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Abstract

The video topic segmentation (VTS) task seg-
ments videos into intelligible, non-overlapping
topics, facilitating efficient comprehension of
video content and quick access to specific con-
tent. VTS is also critical to various down-
stream video understanding tasks. Traditional
VTS methods using shallow features or un-
supervised approaches struggle to accurately
discern the nuances of topical transitions. Re-
cently, supervised approaches have achieved
superior performance on video action or scene
segmentation over unsupervised approaches. In
this work, we improve supervised VTS by thor-
oughly exploring multimodal fusion and mul-
timodal coherence modeling. Specifically, (1)
we enhance multimodal fusion by exploring dif-
ferent architectures using Cross-Attention and
Mixture of Experts. (2) To generally strengthen
multimodality alignment and fusion, we pre-
train and fine-tune the model with multimodal
contrastive learning. (3) We propose a new
pre-training task tailored for the VTS task, and
a novel fine-tuning task for enhancing multi-
modal coherence modeling for VTS. We eval-
uate our proposed approaches on educational
videos, in the form of lectures, due to the vi-
tal role of topic segmentation of educational
videos in boosting learning experiences. Ad-
ditionally, to promote research in VTS, we
introduce a large-scale Chinese lecture video
dataset to augment the existing English lecture
video datasets. Experiments on both English
and Chinese lecture datasets demonstrate that
our model achieves superior VTS performance
compared to competitive unsupervised and su-
pervised baselines'.

1 Introduction

The proliferation of digital video content over the
last few decades has underscored the importance

of efficient content navigation and comprehension.

'The code and model checkpoints will be released upon
acceptance

As the unstructured nature of videos poses signifi-
cant challenges for users seeking to quickly grasp
or reference specific topics, Video Topic Segmenta-
tion (VTS) has emerged as a vital tool in addressing
these demands. By delineating videos into coherent
non-overlapping topics, VTS not only facilitates
intuitive understanding of video content but also
enables swiftly pinpointing and accessing topics
of interest. This is particularly pertinent for the
furtherance of various video understanding tasks,
where VTS serves as a foundational component.
Traditional VTS approaches predominantly
hinge on shallow features (Gandhi et al., 2015;
Soares and Barrére, 2018b; Ali et al., 2021) and
unsupervised methods (Gupta et al., 2023), due
to scarcity of labeled data. These methods often
fall short in capturing the semantic cues that sig-
nal topical shifts in video streams, hence suffer
from limited precision. Recent advancements in
supervised learning paradigms have achieved no-
table performance improvements in multi-modal
task (Yang et al., 2022; Tu et al., 2022, 2023;
Zhang et al., 2022) and various video segmentation
tasks, such as video action segmentation (Zhou
et al., 2018; Tang et al., 2019), scene segmenta-
tion (Huang et al., 2020; Islam et al., 2023), and
topic segmentation (Wu et al., 2023; Wang et al.,
2023; Xing et al., 2024), surpassing unsupervised
methods. Performance of supervised approaches
can be further enhanced by pre-training on vast
volumes of unlabeled data (Xu et al., 2021; Mun
et al., 2022) or initializing models from pre-trained
models (Yan et al., 2023) and then fine-tuning the
model. Hence, in this work, we focus on further
improving supervised methods for VTS.
Compared to text topic segmentation (Koshorek
et al., 2018; Xing and Carenini, 2021; Yu et al.,
2023), videos contain rich and diverse multimodal
contextual information. Fully utilizing multimodal
information, such as visual cues and textual data
(e.g., screen text and subtitles), could facilitate



more detailed content understanding and in turn
more accurate semantic segmentation than rely-
ing on text only. Our case studies in Appendix H
demonstrate the great challenges posed by VTS,
particularly to unsupervised approaches or super-
vised methods that rely solely on either visual or
textual modality. The complexity inherent in video
content—where multimodal signals must be effec-
tively integrated—accentuates the difficulty. Also,
coherence is essential for understanding logical
structures and semantics. Enhancing coherence
modeling has achieved significant improvements
in long text topic segmentation (Yu et al., 2023).
Therefore, we improve supervised VTS methods
by thoroughly exploring multimodal fusion and
multimodal coherence modeling. We enhance
multimodal fusion from the perspectives of model
architecture and pre-training and fine-tuning tasks.
Specifically, we compare various multimodal fu-
sion architectures built upon Cross-Attention and
Mixture-of-Experts (MoE). We investigate the ef-
fect of multimodal contrastive learning for general
pre-training and fine-tuning for strengthening cross-
modal alignment. For enhancing multimodal coher-
ence modeling, we propose a new pre-training task
tailored for the VTS task, and a novel fine-tuning
task by elevating intra-topic multimodal feature
similarities and inter-topic multimodal feature dif-
ferences. The proposed approaches are extensively
evaluated on educational videos, in the form of
lectures, due to the pivotal contributions of topic
segmentation of educational videos in bolstering
the learning experiences.

Our contributions can be summarized as follows.

* We propose a supervised multimodal sequence
labeling model for VTS, denoted MMVTS. We
explore various multimodal fusion architectures,
and apply multimodal contrastive learning for
strengthening cross-modal alignment. We also
propose a new self-supervised pre-training task
tailored to the VTS and a novel fine-tuning task
for enhancing multimodal coherence modeling.

* We introduce a large-scale Chinese Lecture
Video Topic Segmentation dataset (CLVTS) to
promote the research of VTS.

» Experiments show that our model sets new state-
of-the-art (SOTA) performance on both English
and Chinese lecture video datasets, outperform-
ing competitive unsupervised and supervised
baselines. Comprehensive ablation study further
confirms the effectiveness of our approaches.

2 Related Work

Text Topic Segmentation Text topic segmenta-
tion aims to automatically partition text into topi-
cally consistent, non-overlapping segments (Hearst,
1994). By automatically mining clues of topic
shifts from large amounts of labeled data (Koshorek
et al., 2018; Arnold et al., 2019), contemporary
supervised models (Lukasik et al., 2020; Soma-
sundaran et al., 2020; Zhang et al., 2021; Yu
et al., 2023) demonstrate superior performance
compared to unsupervised approaches (Riedl and
Biemann, 2012; Solbiati et al., 2021). Notably,
supervised models that excel at modeling long se-
quences (Zhang et al., 2021; Yu et al., 2023) are
capable of capturing longer contextual nuances
and thereby achieve better topic segmentation per-
formance, compared to models that model local
sentence pairs or block pairs (Wang et al., 2017;
Lukasik et al., 2020). In addition, recent works (So-
masundaran et al., 2020; Xing et al., 2020; Yu et al.,
2023) show that strengthening coherence modeling
can improve text topic segmentation performance.
Inspired by these findings, in this work, we explore
enhancing coherence modeling for video topic seg-
mentation under the multimodal configurations.

