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Abstract

The video topic segmentation (VTS) task seg-001
ments videos into intelligible, non-overlapping002
topics, facilitating efficient comprehension of003
video content and quick access to specific con-004
tent. VTS is also critical to various down-005
stream video understanding tasks. Traditional006
VTS methods using shallow features or un-007
supervised approaches struggle to accurately008
discern the nuances of topical transitions. Re-009
cently, supervised approaches have achieved010
superior performance on video action or scene011
segmentation over unsupervised approaches. In012
this work, we improve supervised VTS by thor-013
oughly exploring multimodal fusion and mul-014
timodal coherence modeling. Specifically, (1)015
we enhance multimodal fusion by exploring dif-016
ferent architectures using Cross-Attention and017
Mixture of Experts. (2) To generally strengthen018
multimodality alignment and fusion, we pre-019
train and fine-tune the model with multimodal020
contrastive learning. (3) We propose a new021
pre-training task tailored for the VTS task, and022
a novel fine-tuning task for enhancing multi-023
modal coherence modeling for VTS. We eval-024
uate our proposed approaches on educational025
videos, in the form of lectures, due to the vi-026
tal role of topic segmentation of educational027
videos in boosting learning experiences. Ad-028
ditionally, to promote research in VTS, we029
introduce a large-scale Chinese lecture video030
dataset to augment the existing English lecture031
video datasets. Experiments on both English032
and Chinese lecture datasets demonstrate that033
our model achieves superior VTS performance034
compared to competitive unsupervised and su-035
pervised baselines1.036

1 Introduction037

The proliferation of digital video content over the038

last few decades has underscored the importance039

of efficient content navigation and comprehension.040

1The code and model checkpoints will be released upon
acceptance

As the unstructured nature of videos poses signifi- 041

cant challenges for users seeking to quickly grasp 042

or reference specific topics, Video Topic Segmenta- 043

tion (VTS) has emerged as a vital tool in addressing 044

these demands. By delineating videos into coherent 045

non-overlapping topics, VTS not only facilitates 046

intuitive understanding of video content but also 047

enables swiftly pinpointing and accessing topics 048

of interest. This is particularly pertinent for the 049

furtherance of various video understanding tasks, 050

where VTS serves as a foundational component. 051

Traditional VTS approaches predominantly 052

hinge on shallow features (Gandhi et al., 2015; 053

Soares and Barrére, 2018b; Ali et al., 2021) and 054

unsupervised methods (Gupta et al., 2023), due 055

to scarcity of labeled data. These methods often 056

fall short in capturing the semantic cues that sig- 057

nal topical shifts in video streams, hence suffer 058

from limited precision. Recent advancements in 059

supervised learning paradigms have achieved no- 060

table performance improvements in multi-modal 061

task (Yang et al., 2022; Tu et al., 2022, 2023; 062

Zhang et al., 2022) and various video segmentation 063

tasks, such as video action segmentation (Zhou 064

et al., 2018; Tang et al., 2019), scene segmenta- 065

tion (Huang et al., 2020; Islam et al., 2023), and 066

topic segmentation (Wu et al., 2023; Wang et al., 067

2023; Xing et al., 2024), surpassing unsupervised 068

methods. Performance of supervised approaches 069

can be further enhanced by pre-training on vast 070

volumes of unlabeled data (Xu et al., 2021; Mun 071

et al., 2022) or initializing models from pre-trained 072

models (Yan et al., 2023) and then fine-tuning the 073

model. Hence, in this work, we focus on further 074

improving supervised methods for VTS. 075

Compared to text topic segmentation (Koshorek 076

et al., 2018; Xing and Carenini, 2021; Yu et al., 077

2023), videos contain rich and diverse multimodal 078

contextual information. Fully utilizing multimodal 079

information, such as visual cues and textual data 080

(e.g., screen text and subtitles), could facilitate 081
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more detailed content understanding and in turn082

