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Abstract

Traditional measures of search success often overlook the varying
information needs of different demographic groups. To address
this gap, we introduce a novel metric, named Group-aware Search
Success (GA-SS). GA-SS redefines search success to ensure that all
demographic groups achieve satisfaction from search outcomes. We
introduce a comprehensive mathematical framework to calculate
GA-SS, incorporating both static and stochastic ranking policies and
integrating user browsing models for a more accurate assessment. In
addition, we have proposed Group-aware Most Popular Completion
(gMPC) ranking model to account for demographic variances in
user intent, aligning more closely with the diverse needs of all user
groups. We empirically validate our metric and approach with two
real-world datasets: one focusing on query auto-completion and the
other on movie recommendations, where the results highlight the
impact of stochasticity and the complex interplay among various
search success metrics. Our findings advocate for a more inclusive
approach in measuring search success, as well as inspiring future
investigations into the quality of service of search.

1 Introduction

Search is one of the primary methods for people to fulfill their
information needs. Typically, users input a query g to express their
information needs and intents ¢, prompting search systems to re-
turn a list of ranked items d. Transitioning from the mechanics
of query input to outcome assessment, measuring search success
becomes pivotal. The most intuitive method to gauge the success
of a system is by averaging the satisfaction of all individuals. We
argue that this is suboptimal and cannot distinguish certain nu-
ances. Consider two equal-sized searcher groups g4 and gg and a
query q that corresponds to two equally dominant intents #; and
tz (see Case 1 in Figure 2). For simplicity, we assume group g4 is
only interested in #; and group gp only interested in t;. If a search
system retrieves 50% of items that are relevant to each intent, it
would appear equally successful as one that exclusively retrieves
items relevant to ;. However, the latter scenario leaves group gp
entirely unsatisfied, highlighting a situation that traditional search
success measurement may fail to distinguish.

Recent studies have expanded the definition of search success
by introducing criteria such as diversity [1, 6]. It might appear that
optimizing towards diversity could mitigate the aforementioned
limitations, especially since a system that retrieves items relevant
to multiple intents naturally seems more diverse—and consequently
more successful—than one focused on a single intent. However, in-
troducing diversity alone does not capture all the nuances involved.
Consider a scenario where a query q aligns with four dominant
intents: 1, t2, t3, and t4 (see Case 2 in Figure 1). Suppose group ga
is equally interested in t1, t, and t3, while group g focuses solely
on t4. In this case, a system that predominantly retrieves items
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Figure 1: Two motivation examples to show that previous
search success measures cannot distinguish certain nuances.
Each edge in the figure between the query (q) and intent (¢)
carries equal weight, signifying that the query is uniformly
relevant to the connected intents. Similarly, the edges linking
the user group (g) to the intent (¢) have equal weight within
each group, indicating that members of the group have a
uniform level of interest in the associated intent.

relevant to t1, tz, and t3 would appear more diverse compared to
the other system that effectively balances the retrieval between t;
and t4. However, the former one is less successful since group gp is
totally ignore. This demonstrates the limitations of using diversity
as the sole measure of search success.

Inspired by the shortcomings identified in previous search suc-
cess measures, we advocate for a refined and nuanced definition
of search success that accounts for the impact across diverse de-
mographic groups. The crucial insight is that traditional metrics
often overlook the varied intent distributions that different groups
may have towards the same query. In this work, we introduce the
concept of Group-aware Search Success (GA-SS), filling a gap in
existing literature. We define search success as being achieved iff
all demographic groups find success in their search outcomes. Let
g € G represent a group of searchers, ¢t € 7 an information need or
intent, g € Q a query, and oy the ranked list of items or documents
retrieved in response to g. We define s as the event of a successful
search. The probability of achieving group-aware search success
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(GA-SS), p(SC4|qg), for a given query g is the joint probability that
all groups are successful, mathematically defined as:

p8%*g) = [ 1p(slg. 9)- 1
g

Building on our proposed Group-aware Search Success (GA-SS)
metric, the rest of this paper shows a detailed derivation of the
metric, explaining how to decompose it and apply either static or
stochastic ranking policies, alongside incorporating a user browsing
model for computation. We then study the metric relations for
within-query and across-queries using a multi-query toy example
to demonstrate that enhancements in one metric do not always
correlate and may, in fact, negatively affect the other. Subsequently,
we employ two real-world datasets, one for query auto-completion
and the other for movie recommendations, to empirically study
the impact of stochasticity and the correlations among various
search success metrics, providing robust support for our initial
observations from illustrative examples. Moreover, we enhance
the traditional Most Popular Completion (MPC) ranking model to
include a group-aware approach, taking into account the varying
interests of different demographic groups. Additional case studies
on movie recommendations illustrate the efficacy of our method
and the impact of stochasticity, highlighting a crucial trade-off
between fairness and success in real-world search systems. Finally,
we show the connection of our proposed search success to relevance
metrics for quality of service in search and provide insightful future
research directions. In summary, our main contributions are:

e We propose and formulate the Group-aware Search Success
(GA-SS) and introduce a group-aware adaptation of the Most
Popular Completion (MPC) ranking model. This represents
anovel framework that quantifies search success by incorpo-
rating the diverse intents of different demographic groups.

e We provide a detailed theoretical derivation and methodolog-
ical advancements in the computation of GA-SS, employing
both static and stochastic ranking policies with some user
browsing model.

o We conduct detailed analysis using two real-world datasets to
study the impact of stochasticity and the correlations among
various search success metrics, offering practical insights
into search success measurement.

2 Related Work

In this section, we review related works from the following three
topics: (i) diversity in search, (ii) fairness in search, and (iii) ranking
with stochastic policy.

2.1 Diversity in Search

Since the late 20th century, diversity in search has garnered sig-
nificant attention, starting with the introduction of the Maximal
Marginal Relevance (MMR) method by Carbonell and Goldstein
[5]. Building on this, Clarke et al. [6] developed a framework that
systematically rewards novelty and diversity for search systems,
leading to numerous studies aimed at enhancing these aspects.
Radlinski et al. [25] identified two primary categories of search
diversity: extrinsic diversity and intrinsic diversity. Extrinsic diver-
sity deals with the uncertainties in search queries, which can arise
from either ambiguity or variability in user intent. For instance,

the query “jaguar” may refer to different concepts, and a query
like “BioNTech, Pfizer vaccine” can elicit varied information needs
from different users, such as patients, doctors, or entrepreneurs [38].
This diversity type aims to provide comprehensive search results
that cater to these varied interpretations and needs. On the other
hand, intrinsic diversity focuses on reducing redundancy within
the search results themselves, even for queries with a clear and
single intent. This approach enhances the novelty of the results, as
seen in a query for “jaguar as an animal”, where diverse images
of jaguars from various angles are preferred over repetitive views.
The distinction between extrinsic and intrinsic diversity lies in their
approaches to enhancing user satisfaction: extrinsic diversity ad-
dresses multiple interpretations of a query, while intrinsic diversity
enriches the content quality for specific intents. Both are essen-
tial for a search system to meet a wide range of user needs while
keeping the content fresh and engaging.

Our introduction of group-aware search success shows relation
to the diversity foundation by specifically tailoring search results
not just to individual users, but to groups of users. It acknowledges
that different groups may require varying distribution of intents,
thereby extending the concept of diversity from individual queries
to collective interactions.

2.2 Fairness in Search

Fairness in search and recommendation has received increasing at-
tention in the community. There is no single agreed-upon definition
of fairness, but it commonly involves considering the perspectives
of various stakeholders, such as: (i) consumers (i.e., users seeking
content), (ii) producers (i.e., content creators or publishers), (iii) in-
formation subjects (i.e., individuals featured in search items, such
as job candidates), and (iv) other side stakeholders (i.e., groups not
directly using the system but affected by it).

Addressing fairness requires evaluating multiple dimensions
for each stakeholder group. For consumers, this includes ensuring
equitable quality of service across demographics. Ekstrand et al. [10]
and Neophytou et al. [20] have shown variability in recommender
system performance across different demographic groups. Similarly,
Mehrotra et al. [18] observed disparities in web search contexts.
Wu et al. [36] tackle this by modeling fairness in service quality
as variations in Normalized Discounted Cumulative Gain (NDCG)
among user groups, seeking to minimize these differences during
model optimization. Wu et al. [37] later propose novel fairness
notions to consider group attributes for multi-sided stakeholders to
identify and mitigate fairness concerns that go beyond individuals
in search and recommendation.