Video Topic Segmentation For video topic seg-
mentation, some approaches, such as BaSSL Mun
et al. (2022), explore visual-only information.
However, many recent works have achieved en-
hanced semantic understanding of videos by lever-
aging multimodal data. Gupta et al. (2023) intro-
duced UnsupAVLS, which uses the TWFINCH
algorithm to cluster video clips into topics based
on visual and text features. Wang et al. (2023) pro-
posed SWST, which concatenates visual and text
features for language models; however, it may suf-
fer from discrepancies between pre-training of the
language model and fine-tuning. Wu et al. (2023)
focused on hierarchical modeling of scene, story,
and topic, without further exploring how to better
integrate multimodal features. Xing et al. (2024)
employed asymmetric cross-modal attention for ob-
taining text-aware visual representations. It may be
most related to our work. However, our work dif-
fers from Xing et al. (2024) as we explore symmet-
ric cross-modal attention and also investigate the
Mixture-of-Experts mechanism, as well as intro-
ducing topic-level Contrastive Semantic Similarity
Learning into fine-tuning for enhanced coherence
modeling in the multimodal framework.



Dataset Videos

NPTELI10 (Gandhi et al., 2015) 12 -

Videoaula (Soares and Barrére, 2018a) 44 26.4

CS80 (Soares and Barrére, 2019) 80 - -
MOOC100 (Das and Das, 2019) 100 100 6.9
Coursera37 (Chand and Ogul, 2021) 37 2.8 16.5
VSTAR (Wang et al., 2023) 8159 4625 61.2
NewsNet (Wu et al., 2023) 1000 946 8.5
MultiLive (Qiu et al., 2023) 1000 1300 8.8
AVLecture (Gupta et al., 2023) 350 297.5 5.4
YouTube (Xing et al., 2024) 5422 858.5 6.7
Behance (Xing et al., 2024) 575 1225.2 52
CLVTS (Ours) 510 395 10.1

Hours Topics/Video Clips/Topic Seconds/Clip D i L Availabl

- - - Education  English X
Education  Portuguese v/

Education  English v

Education  English ai

- - Education  English X

0.4 90 Television  English Vi

- - News English X

- - Livestream English X

46.2 12.3 Education  English v

16 53 Diverse English X

248 6.0 Livestream English X

35.7 7.7 Education  Chinese v

Table 1: Comparison between our CLVTS dataset and existing video datasets for the video topic segmentation task.
1 indicates that the data is not entirely open source. Prior to our work, AVLecture is the only publicly available
large-scale video dataset supporting supervised VTS methods.

3 Methodology

Figure 1 depicts the overall architecture of our
MMVTS model. Section 3.1 presents the prob-
lem definition of multimodal VTS and the over-
all model architecture. We enhance multimodal
fusion from the perspectives of model architec-
ture, pre-training, and fine-tuning tasks. Specif-
ically, we compare different multimodal fusion ar-
chitectures built upon Merge- and Cross-Attention,
and Mixture-of-Experts (Section 3.1). We explore
multimodal contrastive learning for cross-modality
alignment and propose a new pre-training task tai-
lored for VTS (Section 3.2). For fine-tuning, we
also propose a novel task for multimodal coherence
modeling (Section 3.3).

3.1 MultiModal Video Topic Segmentation

Overall Architecture. Following prior
works (Zhang et al., 2021; Wu et al., 2023),
we define video topic segmentation as a clip-
level sequence labeling task and propose our
MultiModal Video Topic Segmentation (MMVTS)
model. As illustrated in Figure la, we apply
unimodal pre-trained encoders for the vision
and text modality, respectively, and then fuse
multimodal information at the intermediate
representation level (i.e., middle fusion (Xu et al.,
2023)) through the Multimodal Fusion Layer.
Given a video, we transcribe it with a competitive
automatic speech recognition (ASR) system? and
use ASR 1-best as the text modality. We then
divide the video into n clips (c?, ¢t)™_, with clips
segmented at the sentence boundaries predicted
on ASR 1-best. ¢V = {f},..., fi} denotes evenly
sampled & frames within the ¢-th clip and is fed
into a visual encoder F,, to extract visual features.

= {wli, “"w\i\sz-HJrl} denotes the sequence of

2https://tingwu.aliyun.com/home

words from ASR 1-best within the i-th clip, where
w? is the inserted special token [BOS] and ||s;]|
denotes the number of words in the i-th clip. ¢!
is fed into a text encoder F; and the last hidden
representation of [BOS] for the i-th clip is used as
the text representation of the clip. After extracting
the unimodal features, we first apply trainable pro-
jection matrices W, and W; to convert unimodal
features into the same dimension, resulting in the
visual feature sequence v = {vy, ..., v, } and the
textual feature sequence t = {t1,...,t,} (Eq. 1).
Then we fuse the multimodal information with M
Multimodal Fusion Layers M F L), and obtain
the updated visual features h* = {h{,...,h"}
and textual features ht = {h}, ... hl} (Eq. 2),
which are then concatenated into the multimodal
features m = {my, ..., m,} (Eq. 3). Finally, the
multimodal features m are fed into the predictor
consisting of a linear layer W), to obtain the prob-
ability of binary classification p = {p1,...,pn}
(Eq. 4), where p; indicates whether the i-th clip is
at a topic boundary. We use the standard binary
cross-entropy loss (Eq. 5) to train the model,
where y; € {0,1} is the label. The last clip is
excluded from loss computation. Considering
computational complexity, we freeze the visual
encoder while keeping all other parameters
trainable.

Compared to late fusion where no cross-modal
interaction happens until after independent predic-
tions by each unimodal model, middle fusion and
early fusion are found to generally outperform late
fusion (Nagrani et al., 2021), probably because
early and middle fusion aligns better with human
perception where multimodal fusion happens early
in sensory processing. On the other hand, com-
pared to early fusion, middle fusion yields superior
or comparable performance (Nagrani et al., 2021)
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Figure 1: The overall architecture of our MMVTS model and four distinct architectures of the Multimodal Fusion
Layers in (a). In the overall architecture, the snowflake symbol indicates that the parameters of the certain module
are frozen; whereas, the flame symbol signifies a trainable module. The blue dotted lines in the l,,,.s5; module
denote the topic boundaries. The green solid lines in the [.,,, module depict the features being brought closer, while
the red dashed lines depict the features being pushed apart.

and is much less computationally expensive since
we could freeze some strong pre-trained unimodal
encoders with a large number of parameters and
only train a small number of parameters.

v=W,- - Ey({c],....,cn})

t=W: E:({c},....c\}) .
h¥;h* = MF Ly (v;t) (2)
m; = h;j;h;} S
p=W, m @

Multimodal Fusion Layer (MFL). We compare
four distinct cross-modal interaction mechanisms
for Multimodal Fusion Layers. We investigate the
Merge-Attention and Co-Attention multimodal fu-
sion layers proposed in (Dou et al., 2022; Yang
et al., 2023b). With Merge-Attention (Figure 1b),
features from unimodal encoders are concatenated
sequentially and then input into a standard trans-
former encoder layer (Vaswani et al., 2017), which
shares attention parameters across modalities. A
feed forward layer is added on top to produce
the final output representation. In contrast, with

Co-Attention (Figure 1c), features from each uni-
modal encoder first go through self-attention with
modality-specific attention parameters, then we per-
form symmetric cross-attention to integrate in-
formation from all other modalities to enhance the
representation of the considered modality, followed
by a feed forward layer.