more accurate semantic segmentation than rely-083

ing on text only. Our case studies in Appendix H084

demonstrate the great challenges posed by VTS,085

particularly to unsupervised approaches or super-086

vised methods that rely solely on either visual or087

textual modality. The complexity inherent in video088

content—where multimodal signals must be effec-089

tively integrated—accentuates the difficulty. Also,090

coherence is essential for understanding logical091

structures and semantics. Enhancing coherence092

modeling has achieved significant improvements093

in long text topic segmentation (Yu et al., 2023).094

Therefore, we improve supervised VTS methods095

by thoroughly exploring multimodal fusion and096

multimodal coherence modeling. We enhance097

multimodal fusion from the perspectives of model098

architecture and pre-training and fine-tuning tasks.099

Specifically, we compare various multimodal fu-100

sion architectures built upon Cross-Attention and101

Mixture-of-Experts (MoE). We investigate the ef-102

fect of multimodal contrastive learning for general103

pre-training and fine-tuning for strengthening cross-104

modal alignment. For enhancing multimodal coher-105

ence modeling, we propose a new pre-training task106

tailored for the VTS task, and a novel fine-tuning107

task by elevating intra-topic multimodal feature108

similarities and inter-topic multimodal feature dif-109

ferences. The proposed approaches are extensively110

evaluated on educational videos, in the form of111

lectures, due to the pivotal contributions of topic112

segmentation of educational videos in bolstering113

the learning experiences.114

Our contributions can be summarized as follows.115

• We propose a supervised multimodal sequence116

labeling model for VTS, denoted MMVTS. We117

explore various multimodal fusion architectures,118

and apply multimodal contrastive learning for119

strengthening cross-modal alignment. We also120

propose a new self-supervised pre-training task121

tailored to the VTS and a novel fine-tuning task122

for enhancing multimodal coherence modeling.123

• We introduce a large-scale Chinese Lecture124

Video Topic Segmentation dataset (CLVTS) to125

promote the research of VTS.126

• Experiments show that our model sets new state-127

of-the-art (SOTA) performance on both English128

and Chinese lecture video datasets, outperform-129

ing competitive unsupervised and supervised130

baselines. Comprehensive ablation study further131

confirms the effectiveness of our approaches.132

2 Related Work 133

Text Topic Segmentation Text topic segmenta- 134

tion aims to automatically partition text into topi- 135

cally consistent, non-overlapping segments (Hearst, 136

1994). By automatically mining clues of topic 137

shifts from large amounts of labeled data (Koshorek 138

et al., 2018; Arnold et al., 2019), contemporary 139

supervised models (Lukasik et al., 2020; Soma- 140

sundaran et al., 2020; Zhang et al., 2021; Yu 141

et al., 2023) demonstrate superior performance 142

compared to unsupervised approaches (Riedl and 143

Biemann, 2012; Solbiati et al., 2021). Notably, 144

supervised models that excel at modeling long se- 145

quences (Zhang et al., 2021; Yu et al., 2023) are 146

capable of capturing longer contextual nuances 147

and thereby achieve better topic segmentation per- 148

formance, compared to models that model local 149

sentence pairs or block pairs (Wang et al., 2017; 150

Lukasik et al., 2020). In addition, recent works (So- 151

masundaran et al., 2020; Xing et al., 2020; Yu et al., 152

2023) show that strengthening coherence modeling 153

can improve text topic segmentation performance. 154

Inspired by these findings, in this work, we explore 155

enhancing coherence modeling for video topic seg- 156

mentation under the multimodal configurations. 157

Video Topic Segmentation For video topic seg- 158

mentation, some approaches, such as BaSSL Mun 159

et al. (2022), explore visual-only information. 160

However, many recent works have achieved en- 161

hanced semantic understanding of videos by lever- 162

aging multimodal data. Gupta et al. (2023) intro- 163

duced UnsupAVLS, which uses the TWFINCH 164

algorithm to cluster video clips into topics based 165

on visual and text features. Wang et al. (2023) pro- 166

posed SWST, which concatenates visual and text 167

features for language models; however, it may suf- 168

fer from discrepancies between pre-training of the 169

language model and fine-tuning. Wu et al. (2023) 170

focused on hierarchical modeling of scene, story, 171

and topic, without further exploring how to better 172

integrate multimodal features. Xing et al. (2024) 173

employed asymmetric cross-modal attention for ob- 174

taining text-aware visual representations. It may be 175

most related to our work. However, our work dif- 176

fers from Xing et al. (2024) as we explore symmet- 177

ric cross-modal attention and also investigate the 178

Mixture-of-Experts mechanism, as well as intro- 179

ducing topic-level Contrastive Semantic Similarity 180

Learning into fine-tuning for enhanced coherence 181

modeling in the multimodal framework. 182
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Dataset Videos Hours Topics/Video Clips/Topic Seconds/Clip Domain Language Available
NPTEL10 (Gandhi et al., 2015) 12 - - - - Education English ×
Videoaula (Soares and Barrére, 2018a) 44 26.4 - - - Education Portuguese ✓
CS80 (Soares and Barrére, 2019) 80 - - - - Education English ✓
MOOC100 (Das and Das, 2019) 100 100 6.9 - - Education English ✓†
Coursera37 (Chand and Oğul, 2021) 37 2.8 16.5 - - Education English ×
VSTAR (Wang et al., 2023) 8159 4625 61.2 0.4 90 Television English ✓†
NewsNet (Wu et al., 2023) 1000 946 8.5 - - News English ×
MultiLive (Qiu et al., 2023) 1000 1300 8.8 - - Livestream English ×
AVLecture (Gupta et al., 2023) 350 297.5 5.4 46.2 12.3 Education English ✓
YouTube (Xing et al., 2024) 5422 858.5 6.7 16 5.3 Diverse English ×
Behance (Xing et al., 2024) 575 1225.2 5.2 248 6.0 Livestream English ×
CLVTS (Ours) 510 395 10.1 35.7 7.7 Education Chinese ✓

Table 1: Comparison between our CLVTS dataset and existing video datasets for the video topic segmentation task.
† indicates that the data is not entirely open source. Prior to our work, AVLecture is the only publicly available
large-scale video dataset supporting supervised VTS methods.

3 Methodology183

Figure 1 depicts the overall architecture of our184

MMVTS model. Section 3.1 presents the prob-185

lem definition of multimodal VTS and the over-186

all model architecture. We enhance multimodal187

fusion from the perspectives of model architec-188

ture, pre-training, and fine-tuning tasks. Specif-189

ically, we compare different multimodal fusion ar-190

chitectures built upon Merge- and Cross-Attention,191

and Mixture-of-Experts (Section 3.1). We explore192

multimodal contrastive learning for cross-modality193

alignment and propose a new pre-training task tai-194

lored for VTS (Section 3.2). For fine-tuning, we195

also propose a novel task for multimodal coherence196

modeling (Section 3.3).197

3.1 MultiModal Video Topic Segmentation198

Overall Architecture. Following prior199

works (Zhang et al., 2021; Wu et al., 2023),200

we define video topic segmentation as a clip-201

level sequence labeling task and propose our202

MultiModal Video Topic Segmentation (MMVTS)203

model. As illustrated in Figure 1a, we apply204

unimodal pre-trained encoders for the vision205

and text modality, respectively, and then fuse206

multimodal information at the intermediate207

representation level (i.e., middle fusion (Xu et al.,208

2023)) through the Multimodal Fusion Layer.209

Given a video, we transcribe it with a competitive210

automatic speech recognition (ASR) system2 and211

use ASR 1-best as the text modality. We then212

divide the video into n clips (cvi , c
t
i)
n
i=1, with clips213

segmented at the sentence boundaries predicted214

on ASR 1-best. cvi = {f i
1, ..., f

i
k} denotes evenly215

sampled k frames within the i-th clip and is fed216

into a visual encoder Ev to extract visual features.217

cti = {wi
1, ..., w

i
∥si∥+1} denotes the sequence of218

2https://tingwu.aliyun.com/home

words from ASR 1-best within the i-th clip, where 219

wi
1 is the inserted special token [BOS] and ∥si∥ 220

denotes the number of words in the i-th clip. cti 221

is fed into a text encoder Et and the last hidden 222

representation of [BOS] for the i-th clip is used as 223

the text representation of the clip. After extracting 224

the unimodal features, we first apply trainable pro- 225

jection matrices Wv and Wt to convert unimodal 226

features into the same dimension, resulting in the 227

visual feature sequence v = {v1, ..., vn} and the 228

textual feature sequence t = {t1, ..., tn} (Eq. 1). 229

Then we fuse the multimodal information with M 230

Multimodal Fusion Layers MFLM and obtain 231

the updated visual features hv = {hv1, ..., hvn} 232

and textual features ht = {ht1, ..., htn} (Eq. 2), 233

which are then concatenated into the multimodal 234

features m = {m1, ...,mn} (Eq. 3). Finally, the 235

multimodal features m are fed into the predictor 236

consisting of a linear layer Wp to obtain the prob- 237

ability of binary classification p = {p1, ..., pn} 238

(Eq. 4), where pi indicates whether the i-th clip is 239

at a topic boundary. We use the standard binary 240

cross-entropy loss (Eq. 5) to train the model, 241

where yi ∈ {0, 1} is the label. The last clip is 242

excluded from loss computation. Considering 243

computational complexity, we freeze the visual 244

encoder while keeping all other parameters 245

trainable. 246

Compared to late fusion where no cross-modal 247

interaction happens until after independent predic- 248

tions by each unimodal model, middle fusion and 249

early fusion are found to generally outperform late 250

fusion (Nagrani et al., 2021), probably because 251

early and middle fusion aligns better with human 252

perception where multimodal fusion happens early 253

in sensory processing. On the other hand, com- 254

pared to early fusion, middle fusion yields superior 255

or comparable performance (Nagrani et al., 2021) 256

3
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Figure 1: The overall architecture of our MMVTS model and four distinct architectures of the Multimodal Fusion
Layers in (a). In the overall architecture, the snowflake symbol indicates that the parameters of the certain module
are frozen; whereas, the flame symbol signifies a trainable module. The blue dotted lines in the lmcssl module
denote the topic boundaries. The green solid lines in the lcma module depict the features being brought closer, while
the red dashed lines depict the features being pushed apart.

and is much less computationally expensive since257

we could freeze some strong pre-trained unimodal258

encoders with a large number of parameters and259

only train a small number of parameters.260

v = Wv ·Ev({cv1 , ..., cvn})
t = Wt ·Et({ct1, ..., ctn})