Fairness also pertains to the content exposure received by con-
sumers. Disparate exposure to economic opportunities, for instance,
can lead to allocative harms. In job search systems, it is crucial to
balance exposure to different job levels across demographics [4].
Previous research has explored notions of social fairness such as
Envy-freeness [23] and Least Misery [14] to address fair alloca-
tion. Furthermore, exposure disparities can perpetuate consumer
stereotypes, as observed in news recommenders that might reflect
gender-based biases [35]. Techniques using adversarial learning
and domain-confusion [7, 32] have been employed to develop rep-
resentations that obscure protected attributes like race or gender,



as explored in studies by Zhang et al. [40], Bose and Hamilton [2],
and Rekabsaz et al. [29].

Our group-aware search success shows some relation to fairness
in search. By considering group dynamics, we aim to ensure eq-
uitable information access and success towards various searcher
groups. Our concept also concerns item exposure during our mod-
eling process which will be later detailed.

2.3 Ranking with Stochastic Policy

Early works in learning-to-rank for IR [15] mostly focus on static
ranking policies that produce static ordering of items given a user
launched query. Inspired by Pandey et al. [22], who initially sug-
gested incorporating randomization into ranking systems, numer-
ous studies have utilized randomization to gather unbiased implicit
feedback from user behavior data [12, 21, 26, 27, 33]. This strategy
also aids in training unbiased ranking models using biased user
feedback [11]. Moreover, stochastic ranking policies have been used
to enhance the diversity of search results [28] and to promote fairer
exposure of information content [9, 31, 39]. Building on these appli-
cations, recent studies [3, 9, 21, 31, 39] have focused on optimizing
stochastic ranking policies to achieve these goals. In Section 3, we
will demonstrate how stochastic ranking policies can be employed
towards our proposed Group-aware Search Success.

3 Group-aware Search Success

As introduced in Section 1, existing measures of search success
often overlook the searcher group information thus are insufficient
to represent a search system’s real success. To address this, we
introduce a theoretical framework that defines Group-aware Search
Success (GA-SS). Our definition takes into account the impact of
varying intent distributions associated with queries from different
demographic groups.

3.1 Group-aware Search Success within Query

To achieve a high quality of service for a given query, we define
search success if and only if all groups are successful as shown in
Eq. 1: p(S®4|q) = 14 p(slg, 9)- To further compute the probability
of success given a query and group, p(s|q, g), we need to be aware
that the intent of different user groups searching for the same
query may not be the same. Following Agrawal et al. [1], we use
an intent-aware setting and further have:

p(slg. g) Zp tlg.9)

= Zp(th,g) - p(slt, q).
t

- p(slt. . 9), @
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Based on this framing, the GA-SS within a given query can be
finally written as below:

p(S%g) = [ | pGslg. 9). )
g

=11 (Zp(th,g) - plslt, q)). (5)
g t

3.2 Group-aware Search Success across Queries

To consider the success of the entire system, we need to define
search success across queries through aggregation over Eq. 1. This
aggregation has two dimensions: (i) success across various queries,
and (ii) success across different demographic groups. Depending
on the order of aggregation, we can define GA-SS in the following
two distinct ways.

o 3gllya search system is successful if it is successful for all
queries, where for each query it should be successful over all
demographic groups.
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o [Ig2g4:2 search system is successful if it is successful over all
demographic groups, where the success for each group is based
on the success across all queries.
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One can notice that, when #g = 1 (i.e., only a single query exists),
both variants converge to [, p(s|g, g), which can be written as
Eq. 5. The modeling of each term in the above equations will be
later demonstrated.

3.3 Ranking with Static and Stochastic Policies

We now discuss how to compute the search success given an intent
and query, i.e., p(s|t, g)), which can be defined as the success that at
least one of the items is successful [1]:

D

el =1-] ] (1 ~ pGalt q>). (16)
d



To compute the success of the item d given an intent t and query
q, i.e, p(sqlt, q), either static ranking policy or stochastic ranking
policy [9] can be applied.