Inspired by (Mustafa et al., 2022), which inter-
leaves MoE encoder layers and standard dense en-
coder layers for image-text multimodal models, we
also investigate two new architectures by replacing
the traditional single feed-forward layers in Fig-
ure 1b and 1c¢ with a MoE module (Shazeer et al.,
2016; Lepikhin et al., 2020). The resulting archi-
tectures are depicted by Figure 1d and le. The
motivation is that adding MoE on top of the fused
representations may facilitate deeper cross-modal
integration of information and improve model ca-
pacity without a proportional increase in computa-
tional complexity. Specifically, experts are MLPs
activated depending on the input. Firstly, we con-
catenate fused features output from self-attention
or cross-attention. Then, we implement the Noisy
Top-k Gating mechanism (Shazeer et al., 2016) to
select K experts from a total of I/ candidates (Eq. 6
- 8), where SN () denotes the standard normal dis-



tribution, W,, denotes tunable Gaussian noise to
help load balancing, I, is a trainable weight ma-
trix, K and E are hyper-parameters. Finally, the
outputs of the K activated experts are linearly com-
bined with the learned gating weights (Eq. 9). For
the MoE training objective, we sum the importance
loss and the load loss (Shazeer et al., 2016) to bal-
ance expert utilization as in Eq. 10.

G(z) = Softmaz(KeepTopK (Hy, k)) (6)
H(z); = (Wy-x); + SN() - Softplus(Wy - 2):) (7)

x; if z; is in top-k.
KeepTopK (z, k); = {—oo otherwisep ®
K
MoE(z) = G(z). - MLP.(x) )
e=1
lbalance = limportance + lload (10)

3.2 Pre-training with Unlabeled Data

Prior works have demonstrated that standard self-
supervised denoising pre-training (even only using
the downstream task data) (Amos et al., 2023) or
pre-training adapted to the downstream task (Gu-
rurangan et al., 2020) often perform substantially
better than randomly initializing the parameters.
Therefore, to better initialize the parameters of
the Multimodal Fusion Layers, we explore pre-
training with unlabeled video data before super-
vised fine-tuning. Firstly, we introduce a general
cross-modality alignment pre-training task to
learn the multimodal representation. We use con-
trastive learning loss to adjust the features learned
by the Multimodal Fusion Layers, by maximizing
the cosine similarity of the visual features and tex-
tual features of the same clip, while reducing the
similarity of the modality features between differ-
ent clips, as show in Eq. 11, where € is used to
prevent division by O and 7 is a temperature hyper-
parameter to scale the cosine similarity.

1 S estm(hy hl)
== = (1)
sim(h?,ht
SN

lcma

xrlr~l‘2

/T 12)

stmi@n 22) = el

Secondly, we introduce a novel pre-training task
tailored for the VTS task, focusing on utilizing
unlabeled data for learning pseudo topic bound-
aries and also enhancing modality alignment. We
apply a Kernel Density Estimation (KDE) (Davis
et al., 2011) model to estimate the topic duration
distribution within the labeled training set. Videos

are segmented based on KDE-sampled durations.
For each segment, with equal probability, we: in-
sert a random segment from other videos, replace it
with another, or retain it. These modified segments
serve as distinct topics, allowing the model to learn
pseudo topic boundaries during pre-training. This
task-adaptive pre-training task has the same /s ob-
jective as shown in Eq. 5. The overall pre-training
objective is shown in Eq. 13, where a and 3 are
hyper-parameters to adjust the loss weights.

lpretrain = lvts + alc’ma + ﬂlbalance (13)

3.3 Fine-tuning with Multimodal Coherence
Modeling

For fine-tuning, we introduce two auxiliary tasks
to enhance multimodal coherence modeling. The
cross modal alignment task is the same as the task
in Eq. 11 used in pre-training. This continuity
ensures that the modalities retain their coherence
through both pre-training and fine-tuning stages,
fostering a consistent interplay between different
modalities. In addition, we adapt the Contrastive
Semantic Similarity Learning (CSSL) task pro-
posed by Yu et al. (2023), which leverages the
inherent characteristics of topic-related coherence,
to the multimodal context. We adopt the same
strategy for selecting positive and negative sample
pairs (Yu et al., 2023), but extend the features to
the multimodal representations, as shown in Eq. 14,
where k; and ko are hyper-parameters that deter-
mine the number of positive and negative pairs.
For each clip’s multimodal representation m;, ij
denotes the multimodal representation of the j-th
similar clip in the same topic as clip ¢, while m; ;
denotes the multimodal representation of the j-th
dissimilar clip in a different topic from clip 7. We
hypothesize that this extension could improve mul-
timodal representation learning by identifying rela-
tive consistency relations within topics and across
topics.

ki1

1i: -
_— J=
lmcssl - n lOg &

; Lo ot k2 im(ms m—
= esimimim ;) SR gsimmimy )

esim(mi ,m;r_’j)
1

j=1 j=1

(14)
The overall fine-tuning objective combines Eq. 5,
10, 11, and 14, as shown in Eq. 15, where o, 6, and
~ are hyper-parameters to adjust loss contribution.
When the Multimodl Fusion Layers do not contain
MokE structure, 3 in Eq. 13 and o are set to zero.

lfinetune = lvts + Ulbalance + elmcssl + 'chma (15)



Model Modality AVLecture CLVTS

F, BS@30 F,@30 mloU Avg F, BS@30 F,@30 mloU Avg
UnsupAVLS (Gupta et al., 2023) V+T - 56.00% - 70.86% - - - - - -
BaSSL (Mun et al., 2022) v - 43.94 - 46.95 - - - - - -
LongFormer (Yu et al., 2023) T 5291 69.25 60.38  67.54 62.52 | 3442 52.19 4777  52.87 46.81
LongFormer,ss (Yu et al., 2023) T 54.02 7156 6240 6839 64.09 | 3477 53.07 47.51 53.15 47.12
Llama-3-8BGenerative T 40.00 57.55 56.52 62.8 5422 | 27.50 40.58 43771 50.38 40.54
Llama-3-8B pjscrete T 39.27 6838 62.55 7043 60.26 | 3147 6040 54.64 58.86 51.34
SWST,,, (Wang et al., 2023) V4T 53.45 7095 59.73  65.21 6233 | 3455 5277 48.08  52.67 47.02
PT | FT-Coh | MMVTS Models (Ours) | Modality
X X Baseline; 55.19  71.76 61.19 6639 63.63 | 37.32 49.75 47.07  50.51 46.16
X v Baseliney V4T 56.72 7256  63.03 6797 65.07 | 3729 48.48 47.62 51.73 46.28
v v Baselines 5877 7255 6726 71.52 67.52 | 36.54 50.67  48.81 52.56 47.15
v v Merge-Attn 5736 74.96 6530  70.15 66.94 | 38.17 55.52 50.69 54.84 49.80
v v Co-Attn V4T 60.01  73.88 67.27 7232 6837 | 3849 57.23 50.59 5447 50.20
v v Merge-Attn with MoE 57.54 73.48 6436 7043 6645 | 38.77 61.05 51.10 5441 51.33
v v Co-Attn with MoE 59.77  75.01 67.94 71.69 68.61 | 39.98 5896 5141 5471 51.27