(1)261

262
hv;ht = MFLM (v; t) (2)263

264
mi = hv

i ;h
v
i (3)265

266
p = Wp ·m (4)267

268

lvts = −
n−1∑
i=1

[yi ln pi + (1−yi) ln(1−pi)] (5)269

Multimodal Fusion Layer (MFL). We compare270

four distinct cross-modal interaction mechanisms271

for Multimodal Fusion Layers. We investigate the272

Merge-Attention and Co-Attention multimodal fu-273

sion layers proposed in (Dou et al., 2022; Yang274

et al., 2023b). With Merge-Attention (Figure 1b),275

features from unimodal encoders are concatenated276

sequentially and then input into a standard trans-277

former encoder layer (Vaswani et al., 2017), which278

shares attention parameters across modalities. A279

feed forward layer is added on top to produce280

the final output representation. In contrast, with281

Co-Attention (Figure 1c), features from each uni- 282

modal encoder first go through self-attention with 283

modality-specific attention parameters, then we per- 284

form symmetric cross-attention to integrate in- 285

formation from all other modalities to enhance the 286

representation of the considered modality, followed 287

by a feed forward layer. 288

Inspired by (Mustafa et al., 2022), which inter- 289

leaves MoE encoder layers and standard dense en- 290

coder layers for image-text multimodal models, we 291

also investigate two new architectures by replacing 292

the traditional single feed-forward layers in Fig- 293

ure 1b and 1c with a MoE module (Shazeer et al., 294

2016; Lepikhin et al., 2020). The resulting archi- 295

tectures are depicted by Figure 1d and 1e. The 296

motivation is that adding MoE on top of the fused 297

representations may facilitate deeper cross-modal 298

integration of information and improve model ca- 299

pacity without a proportional increase in computa- 300

tional complexity. Specifically, experts are MLPs 301

activated depending on the input. Firstly, we con- 302

catenate fused features output from self-attention 303

or cross-attention. Then, we implement the Noisy 304

Top-k Gating mechanism (Shazeer et al., 2016) to 305

select K experts from a total of E candidates (Eq. 6 306

- 8), where SN() denotes the standard normal dis- 307
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tribution, Wn denotes tunable Gaussian noise to308

help load balancing, Wg is a trainable weight ma-309

trix, K and E are hyper-parameters. Finally, the310

outputs of the K activated experts are linearly com-311

bined with the learned gating weights (Eq. 9). For312

the MoE training objective, we sum the importance313

loss and the load loss (Shazeer et al., 2016) to bal-314

ance expert utilization as in Eq. 10.315

G(x) = Softmax(KeepTopK(Hx, k)) (6)316
317

H(x)i = (Wg · x)i + SN() · Softplus((Wn · x)i) (7)318
319

KeepTopK(x, k)i =

{
xi if xi is in top-k.
−∞ otherwise.

(8)320

321

MoE(x) =

K∑
e=1

G(x)e ·MLPe(x) (9)322

323
lbalance = limportance + lload (10)324

3.2 Pre-training with Unlabeled Data325

Prior works have demonstrated that standard self-326

supervised denoising pre-training (even only using327

the downstream task data) (Amos et al., 2023) or328

pre-training adapted to the downstream task (Gu-329

rurangan et al., 2020) often perform substantially330

better than randomly initializing the parameters.331

Therefore, to better initialize the parameters of332

the Multimodal Fusion Layers, we explore pre-333

training with unlabeled video data before super-334

vised fine-tuning. Firstly, we introduce a general335

cross-modality alignment pre-training task to336

learn the multimodal representation. We use con-337

trastive learning loss to adjust the features learned338

by the Multimodal Fusion Layers, by maximizing339

the cosine similarity of the visual features and tex-340

tual features of the same clip, while reducing the341

similarity of the modality features between differ-342

ent clips, as show in Eq. 11, where ϵ is used to343

prevent division by 0 and τ is a temperature hyper-344

parameter to scale the cosine similarity.345

lcma = − 1

n

∑n
i=1 e

sim(hv
i ,h

t
i)∑n

i=1

∑n
j=1 e

sim(hv
i ,h

t
j) + ϵ

(11)346

347

sim(x1, x2) =
xT
1 · x2

∥x1∥ · ∥x2∥
/τ (12)348

Secondly, we introduce a novel pre-training task349

tailored for the VTS task, focusing on utilizing350

unlabeled data for learning pseudo topic bound-351

aries and also enhancing modality alignment. We352

apply a Kernel Density Estimation (KDE) (Davis353

et al., 2011) model to estimate the topic duration354

distribution within the labeled training set. Videos355

are segmented based on KDE-sampled durations. 356

For each segment, with equal probability, we: in- 357

sert a random segment from other videos, replace it 358

with another, or retain it. These modified segments 359

serve as distinct topics, allowing the model to learn 360

pseudo topic boundaries during pre-training. This 361

task-adaptive pre-training task has the same lvts ob- 362

jective as shown in Eq. 5. The overall pre-training 363

objective is shown in Eq. 13, where α and β are 364

hyper-parameters to adjust the loss weights. 365

lpretrain = lvts + αlcma + βlbalance (13) 366

3.3 Fine-tuning with Multimodal Coherence 367

Modeling 368

For fine-tuning, we introduce two auxiliary tasks 369

to enhance multimodal coherence modeling. The 370

cross modal alignment task is the same as the task 371

in Eq. 11 used in pre-training. This continuity 372

ensures that the modalities retain their coherence 373

through both pre-training and fine-tuning stages, 374

fostering a consistent interplay between different 375

modalities. In addition, we adapt the Contrastive 376

Semantic Similarity Learning (CSSL) task pro- 377

posed by Yu et al. (2023), which leverages the 378

inherent characteristics of topic-related coherence, 379

to the multimodal context. We adopt the same 380

strategy for selecting positive and negative sample 381

pairs (Yu et al., 2023), but extend the features to 382

the multimodal representations, as shown in Eq. 14, 383

where k1 and k2 are hyper-parameters that deter- 384

mine the number of positive and negative pairs. 385

For each clip’s multimodal representation mi, m+
i,j 386

denotes the multimodal representation of the j-th 387

similar clip in the same topic as clip i, while m−
i,j 388

denotes the multimodal representation of the j-th 389

dissimilar clip in a different topic from clip i. We 390

hypothesize that this extension could improve mul- 391

timodal representation learning by identifying rela- 392

tive consistency relations within topics and across 393

topics. 394

lmcssl = − 1

n

n∑
i=1

log

k1∑
j=1

esim(mi,m
+
i,j)

k1∑
j=1

esim(mi,m
+
i,j)+

k2∑
j=1

esim(mi,m
−
i,j)

(14) 395

The overall fine-tuning objective combines Eq. 5, 396

10, 11, and 14, as shown in Eq. 15, where σ, θ, and 397

γ are hyper-parameters to adjust loss contribution. 398

When the Multimodl Fusion Layers do not contain 399

MoE structure, β in Eq. 13 and σ are set to zero. 400

lfinetune = lvts + σlbalance + θlmcssl + γlcma (15) 401
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Model Modality AVLecture CLVTS
F1 BS@30 F1@30 mIoU Avg F1 BS@30 F1@30 mIoU Avg

UnsupAVLS (Gupta et al., 2023) V+T - 56.00‡ - 70.86‡ - - - - - -
BaSSL (Mun et al., 2022) V - 43.94 - 46.95 - - - - - -
LongFormer (Yu et al., 2023) T 52.91 69.25 60.38 67.54 62.52 34.42 52.19 47.77 52.87 46.81
LongFormercssl (Yu et al., 2023) T 54.02 71.56 62.40 68.39 64.09 34.77 53.07 47.51 53.15 47.12
Llama-3-8BGenerative T 40.00 57.55 56.52 62.8 54.22 27.50 40.58 43.71 50.38 40.54
Llama-3-8BDiscrete T 39.27 68.8 62.55 70.43 60.26 31.47 60.40 54.64 58.86 51.34
SWSTseq (Wang et al., 2023) V+T 53.45 70.95 59.73 65.21 62.33 34.55 52.77 48.08 52.67 47.02
PT FT-Coh MMVTS Models (Ours) Modality
× × Baseline1

V+T
55.19 71.76 61.19 66.39 63.63 37.32 49.75 47.07 50.51 46.16

× ✓ Baseline2 56.72 72.56 63.03 67.97 65.07 37.29 48.48 47.62 51.73 46.28
✓ ✓ Baseline3 58.77 72.55 67.26 71.52 67.52 36.54 50.67 48.81 52.56 47.15
✓ ✓ Merge-Attn

