2023).

Notably, we did not include any watermark detectors. The primary reason for this is that the evaluation
techniques we use over various models would not work with watermark detection. While watermark
detection has shown strong performance (Kirchenbauer et al., 2023), they have a signi�cant drawback
in that they only work if a model applies a watermark. In this paper, we assume a scenario in which
no watermark is applied or it is unknown whether a watermark is applied. Therefore, we must turn to
other detection methods.

2.4 EVALUATION METRICS

In this study, we evaluate machine-generated text detectors using AUROC and TPR at a �xed FPR.
Our �ndings, consistent with prior research (Krishna et al., 2024; Yang et al., 2023a), suggest that
AUROC alone may not re�ect a detector's practical effectiveness, as a high AUROC score can still
correspond to signi�cant false positive rates. This is critical since false positives, particularly in �elds
like academia and media, can have severe consequences. We argue that TPR at a given FPR should
be the standard evaluation metric, as demonstrated by a detector achieving a 0.89 AUROC but less
than 20% TPR at a 1% FPR on a task.

2.5 RED TEAMING

We employ two different methods of prompting for every task: plain prompting and adversarial
prompting. Plain prompting involves using a typical assistant system prompt and providing the model
with the same input that was given to the human for human-generated content. Adversarial prompting,
on the other hand, requests that the model try to act more like a person. Examples of the question
answering plain and adversarial prompts2 are shown as follows:

Plain Prompt Example: Question Answering

You are a helfpul question answering assistant that will answer a single quesetion as completely as
possible given the information in the question. Do NOT using any markdown, bullet, or numbered list
formatting. The assistant will use ONLY paragraph formatting. **Respond only in {language}**.

Adversarial Prompt Example: Question Answering

{Question answering prompt} Try to sound as human as possible.

We also conducted experiments using the LLMs as writing assistants. Speci�cally, we requested
that the model rewrite the human response and improve upon its clarity and professionalism. This
represents a scenario where a person will write down an answer �rst and then request that a model
make their answer better before presenting it. The speci�c prompt we used it as follow:

2The others can be found in the appendix Table 12.

3

Safe Generative AI Workshop @ NeurIPS 2024

Task AI Avg AI Min Human Avg

Code 502.16 15 4496.88
QA 508.19 19 1052.37
Summ 411.57 16 191.00
Dialogue 378.26 15 402.13
Reviews 549.51 24 796.06
Abstract 425.89 32 2081.88
Translation 525.43 9 772.75

Table 1: Average and minimum token counts of machine-generated and human-generated text for
each task, tokenized using the Llama2-13B tokenizer (Touvron et al., 2023). Minimum token counts
for human-generated text are omitted as they were previously described.

Rewriting Prompt

You are a helpful writing assistant. Rewrite the following text to improve clarity and professionalism.
Do not provide any other text. Only provide the rewritten text.

3 EXPERIMENT

Dataset Processing.Each dataset undergoes additional processing to prepare it for detection tasks.
Research indicates that detectors of machine-generated text are more effective with longer content
(Yang et al., 2023b). To leverage this, we aimed to use human samples of maximum possible length.
However, the minimum length needed to obtain suf�cient samples varied by task. We randomly
selected 500 samples of human text from �ltered subsets with the following lengths: 500 tokens for
question answering, 400 tokens for code3, 150 tokens for summarization, 275 tokens for dialogue,
500 tokens for reviews, 500 tokens for abstracts, and 500 tokens for translation (Table 1). These 500
samples served as human examples. From them, prompts from the �rst 100 samples were chosen
for use in the generator model, using the input given to the human author as the model prompt. This
resulted in a dataset of 500 human examples and 100 machine-generated examples per model for a
total of 400 machine-generated examples for each task. This slight data imbalance is intentional to
ensure a more accurate TPR@FPR metric.

Detection methods show improved performance with longer text sequences (Wu et al., 2023) so we
show the statistics of the text in Table 1. Our primary focus was on detectors' ability to identify
AI-generated text while maintaining a low FPR. The longer length of human-generated text is likely
to enhance the TPR@FPR by making it easier to detect as human. We considered the AI-generated
text suf�ciently long for two reasons. First, Li et al. (2024) reports an average AI generation length of
279.99, which is much lower than our average token lengths. Their extensive training and evaluation
data support the adequacy of this length for AI content. Second, our models, with a maximum
generation length of 512 tokens4, produced responses indicative of real-world lengths.