Table 2: Performance of baselines and our MMVTS models on AVLecture and CLVTS test sets. I denotes the
leakage of the ground-truth topic number. V and T under Modality denote Vision and Text modality, respectively.
MMVTS Baseline; 2 3 denote our MMVTS model w/o Multimodal Fusion Layers. Attn denotes Attention. PT
denotes pre-training the model on unlabeled data (Section 3.2 Eq. 13) before fine-tuning. FT-Coh denotes adding
the two auxiliary multimodal coherence modeling tasks during fine-tuning (Section 3.3 Eq. 15); w/o FT-Coh refers
to fine-tuning with the standard l,,;s (Eq. 5). For each metric, the best result among all models is boldfaced while

the best result in each group is underscored.

4 Experiments

4.1 Experimental Setup

Datasets. Table 1 summarizes the statistics of vari-
ous VTS datasets. It clearly shows that prior to our
work, AVLecture (Gupta et al., 2023) is the only
publicly available large-scale labeled video dataset
facilitating supervised VTS methods. To promote
the research in VTS, we introduce a large-scale
labeled Chinese Lecture Video Topic Segmentation
dataset (CLVTS). Both AVLecture and CLVTS are
sourced from educational videos, where VTS sig-
nificantly enhances learning experiences. In terms
of differences, in addition to the linguistic distinct-
ness from the English lecture dataset AVLecture,
CLVTS is characterized by its natural and uninter-
rupted long videos, a stark contrast to AVLecture,
since nearly two-thirds of AVLecture are reassem-
bled pre-segmented short videos. As shown in
Table 1, CLVTS features a higher average number
of topics per video than AVLecture. Details of the
data collection and annotation procedure and analy-
sis of the CLVTS dataset are in Appendix A. Impor-
tantly, we put careful ethical considerations for
the datasets used in this research in Appendix A.3.
Baselines and Implementation Details. The im-
plementation details are in Appendix B. We care-
fully select the following representative baselines.
- UnsupAVLS (Gupta et al., 2023) is an unsuper-
vised approach that clusters video clips into a pre-
defined number of topics, based on visual and text
embeddings learned from matching the narration

with the temporally aligned visual content.

- Visual-only BaSSL (Mun et al., 2022) is initially
proposed for video scene segmentation. We use
their released checkpoints to initialize our model
and fine-tune on the VTS task to evaluate the per-
formance of a visual-only model.

- Text-only LongFormer is evaluated on long doc-
ument topic segmentation by Yu et al. (2023). We
fine-tune LongFormer and LongFormer., in (Yu
et al., 2023) to evaluate the performance of a rext-
only model w/o and w/ Contrastive Semantic Simi-
larity Learning (CSSL) on the VTS task.

- Llama-3-8B Our pre-training (Section 3.2) is con-
ducted on the relatively limited unlabeled videos
of AVLectures and CLVTS datasets. To investi-
gate the effect of fine-tuning a powerful pre-trained
text large language model (LLM) on VTS, we fine-
tune Llama-3-8B> with 8B parameters, using two
different prompts (see Appendix E for details).

- SWST,,, is our adapted version of the multimodal
video scene and topic segmentation model (Wang
et al., 2023) with a pre-trained LongFormer (Belt-
agy et al., 2020) as the backbone to VTS, for com-
paring performance between their early fusion and
our middle fusion strategy on VTS.

In this work, we choose not to utilize pre-trained
vision-language models such as (Yang et al., 2023a;
Nguyen et al., 2024) due to their limitations in pro-
cessing long video content as the case of educa-
tional videos, although these models demonstrate

3https://huggingface.co/meta—llama/
Meta-Llama-3-8B
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strong performance on short video clips lasting sev-
eral seconds. In future work, we plan to enhance
the long video understanding capabilities of large
multimodal models (Zou et al., 2024; Zhou et al.,
2024) to enable their applications to VTS.
Evaluation Metrics. We adopt four commonly
used metrics, including positive F; (Zhang et al.,
2021) (denoted as F; for brevity), BS@k (Gupta
et al., 2023), mIoU (Mun et al., 2022), and F, @k.
Definitions of the four metrics are in Appendix C.
Following Gupta et al. (2023), we set k to 30 sec-
onds. We compute the average of these four met-
rics, denoted by Avg, to measure the overall perfor-
mance of a model.

4.2 Results and Analysis

Table 2 compares the performance of baselines (the
first group) and variants of our MMVTS models
(the second and the third group).

Unimodal performance. For BS@30 on AVLec-
ture, the text-only Longformer (Row 3) outper-
forms the visual-only BaSSL (Row 2) by a large
gain (+25.31), and also surpasses the unsupervised
UnsupAVLS by a notable gain (+13.25). Such
results are expected since the text modality inher-
ently conveys more precise information for VTS
than the vision modality. Notably, the high mloU
of the unsupervised method is attributable to the
leakage of the ground-truth number of topics.
Mutimodal performance. As shown in Table 2,
Avg (the average of F1, BS@k, mloU, F1 @k) of the
multimodal model SW ST, is only comparable to
Avg of the text-only LongFormer, suggesting that
more data may be necessary to mitigate the discrep-
ancy between pre-training of the language model
and fine-tuning with early fusion (as in SW.ST,),
in order to fully exploit the potential of the early
fusion strategy. Our MMVTS Baseline; o 3 sim-
ply concatenate unimodal features to predict topic
boundaries. Without pre-training on unlabeled data
(PT, Eq. 13) and the two auxiliary fine-tuning tasks
to enhance multimodal coherence modeling (FT-
Coh, Eq. 15), on F;, MMVTS Baseline; outper-
forms the text-only Longformer by 2.28 and 2.90
on AVLecture and CLVTS respectively, while on
Avg score, MMVTS Baseline; outperforms Long-
former by 1.1 on AVLecture yet slightly underper-
forms Longformer by 0.65 on CLVTS. These re-
sults suggest that simply concatenating unimodal
Seatures to predict topic boundaries does not bring
consistent gains over unimodal models. The third
group in Table 2 evaluates our MMVTS models

with the four Multimodal Fusion Layer (MFL)
architectures and with pre-training (PT) and fine-
tuning (FT-Coh). Overall, after PT and FT1-Coh,
on AVLecture, our MMVTS model using Co-
Attention with MoE as MFLs outperforms all the
competitive unsupervised and supervised visual-
only and text-only baselines as well as the multi-
modal SW ST, and achieves the best Avg (4.52
absolute and 7.05% relative gain over previous
SOTA), and the bestBS@30 and F,@30 results,
setting new SOTA on AVLecture. On CLVTS,
our MMVTS model achieves the best F (5.21
absolute and 14.98% relative gain over previous
SOTA) and yields the Avg score comparable to
the best Avg score. On AVLecture, both gains on
Avg from our MMVTS model with Co-Attention
MokE after PT and FT-Coh over the previous SOTA
LongFormer.;s; and MMVTS Baseline; are sta-
tistically significant (p < 0.05). Moreover, our
MMVTS model significantly outperforms the mul-
timodal model ST ST, on both datasets, demon-
strating the effectiveness of our middle fusion strat-
egy and new pre-training and fine-tuning methods.
Table 5 shows that our MMVTS model with Co-
Attention with MoE has 192M trainable parame-
ters while LongFormer.;,; has 130M parameters.
It is also notable that the performance of models
on CLVTS is generally much lower than that on
AVLecture, with the best Avg on AVLecture and
CLVTS differing by 17.50 (68.84 versus 51.34),
indicating a greater challenge to VTS from our
CLVTS dataset than the AVLecture dataset.