V+T

57.36 74.96 65.30 70.15 66.94 38.17 55.52 50.69 54.84 49.80
✓ ✓ Co-Attn 60.01 73.88 67.27 72.32 68.37 38.49 57.23 50.59 54.47 50.20
✓ ✓ Merge-Attn with MoE 57.54 73.48 64.36 70.43 66.45 38.77 61.05 51.10 54.41 51.33
✓ ✓ Co-Attn with MoE 59.77 75.01 67.94 71.69 68.61 39.98 58.96 51.41 54.71 51.27

Table 2: Performance of baselines and our MMVTS models on AVLecture and CLVTS test sets. ‡ denotes the
leakage of the ground-truth topic number. V and T under Modality denote Vision and Text modality, respectively.
MMVTS Baseline1,2,3 denote our MMVTS model w/o Multimodal Fusion Layers. Attn denotes Attention. PT
denotes pre-training the model on unlabeled data (Section 3.2 Eq. 13) before fine-tuning. FT-Coh denotes adding
the two auxiliary multimodal coherence modeling tasks during fine-tuning (Section 3.3 Eq. 15); w/o FT-Coh refers
to fine-tuning with the standard lvts (Eq. 5). For each metric, the best result among all models is boldfaced while
the best result in each group is underscored.

4 Experiments402

4.1 Experimental Setup403

Datasets. Table 1 summarizes the statistics of vari-404

ous VTS datasets. It clearly shows that prior to our405

work, AVLecture (Gupta et al., 2023) is the only406

publicly available large-scale labeled video dataset407

facilitating supervised VTS methods. To promote408

the research in VTS, we introduce a large-scale409

labeled Chinese Lecture Video Topic Segmentation410

dataset (CLVTS). Both AVLecture and CLVTS are411

sourced from educational videos, where VTS sig-412

nificantly enhances learning experiences. In terms413

of differences, in addition to the linguistic distinct-414

ness from the English lecture dataset AVLecture,415

CLVTS is characterized by its natural and uninter-416

rupted long videos, a stark contrast to AVLecture,417

since nearly two-thirds of AVLecture are reassem-418

bled pre-segmented short videos. As shown in419

Table 1, CLVTS features a higher average number420

of topics per video than AVLecture. Details of the421

data collection and annotation procedure and analy-422

sis of the CLVTS dataset are in Appendix A. Impor-423

tantly, we put careful ethical considerations for424

the datasets used in this research in Appendix A.3.425

Baselines and Implementation Details. The im-426

plementation details are in Appendix B. We care-427

fully select the following representative baselines.428

- UnsupAVLS (Gupta et al., 2023) is an unsuper-429

vised approach that clusters video clips into a pre-430

defined number of topics, based on visual and text431

embeddings learned from matching the narration432

with the temporally aligned visual content. 433

- Visual-only BaSSL (Mun et al., 2022) is initially 434

proposed for video scene segmentation. We use 435

their released checkpoints to initialize our model 436

and fine-tune on the VTS task to evaluate the per- 437

formance of a visual-only model. 438

- Text-only LongFormer is evaluated on long doc- 439

ument topic segmentation by Yu et al. (2023). We 440

fine-tune LongFormer and LongFormercssl in (Yu 441

et al., 2023) to evaluate the performance of a text- 442

only model w/o and w/ Contrastive Semantic Simi- 443

larity Learning (CSSL) on the VTS task. 444

- Llama-3-8B Our pre-training (Section 3.2) is con- 445

ducted on the relatively limited unlabeled videos 446

of AVLectures and CLVTS datasets. To investi- 447

gate the effect of fine-tuning a powerful pre-trained 448

text large language model (LLM) on VTS, we fine- 449

tune Llama-3-8B3 with 8B parameters, using two 450

different prompts (see Appendix E for details). 451

- SWSTseq is our adapted version of the multimodal 452

video scene and topic segmentation model (Wang 453

et al., 2023) with a pre-trained LongFormer (Belt- 454

agy et al., 2020) as the backbone to VTS, for com- 455

paring performance between their early fusion and 456

our middle fusion strategy on VTS. 457

In this work, we choose not to utilize pre-trained 458

vision-language models such as (Yang et al., 2023a; 459

Nguyen et al., 2024) due to their limitations in pro- 460

cessing long video content as the case of educa- 461

tional videos, although these models demonstrate 462

3https://huggingface.co/meta-llama/
Meta-Llama-3-8B
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strong performance on short video clips lasting sev-463

