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ABSTRACT

Node attribute is one kind of crucial information on graphs, but real-world graphs
usually face attribute-missing problem where attributes of partial nodes are miss-
ing and attributes of the other nodes are available. It is meaningful to restore
the missing attributes so as to benefit downstream graph learning tasks. Popular
GNN is not designed for this node attribute completion issue and is not capable of
solving it. Recent proposed Structure-attribute Transformer (SAT) framework de-
couples the input of graph structures and node attributes by a distribution matching
technique, and can work on it properly. However, SAT leverages nodes with ob-
served attributes in an equally-treated way and neglects the different contributions
of different nodes in learning. In this paper, we propose a novel active sampling
algorithm (ATS) to more efficiently utilize the nodes with observed attributes and
better restore the missing node attributes. Specifically, ATS contains two metrics
that measure the representativeness and uncertainty of each node’s information
by considering the graph structures, representation similarity and learning bias.
Then, these two metrics are linearly combined by a Beta distribution controlled
weighting scheme to finally determine which nodes are selected into the train set
in the next optimization step. This ATS algorithm can be combined with SAT
framework together, and is learned in an iterative manner. Through extensive ex-
periments on 4 public benchmark datasets and two downstream tasks, we show
the superiority of ATS in node attribute completion.

1 INTRODUCTION

Node attribute, known as a kind of important information on graphs, plays a vital role in many
graph learning tasks. It boosts the performance of Graph Neural Network (GNN) Defferrard et al.
(2016); Kipf & Welling (2017); Xu et al. (2019b); Veličković et al. (2018) in various domains, e.g.
node classification Jin et al. (2021); Xu et al. (2019a) and community detection Sun et al. (2021);
Chen et al. (2017). Meanwhile, node attribute provides human-perceptive demonstrations for the
non-Euclidean structured data Zhang et al. (2019); Li et al. (2021). In spite of its indispensability,
real-world graphs may have missing node attributes due to kinds of reasons Chen et al. (2022).
For example, in citation graphs, key terms or detailed content of some papers may be inaccessible
because of copyright protection. In social networks, profiles of some users may be unavailable due
to privacy protection. When observing the attributes of partial nodes on graphs, it is significant to
restore the missing attributes of the other nodes so as to benefit the downstream graph learning tasks.
Namely, this is the goal of node attribute completion task.

Currently, there are limited works on the node attribute completion problem. Recent graph learning
algorithms such as network embedding Cui et al. (2018) and GNN are not targeted for this problem
and are limited in solving it. Random walk based methods Perozzi et al. (2014); Tang et al. (2015);
Grover & Leskovec (2016) are effective in learning node embeddings on large-scale graphs. While
they only take the graph structures into consideration and ignore the rich information from node
attributes. Attributed random walk models Huang et al. (2019); Lei Chen & Bronstein (2019) can
potentially deal with this problem but they rely on high-quality random walks and carefully designed
sampling strategies which are hard to be guaranteed Yang et al. (2019). The popular GNN framework
takes graph structures and node attributes as a coupled input and can work on the node attribute
completion problem by some attribute-filling tricks, while these tricks introduce noise in learning
and bring worse performance. In last few years, researchers begin to concentrate on the learning
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problem on the attribute-missing graphs. Chen et al. (2022) propose a novel structure-attribute
transformer (SAT) framework that can handle the node attribute completion case. SAT leverages
structures and attributes in a decoupled scheme and achieves the joint distribution modeling by
matching the latent codes of structures and attributes.

Although SAT has shown great promise on node attribute completion problem, it leverages the
nodes with observed attributes in an equally-treated manner and ignores the different contributions
of nodes in the learning schedule. Given limited nodes with observed attributes, it is more important
to notice that different nodes have different information (e.g. degrees, neighbours, etc.) and should
have different importance in the learning process. Importance re-weighting Wang et al. (2017);
Fang et al. (2020); Byrd & Lipton (2019) on the optimization objective may come to mind to be
a potential solution. Whereas, the information of nodes is influenced by each other and has more
complex patterns. The importance distribution is implicit, intractable and rather complicated, raising
great difficulties to design its formulation. It’s challenging to find a more practical way to exert the
different importance of the partial nodes with observed attributes at different learning stages.

