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Abstract

Deductive reasoning is a crucial cognitive abil-
ity of humanity, allowing us to derive valid con-
clusions from premises and observations. How-
ever, existing works mainly focus on language-
based premises and generally neglect deduc-
tive reasoning from visual observations. In
this work, we introduce rule bAsed futuRe-
inference deducTion (ART), which aims at de-
ducing the correct future event based on the vi-
sual phenomenon (a video) and the rule-based
premises, along with an explanation of the rea-
soning process. To advance this field, we con-
struct a large-scale densely annotated dataset
(Video-ART), where the premises, future event
candidates, the reasoning process explanation,
and auxiliary commonsense knowledge (e.g.,
actions and appearance) are annotated by anno-
tators. Upon Video-ART, we develop a strong
baseline named ARTNet. In essence, guided
by commonsense knowledge, ARTNet learns
to identify the target video character and per-
ceives its visual clues related to the future event.
Then, ARTNet rigorously applies the given
premises to conduct reasoning from the iden-
tified information to future events, through a
non-parametric rule reasoning network and a
reasoning-path review module. Empirical stud-
ies validate the rationality of ARTNet in deduc-
tive reasoning upon visual observations and the
effectiveness over existing works.

1 Introduction

Deductive reasoning is a systematic method
that rigorously follows a set of explicitly given
constraints (i.e., rules) to deduce valid conclu-
sions from empirical facts through logical infer-
ences (Sanyal et al., 2022b). It represents a corner-
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Rule Set (R):

Rule 2: After walking into the room, someone will walk to the desk. 

Rule 3: Once opening the bag, someone who walked to the desk will put the book on the 
desk into the bag.

Rule 4: Someone who carries the bag will open the bag.

Reasoning 
Process for      :

+

Candidate Future Events:
Event 1: The lady with yellow hair is putting the book on the desk into her bag. 

Event 2: The woman in green dress is putting down her bag.

Event 3: The lady who opened the door is walking to the lamp and turning on it.

Observed 
Phenomena

✓

✓

Observed Phenomena (O):

Rule 2

Rule 4
Rule 3 Event 1 

(R Cannot 
deduce) 

(Violate O) 

✗

✗

…
 

Conc 2

Conc 4

Conc 2: The yellow-hair woman will walk to the desk.
Conc 4: The yellow-hair woman will open the bag.

Rule 1: If the door is open, someone in the room will walk out. 

Figure 1: An illustration of the ART task. With the
observed phenomena O and the rule set R, the ART task
aims at reasoning out the correct one from candidate
future events and explaining the reasoning process based
on the rule set R.

stone of human psychological functioning, serving
as an indispensable aspect of our daily cognitive
processes. For example, human beings possess the
capability to utilize the given rule set (R) to de-
duce future events (F) through the interpretation of
observed phenomena (O). To illustrate:

• Supposing that the rule R: as the self-
protection, the person will release the hot ob-
ject, once burned. holds, and we observe O: a
man holds a very hot teacup, it follows logi-
cally that we anticipate F: he will release the
cup.

• Under the premise that R: after getting home,
my dad will definitely smoke to relieve anx-
iety;, the observation O: dad returns home
from work at night, should lead to the future
event F: he will smoke.

Despite deductive reasoning being acknowledged



as a fundamental cognitive competency of human-
ity (Rips, 1994; Evans et al., 1993), there is a
scarcity of investigations in designing AI systems
that are capable of executing deductive reasoning
in the multi-modal field.

To advance the research, we simulate the deduc-
tive reasoning of human beings and propose a rule
bAsed futuRe-inference deducTion task (ART).
Overall, in aligning with the established deduc-
tive reasoning studies within the NLP community
(Sanyal et al., 2022b), ART should select the cor-
rect textual future events (correct conclusions) from
potential candidates, rigorously based on the given
language rule set and the observed phenomena. As
depicted in Figure 1, the observations in ART are
illustrated by videos, which is grounded in the fact
that visual information has a profound impact on
the human brain, accounting for an impressive 83%
of all inputs (Rosenblum, 2011). Upon the video
observations, ART reasons on a crucial ingredient
of videos, i.e., human actions, and endeavors to
derive the most accurate future event, constrained
by the given rule set and the video observation. In
addition to deducing future events, ART should
provide explanations of the reasoning process by
generating the rule chain. In formal terms, our
ART task is close to the well-established video-
language inference task (Liu et al., 2020; Li et al.,
2021), which assesses the accuracy of language
descriptions in relation to input videos. Analyzing
the difference between the two tasks can facili-
tate the advancement of our new field. Compared
with the video-language inference, our ART task
has the following characteristics: (1) The task de-
mands a transparent explanation of the reasoning
process; (2) In accordance with deductive reason-
ing (Sanyal et al., 2022b), the reasoning processes
should be constrained by the rule sets (regardless
of the perceived irrationality of provided rules) that
are explicitly assigned to each individual sample,
while relying on implicitly learned rule constraints
that might come from other samples could cause
mistakes.