Static ranking policy. Let ry represent the event that d is rele-
vant and €4 that d is exposed to a searcher. We further define s; as
the event that a search is successful via item d € D—i.e., d is rele-
vant and viewed by the searcher. In the absence of personalization
and any difference across groups in how they inspect the retrieved
results, we have:

p(salt. @) = p(ralt) - plealog, p). (17)
Here oy is a rank list of items given query g produced by some
model. p is a user browsing model, which provides a mechanism
to estimate the probability of exposure of an item d in a retrieved
ranked list of items o4 with respects to input query g. For example,
the user browsing model behind the rank-biased precision (RBP)
metric [19] assumes that the probability of the exposure event €4
for d depends only on its rank p, in o4 and falls off exponentially
further down the ranked list.

oq—1
P(edlaqy Hiep) = )/p 7, (18)
where the y is the patience factor and controls how deep in the
ranking the searcher is likely to browse, “-1” is to force the position
starting from zero. In this work, we use the RBP user browsing
model, although alternative models could also be applied.

Stochastic ranking policy. Diaz et al. [9] define a stochastic
ranking policy 7 as a probability distribution over all permutations
of items in the collection. If the search system under inspection
employs a stochastic ranking policy, then we can rewrite Eq. 17 as:

p(salt.q) = p(ralt) - 27 p(olg) - plealo, p)- (19)

o~Tlg

4 Metric Comparison

One related metric to ours is the diversity concept proposed by Agrawal

et al. [1], who frame their diversity objective as to maximize the
probability of the searcher finding at least one relevant result given
a query g and a distribution over intents . We rename their objec-
tive as Diversity-aware Search Success (DA-SS) defined as below:

T
pSPA1g) = D p(tlg) - plslt q). (20)
7
T D
= 2 pitla)- (1 [ 1(1-plsalt q))). (21)
t d
It can be noted that DA-SS is analagous to GA-SS as defined in
Eq. 3, except it does not account for the variance in the likelihood
of intents associated with a query across different demographic
groups. However, optimizing the system towards diversity does
not guarantee that group-aware success also improves. We omit
this comparision here since relevant examples have already been
illustrated in Section 1 (Case 2, Figure 1).
In this section, we use an additional toy example to study the
relation among within-query GA-SS metric and its two across-query
metric variants. We aim to highlight that improving one metric does

not necessarily benefit others, and sometimes may show negative
impacts. For simplicity, in the toy example, we assume all the items

retrieved are relevant to the corresponding intent and observed by
searchers. Thus, for all those considered intents, the search success
given an intent and query (i.e., Eq. 16) always equals one.

We focus on the toy example shown in Figure 2. Imaging there
are two queries g1 and gz in the full system with equal sampling
probability, where each query is equally relevant to two intents
t; and tp. There are two equal-size user groups, where group g4
is always interested in ¢; and group gp is always interested in t.
Now, we consider nine different search systems, where each system
retrieves one or two intents for each query. We then compare the
GA-SS within each query and across queries by computing the
corresponding search success. Notice that there are two ways to
compute the overall GA-SS across queries due to different order of
aggregation over the queries and user groups. As shown in Figure 2
where each row is a different retrieval result of a search system,
we can clearly observe that the value change trend of each metric
(column) is not exactly the same. For instance, compare two search
systems where the first one retrieves 2 for q; and t; for g2, while
the second one retrieves t; for g1 and ¢, for g2. Their GA-SS values
within both queries are equal, while the overall GA-SS values across
queries are not exactly the same when comparing p(S%AZ),

5 Experiment and Analysis

Previously, we used some simple example to demonstrate that the
different metrics are not always aligned; improving one metric
might negatively affect others. In this section, we aim to conduct
analysis on real-world datasets to further investigate the relation
among these metrics with different ranking policies. Specifically,
we aim to answer the following two research questions (RQs):

e RQ1: What is the impact of stochasticity on our proposed
GA-SS for both within query and across queries scenarios?

e RQ2: What is the correlation between GA-SS and DA-SS in
a single-query scenario, as well as the two variants of GA-SS
across queries?

5.1 Task and Dataset

We conduct our analysis on the following two tasks in this work.
We formulate both tasks into search problems.