Comparison with fine-tuning text LLMs. Table 2
also shows that on CLVTS, fine-tuning the pow-
erful pre-trained text LLM Llama-3-8B with our
Discrete prompt (Appendix E) achieves the best
Avg score 51.34, probably attributable to Llama-
3-8B’s extensive pre-training and vast knowledge
base; still, the performance of our MM VTS model
w/ Merge-Attn and MoE and Co-Attn and MoE
after PT and FT-Coh is nearly the same, with Avg
51.33 and 51.27 respectively. However, on AVLec-
ture, fine-tuning Llama-3-8B performs much worse
than MMVTS model (60.26 versus our 68.61). Par-
ticularly, F; on both AVLecture and CLVTS from
Llama-3-8B are much worse than MM VTS model
as we find that Llama-3-8B’s predicted boundaries
often have a clip offset. These results underscore
the value of our proposed small VTS models, since
the efficiency and flexibility of our competitive to
superior small models make them indispensable
in many real-world applications. Future research



PT | Model F, BS@30 F,@30 mloU Avg
x | Merge-Attn 56.56 7328  64.03 70.06 65.989.90
x | Co-Attn 57.71 7220 6540 70.20 66.381.29
x | Merge-Attn with MoE | 56.80 7226  63.44  69.65 65.541 ¢4
x | Co-Attn with MoE 57.71 7430 6553 7145 67.25056
v | Merge-Attn 5736 7496 6530 70.15 66.94¢ 60
v | Co-Attn 60.01 7388  67.27 7232 6837952
V' | Merge-Attn with MoE | 57.54  73.48 6436 7043 66.450 14
v | Co-Attn with MoE 59.84 75.62  67.69 7221 68.84¢.93

Table 3: Ablation studies of the pre-training tasks on
AVLecture test set. The two auxiliary coherence mod-
eling tasks are added in fine-tuning (Eq. 15). For Avg,
we report mean and standard deviation from three runs
with different random seeds.

could continue exploring how to integrate strengths
of LLMs and multimodal approaches for VTS.

Incorporate audio modality. We also explore
adding the audio modality (A) to the vision and
text modalities (V+T) for our MMVTS model and
find that V+T+A slightly improves the Avg score
over V+T by 1.09% and 3.32% relatively, as shown
in Appendix I. Our ongoing research explores dif-
ferent audio features as well as directly employing
visual and audio cues (i.e., V+A) for VTS.

We conduct extensive ablation studies to validate
effectiveness of the proposed Multimodal Fusion
Layers, pre-training and fine-tuning tasks.

(1) Effect of Multimodal Fusion Layers. Com-
paring the third group and Baselines in Table 2
shows that with the same pre-training and fine-
tuning, the best performing architecture using Mul-
timodal Fusion Layers always substantially out-
performs Baselines. Specifically, with PT and FT-
Coh, on AVLecture, both Co-Attention and Co-
Attention with MoE notably outperform MMVTS
Baselines by 1.32 on Avg; on CLVTS, all four Mul-
timodal Fusion Layer architectures achieve remark-
able gains on Avg over MMVTS Baselines, from
2.65 to 4.18. These results demonstrate that deep
cross-modal interaction has notable advantage
for multimodal fusion over simple unimodal fea-
ture concatenation for VTS. Moreover, adding
MoE on top consistently improves Co-Attention on
both AVLecture and CLVTS, by 0.47 and 1.07 on
Avg; whereas, the effect of MoE on top of Merge-
Attention is inconsistent, with a slight degradation
on AVLecture and 1.53 gain on Avg on CLVTS. In
addition, we conduct more analysis of the effect
of Co-Attn with MoE with different numbers of
multimodal fusion layers in Appendix G.

(2) Effect of Pre-training tasks. Table 2 shows
that for simple concatenation of unimodal features,
pre-training before fine-tuning (as Baselines) out-

Model F, BS@30 F,@30 mloU Avg

Co-Attn with MoE | 59.84  75.62 67.69 7221 68.84
w/0 lemal 58.96  74.62 67.39  72.17 68.29
W/0 Linessi 59.47 7453 66.74 7224 68.25
W/0 lemal & lpesst | 6057 73.36 66.52 7042 67.72

Table 4: Ablation studies of the two auxiliary coherence
modeling fine-tuning tasks on AVLecture test set. Mod-
els are initialized from pre-training (Eq. 13).

performs Baselines (w/o PT). We conduct abla-
tion studies of the proposed pre-training and fine-
tuning tasks on AVLecture. We apply the same
fine-tuning with multimodal coherence modeling
(FT-Coh, Eq. 15) and compare (a) random initializa-
tion of parameters for Multimodal Fusion Layers
(w/o pre-training) (b) pre-training the model on un-
labeled data. Table 3 shows that w/o pre-training,
Co-Attn slightly improves Avg over Merge-Attn by
0.4, and MoE further improves Avg by 0.87. Pre-
training improves the performance on all four
MFL architectures, with the average Avg score
increased by 1.36 (66.29 — 67.65). Pre-training
also improves model stability as the standard devi-
ations of all w/ PT experiments are less than 1. Ta-
ble 6 in Appendix further compares the fine-tuning
performance after applying different pre-training
tasks. Compared to using both pre-training tasks,
removing e or l,:s degrades Avg by 0.4 and 1.64
respectively, indicating that the pretraining task
aligned more closely with the downstream task,
i.e., lyss, yields greater gains.

(3) Effect of Fine-tuning tasks. Table 4 compares
different fine-tuning tasks after pre-training. Com-
pared to the standard /s, adding the two auxiliary
losses lemq and [;,.s5; notably improves Avg by
1.12, while decreasing F} by 0.73. These results
suggest that while multimodal coherence model-
ing may slightly compromise the precision of ex-
act matches, it enhances the overall contextual
comprehension of a model for VTS. Adding [,
or lpess1 individually improves Avg by 0.53 and
0.57, with improvements mainly on BS@30 and
mloU, suggesting that feature alignment at different
granularities may improve fuzzy matching.