To promote multi-modal deductive reasoning re-
search and meet the demands of the ART task, we
introduce a new dataset, named Video-ART, con-
sisting of 23, 895 samples. Careful annotation was
performed by annotators and verifiers with strong
logical reasoning skills, who mainly focused on
two key aspects: (1) They targeted to design the
rule sets and the candidate future events that are

closely associated with the visual information pre-
sented; (2) The annotators provided the correct
future events and a rule-based explanation of the
reasoning process. In addition, to enhance the
AI system’s deduction from visual semantics in
highly unstructured videos, which are composed
of densely arranged pixels, we have carefully an-
notated the commonsense knowledge of the target
objects, including their appearance and related ac-
tions.

To lay the groundwork for future research,
we propose a strong baseline for the rule based
future-inference deduction, named ARTNet. ART-
Net mainly consists of three components, i.e.,
knowledge-guided target perception (KTP), non-
parametric rule reasoning network (RRN), and rea-
soning path review (RPR). KTP learns to identify
the target character and corresponding visual clues
related to the upcoming event through multi-task
learning and commonsense knowledge annotations
such as actions and appearance. Inspired by tradi-
tional graph-theoretic algorithms, RRN performs
layer-by-layer reasoning through a purpose-built
non-parametric rule reasoning network, uncover-
ing the reasoning paths from the identified visual
clues to potential future events. RRN offers two ad-
vantages for the ART task over traditional models:
(1) RRN provides explanations of its rule-based
reasoning process. (2) RRN avoids rote memoriza-
tion of rules within the training data and ensures
the rigorous application of the sample-specific rule
set. Furthermore, the RPR module validates the
semantic consistency between the rule reasoning
paths uncovered by RRN, the video observations,
and the future event descriptions.

Overall, the main contributions of this work are
three-fold:

• We propose the rule based future-inference
deduction task, through imitating human cog-
nition. To the best of our knowledge, this is
an early exploration of deductive reasoning in
the multi-modal domain.

• We construct a large-scale dataset Video-ART
1 to promote multi-modal deductive reason-
ing research. Video-ART consists of 23, 895
examples where dense annotations including
the rule set, reasoning processes, and auxiliary
commonsense knowledge are provided.

1Please contact mengzeli@zju.edu.cn for dataset acquisi-
tion.



• We contribute a strong baseline, ARTNet, tai-
lored for the ART task. Experimental results
on the Video-ART dataset validate the effec-
tiveness of ARTNet over the state-of-the-arts.

2 Related Work

Video-Language Inference. As the development
of the deep learning (Wu et al., 2020; Miao et al.,
2021; Wu et al., 2022; Ji et al., 2023b,c), the visual
and language related tasks attracts more and more
attentions (Wu et al., 2023; Li et al., 2023a; Miao
et al., 2022; Ji et al., 2023a; Li et al., 2022b,c).
The video-language inference task aims at judging
the correctness of the textual conclusion, based on
the video information and the language descrip-
tion (Li et al., 2020; Tang et al., 2021; Chen and
Kong, 2021; Zhang et al., 2019; Gokhale et al.,
2022). (Liu et al., 2020) proposes a carefully la-
beled dataset for this task and introduces a strong
baseline to further develop this field. Based on this
dataset, (Li et al., 2021) designs a new model based
on the graph network and validate it.

Future Event Prediction. Our task is formally
related to future event prediction, whose goal is to
infer the future from known facts (Surís et al., 2021;
Vondrick et al., 2016; Epstein and Vondrick, 2021).
This field encompasses many tasks, such as the
future trajectory prediction (Kim et al., 2021; Chen
et al., 2022; Li et al., 2022a; Alahi et al., 2016), the
action prediction (Abu Farha et al., 2018; Kitani
et al., 2012; Lan et al., 2014; Ryoo, 2011), and
future object localization (Jia et al., 2022; Peri et al.,
2022). Graph-based methods (Zhang et al., 2021,
2022) are often considered alternative solutions for
such tasks.