eral seconds. In future work, we plan to enhance464

the long video understanding capabilities of large465

multimodal models (Zou et al., 2024; Zhou et al.,466

2024) to enable their applications to VTS.467

Evaluation Metrics. We adopt four commonly468

used metrics, including positive F1 (Zhang et al.,469

2021) (denoted as F1 for brevity), BS@k (Gupta470

et al., 2023), mIoU (Mun et al., 2022), and F1@k.471

Definitions of the four metrics are in Appendix C.472

Following Gupta et al. (2023), we set k to 30 sec-473

onds. We compute the average of these four met-474

rics, denoted by Avg, to measure the overall perfor-475

mance of a model.476

4.2 Results and Analysis477

Table 2 compares the performance of baselines (the478

first group) and variants of our MMVTS models479

(the second and the third group).480

Unimodal performance. For BS@30 on AVLec-481

ture, the text-only Longformer (Row 3) outper-482

forms the visual-only BaSSL (Row 2) by a large483

gain (+25.31), and also surpasses the unsupervised484

UnsupAVLS by a notable gain (+13.25). Such485

results are expected since the text modality inher-486

ently conveys more precise information for VTS487

than the vision modality. Notably, the high mIoU488

of the unsupervised method is attributable to the489

leakage of the ground-truth number of topics.490

Mutimodal performance. As shown in Table 2,491

Avg (the average of F1, BS@k, mIoU, F1@k) of the492

multimodal model SWSTseq is only comparable to493

Avg of the text-only LongFormer, suggesting that494

more data may be necessary to mitigate the discrep-495

ancy between pre-training of the language model496

and fine-tuning with early fusion (as in SWSTseq),497

in order to fully exploit the potential of the early498

fusion strategy. Our MMVTS Baseline1,2,3 sim-499

ply concatenate unimodal features to predict topic500

boundaries. Without pre-training on unlabeled data501

(PT, Eq. 13) and the two auxiliary fine-tuning tasks502

to enhance multimodal coherence modeling (FT-503

Coh, Eq. 15), on F1, MMVTS Baseline1 outper-504

forms the text-only Longformer by 2.28 and 2.90505

on AVLecture and CLVTS respectively, while on506

Avg score, MMVTS Baseline1 outperforms Long-507

former by 1.1 on AVLecture yet slightly underper-508

forms Longformer by 0.65 on CLVTS. These re-509

sults suggest that simply concatenating unimodal510

features to predict topic boundaries does not bring511

consistent gains over unimodal models. The third512

group in Table 2 evaluates our MMVTS models513

with the four Multimodal Fusion Layer (MFL) 514

architectures and with pre-training (PT) and fine- 515

tuning (FT-Coh). Overall, after PT and FT-Coh, 516

on AVLecture, our MMVTS model using Co- 517

Attention with MoE as MFLs outperforms all the 518

competitive unsupervised and supervised visual- 519

only and text-only baselines as well as the multi- 520

modal SWSTseq and achieves the best Avg (4.52 521

absolute and 7.05% relative gain over previous 522

SOTA), and the bestBS@30 and F1@30 results, 523

setting new SOTA on AVLecture. On CLVTS, 524

our MMVTS model achieves the best F1 (5.21 525

absolute and 14.98% relative gain over previous 526

SOTA) and yields the Avg score comparable to 527

the best Avg score. On AVLecture, both gains on 528

Avg from our MMVTS model with Co-Attention 529

MoE after PT and FT-Coh over the previous SOTA 530

LongFormercssl and MMVTS Baseline1 are sta- 531

tistically significant (p < 0.05). Moreover, our 532

MMVTS model significantly outperforms the mul- 533

timodal model SWSTseq on both datasets, demon- 534

strating the effectiveness of our middle fusion strat- 535

egy and new pre-training and fine-tuning methods. 536

Table 5 shows that our MMVTS model with Co- 537

Attention with MoE has 192M trainable parame- 538

ters while LongFormercssl has 130M parameters. 539

It is also notable that the performance of models 540

on CLVTS is generally much lower than that on 541

AVLecture, with the best Avg on AVLecture and 542

CLVTS differing by 17.50 (68.84 versus 51.34), 543

indicating a greater challenge to VTS from our 544

CLVTS dataset than the AVLecture dataset. 545

Comparison with fine-tuning text LLMs. Table 2 546

also shows that on CLVTS, fine-tuning the pow- 547

erful pre-trained text LLM Llama-3-8B with our 548

Discrete prompt (Appendix E) achieves the best 549

Avg score 51.34, probably attributable to Llama- 550

3-8B’s extensive pre-training and vast knowledge 551

base; still, the performance of our MMVTS model 552

w/ Merge-Attn and MoE and Co-Attn and MoE 553

after PT and FT-Coh is nearly the same, with Avg 554

51.33 and 51.27 respectively. However, on AVLec- 555

ture, fine-tuning Llama-3-8B performs much worse 556

than MMVTS model (60.26 versus our 68.61). Par- 557

ticularly, F1 on both AVLecture and CLVTS from 558

Llama-3-8B are much worse than MMVTS model 559

as we find that Llama-3-8B’s predicted boundaries 560

often have a clip offset. These results underscore 561

the value of our proposed small VTS models, since 562

the efficiency and flexibility of our competitive to 563

superior small models make them indispensable 564

in many real-world applications. Future research 565
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PT Model F1 BS@30 F1@30 mIoU Avg
× Merge-Attn 56.56 73.28 64.03 70.06 65.980.90
× Co-Attn 57.71 72.20 65.40 70.20 66.381.29
× Merge-Attn with MoE 56.80 72.26 63.44 69.65 65.541.64
× Co-Attn with MoE 57.71 74.30 65.53 71.45 67.250.56
✓ Merge-Attn 57.36 74.96 65.30 70.15 66.940.60
✓ Co-Attn 60.01 73.88 67.27 72.32 68.370.52
✓ Merge-Attn with MoE 57.54 73.48 64.36 70.43 66.450.14
✓ Co-Attn with MoE 59.84 75.62 67.69 72.21 68.840.93

Table 3: Ablation studies of the pre-training tasks on
AVLecture test set. The two auxiliary coherence mod-
eling tasks are added in fine-tuning (Eq. 15). For Avg,
we report mean and standard deviation from three runs
with different random seeds.

could continue exploring how to integrate strengths566

of LLMs and multimodal approaches for VTS.567

Incorporate audio modality. We also explore568

adding the audio modality (A) to the vision and569

text modalities (V+T) for our MMVTS model and570

find that V+T+A slightly improves the Avg score571

over V+T by 1.09% and 3.32% relatively, as shown572

in Appendix I. Our ongoing research explores dif-573

ferent audio features as well as directly employing574

visual and audio cues (i.e., V+A) for VTS.575

We conduct extensive ablation studies to validate576

effectiveness of the proposed Multimodal Fusion577

Layers, pre-training and fine-tuning tasks.578

(1) Effect of Multimodal Fusion Layers. Com-579

paring the third group and Baseline3 in Table 2580

shows that with the same pre-training and fine-581

tuning, the best performing architecture using Mul-582

timodal Fusion Layers always substantially out-583

performs Baseline3. Specifically, with PT and FT-584

Coh, on AVLecture, both Co-Attention and Co-585

Attention with MoE notably outperform MMVTS586

Baseline3 by 1.32 on Avg; on CLVTS, all four Mul-587

timodal Fusion Layer architectures achieve remark-588

able gains on Avg over MMVTS Baseline3, from589

2.65 to 4.18. These results demonstrate that deep590

cross-modal interaction has notable advantage591

for multimodal fusion over simple unimodal fea-592

ture concatenation for VTS. Moreover, adding593

MoE on top consistently improves Co-Attention on594

both AVLecture and CLVTS, by 0.47 and 1.07 on595

Avg; whereas, the effect of MoE on top of Merge-596

Attention is inconsistent, with a slight degradation597

on AVLecture and 1.53 gain on Avg on CLVTS. In598

addition, we conduct more analysis of the effect599

of Co-Attn with MoE with different numbers of600

multimodal fusion layers in Appendix G.601

(2) Effect of Pre-training tasks. Table 2 shows602

that for simple concatenation of unimodal features,603

pre-training before fine-tuning (as Baseline3) out-604

Model F1 BS@30 F1@30 mIoU Avg
Co-Attn with MoE 59.84 75.62 67.69 72.21 68.84
w/o lcmal 58.96 74.62 67.39 72.17 68.29
w/o lmcssl 59.47 74.53 66.74 72.24 68.25
w/o lcmal & lmcssl 60.57 73.36 66.52 70.42 67.72

Table 4: Ablation studies of the two auxiliary coherence
modeling fine-tuning tasks on AVLecture test set. Mod-
els are initialized from pre-training (Eq. 13).

performs Baseline2 (w/o PT). We conduct abla- 605

tion studies of the proposed pre-training and fine- 606

tuning tasks on AVLecture. We apply the same 607

fine-tuning with multimodal coherence modeling 608

(FT-Coh, Eq. 15) and compare (a) random initializa- 609

tion of parameters for Multimodal Fusion Layers 610

(w/o pre-training) (b) pre-training the model on un- 611

labeled data. Table 3 shows that w/o pre-training, 612

Co-Attn slightly improves Avg over Merge-Attn by 613

0.4, and MoE further improves Avg by 0.87. Pre- 614

training improves the performance on all four 615

MFL architectures, with the average Avg score 616

increased by 1.36 (66.29 → 67.65). Pre-training 617

also improves model stability as the standard devi- 618

ations of all w/ PT experiments are less than 1. Ta- 619

ble 6 in Appendix further compares the fine-tuning 620

performance after applying different pre-training 621

tasks. Compared to using both pre-training tasks, 622

removing lcma or lvts degrades Avg by 0.4 and 1.64 623

respectively, indicating that the pretraining task 624

aligned more closely with the downstream task, 625

i.e., lvts, yields greater gains. 626

(3) Effect of Fine-tuning tasks. Table 4 compares 627

different fine-tuning tasks after pre-training. Com- 628

pared to the standard lvts, adding the two auxiliary 629

losses lcma and lmcssl notably improves Avg by 630

1.12, while decreasing F1 by 0.73. These results 631

suggest that while multimodal coherence model- 632

ing may slightly compromise the precision of ex- 633

act matches, it enhances the overall contextual 634

comprehension of a model for VTS. Adding lcma 635

or lmcssl individually improves Avg by 0.53 and 636

0.57, with improvements mainly on BS@30 and 637

mIoU, suggesting that feature alignment at different 638

granularities may improve fuzzy matching. 639

5 Conclusion 640

We propose a novel supervised VTS model by thor- 641

oughly exploring multimodal fusion and coherence 642

modeling. We also introduce a large-scale labeled 643

Chinese Lecture dataset for VTS. Extensive exper- 644

iments demonstrate the superiority of our model 645

and effectiveness of critical algorithmic designs. 646
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Limitations647