5 Conclusion

We propose a novel supervised VTS model by thor-
oughly exploring multimodal fusion and coherence
modeling. We also introduce a large-scale labeled
Chinese Lecture dataset for VTS. Extensive exper-
iments demonstrate the superiority of our model
and effectiveness of critical algorithmic designs.



Limitations

Our MMVTS model leverages the vision modal
information encoded by the visual encoder. Con-
sidering the computational complexity, we keep
the visual encoder frozen while keeping all other
parameters trainable. This particular design may
result in suboptimal utilization of the extensive
multimodal information inherent in the dataset. We
plan to further investigate different audio features
in multimodal fusion (that is, V+T+A) as well as
directly employing visual and audio cues (that is
V+A since the current text modality is just ASR
1-best of the audio), to improve the VTS perfor-
mance. We will continue enhancing the integration
of general pre-trained multimodal models and large
language models, which may offer a more holistic
and effective exploration of multimodal informa-
tion for VTS. Additionally, we will conduct more
explorations and investigate approaches to make
Co-Attn with MoE more stable in future work.
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A The CLVTS Dataset

A.1 Data Collection and Annotation

The CLVTS dataset is primarily sourced from edu-
cational videos, in the form of lectures, from Pub-
lic Video Platforms*>. Specifically, videos are first
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Figure 2: Statistics of our CLVTS dataset.

transcribed by a competitive Automatic Speech
Recognition (ASR) system®. We then ask anno-
tators to combine visual and textual (ASR 1-best)
information to mark the timestamp (in seconds) at
the end of each topic. We ensure high accuracy
and reliability of annotations from three aspects,
including annotator training, hierarchical topic
labeling, and a multi-annotator strategy.

Firstly, before the actual annotation process
starts, the annotators take two rounds of training.
Each annotator needs to annotate 5 videos in each
round; at the end of each round, we assess the anno-
tation quality, provide feedback, and ensure that the
annotators address the issues and understand the
annotation guideline clearly, at the end of training.

Secondly, during annotation, to help the annota-
tors thoroughly understand the lecture content, we
ask the annotators to annotate topics hierarchically,
that is, they label both coarse-grained topic (large
topic) and fine-grained topic (small topic) bound-
aries while the large topic boundaries are a subset
of the small topic boundaries. We take the small
topic boundaries as the final topic boundary labels
for supervised VTS modeling.

Thirdly, we employ a multi-annotator strategy.
All data is annotated in batches, with two annota-
tors annotating each sample independently. The
third annotator reviews the annotations by the first
two annotators, rectifies errors, and provides the
final annotations. After the annotations of each
batch, we randomly select 5% of a batch for quality
assessment. If the unacceptable rate (the propor-
tion of the wrongly annotated topic boundaries)
is lower than 10%, the data are deemed satisfac-
tory and accepted; otherwise, after communicating
quality assessment results and possible reasons for
errors, the annotators are requested to re-annotate

https://tingwu.aliyun.com/home
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the batch based on the feedback. This quality con-
trol process is repeated until the unacceptable rate
is lower than 10% for all batches. In this work, we
finished quality control of all data within 3 itera-
tions.

A.2 Dataset Analysis

To evaluate the inter-annotator agreement on VTS
annotations on the CLVTS dataset, following (Shou
et al., 2021), we compute the F;QFk score (defined
in Appendix C) based on the absolute distance be-
tween two topic boundary sequences, varying the
threshold & from O to 8 seconds with a step size
of 2 seconds, where 8 seconds are approximately
the average duration of a video clip. By averaging
the F; scores across all three pairs of annotated
topic boundaries from three annotators on the same
video, we obtain the consistency score. The more
similar the annotations from all annotators on the
same video are, the higher the consistency score is.
Figure 2a shows that the consistency scores of the
majority of videos in our CLVTS dataset exceed
0.5, indicating a decent degree of consensus for
VTS annotations (Shou et al., 2021).

Table 1 compares our CLVTS dataset against ex-
isting VTS datasets. Both AVLecture and CLVTS
are sourced from educational contexts, where VTS
significantly enhances learning experiences. Ta-
ble 1 highlights that CLVTS features a higher aver-
age number of topics per video. Among annotated
videos in CLVTS, 47% are presentations showing
slides, 34% are blackboard demonstrations, and
19% are miscellaneous types. We also collect
1027 hours of unlabeled videos from the same
sources for pre-training. Figure 2b and 2¢ show a
diverse distribution of video durations and topic du-
rations and a broad spectrum of subjects in labeled
CLVTS.


https://tingwu.aliyun.com/home

Model Numbers
LongFormer, g 130M
MMVTS Model (Ours)

Baseline; 2 3 154M
Merge-Attn 161M
Co-Attn 173M
Merge-Attn with MoE 175M
Co-Attn with MoE 192M

Table 5: The number of trainable parameters of the
baseline LongFormer,,,; and variants of our MMVTS
models. The model names conform to the model names
in Table 2.

A.3 Ethical Considerations

The dataset used in this research is strictly for
academic and non-commercial purposes. We im-
plemented several measures to ensure compliance
with ethical standards, as follows.

e Data Transparency and Anonymization.
We only provide ASR transcripts after rig-
orous text anonymization processes, visual
features of video clips, our annotations, and
links to the original videos, to ensures trans-
parency regarding the data sources and their
usage while maintaining anonymity.

Data Access Compliance. To further en-
sure ethical use of the dataset, we require re-
searchers to contact us via emails to confirm
their compliance with ethical guidelines and
the conditions outlined in our data usage dec-
laration, before granting them access to the
dataset. This procedure includes ensuring that
they are aware of and adhere to the Personal
Information Protection Law (PIPL) and any
relevant legal frameworks regarding personal
data usage.

Authorization. Any personal data should be
used only with express authorization, ensuring
lawful and fair processing in accordance with
applicable laws.

B

We partition the labeled data within AVLecture and
CLVTS into 70% for training, 10% for validation,
and 20% for testing, respectively. The unlabeled
data of AVLectures and CLVTS are used for pre-
training for each dataset, respectively.

Our experiments are implemented with the trans-
formers package’. We use the same maximum se-

Implementation Details

"https://github.com/huggingface/transformers
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quence length 2048 as in Yu et al. (2023) for a
fair comparison with the text-only models. All re-
sults are the mean values over three runs with
different random seeds.

For video with the number of clips greater than
the max sequence length, we use sliding window
and take the last clip of the prior sample as the first
clip of the next sample. All supervised models use
a threshold strategy, where clips with scores above
a threshold 0.5 are predicted as topic boundaries.

Following (Gupta et al., 2023), for each video
clip, we extract three visual feature types: OCR, 2D
and 3D. Specifically, the OCR features are derived
by encoding the textual output obtained from the
OCR API® of the clip’s central image. Encoding
the textual output from OCR is performed using the
BERT-based sentence transformer model®, where
all-mpnet-base-v2 and paraphrase-multilingual-
mpnet-base-v2 models are employed for experi-
ments on the English and Chinese datasets, respec-
tively. The 3D features are extracted using the same
video feature extraction pipeline as in Gupta et al.
(2023). The 2D features are extracted by sampling
three frames from each clip, subsequently encod-
ing these frames with visual encoder, and applying
max pooling. Specifically, we choose the visual
encoder of CLIP (Radford et al., 2021), which is
pre-trained to predict if an image and a text snippet
are paired together. The images from AVLecture
and CLVTS are processed to extract 2D features
using CLIPy;7_ /16" and CN-CLIPy;1_p /16",
respectively.