Deductive Reasoning. Reasoning is an impor-
tant skill for human beings to understand the world
(Byrne, 1989; Rips, 1994) To promote the develop-
ment of human-like reasoning AI systems, many
researchers have invested in this field (Ebrahimi
et al., 2021; Li et al., 2023b; Calimeri et al., 2021;
Sanyal et al., 2022a). (Sanyal et al., 2022b) pro-
poses a deductive reasoning task in the field of NLP
and presents a powerful model that outperforms
previous methods.

3 Deductive Reasoning Dataset

Our rule bAsed futuRe-inference deducTion task
(ART) requires the AI system to (1) select the
correct future event from the candidate events by
reasoning on the rule set and the observation (a

Category Subcategory

Appearance Gender, Hair Length, Age

Clothing Length of Lower-body Clothing, Type
of Lower-body Clothing, Type of
Upper-body Clothing, Sleeve Length,
3 Other Outfits, 9 Colors of Upper-
body Clothing, 9 Colors of Lower-body
Clothing

Action Intransitive Verb, Transitive Verb, Ob-
ject

Sentiment No Subcategories

Scene No Subcategories

Table 1: Statistics of commonsense knowledge types
for Video-ART.

video); (2) explain the logical chain leading to the
final conclusion based on the rules. Taking into
account the ART task characteristics, we propose
an exhaustively labeled large-scale dataset, named
Video-ART.

3.1 Data Collection

We collect the videos in our dataset from two
sources: (1) Parts of the video clips are manually
intercepted from 80 American movies, including
Broke Girls, Grey’s Anatomy, Mr. Bean, etc. These
videos are of high quality, with rich character ac-
tions and emotions, and rigorous plot logic. (2)
Other videos are carefully selected from the ex-
isting datasets, Charades (Sigurdsson et al., 2016)
and TO-MAR (Li et al., 2023b), both of which are
the human-center datasets. These videos consist of
many different actors and scenes. The appearance,
clothing, etc of the characters are richer.

Both sources of data have their own characteris-
tics and combined together may provide a relatively
comprehensive testbed for the ART task. Some
collected videos are not suitable for our ART task,
such as videos with few actions or blurred videos in
which key details cannot be clearly distinguished.

3.2 Data Annotation

With the collected videos, we rigorously design
the ART task examples for each data and manually
validate all examples. In addition, we annotate the
commonsense knowledge for all video characteris-
tics in detail to assist AI system training, including
human appearance, clothing, actions, semantics,
and scenes located.

Commonsense Knowledge Annotation. The



Figure 2: Statistics about the dataset: (1) the videos
with different action numbers; (2) the future events with
different word numbers.

annotated categories and subcategories of common-
sense knowledge for each video characteristic are
shown in Table 1. More annotation details are
shown in the appendix.

ART Task Annotation. Our annotations for
the ART task contain two aspects: (1) the rule set
and the candidate future events for each video; (2)
the labels indicating the correct future event and
the complete rule chain as the explanation coming
for the correct event. Specifically, to achieve rigor-
ous labeling, 4 doctoral and undergraduate students
from the top 50 universities in the world are respon-
sible for annotation. Firstly, the annotators crop
out appropriate video clips as video observation.
In reference to the commonsense knowledge and
the subsequent video content of the cropped video
clips, the correct future event and the rule-based
explanation of the reasoning process for this event
(the rule chain) are annotated. Then, according to
the correct event, the confusing items in both the
candidate future events and the rule set are supple-
mented.

Validation. The verifiers with strong logical
abilities are responsible for verifying the labeled
examples. The examples not agreed by them are
relabeled or discarded.

3.3 Dataset Analysis

Our dataset has the following characteristics: (1)
Deductive Reasoning Orientated. The Video-
ART dataset is strictly designed according to the
ART task. It is the first deductive reasoning dataset
in the multi-modal field collected from different
human scenes. (2) Large-scale. The dataset con-
sists of 23, 895 examples. Among them, 5, 922
examples are collected from movies and 17, 973
examples come from real-life scenarios. (3) Diver-
sity. (1) The examples in the dataset are rich in
scenarios, including residence, hospital, restaurant,
etc. (2) The dataset covers a variety of activities

such as working, cleaning, cooking, etc.
In addition, on average there are 4 future events

in each example. The average length of the videos
is 24.5 seconds. Detailed statistics are shown in
Figure 2. We show more statistical results in the
appendix.