Query Auto-completion. Query auto-completion (QAC) is one
of the most prominent features of modern search engines. The list
of query candidates is generated according to the prefix entered
by the user in the search box and is updated on each new key
stroke [30]. Following each new character entered in the query box,
search engines filter suggestions that match the updated prefix, and
suggest the top-ranked candidates to the user. We use the Sogou
query logs 2008 dataset! for this task. The queries, all in Simplified
Chinese, were extracted from a Chinese search engine and include
anonymized user IDs and click data. They span from 2008-06-01 to
2008-06-30, encompassing over 25 million typed queries. Under our
setup, we define the key notations as follows:

e query g: all possible search prefixes;
e item d: the entire complete query;
e intent : query clusters based on embeddings or urls;

!http://www.sogou.com/labs/resource/
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Figure 2: A toy example for the GA-SS metric comparison. Two queries q; and g2 have equal sampling probability, where each
query is equally relevant to two intents #; and t;. Two searcher groups are of equal size, where group g4 is always interested in
t; and group gp is always interested in t;. In practice, a small positive value should be added on the success for a smoothing to
avoid zero. We ignore it in this toy example for simplicity. We observe that the patterns of change across each metric variant do
not consistently align, which suggests that each metric variant captures different aspects of search success.

e user group g: classified into active group and inactive group
based on the interaction frequency (due to lack of user de-
mographic information).

Movie Recommendation. Movie recommendation is a widely
studies task in the field of information retrieval and has been widely
applied in real-world systems. We use the MovieLens 1M dataset?,
which is the largest version of MovieLens dataset that contains
user demographic information. The dataset contains 6,040 users
and 3,706 items with 1 million user-item interactions. We adapt this
dataset to a search task and define the key notations as follows:

query g: director (information gathered from IMDB3);

item d: the recommended movie;

intent ¢: different movie genres;

user group g: female group and male group as denoted in
the dataset.*

5.2 Experiment Setup

To compute the entire metric value, we first discuss how to compute
each decomposed terms iof GA-SS, especially referring to Eq. 10 and
Eq. 15. Without loss of generality, we use the query auto-completion
task as an example in the following narrative, where g refers to
search prefix, d refers to the entire complete query, and ¢ refers to
query clusters based on embeddings (or urls).

e p(t|q, g): The notation can be further decomposed as below:

p(tlg.9) = > p(tld. q.9) - p(dlq. g). (22)
d

= > p(tld) - p(dlg. g). (23)
d

Zhttps://grouplens.org/datasets/movielens/1m/

Shttps://www.imdb.com/

“4Note that gender is treated as a binary class due to the available labels in the dataset.
We do not intend to suggest that gender identities are binary, nor support any such
assertion.

Both of the two terms in the final equation can be derived
from the original data. p(t|d) denotes the relateness of an
intent given an entire query, which can be computed based
on the embeddings of intents and queries. These embeddings
can be obtained from some pretrained text encoder, such as
BERT [38]. p(d|q, g) is the probability that d is the query the
searcher from group g submits for the input prefix g, can be
directly estimated based on the original data.

o p(q): The probability of a prefix q being launched by any
arbitrary searcher can be measured based on frequency on
the original data.

o p(qlg): The probability of a prefix q being launched by searchers
from group g can be measured based on frequency on the
original data.

o p(s|t, q): As discussed in Section 3.3, p(s|t, q) can be further
decomposed using either static or stochastic ranking policies.
Referring to Eq. 16, Eq. 17, and Eq. 19, we now need to
compute three terms at most: p(rqlt), p(eqlog, p), and p(alq).
For p(rq|t), it represents the relatedness of entire query d
with respect to some given prefix ¢, which can be computed
through the similarity of the corresponding embeddings.
p(eglog, pr) estimates the probability of exposure of output d
based on some user browsing model y applied on top of a
rank list o produced by some model that we want to evaluate
given input g, which can be computed through Eq. 18. p(o|q)
is sampled from some arbitrary policy 7.