3Length limited to 2500 tokens
4The averages can exceed this number due to different tokenizers and additional tokens to keep text coherent

4

Safe Generative AI Workshop @ NeurIPS 2024

Figure 1: Pipeline for prompting and evaluation. Adversarial prompting and rewriting are applied to
the LLMs. After collecting machine-generated text, AUROC and TPR@FPR are measured for each
detector.

Detector TPR@0.01 TPR@0.05 TPR@0.1 AUROC

Radar 0.06 0.17 0.29 0.6085
Fast-DetectGPT 0.48 0.60 0.67 0.8376
Wild 0.13 0.20 0.30 0.6888
PHD 0.00 0.02 0.05 0.3204
LogRank 0.00 0.01 0.02 0.2235
T5Sentinel 0.02 0.06 0.12 0.4798

Table 2: Performance of different detectors across the entire dataset

Text Generation and Detection Process.Once the prompt samples were selected, we needed to
generate positive examples. The process for this can be seen in Figure 1. We employ three different
strategies for prompting the models. The �rst strategy involves using a basic prompt for each domain
that explains the goal of the model and the desired output format. The second strategy consists of
requesting that the model be as human as possible. The third strategy requests that the model rewrite
and improve upon the human written response5. The �rst strategy aims to simulate a basic system
prompt that would generally be in place on a model someone is using to generate content. The second
strategy simulates the case where a user might try to get the model to generate content that closely
resembles human-generated content. The third strategy simulates a scenario where the user writes
their own response and simply wants the model to clean it up or make it easier to understand. The
outputs of the models were taken as is with no editing. After generating the positive examples, we
passed all of the machine-generated and human-generated examples through the detectors. RADAR,
Fastdetectgpt, Wild, and T5Sentinel all return a percentage probability for each class, and GPTID and
LogRank return a value representing their score. We do not use any thresholds and take the scores as
is for AUROC and TPR@FPR metrics.

4 RESULTS AND ANALYSIS

Table 2 shows the overall performance of each detector across the entire dataset. In this section, we
break down the performance of each detector across tasks, languages, and prompt techniques.

4.1 PLAIN PROMPTING

We evaluate the AUROC and TPR at 0.01 FPR for machine-generated texts from direct prompting
using identical prompts as human written texts. A simple prompt was employed to ensure the
generated text was in the correct format and language for the multilingual tasks.

Figures 2a and 2b show the results for the multilingual tasks and 3a and 3b show the results for the
only English tasks. A signi�cant difference is observed in detector performance across languages
and tasks, particularly in the multilingual setting. Fastdetectgpt consistently performs well overall
but encounters challenges in summarization tasks, especially in languages other than English. Other

5Prompts and templates in appendix

5

Safe Generative AI Workshop @ NeurIPS 2024

(a) AUROC results for multilingual
tasks with normal prompting

(b) TPR@0.01 results for multilin-
gual tasks with normal prompting

(c) AUROC results for multilingual
tasks with template prompting

(d) TPR@0.01 results for multilin-
gual tasks with template prompting

(e) AUROC results for multilingual
tasks with rewrite prompting

(f) TPR@0.01 results for multilin-
gual tasks with rewrite prompting

Figure 2: Comparison of AUROC and TPR@0.01 results for multilingual tasks across all detectors
using different prompting styles (normal, template, and rewrite).

(a) AUROC results for English
tasks with normal prompting

(b) TPR@0.01 results for English
tasks with normal prompting

(c) AUROC results for English
tasks with template prompting

(d) TPR@0.01 results for English
tasks with template prompting

(e) AUROC results for English
tasks with rewrite prompting

(f) TPR@0.01 results for English
tasks with rewrite prompting

Figure 3: Comparison of AUROC and TPR@0.01 results for English tasks across all detectors using
different prompting styles (normal, template, and rewrite).

detectors show similar patterns: while they achieve strong results in English tasks, their performance
becomes more inconsistent with non-English tasks. The AUROC graph suggests robust performance
for Fastdetectgpt, but when examining the TPR@0.01 graph, we observe that it struggles to maintain
low false positive rates, particularly in summarization tasks where it falls below 0.25 for most
languages, except for English dialogue and French question-answering, where it exceeds 0.8.

6

	Introduction
	Benchmarking Procedure
	Datasets
	Large Language Models
	Detection Models
	Evaluation Metrics
	Red Teaming

	Experiment
	Results and Analysis
	Plain Prompting
	Template Prompting
	Rewriting
	TPR@FPR vs AUROC
	Output Quality and Detection

	Conclusion
	Limitations
	Related Work and Background
	More Results and Prompts
	Results by Model
	Plain Prompts