4 Method

We propose a new task, rule bAsed futuRe-
inference deducTion (ART), and design a targeted
model named ARTNet. According to the task char-
acteristics, we contribute the non-parametric rule
reasoning module for ARTNet. In addition to the
key reasoning module, the knowledge-guided per-
ception module and the rechecking module are in-
troduced to assist in the completion of the ART
task.

Task Formulation. Given an observation (a
video) V , a rule set (multiple rules) S = {Si}NS

i=1,
and candidate future events C = {Ci}NC

i=1 described
by the natural language, the ART task aims to rea-
son out the correct future event and explain the
reasoning process based on the rules. We define
the model with the parameter Θ for the ART task
as M. Then, the training optimization function δ(.)
of M is represented as:

δ(C,S,V; Θ)

= max
Θ

ξ(ϵ(C,S,V),M(C,S,V; Θ)),
(1)

where Θ is a learnable parameter. The function ϵ(.)
generates the ground truth and the function M(.)
outputs the model prediction. The function ξ(.)
calculates the consistency of ϵ(.) and M(.).

Rule Transformation. Before describing our
ARTNet structure, we shed light on the intriguing
transformation of rules within the ART task. The
ART task revolves around predicting future events
based on observed information, employing rules
as the means of inference. These rules can be per-
ceived as an intricate mapping of crucial informa-
tion bridging two consecutive events. It is impor-
tant to note that the core driver of event progression
for the target character lies in the changes in ac-
tions. Hence, in our proposed baseline, we adopt
an approximation where rules are represented as
mappings of actions. We employ the robust Stan-
fordNLP toolkit (Manning et al., 2014) to identify
the key actions within each rule, which serve as the
basis for future-inference deduction and explana-
tion.
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Figure 3: Overview of our ARTNet model for the ART task. It consists of three steps. Step 1: Knowledge-guided
Target Perception, which focuses on the language-described person in the video and identifies her key actions.
Step 2: Non-parametric Rule Reasoning, which constructs the rule graph (action graph), and finds the connected
action path between the video actions and the future-event action with Dijkstra’s algorithm. Step 3: Reasoning Path
Review, which finally checks whether the future event, the video, and the found rule paths match to determine the
correctness of the future event.

Model Pipeline. As shown in Figure 3, our
ARTNet judges the correctness of candidate future
events C one by one based on the given rule set
S and the video V . It chooses the correct item
with the highest probability as the prediction result
and outputs the rule-relied inference process as
an explanation. Specifically, the whole process is
divided into three steps: Step 1 (Section 4.1): By
analyzing the input video V and the future event
F , the knowledge-guided target perception module
focuses on the person described by the language
event F and predicts her key visual action. Step
2 (Section 4.2) The non-parametric rule reasoning
network constructs the rule graph based on the
action chains stored in the rule memory. Then, it
finds the connected rule paths between the future
event action and the visual action from the video
V . If no path is found, we judge the future event F
is wrong. Step 3 (Appendix): The review module
of ARTNet reasons on the found connected rule
paths and the cross-modal feature containing the
semantics of the video V and the future event F .
The module outputs the correct probability pe of the

future event F . We choose the one with the highest
probability from the candidate future events as the
final prediction result of the deductive reasoning
task, ART. The corresponding rule path in Step 2 is
viewed as the explanation for the prediction result.
Step 3 is introduced in the appendix in detail.

4.1 Knowledge-guided Target Perception

Identifying the target character and the correspond-
ing action knowledge related to the natural lan-
guage future event F from the input video V is an
essential step before the reasoning based on the rule
set S (which is transformed into action chains in
the preprocessing). Toward this target, we leverage
human-annotated commonsense knowledge labels
(human appearance, clothing, semantics, scene,
and actions) of the target video person described by
the textual future event F to train the model with
transformer-based multi-task learning.