Our MMVTS model leverages the vision modal648

information encoded by the visual encoder. Con-649

sidering the computational complexity, we keep650

the visual encoder frozen while keeping all other651

parameters trainable. This particular design may652

result in suboptimal utilization of the extensive653

multimodal information inherent in the dataset. We654

plan to further investigate different audio features655

in multimodal fusion (that is, V+T+A) as well as656

directly employing visual and audio cues (that is657

V+A since the current text modality is just ASR658

1-best of the audio), to improve the VTS perfor-659

mance. We will continue enhancing the integration660

of general pre-trained multimodal models and large661

language models, which may offer a more holistic662

and effective exploration of multimodal informa-663

tion for VTS. Additionally, we will conduct more664

explorations and investigate approaches to make665

Co-Attn with MoE more stable in future work.666
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Figure 2: Statistics of our CLVTS dataset.

transcribed by a competitive Automatic Speech974

Recognition (ASR) system6. We then ask anno-975

tators to combine visual and textual (ASR 1-best)976

information to mark the timestamp (in seconds) at977

the end of each topic. We ensure high accuracy978

and reliability of annotations from three aspects,979

including annotator training, hierarchical topic980

labeling, and a multi-annotator strategy.981

Firstly, before the actual annotation process982

starts, the annotators take two rounds of training.983

Each annotator needs to annotate 5 videos in each984

round; at the end of each round, we assess the anno-985

tation quality, provide feedback, and ensure that the986

annotators address the issues and understand the987

annotation guideline clearly, at the end of training.988

Secondly, during annotation, to help the annota-989

tors thoroughly understand the lecture content, we990

ask the annotators to annotate topics hierarchically,991

that is, they label both coarse-grained topic (large992

topic) and fine-grained topic (small topic) bound-993

aries while the large topic boundaries are a subset994

of the small topic boundaries. We take the small995

topic boundaries as the final topic boundary labels996

for supervised VTS modeling.997

Thirdly, we employ a multi-annotator strategy.998

All data is annotated in batches, with two annota-999

tors annotating each sample independently. The1000

third annotator reviews the annotations by the first1001

two annotators, rectifies errors, and provides the1002

final annotations. After the annotations of each1003

batch, we randomly select 5% of a batch for quality1004

assessment. If the unacceptable rate (the propor-1005

tion of the wrongly annotated topic boundaries)1006

is lower than 10%, the data are deemed satisfac-1007

tory and accepted; otherwise, after communicating1008

quality assessment results and possible reasons for1009

errors, the annotators are requested to re-annotate1010

6https://tingwu.aliyun.com/home

the batch based on the feedback. This quality con- 1011

trol process is repeated until the unacceptable rate 1012

is lower than 10% for all batches. In this work, we 1013

finished quality control of all data within 3 itera- 1014

tions. 1015

A.2 Dataset Analysis 1016

To evaluate the inter-annotator agreement on VTS 1017

annotations on the CLVTS dataset, following (Shou 1018

et al., 2021), we compute the F1@k score (defined 1019

in Appendix C) based on the absolute distance be- 1020

tween two topic boundary sequences, varying the 1021

threshold k from 0 to 8 seconds with a step size 1022

of 2 seconds, where 8 seconds are approximately 1023

the average duration of a video clip. By averaging 1024

the F1 scores across all three pairs of annotated 1025

topic boundaries from three annotators on the same 1026

video, we obtain the consistency score. The more 1027

similar the annotations from all annotators on the 1028

same video are, the higher the consistency score is. 1029

Figure 2a shows that the consistency scores of the 1030

majority of videos in our CLVTS dataset exceed 1031

0.5, indicating a decent degree of consensus for 1032

VTS annotations (Shou et al., 2021). 1033

Table 1 compares our CLVTS dataset against ex- 1034

isting VTS datasets. Both AVLecture and CLVTS 1035

are sourced from educational contexts, where VTS 1036

significantly enhances learning experiences. Ta- 1037

ble 1 highlights that CLVTS features a higher aver- 1038

age number of topics per video. Among annotated 1039

videos in CLVTS, 47% are presentations showing 1040

slides, 34% are blackboard demonstrations, and 1041

19% are miscellaneous types. We also collect 1042

1027 hours of unlabeled videos from the same 1043

sources for pre-training. Figure 2b and 2c show a 1044

diverse distribution of video durations and topic du- 1045

rations and a broad spectrum of subjects in labeled 1046

CLVTS. 1047
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Model Numbers
LongFormercssl 130M
MMVTS Model (Ours)
Baseline1,2,3 154M
Merge-Attn 161M
Co-Attn 173M
Merge-Attn with MoE 175M
Co-Attn with MoE 192M

Table 5: The number of trainable parameters of the
baseline LongFormercssl and variants of our MMVTS
models. The model names conform to the model names
in Table 2.