5.3 Method

We are interested in son evaluating stochastic ranking policies for
their effectiveness in distributing exposure among items. To facili-
tate this, we initially describe a technique for creating stochastic
ranking policies using a static ranking model. By taking a static
ranker with its associated relevance scores for items relative to a
query g, we apply the Plackett-Luce (PL) model [17, 24] to generate
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Figure 3: Behavior of different metrics for a stochastic ranking policy—generated by randomizing the MPC/MPV and gMPC/gMPV
models using Plackett-Luce. The first row shows the impact of different stochasticity the query auto-completion, while the
second row shows the result on movie recommendation. For consistency, we normalize each of the metric values between 0
and 1 using min-max normalization in each subfigure. The x-axis shows the values of , where a larger value indicates more
randomization.

) Group-aware Search Success (GA-SS)

A case study for movie recommendation

}

Query: “John Carpenter”

A large degree of stochasticity leads

to random ranking for both models.
Metric values decrease.

Voo

Certain amount of stochasticity

improves success and fairness.
Metric values increase.

MPV ( 3=1/2)

Ranked movie titles P(d|q, g=female) P(d|q, g=male)

1.0

0.8

0.6

0.4

0.2

0.0+

MPV (static)

Ranked movie titles

1/2 1/4 1/8 Static

P(d|q, g=female) P(d|q, g=male)

0.139851

0.177201

Escape from New York (1981) 0.139851 0.177201 Escape from New York (1981)
Starman (1984) 0.241337 0.153988 Starman (1984) 0.241337 0.153988
Big Trouble in Little China (1986)  0.102723 0.115146 Add some  thing, The (1982) 0.113861 0.149161
mofe_ Thing, The (1982) 0.113861 0.149161 stochasticity BigTroubleinLittle China (1986)  0.102723 0.115146
MPV ( /6 =8) / gMPV ( /8 =8) stochasﬂmw Halloween (1978) 0.111386 0.09561 Escape from L.A. (1996) 0.070545 0.104344
Escape from L.A. (1996) 0.070545 0.104344 — Halloween (1978) 0.111386 0.09561
Ranked movie titles P(d|q, g=female) P(d|q, g=male) ‘ Christine (1983) 0.063119 0.051023 Christine (1983) 0.063119 0.051023
Fog, The (1980) 0.030941 0.033326 In the Mouth of Madness (1995)  0.040842 0.036773 In the Mouth of Madness (1995) ~ 0.040842 0.036773
Thing, The (1982) 0.113861 0.149161 Vampires (1998) 0.034653 0.033326 Vampires (1998) 0.034653 0.033326
Vampires (1998) 0.034653 0.033326 Village of the Damned (1995) 0.044554 0.028729 Fog, The (1980) 0.030941 0.033326
Assault on Precinct 13 (1976) 0.006188 0.021374
Escape from New York (1981) 0.139851 0.177201 gM PV ( /8 =1 /2) gM PV (Static)
Halloween (1978) 0.111386 0.09561
Village of the Damned (1995) 0.044554 0.028729 ] Ranked movie titles P(d|q, g=female) P(d|q, g=male) Ranked movie titles P(d|q, g=female) P(d|q, g=male)
In the Mouth of Madness (1995)  0.040842 0.036773 fno/- @  Starman (1984) 0.241337 0.153988 Starman (1984) 0.241337 0.153988
Starman (1984) 0.241337 0.153988 chastic,'ty Escape from New York (1981) 0.139851 0.177201 Add some Escape from New York (1981) 0.139851 0.177201
Escape from L.A. (1996) 0.070545 0.104344 Halloween (1978) 0.111386 0.09561 L Thing, The (1982) 0.113861 0.149161
ﬁ Big Trouble in Little China (1986)  0.102723 oa15146  StOChaSECity sigTroublein Littie China (1986)  0.102723 0.115146
Almost random ranking Christine (1983) 0.063119 0.051023 _ Halloween (1978) 0.111386 0.09561
Escape from L.A. (1996) 0.070545 0.104344 Escape from L.A. (1996) 0.070545 0.104344
Thing, The (1982) 0.113861 0.149161 Christine (1983) 0.063119 0.051023
In the Mouth of Madness (1995)  0.040842 0.036773 In the Mouth of Madness (1995) ~ 0.040842 0.036773
Fog, The (1980) 0.030941 0.033326 Vampires (1998) 0.034653 0.033326
Village of the Damned (1995) 0.044554 0.028729 Village of the Damned (1995) 0.044554 0.028729