Specifically, the knowledge-guided visual per-
ception module is designed based on the trans-
former architecture. The transformer encoder ex-
tracts the cross-modal feature Fc from the video



V and the future event F . We define two types of
query vectors to analyze the cross-modal feature
Fc with the transformer decoder. It includes the
frame-text level queries Qf = {qi

f}
Nf

i=1 and the
video-text level queries Qv = {qi

v}3i=1 used to an-
alyze the cross-modal semantics, where Nf is the
number of frames. The transformer decoder distin-
guishes different types of query vectors according
to the injected type embeddings. Then, it reasons
the corresponding features (frame-text level fea-
tures Ff = {fif}

Nf

i=1 and video-text level features
Fv = {fiv}3i=1) relying on the query vectors (Qf

and Qv). By analyzing the resulting features (Ff

and Fv), we predict all commonsense knowledge.
We take the action knowledge predcition as an ex-
ample, the others are shown in appendix.

Action Knowledge Prediction. For action
knowledge, we do not predict it frame-by-frame
like sentiments and scenes. It is because there are
multiple actions for the target person in each frame
and the frame-by-frame prediction introduces too
much burden to ARTNet, which leads to diffi-
cult model training. Therefore, the model directly
counts the actions contained in the video rather than
each frame. The process of judging whether the
i-th action exists in the video V with the video-level
query f1v is represented as:

pi
ac = softmax(MLP i

ac(f
1
v)), (2)

where the MLP i
ac is the MLP applied specifically

for the i-th action prediction. The pi
ac is the proba-

bility of action existence or not.

4.2 Non-parametric Rule Reasoning

The rule-based reasoning of the ART task requires
the model not to memorize the rules in the training
set and has strong interpretability. Towards this
end, we propose the non-parametric rule reason-
ing network, based on the traditional graph theory
rather than the neural network.

In detail, the action set contained in the rule set
(action chain set) is represented as A = {Ai}NA

i=1.
As shown in the the Figure 3, the non-parametric
rule reasoning network contains three steps: (1)
Action Chain Storage. In order to facilitate sub-
sequent processing, we split the action chains
into multiple single-step relational maps and store
them in the memory. Taking the action chain
A1 → A2... → Ar as an example, the splitting

process is represented as:

(A1 → A2), ...,(Ar−1 → Ar)

= split(A1... → Ar).
(3)

Notably, for the action chain form of combinato-
rial inference in the action chain set Ai + Aj →
Ak, we store two single-step relational maps,
Ai → Ak and Aj → Ak. (2) Graph Con-
struction. We construct the action graph G(A,U)
by connecting all the single-step relational maps
(Ai → Ai+1), ..., (Ai+n−1 → Ai+n) in the mem-
ory, where U represents the edges between the ac-
tions A in the graph. The construction process is
formalized as:

G(A,U) = connect((Ai → Ai+1), ...,

(Ai+n−1 → Ai+n)).
(4)

(3) Action Path Finding. Firstly, we need to find
the starting nodes {Asi}

NAs
i=1 and the ending node

Ae of the target action paths in the constructed
graph G(A,U). The starting nodes {Asi}

NAs
i=1 are

determined by matching the actions predicted in
step 1 (Section 4.1) and each graph node (action).
Similarly, we find the ending node Ae by match-
ing each graph node (action) and the action of the
future event F detected by the widely used tool,
StanfordNLP (Manning et al., 2014). Secondly,
we find all the connected action paths between the
starting nodes {Asi}

NAs
i=1 and the ending node Ae

with Dijkstra’s algorithm. Using the starting node
Asj and the ending node Ae as an example, the
path-finding process is:

Asj ... → Ae = Dijkstra(Asj ,Ae,G(A,U)).
(5)

Finally, we review all the found action paths again
for violations of the action chains in the action
chain set S and delete them. Notably, for the rule
paths (like Ap → Ai → Ak and Aq → Aj →
Ak) involving combinatorial inference rules (like
Ai + Aj → Ak) , these action paths need to be
merged into one and then checked. After merging,
checking, and deleting, multiple action paths may
be preserved. They need to be further verified in
the next review module.

5 Experiments

We experiment with our ARTNet model on
our proposed Video-ART dataset to verify the



model’s effectiveness for the rule bAsed futuRe-
inference deducTion task (ART). All experi-
mental environments are deployed in Hikvision
(https://www.hikvision.com/en/).

Dataset. The Video-ART dataset con-
sists of data from real life scenes and
movie scenes, which are randomly divided
into 14, 029/706/3, 238 (train/val/test) and
3, 902/349/1, 671 (train/val/test), respectively. As
stated in Section 3.1, both types of data have their
own characteristics. To comprehensively evaluate
the performance of the models, we conduct
experiments in both scenarios.