A.3 Ethical Considerations1048

The dataset used in this research is strictly for1049

academic and non-commercial purposes. We im-1050

plemented several measures to ensure compliance1051

with ethical standards, as follows.1052

• Data Transparency and Anonymization.1053

We only provide ASR transcripts after rig-1054

orous text anonymization processes, visual1055

features of video clips, our annotations, and1056

links to the original videos, to ensures trans-1057

parency regarding the data sources and their1058

usage while maintaining anonymity.1059

• Data Access Compliance. To further en-1060

sure ethical use of the dataset, we require re-1061

searchers to contact us via emails to confirm1062

their compliance with ethical guidelines and1063

the conditions outlined in our data usage dec-1064

laration, before granting them access to the1065

dataset. This procedure includes ensuring that1066

they are aware of and adhere to the Personal1067

Information Protection Law (PIPL) and any1068

relevant legal frameworks regarding personal1069

data usage.1070

• Authorization. Any personal data should be1071

used only with express authorization, ensuring1072

lawful and fair processing in accordance with1073

applicable laws.1074

B Implementation Details1075

We partition the labeled data within AVLecture and1076

CLVTS into 70% for training, 10% for validation,1077

and 20% for testing, respectively. The unlabeled1078

data of AVLectures and CLVTS are used for pre-1079

training for each dataset, respectively.1080

Our experiments are implemented with the trans-1081

formers package7. We use the same maximum se-1082

7https://github.com/huggingface/transformers

quence length 2048 as in Yu et al. (2023) for a 1083

fair comparison with the text-only models. All re- 1084

sults are the mean values over three runs with 1085

different random seeds. 1086

For video with the number of clips greater than 1087

the max sequence length, we use sliding window 1088

and take the last clip of the prior sample as the first 1089

clip of the next sample. All supervised models use 1090

a threshold strategy, where clips with scores above 1091

a threshold 0.5 are predicted as topic boundaries. 1092

Following (Gupta et al., 2023), for each video 1093

clip, we extract three visual feature types: OCR, 2D 1094

and 3D. Specifically, the OCR features are derived 1095

by encoding the textual output obtained from the 1096

OCR API8 of the clip’s central image. Encoding 1097

the textual output from OCR is performed using the 1098

BERT-based sentence transformer model9, where 1099

all-mpnet-base-v2 and paraphrase-multilingual- 1100

mpnet-base-v2 models are employed for experi- 1101

ments on the English and Chinese datasets, respec- 1102

tively. The 3D features are extracted using the same 1103

video feature extraction pipeline as in Gupta et al. 1104

(2023). The 2D features are extracted by sampling 1105

three frames from each clip, subsequently encod- 1106

ing these frames with visual encoder, and applying 1107

max pooling. Specifically, we choose the visual 1108

encoder of CLIP (Radford et al., 2021), which is 1109

pre-trained to predict if an image and a text snippet 1110

are paired together. The images from AVLecture 1111

and CLVTS are processed to extract 2D features 1112

using CLIPV iT−B/16
10 and CN-CLIPV iT−B/16

11, 1113

respectively. 1114

After extracting the visual features, we concate- 1115

nate them as shown in Eq. 16 to get vi, which 1116

will then be fed into the following projection layer. 1117

During pre-training and fine-tuning, the parame- 1118

ters of visual encoders are kept frozen. The learn- 1119

ing rate is 5e − 5 and dropout probability is 0.1. 1120

AdamW (Loshchilov and Hutter, 2017) is used for 1121

optimization. The batch size is 8 and the epoch for 1122

pre-training and fine-tuning is 1 and 5, respectively. 1123

The loss weight α and γ for lcma is 0.5, β and σ for 1124

lbalance is 1.0 when MoE is in Multimodal Fusion 1125

Layers, θ for lmcssl is 0.5. k1 and k2 of Eq. 14 are 1126

1 and 3, following Yu et al. (2023). We comprehen- 1127

sively compare different types of fusion structure 1128

8https://help.aliyun.com/zh/viapi/
developer-reference/api-sy75xq

9https://www.sbert.net/docs/sentence_
transformer/pretrained_models.html

10https://github.com/openai/CLIP
11https://github.com/OFA-Sys/Chinese-CLIP
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Model F1 BS@30 F1@30 mIoU Avg
Co-Attn with MoE 59.84 75.62 67.69 72.21 68.84
w/o lvts 57.19 74.64 66.04 70.91 67.20
w/o lcma 60.23 73.54 67.86 72.12 68.44

Table 6: Ablation experiments of pre-training task on
AVLecture. The model parameters derived from these
distinct pre-training tasks served as the initial param-
eters for subsequent fine-tuning of the model. Addi-
tionally, the coherence modeling tasks are incorporated
during the fine-tuning phase.

using one Multimodal Fusion Layer, then use the1129

best performing fusion structure for the remain-1130

ing experiments. We also investigate the impact1131

of different numbers of Multimodal Fusion Layers1132

in Figure 3. As to the MoE layer in Multimodal1133

Fusion Layers, we choose 4 candidate experts and1134

activate 2 experts for each input feature. The inter-1135

mediate size of expert is 3072. The total number of1136

trainable parameters is shown in Table 5.1137

vi = v2di ; v3di ; vocri (16)1138

C Evaluation Metrics1139

F1 is a metric used to evaluate the accuracy of text1140

topic segmentation (Lukasik et al., 2020; Zhang1141

et al., 2021). It focuses on the performance of1142

exact matching of the positive class and balances1143

the precision and recall rates.1144

BS@k (Gupta et al., 2023) is the average number1145

of predicted boundaries matching with the ground1146

truth boundaries within a k-second interval, which1147

can be considered as the recall rate based on fuzzy1148

matching.1149

F1@k denotes the F1 score calculated based on1150

matching predicted boundaries and ground truth1151

boundaries within k seconds. Considering sub-1152

jectivity and uncertainty in VTS annotations, we1153

introduce F1@k as a supplement to BS@k to en-1154

abling a more comprehensive assessment of model1155

performance in dealing with ambiguous (uncertain)1156

boundaries.1157

mIoU is commonly used in video action segmenta-1158

tion (Zhou et al., 2018) and video scene segmenta-1159

tion (Mun et al., 2022). While the F1, BS@k and1160

F1@k metrics focus on the accuracy of positive1161

predictions (either exact match or fuzzy match),1162

the mIoU metric measures the overlapping area1163

between predicted segments and ground truth seg-1164

ments, hence providing a generalized assessment1165

of how well the model’s predicted segments match1166

the actual segments on the segmentation task.1167
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Figure 3: Performance (Avg) of fine-tuning our
MMVTS model on AVLecture test set, w/o pre-training
and multimodal coherence modeling tasks (denoted by
w/o pre and coh) and w/ pre-training and multimodal
coherence modeling tasks (denoted by w/ pre and coh),
with different numbers of Multimodal Fusion Layers,
where the fusion structure is Co-Attention with MoE.

Our implementation of BS@30 draws upon the 1168

code published by Gupta et al. (2023)12, while the 1169

approach to implement mIoU is guided by Mun 1170

et al. (2022)13. We have relied on the scikit-learn 1171

package14 to compute F1, following the implemen- 1172

tation by Yu et al. (2023), to ensure fair compar- 1173

isons. The definitions provided in the aforemen- 1174

tioned sources also inform our implementation of 1175

F1@k. 1176

D Artifact Use Consistent With Intended 1177

Use 1178

All of our use of existing artifacts is consistent with 1179

their intended use, provided that it was specified. 1180

For the CLVTS data set we created, its license will 1181

be for research purpose only. 1182

E Fine-tune Llama-3-8B for Video Topic 1183

Segmentation 1184

Considering the computational complexity and the 1185

data volume, we employ LoRA (Hu et al., 2021) 1186

for fine-tuning Llama-3-8B15 on the training set of 1187

each AVLecture and CLVTS datasets, with a max- 1188

imum sequence length of 2048. With LoRA, the 1189

number of trainable parameters is 3 million. Our 1190

training configuration includes a batch size of 32 1191

12https://github.com/Darshansingh11/AVLectures/
13https://github.com/kakaobrain/bassl
14https://scikit-learn.org/stable/
15https://huggingface.co/meta-llama/

Meta-Llama-3-8B

14

https://github.com/Darshansingh11/AVLectures/
https://github.com/kakaobrain/bassl
https://scikit-learn.org/stable/
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B


Unsup

V

T

V+T

GT

(a) Introduction to Nuclear and Particle Physics

Unsup

V

T

V+T

GT

(b) Latency and Throughput

Unsup

V

T

V+T

GT

(c) Quiz Review From Optional Problem Set 8

Unsup

V

T

V+T

GT

(d) Quantum Mechanics

Unsup

V

T

V+T

GT

(e) Attention

Unsup

V

T

V+T

GT

(f) Vision

Figure 4: Video Topic Segmentation examples for six lecture videos from AVLecture. (a)-(b) are of the Slides mode,
(c)-(d) are Blackboard mode and (e)-(f) are Mixed mode. GT denotes ground truth, V refers to the visual-only
baseline BaSSL which only uses visual features, T denotes the text-only LongFormer which only relies on the text
modality, and V+T signifies our MMVTS model that integrates information from both visual and text modalities.
Unsup denotes the unsupervised baseline UnsupAVLS, which also integrates visual and text features.

and a total of 6 epochs, utilizing a learning rate1192

of 5e − 5 and cosine scheduler (Loshchilov and1193

Hutter, 2016). Table 7 shows two prompts we used1194

to fine-tuning Llama-3-8B on the text modality of1195

VTS data. We first evaluate the Generative type1196

prompt that Yu et al. (2023) has experimented with,1197

due to its better zero-shot and one-shot text topic1198

segmentation performance than the Discriminative1199

type. However, compared with Longformer which1200

also uses the textual modality, the Avg score of fine-1201

tuning Llama-3-8B with the Generative prompting1202

strategy (denoted by Llama-3-8BGenerative) is 8.31203

and 6.27 absolutely worse than those from Long-1204

former on AVLecture and CLVTS, respectively.1205

We suspect that this is due to the inherent issue1206

of sparse labels in binary classification for VTS,1207

posing challenges to applying the large language1208

model (LLM) Llama-3-8B in a generative manner.1209

Inspired by this hypothesis, we refine the Discrimi-1210

native prompt into the Discrete prompt for Llama-1211

3-8B, as shown in Table 7. The results in Table 21212

show that on Avg, Llama-3-8BDiscrete consistently1213

and markedly outperforms Llama-3-8BGenerative 1214

on both AVLecture and CLVTS, by 6.04 and 10.8 1215

absolute points, respectively. These results sug- 1216

gests that the Discrete prompt is more suitable for 1217

prompting Llama-3-8B for the VTS task than the 1218

Generative prompt. 1219

However, with either Generative or Discrete 1220

prompt, Llama-3-8BDiscrete does not provide con- 1221

sistent advantages over the text-only small model 1222

Longformer. Table 2 shows that F1 results of 1223

Llama-3-8BDiscrete on AVLecture and CLVTS are 1224

much worse than those from Longformer (we find 1225

that the prediction boundary of Llama-3-8B usu- 1226

ally has a clip offset). The Avg score of Llama-3- 1227

8BDiscrete on AVLecture is 2.26 absolute worse 1228

than LongFormer, although Llama-3-8BDiscrete 1229

achieves the best Avg score on CLVTS, surpass- 1230

ing LongFormer by 4.53 absolute. Future work 1231

could further explore how to better use LLMs for 1232

the VTS task. 1233
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Type Prompts for text topic segmentation.