Figure 4: A case study on impact of stochasticity on different ranking models. We use the movie recommendation as an example
and report the top-10 ranked movies with respect to the query (director): “John Carpenter”. As shown above, when adding some
moderate amount of stochasticity to the ranking model, the success and fairness both improve thus leading to increased metric
values (e.g., GA-SS). However, when a large amount of stochasticity being added, rankings from both models converge to a
random ranking, leading to decreased metric values.



multiple rankings. The PL model adheres to Luce’s axiom of choice,
which asserts that the probability of selecting an item over another
is independent of the other items present [16, 17]. Specifically, the
PL model constructs a ranking by iteratively sampling items with-
out replacement from the collection with probability distribution
p(d|q) defined as below:
exp(r d,q/ ﬁ )

2deD exp(rd’,q/ﬁ),
where rg 4 is the relevance score estimated by the static ranker for
item d with respect to query q. The parameter f is the softmax
temperature. A larger f§ corresponds to more stochasticity in the
ranking. For example, when f = 8, the probability distribution
over all permutations is almost uniform and the stochastic policy
approaches a fully random ranking model. As a corollary, when
decreases the stochastic policy converges to the static ranking pol-
icy, which is a ranking of items sorted by their estimated relevance
score ry 4 in descending order for each query q.

For the query auto-completion, we generate stochastic ranking
policies by applying this post-processing step, with different values
of 8, over two models: (i) Most Popular Completion (MPC), one of the
most widely used baselines that can be regarded as ranking based
on p(d|q), and (ii) Group-aware Most Popular Completion (gMPC),
proposed by ourselves, which ranks items based on [y p(d|g, ). For
the movie recommendation, we use the same models but rename
them as (i) Most Popularly Viewed (MPV) and (ii) group-aware Most
Popularly Viewed (gMPV) for distinction. For both tasks, we sample
100 rankings for each query during evaluation. We employ the
RBP user browsing model and set the patience factor y = 0.8. We
select different values for f in the range of 1/8 to 8 for introducing
different degree of stochasticity in our ranking, and compare with
the deterministic ranking policy.

p(dlq) = (24)

5.4 Impact of Stochasticity (RQ1)

To investigate the impact of stochasticity, we first visualize how
different values of f influence different metrics. Our analysis is
based on stochastic ranking policies that use the MPC/MPV and
gMPC/gMPV models as the underlying static ranking models. We
report the metric values on averaged DA-SS within query, averaged
GA-SS within query, and two variants of GA-SS across queries
based on different aggregation strategies, as shown in Figure 3. For
consistency, we normalize each of the metric values between 0 and
1 using min-max normalization.

Our first observation is that MPC/MPV show similar perfor-
mance to the corresponding group-aware version method on DA-
SS, while largely inferior to the counterparts on other three metrics.
This is unsurprising since DA-SS metric is group-unaware thus
models that do not incorporate group information can still achieve
a high score, while all other metrics are group-aware requiring
the model to take group attributes into consideration for a good
performance. Our second observation is that as f§ increases, the
values on all metrics first increase and then decrease towards zero.
This pattern aligns with expectations given that a larger f corre-
sponds to a more random ranking policy, where the original static
relevance estimates have a smaller influence, which consequently
results in low search success. Interestingly, the metric values first
increase and then decrease, illustrating a trade-off between success

O AN 0575 | 0.897

. 1000 [EENCEAZIRTNN 0,609

DA-SS  GASS GA-SS3[] GA-SS[y DASS  GA-SS GA-SS3[| GA-SS[|y
(a) Query Auto-completion (b) Movie Recommendation

Figure 5: The Kendall rank correlation between different
metrics on the two tasks and datasets we studied.

and fairness within our metric. This suggests that a certain level of
randomness can optimize this trade-off. As illustrated in Figure 3,
the degree of optimal stochasticity varies across different metrics
and datasets.