After extracting the visual features, we concate-
nate them as shown in Eq. 16 to get v;, which
will then be fed into the following projection layer.
During pre-training and fine-tuning, the parame-
ters of visual encoders are kept frozen. The learn-
ing rate is 5e — 5 and dropout probability is 0.1.
AdamW (Loshchilov and Hutter, 2017) is used for
optimization. The batch size is 8 and the epoch for
pre-training and fine-tuning is 1 and 5, respectively.
The loss weight v and «y for .y 1s 0.5, 8 and o for
lpatance 18 1.0 when MoE is in Multimodal Fusion
Layers, 6 for l,,,c55; s 0.5. k1 and ks of Eq. 14 are
1 and 3, following Yu et al. (2023). We comprehen-
sively compare different types of fusion structure

8https://help.aliyun.com/zh/viapi/
developer-reference/api-sy75xq
*https://www.sbert.net/docs/sentence_
transformer/pretrained_models.html
10https://github.com/openai/CLIP
"https://github.com/OFA-Sys/Chinese-CLIP
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Model F, BS@30 F,@30 mloU Avg

Co-Attn with MoE | 59.84  75.62 67.69 7221 68.84
W/0 lys 57.19  74.64 66.04 7091 67.20
w/0 lema 60.23 73.54 67.86 72.12 68.44

Table 6: Ablation experiments of pre-training task on
AVLecture. The model parameters derived from these
distinct pre-training tasks served as the initial param-
eters for subsequent fine-tuning of the model. Addi-
tionally, the coherence modeling tasks are incorporated
during the fine-tuning phase.

using one Multimodal Fusion Layer, then use the
best performing fusion structure for the remain-
ing experiments. We also investigate the impact
of different numbers of Multimodal Fusion Layers
in Figure 3. As to the MoE layer in Multimodal
Fusion Layers, we choose 4 candidate experts and
activate 2 experts for each input feature. The inter-
mediate size of expert is 3072. The total number of
trainable parameters is shown in Table 5.
. ,y3d. ocr

i Y 2 Y
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C Evaluation Metrics

F is a metric used to evaluate the accuracy of text
topic segmentation (Lukasik et al., 2020; Zhang
et al., 2021). It focuses on the performance of
exact matching of the positive class and balances
the precision and recall rates.

BS@k (Gupta et al., 2023) is the average number
of predicted boundaries matching with the ground
truth boundaries within a k-second interval, which
can be considered as the recall rate based on fuzzy
matching.

F,@k denotes the F score calculated based on
matching predicted boundaries and ground truth
boundaries within k seconds. Considering sub-
jectivity and uncertainty in VTS annotations, we
introduce F; @k as a supplement to BS@k to en-
abling a more comprehensive assessment of model
performance in dealing with ambiguous (uncertain)
boundaries.

mloU is commonly used in video action segmenta-
tion (Zhou et al., 2018) and video scene segmenta-
tion (Mun et al., 2022). While the F{, BS@k and
F1 @k metrics focus on the accuracy of positive
predictions (either exact match or fuzzy match),
the mloU metric measures the overlapping area
between predicted segments and ground truth seg-
ments, hence providing a generalized assessment
of how well the model’s predicted segments match
the actual segments on the segmentation task.
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Figure 3: Performance (Avg) of fine-tuning our
MMVTS model on AVLecture test set, w/o pre-training
and multimodal coherence modeling tasks (denoted by
w/o pre and coh) and w/ pre-training and multimodal
coherence modeling tasks (denoted by w/ pre and coh),
with different numbers of Multimodal Fusion Layers,
where the fusion structure is Co-Attention with MoE.

Our implementation of BS@ 30 draws upon the
code published by Gupta et al. (2023)'2, while the
approach to implement mloU is guided by Mun
et al. (2022)'3. We have relied on the scikit-learn
package'* to compute F, following the implemen-
tation by Yu et al. (2023), to ensure fair compar-
isons. The definitions provided in the aforemen-
tioned sources also inform our implementation of
F,@k.

D Artifact Use Consistent With Intended
Use

All of our use of existing artifacts is consistent with
their intended use, provided that it was specified.
For the CLVTS data set we created, its license will
be for research purpose only.

E Fine-tune Llama-3-8B for Video Topic
Segmentation

Considering the computational complexity and the
data volume, we employ LoRA (Hu et al., 2021)
for fine-tuning Llama-3-8B'° on the training set of
each AVLecture and CLVTS datasets, with a max-
imum sequence length of 2048. With LoRA, the
number of trainable parameters is 3 million. Our
training configuration includes a batch size of 32

Zhttps
Bhttps

://github.com/Darshansingh11/AVLectures/
://github.com/kakaobrain/bassl
Yhttps://scikit-learn.org/stable/
15https://huggingface.co/meta—llama/
Meta-Llama-3-8B
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Figure 4: Video Topic Segmentation examples for six lecture videos from AVLecture. (a)-(b) are of the Slides mode,
(c)-(d) are Blackboard mode and (e)-(f) are Mixed mode. GT denotes ground truth, V refers to the visual-only
baseline BaSSL which only uses visual features, T denotes the text-only LongFormer which only relies on the text
modality, and V+T signifies our MM VTS model that integrates information from both visual and text modalities.
Unsup denotes the unsupervised baseline UnsupAVLS, which also integrates visual and text features.

and a total of 6 epochs, utilizing a learning rate
of 5e — 5 and cosine scheduler (Loshchilov and
Hutter, 2016). Table 7 shows two prompts we used
to fine-tuning Llama-3-8B on the text modality of
VTS data. We first evaluate the Generative type
prompt that Yu et al. (2023) has experimented with,
due to its better zero-shot and one-shot text topic
segmentation performance than the Discriminative
type. However, compared with Longformer which
also uses the textual modality, the Avg score of fine-
tuning Llama-3-8B with the Generative prompting
strategy (denoted by Llama-3-8Bgenerative) 18 8.3
and 6.27 absolutely worse than those from Long-
former on AVLecture and CLVTS, respectively.
We suspect that this is due to the inherent issue
of sparse labels in binary classification for VTS,
posing challenges to applying the large language
model (LLM) Llama-3-8B in a generative manner.
Inspired by this hypothesis, we refine the Discrimi-
native prompt into the Discrete prompt for Llama-
3-8B, as shown in Table 7. The results in Table 2
show that on Avg, Llama-3-8B p;screte cOnsistently
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and markedly outperforms Llama-3-8Bgenerative
on both AVLecture and CLVTS, by 6.04 and 10.8
absolute points, respectively. These results sug-
gests that the Discrete prompt is more suitable for
prompting Llama-3-8B for the VTS task than the
Generative prompt.