Evaluation Metrics. Following previous de-
ductive reasoning tasks (Sanyal et al., 2022b), our
ART task requires that the correct future event in
the candidate set and its explanation for the rea-
soning process are both unique. Therefore, we use
“accuracy" to measure the correctness of the model
predictions for them. The accuracy of the future
event prediction and the explanation prediction are
denoted as “Event_ACC" and “Exp_ACC", respec-
tively. We consider an explanation prediction to
be potentially correct only when future events are
predicted accurately.

Baselines. Previous methods from other tasks
cannot adopt our ART task in a direct manner.
Thus, several state-of-the-art multi-modal and rea-
soning models are extended as the baselines to com-
pare. Specifically, to make a comprehensive com-
parison, we take into account the following meth-
ods: (1) video-language inference methods: LF-
VILA (Sun et al.), AHGN_SCL (Li et al., 2021),
VIOLINet (Liu et al., 2020); (2) deductive reason-
ing methods: FAIRR (Sanyal et al., 2022b).

5.1 Performance Comparison

Comparison with State-of-the-arts. Our ARTNet
model is compared with the baselines on the Video-
ART dataset for the ART task. The experiment
results are shown in Table 2. From the table, there
are the following findings. (A) Compared with the
baselines, our ARTNet model performs best and
improves the accuracy by more than 4 points on all
metrics. We contribute the improvement to 1) the
commonsense knowledge guidance, which makes
ARTNet focus on the target person and correctly
identify the key actions from the video according
to the future event; 2) the non-parametric rule rea-
soning, which implements layer-by-layer reasoning
strictly according to the given rules and provides

# Methods Trans. Event_ACC Exp_ACC

Real Life Scene

1 VIOLINet (Yang et al., 2022) 29.2 22.9
2 AHGN_SCL (Li et al., 2021) 31.3 27.1
3 FAIRR (Sanyal et al., 2022b) ! 35.8 30.1
4 LF-VILA (Sun et al.) ! 37.9 34.5

5 ARTNet (Ours) ! 42.3 41.0

Movie Scene

1 VIOLINet (Yang et al., 2022) 30.1 24.6
2 AHGN_SCL (Li et al., 2021) 32.7 26.2
3 FAIRR (Sanyal et al., 2022b) ! 36.2 32.5
4 LF-VILA (Sun et al.) ! 37.8 35.6

5 ARTNet (Ours) ! 42.5 42.0

Table 2: Comparison results between ARTNet and
the state-of-the-arts. “Trans." indicates the transformer-
based architecture.

# Methods Trans. Event_ACC Exp_ACC

Real Life Scene + Movie Scene

1 VIOLINet (Yang et al., 2022) 30.4 26.7
2 AHGN_SCL (Li et al., 2021) 33.5 28.6
3 FAIRR (Sanyal et al., 2022b) ! 35.7 32.1
4 LF-VILA (Sun et al.) ! 38.2 35.8

6 ARTNet (Ours) ! 42.5 41.8

Table 3: Comparison results between ARTNet and
the state-of-the-arts on the merged dataset of the two
scenarios. “Trans." indicates the transformer-based ar-
chitecture.

the explanation for the reasoning process. (B) The
baselines are extended from other tasks and lack
targeted domain knowledge of our ART task, which
leads to unsatisfactory performance.

Comparison with baselines on the merged
dataset. We are interested in the ARTNet model
performance on the whole dataset. Thus, we merge
the two dataset parts, including the real-life ex-
amples and the movie examples, and experiment
on them. The results of the baseline comparison
are shown in Table 3. From the table, we have
the following findings: (A) Compared with other
baselines, our ARTNet model performs best. This
once again demonstrates the rationality of two task-
targeted modules, the Knowledge-guided Target
Perception, and the Non-parametric Rule Reason-
ing, in the ARTNet model. (B) Training on the
merged dataset of the two scenarios does not signif-
icantly improve the model performance, compared
with being trained on a single scenario. It means
the model cannot effectively transfer the learned



Figure 4: Comparison with the state-of-the-arts on dif-
ferent proportions of training set in the movie scene.