Case Studies. To visualize the impact of stochasticity more
clearly, we use the movie recommendation as an example and we
investigate the effect of stochasticity on ranking models, specifi-
cally focusing on the output for the director query “John Carpenter”.
Figure 4 shows that incorporating a moderate level of stochastic-
ity into the ranking process maintains high success (i.e., highly
satisfied movies ranked higher) and improves fairness to different
demographic groups (i.e., highly satisfied movies for female group
and male group both occur in the top of the list), as reflected by
improved values in metrics such as Group-aware Search Success
(GA-SS). Conversely, introducing excessive stochasticity causes the
rankings provided by both models to approach a uniform policy,
which in turn leads to a decline in the performance metrics. The
top-10 movie rankings are used to illustrate these effects across
different degrees of stochasticity in the models.

5.5 Correlation Analysis (RQ2)

Next, we show the cross-metric analysis to understand the correla-
tion of different search success metrics. To study this, we use the
same ranking models, with seven different levels of stochasticity in
each case (i.e, f = 8,4,2,1,1/2,1/4,1/8). For each metric, this gives
us 2 X 7 = 14 combinations of model and stochasticity level. Now
for every pair of search success metrics, we compute the Kendall
rank correlation [13] to quantify the agreement between the two
metrics with respect to the ordering of the ranking model instances.
For the two metrics measured within a single query, DA-SS and
GA-SS, we compute a single value for them by averaging over all
queries. We perform the analysis on the query auto-completion and
movie recommendation, respectively.

As shown in Figure 5, we observe that the correlation between
the DA-SS metric and the other four search success measures is typi-
cally low, which is expected since DA-SS is the only group-unaware
metric. GA-SS metric (within query) shows stronger correlation
with the two variants of GA-SS across query metrics. This is also
aligned with our expectations due to their similar metric formula-
tion and consideration on group attributes but focusing on different



query aggregations. The two variants of GA-SS across query met-
rics, GA-SSy 71 and GA-SSt7 5= show the strongest correlation and
their only difference lie in the different order for computing the
metrics over queries and groups. Overall, the correlation matrices
align with the behavior we would expect by comparing Eq. 5, Eq. 10,
Eq. 15, Eq. 21, and are consistent over two datasets.

6 Search Success and Relevance Metrics

Our group-aware search success metric also shows connections to
rank-weighted relevance metrics in search, such as NDCG, which
are generally used for measuring quality of service. The search
success can be decomposed into two components (see Eq. 17): the
probability that a searcher observes the result and the probability
that the result leads to a success. Analogously, rank-weighted rele-
vance metrics can also be decomposed into two components (see
Eq.(3.7) in [34]): the probability that a searcher observes the result
and the expected reward/score from the result. Notably, the first
component is identical and depends on some user browsing model.

Thus, our proposal inspires alternative and various definitions
of quality of service in search. By using relevance metrics like
NDCG, one can first compute a score for each user per query. Then
the quality of service of search can be defined by adopting a two-
level aggregation approach similar to sum-of-product and product-
of-sum we designed for p(S%AZ) and p(SgAH): either aggregating
results first across groups and then across queries, or the reverse. In
the aggregation process, both arithmetic and geometric means are
viable, each emphasizing different attributes. The arithmetic mean
focuses on overall user satisfaction by weighting each score equally,
while the geometric mean offers a more balanced perspective by
reducing the influence of outliers. While a thorough analysis of
these metrics is outside the scope of this paper, they are deserving
of further investigation in future research.

7 Conclusion

In this paper, we have addressed the limitations of traditional mea-
sures of search success that often neglect the diverse information
needs across different searcher demographic groups. To address this,
we introduced a new metric called Group-aware Search Success
(GA-SS), which redefines search success to ensure success across
all demographic groups. We developed a detailed mathematical
framework to calculate GA-SS, using both static and stochastic
ranking policies, and allowing to incorporate any user browsing
model. Furthermore, we proposed the Group-aware Most Popular
Completion (gMPC) ranking model, designed to better accommo-
date demographic variations in user intent, thereby aligning more
closely with the diverse needs of all user groups. We empirically
validated our metric and approach using two real-world datasets.
These studies illuminate the effects of stochasticity and the intricate
relationships among various search success metrics. Our results
underscore the importance of adopting a more inclusive approach
to measuring search success and inspire future investigations into
the quality of service based on relevance metrics.
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