Generative

Please identify several topic boundaries for the following docu-
ment and each topic consists of several consecutive utterances.
please output in the form of {topic i:[], ... ,topic j:[]} with json for-
mat, where the elements in the list are the index of the consecutive
utterances within the topic, and output even if there is only one
topic.
document:
[0]: s1
[1]: s2
...
[n− 1]: sn
Please give the result directly in json format:
output: {"topic_0": [0, 1, 2, . . . , k-1], "topic_1": [k, k+1, . . . ],
. . . }

Discrete

Please identify several topic boundaries for the following doc-
ument. please output in the form of {topic_segment_ids:[xxx]}
with json format, where the elements in the list are the index of
the last sentence of every topic, if there is only one topic then the
array is empty.
document:
[0]: s1
[1]: s2
...
[n− 1]: sn
Please give the result directly in json format:
output: {"topic_segment_ids": [x, x, x]}

Table 7: Our designed prompts for fine-tuning Llama-
3-8B on the text data for video topic segmentation. n
denotes the number of sentences and si denotes the i-th
sentence in the document.

F More Analysis of the Baseline Results1234

Considering the baseline results in Table 2, the1235

only seemingly similar scores between the unsuper-1236

vised method and supervised baselines are mIoU1237

scores, which are attributed to the leakage of the1238

ground-truth topic number. If we use the topK prob-1239

ability to determine predictions, where K for each1240

sample is the ground-truth topic number, mIoU1241

and BS@30 of SWSTseq (Row 7) will be 4.41242

and 19.05 points higher than UnsupAVLS, respec-1243

tively. However, this evaluation is not reasonable,1244

as models should not disclose the ground-truth1245

topic number during testing. Therefore, we opted1246

for the threshold-based evaluation strategy com-1247

monly used in classification tasks1248

G Performance of Multimodal Fusion1249

Layers with Varied Numbers of Layers1250

Using Co-Attention with MoE as the architecture1251

of Multimodal Fusion Layers, we investigate the1252

Avg performance of models featuring various num-1253

bers of Multimodal Fusion Layers (MFLs) on the1254

AVLecture data set, as depicted in Figure 3. We1255

find that directly fine-tuning our MMVTS model,1256

without pre-training nor the two auxiliary tasks1257

for coherence modeling, a single MFL yields the1258

best performance, surpassing the no-layer config-1259

uration by 2.34 points. Adding more layers leads1260

Model Modality AVLecture CLVTS
Longformer T 62.52 46.81
Llama-3-8BDiscrete T 60.26 51.34

MMVTS Model (Ours)
V+T 68.61 51.27
V+T+A1 67.49 51.98
V+T+A2 69.36 52.97

Table 8: The Avg score of integration of audio informa-
tion into the MMVTS model with Co-Attn and MoE ar-
chitecture, on AVLecture and CLVTS test sets. V+T+A1

notes that during fine-tuning phase, the audio features
are incorporated into the cross-modality alignment loss
lcma, while V+T+A2 does not involve audio features in
lcma.

to degraded performance and training instability, 1261

particularly noticeable with three layers. 1262

By incorporating the pre-training phase followed 1263

by fine-tuning with coherence modeling tasks, Avg 1264

performance enhancements of 4.0, 2.87, 2.37, and 1265

13.51 points for 0, 1, 2, 3 MFL layers are observed, 1266

respectively. These results clearly demonstrate the 1267

substantial benefits from our pre-training and coher- 1268

ence modeling strategies in boosting the model’s 1269

performance. Notably, our pre-training and co- 1270

herence modeling reaches the convergence of the 1271

model with three MFL layers, achieving results 1272

that marginally exceed the performance of a single- 1273

layer model by 0.1 points. 1274

H Qualitative Analysis of Video Topic 1275

Segmentation Examples 1276

We present the topic-segmented outputs for six lec- 1277

ture videos from three presentation modes includ- 1278

ing slides, blackboard, and mixed, in Figure 4. 1279

Relying solely on the visual modality, segmenta- 1280

tion points are predominantly identified through the 1281

superficial cues associated with visual transitions. 1282

In contrast, using only the textual modality, topic 1283

boundaries are discerned based on semantic con- 1284

tent; however, this approach has limitations, such 1285

as missing topic boundaries or the accumulation 1286

of topics. The integration of the visual modality 1287

with the text modality offers complementarity of 1288

information, thereby improving the overall VTS 1289

performance. The case studies in Figure 4 help 1290

illustrate the importance of multimodal fusion for 1291

the VTS task regardless of the video presentation 1292

modes. 1293
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I Integration of Audio Information1294

We use a pre-trained Whisper-small model16 with1295

244 million parameters and use the Whisper en-1296

coder to extract audio features for video clips1297

(the parameters of the Whisper audio encoder are1298

frozen). Similar to visual features, we perform1299

maximum pooling on the encoded audio features1300

for each clip to obtain the clip-level audio features.1301

Then, we feed the audio features into a learnable1302

projection layer and then through the Multimodal1303

Fusion Layers, and then concatenate them with vi-1304

sual features and text features for the final topic1305

boundary prediction.1306

We initialize the parameters from pre-trained vi-1307

sual and textual MMVTS model with Co-Attn and1308

MoE. During fine-tuning, we compare two con-1309

figurations. The first configuration is denoted by1310

V+T+A1, which incorporates the audio feature into1311

the cross-modality alignment loss lcma. The second1312

configuration is denoted by V+T+A2, which does1313

not involve audio features in lcma. The pairwise1314

cross-modality alignment loss weight is set to 0.331315

in V+T+A1.1316

The results are shown in Table 8. As can be1317

seen from the table, integration of audio features1318

by V+T+A1 improves the Avg score by 0.71 on the1319

CLVTS test set while decreasing the Avg socre by1320

1.12 on the AVLecture test set. However, we find1321

that excluding audio from the lcma (V+T+A2) re-1322

sults in an absolute improvement of 0.75 and 1.7 in1323

the Avg score on AVLecture and CLVTS test sets,1324

respectively, which suggests that audio features1325

can contribute to more accurate topic boundary pre-1326

diction under certain conditions, but their role in1327

modality alignment needs to be treated with cau-1328

tion and demands further exploration. We sample1329

some videos and observe that the cosine similarity1330

between audio features of adjacent clips shows rela-1331

tively small differences, ranging from 0.97 to 0.98,1332

while visual features between adjacent clips exhibit1333

larger differences, ranging from 0.88 to 0.97. This1334

disparity might complicate the task of simultane-1335

ously aligning text, visual, and pooled clip-level1336

audio features. Future research could explore more1337

nuanced integration of audio features to provide1338

supplementary paralinguistic information, such as1339

pitch, energy, and pause duration. Alternatively,1340

direct use of audio and visual information for VTS1341

may bypass the ASR step altogether (as ASR is1342

used to obtain the text modality).1343

16https://github.com/openai/whisper/
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