However, with either Generative or Discrete
prompt, Llama-3-8B p;screte does not provide con-
sistent advantages over the text-only small model
Longformer. Table 2 shows that F results of
Llama-3-8B pjscrete On AVLecture and CLVTS are
much worse than those from Longformer (we find
that the prediction boundary of Llama-3-8B usu-
ally has a clip offset). The Avg score of Llama-3-
8B piscrete 0N AVLecture is 2.26 absolute worse
than LongFormer, although Llama-3-8B p;screte
achieves the best Avg score on CLVTS, surpass-
ing LongFormer by 4.53 absolute. Future work
could further explore how to better use LLMs for
the VTS task.



Type Prompts for text topic segmentation.

Please identify several topic boundaries for the following docu-
ment and each topic consists of several consecutive utterances.
please output in the form of {topic i:[], ... ,topic j:[]} with json for-

Generative | mat, where the elements in the list are the index of the consecutive
utterances within the topic, and output even if there is only one
topic.
document:
[OJZ S1
[1]: s2
[n—1]: s,
Please give the result directly in json format:
output: {"topic_0": [0, 1, 2, ..., k-1], "topic_1": [k, k+1, ...],

-3
Please identify several topic boundaries for the following doc-
ument. please output in the form of {topic_segment_ids:[xxx]}
with json format, where the elements in the list are the index of
Discrete the las:t sentence of every topic, if there is only one topic then the

array is empty.
document:
[0]: s1
[1]: 52
[n—1]: s,
Please give the result directly in json format:
output: {"topic_segment_ids": [X, X, x]}

Table 7: Our designed prompts for fine-tuning Llama-
3-8B on the text data for video topic segmentation. n
denotes the number of sentences and s; denotes the i-th
sentence in the document.

F More Analysis of the Baseline Results

Considering the baseline results in Table 2, the
only seemingly similar scores between the unsuper-
vised method and supervised baselines are mloU
scores, which are attributed to the leakage of the
ground-truth topic number. If we use the topK prob-
ability to determine predictions, where K for each
sample is the ground-truth topic number, mloU
and BS@30 of SW ST, (Row 7) will be 4.4
and 19.05 points higher than UnsupAVLS, respec-
tively. However, this evaluation is not reasonable,
as models should not disclose the ground-truth
topic number during testing. Therefore, we opted
for the threshold-based evaluation strategy com-
monly used in classification tasks

G Performance of Multimodal Fusion
Layers with Varied Numbers of Layers

Using Co-Attention with MoE as the architecture
of Multimodal Fusion Layers, we investigate the
Avg performance of models featuring various num-
bers of Multimodal Fusion Layers (MFLs) on the
AVLecture data set, as depicted in Figure 3. We
find that directly fine-tuning our MMVTS model,
without pre-training nor the two auxiliary tasks
for coherence modeling, a single MFL yields the
best performance, surpassing the no-layer config-
uration by 2.34 points. Adding more layers leads
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Model Modality | AVLecture | CLVTS
Longformer T 62.52 46.81
Llama-3-8B pjscrete T 60.26 51.34
V+T 68.61 51.27
MMVTS Model (Ours) | V+T+A; 67.49 51.98
V+T+A, 69.36 52.97

Table 8: The Avg score of integration of audio informa-
tion into the MMVTS model with Co-Attn and MoE ar-
chitecture, on AVLecture and CLVTS test sets. V+T+A
notes that during fine-tuning phase, the audio features
are incorporated into the cross-modality alignment loss
lerna, While V4+T+A5 does not involve audio features in

lcma .

to degraded performance and training instability,
particularly noticeable with three layers.

By incorporating the pre-training phase followed
by fine-tuning with coherence modeling tasks, Avg
performance enhancements of 4.0, 2.87, 2.37, and
13.51 points for 0, 1, 2, 3 MFL layers are observed,
respectively. These results clearly demonstrate the
substantial benefits from our pre-training and coher-
ence modeling strategies in boosting the model’s
performance. Notably, our pre-training and co-
herence modeling reaches the convergence of the
model with three MFL layers, achieving results
that marginally exceed the performance of a single-
layer model by 0.1 points.

H Qualitative Analysis of Video Topic
Segmentation Examples

We present the topic-segmented outputs for six lec-
ture videos from three presentation modes includ-
ing slides, blackboard, and mixed, in Figure 4.
Relying solely on the visual modality, segmenta-
tion points are predominantly identified through the
superficial cues associated with visual transitions.
In contrast, using only the textual modality, topic
boundaries are discerned based on semantic con-
tent; however, this approach has limitations, such
as missing topic boundaries or the accumulation
of topics. The integration of the visual modality
with the text modality offers complementarity of
information, thereby improving the overall VTS
performance. The case studies in Figure 4 help
illustrate the importance of multimodal fusion for
the VTS task regardless of the video presentation
modes.



I Integration of Audio Information

We use a pre-trained Whisper-small model'® with
244 million parameters and use the Whisper en-
coder to extract audio features for video clips
(the parameters of the Whisper audio encoder are
frozen). Similar to visual features, we perform
maximum pooling on the encoded audio features
for each clip to obtain the clip-level audio features.
Then, we feed the audio features into a learnable
projection layer and then through the Multimodal
Fusion Layers, and then concatenate them with vi-
sual features and text features for the final topic
boundary prediction.

We initialize the parameters from pre-trained vi-
sual and textual MM VTS model with Co-Attn and
MoE. During fine-tuning, we compare two con-
figurations. The first configuration is denoted by
V+T+A;, which incorporates the audio feature into
the cross-modality alignment loss l¢;,,4. The second
configuration is denoted by V+T+As, which does
not involve audio features in l.,4. The pairwise
cross-modality alignment loss weight is set to 0.33
in V+T+A;.

The results are shown in Table 8. As can be
seen from the table, integration of audio features
by V+T+A; improves the Avg score by 0.71 on the
CLVTS test set while decreasing the Avg socre by
1.12 on the AVLecture test set. However, we find
that excluding audio from the 1., (V+T+A>) re-
sults in an absolute improvement of 0.75 and 1.7 in
the Avg score on AVLecture and CLVTS test sets,
respectively, which suggests that audio features
can contribute to more accurate topic boundary pre-
diction under certain conditions, but their role in
modality alignment needs to be treated with cau-
tion and demands further exploration. We sample
some videos and observe that the cosine similarity
between audio features of adjacent clips shows rela-
tively small differences, ranging from 0.97 to 0.98,
while visual features between adjacent clips exhibit
larger differences, ranging from 0.88 to 0.97. This
disparity might complicate the task of simultane-
ously aligning text, visual, and pooled clip-level
audio features. Future research could explore more
nuanced integration of audio features to provide
supplementary paralinguistic information, such as
pitch, energy, and pause duration. Alternatively,
direct use of audio and visual information for VTS
may bypass the ASR step altogether (as ASR is
used to obtain the text modality).

Yhttps://github.com/openai/whisper/
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