CKG RRN
Real Life Scene Movie Scene

Event_ACC Exp_ACC Event_ACC Exp_ACC

37.7 34.9 38.1 35.1
! 39.5 37.8 40.5 38.3

! 40.7 39.5 41.4 40.8
! ! 42.3 41.0 42.5 42.0

Table 4: Ablation study of ARTNet on the Video-
ART dataset. CKG is the Commonsense-Knowledge
Guidance, and RRN represents the non-parametric Rule
Reasoning Network.

knowledge between the two scenarios, which is due
to the significant differences between the two sce-
narios: (1) Movie videos have a higher resolution,
while real-life videos are limited by the lower reso-
lution of the shooting devices. This results in the
difference in the model’s visual perception of the
two scenarios. (2) Movie scenes have richer and
more exaggerated plotlines, while real-life scenes
have simpler plotlines. Thus, there are significant
differences in the event reasoning of the two sce-
narios.

Comparison with baselines on different train-
ing data volumes. To evaluate the performance
of the ARTNet model trained on different data vol-
umes, we randomly select 25%, 50%, and 75%
of the training data in the movie scene for experi-
ments. The comparison results between ARTNet
and baselines are shown in Figure 4. From it, we
can observe that the accuracy of ARTNet is still
higher than the state-of-the-arts with the low train-
ing data volume. We attribute it to the effectiveness
of the knowledge-guided auxiliary training for the
transformer module and the non-parametric rule
reasoning network independent of the training data,
which guarantees the model performance with less
training data.

Rule Set (R):

Observed Phenomena (O):

Rule 1: After cooking, someone will have a meal.

Rule 3: After cooking, someone will  have a meal up and then do the washing up.

Rule 2: Someone will continue to hug another person. 

Candidate Future Events: (Red Text is the error cause.)
Event 1: There is an adult woman in a pink coat doing the washing up.
Event 2: That adult woman wearing a black coat is standing up.
Event 3: The adult woman in a black pant is continuing to hug another person. 
Event 4: There is an adult woman in a black coat doing the washing up. 

Reasoning Process :

ARTNet (Ours)Event 4Correct Event:✓

Commonsense 
Knowledge Prediction: woman, long hair, long sleeve black coat, no glasses, …

Rule 3, Event 4)(Observation,✓

✓

Figure 5: Case study of the ARTNet performance.

5.2 In-depth Analysis

Ablation Study We are interested in the contri-
bution of each key module in our ARTNet model
and design the ablation study. Specifically, we
surgically remove the Commonsense-Knowledge
Guidance (CKG) and the non-parametric Rule
Reasoning Network (RRN) from our ARTNet
model and get different architectures. Without
RRN, the ARTNet model totally losses the rules
exploit capabilities, which is necessary for the ART
task. Thus, we replace the RRN module with the
advanced NLP model, transformer (Vaswani et al.,
2017), rather than simply removing it. The exper-
imental results of the ablation study are shown in
Table 4. According to the results, there are several
findings: (A) After removing any key modules, the
model performs worse. It proves that CKG can
improve the model’s ability to perceive key video
information and RRN is able to achieve rigorous
reasoning. Thus, both of them are indispensable.
(B) When we replace RRN with transformer, the
transformer model remembers the rule sets of the
examples in the training set during training. This
may cause the model to fail to strictly utilize the
rule sets given by the test examples during infer-
ence, resulting in a decrease in accuracy. (C) It
is more efficient to use key modules together than
to use them separately. This demonstrates that the
ART task completion can be significantly improved
by combining CKG’s information perception abil-
ity with RRN’s knowledge reasoning ability.

Case Study To further demonstrate the effective-



ness of our ARTNet model in visual, we carefully
design the case study. Specifically, we select an
example from the Video-ART dataset and show the
experiment results in Figure 5. From the figure, we
can observe that our ARTNet model predictions
are completely accurate. This intuitively demon-
strates that ARTNet can achieve precise perception
and rigorous reasoning for the ART task. In ad-
dition, we compare our ARTNet model with the
state-of-the-art, and the ablation base model. These
examples are shown in the appendix.

6 Conclusion

We study the deductive reasoning process in hu-
mans and propose a video-text deductive reasoning
task, ART, which is an early exploration of de-
ductive reasoning in the field of multi-modal. To
promote this new task development, we propose
a new dataset, Video-ART, and a strong baseline
called ARTNet. Experiments prove the ARTNet
effectiveness.

Limitations

We propose a strong baseline, ARTNet, for the ART
task, as a field foundation. The ARTNet baseline is
limited to approximate the rules as the action chains
to further process. In the future, we will update the
ARTNet to improve the design of this part. We
hope our work could promote the development of
the multi-modal deductive reasoning.
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