In this paper, we propose an active sampling algorithm named ATS to better leverage the partial
nodes with observed attributes and help SAT model converge to a more desirable state. In particular,
ATS measures the representativeness and uncertainty of node information on graphs to adaptively
and gradually select nodes from the candidate set to the train set after each training epoch, and
thus encourage the model to consider the node’s importance in learning. The representativeness and
uncertainty are designed by considering the graph structures, representation similarity and learning
bias. Furthermore, it is interesting to find that the learning prefers nodes of high representative-
ness and low uncertainty at the early stage while low representativeness and high uncertainty at the
late stage. Thereby, we proposes a Beta distribution controlled weighting scheme to exert adaptive
learning weights on representativeness and uncertainty. In this way, these two metrics are linearly
combined as the final score to determine which nodes are selected into the train set in next opti-
mization epoch. The active sampling algorithm (ATS) and the SAT model are learned in an iterative
manner until the model converges. Our contributions are as summarized follows:

• In node attribute completion, to better leverage the partial nodes with observed attributes,
we advocate to use active sampling algorithm to adaptively and gradually select samples
into the train set in each optimization epoch and help the model converge to a better state.

• We propose a novel ATS algorithm to measure the importance of nodes by designed rep-
resentativeness and uncertainty metrics. Furthermore, when combining these two metrics
as the final score function, we propose a Beta distribution controlled weighting scheme to
better exert the power of representativeness and uncertainty in learning.

• We combine ATS with SAT, a newly node attribute completion model, and conduct exten-
sive experiments on 4 public benchmarks. Through the experimental results, we show that
our ATS algorithm can help SAT reach a better optimum, and restore higher-quality node
attributes that benefit downstream node classification and profiling tasks.

2 RELATED WORK

2.1 DEEP GRAPH LEARNING

With the development of deep representation learning in the Euclidean vision domain Voulodi-
mos et al. (2018), researchers have studied a lot of deep learning methods on the non-Euclidean
graphs Zhang et al. (2022b). Random walk based methods can learn node embeddings by random
walks , which only considers the structural information and cannot generalize to new graphs. To
tackle this problem, the attributed random walk based methods (e.g.GraphRNA Huang et al. (2019))
apply random walks on both structures and attributes. These random walk based methods are prac-
tical, but they demand hardly-acquired high-quality random walks to guarantee good performance.
Graph Neural Network (GNN) Scarselli et al. (2008); Defferrard et al. (2016); Kipf & Welling (2017)
realizes ’graph-in, graph-out’ that transforms the embeddings of node attributes while maintaining
the connectivity Sanchez-Lengeling et al. (2021). GNN performs a message passing scheme, which
is reminiscent of standard convolution as in Graph Convolutional Networks (GCN) Kipf & Welling
(2017). GNN can infer the distribution of nodes based on node attributes and edges and achieve
impressive results on graph-related tasks. There are also numerous creative modifications in GNN.
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GAT Veličković et al. (2018) introduces multi-head attention into GNN. GraphSAGE Hamilton et al.
(2017) moves to the inductive learning setting to deal with large-scale graphs.

Recently, more works have emphasized the importance of node attributes in graph-related down-
stream tasks. Both SEAL Pan et al. (2022) and WalkPool Zhang & Chen (2018) encode node
representations with node attributes to achieve superior link prediction performance. In most real-
world scenarios, attributes of some nodes may be inaccessible, so the node attribute completion task
appears. Despite GNN’s success, there are few works on this task. Recent SAT Chen et al. (2022)
assumes a shared-latent space assumption on graphs and proposes a novel GNN-based distribution
matching algorithm. It decouples structures and attributes and simultaneously matches the distribu-
tion of respective latent vectors. WGNN developed by Chen et al. (2021) learns node representa-
tions in Wasserstein space without any imputation. Jin et al. (2021) propose the HGNN-AC model to
learn topological embedding and attribute completion with weighted aggregation. PaGNNs Jiang &
Zhang (2020) can reconstruct the missing attributes based on a partial message-propagation scheme.
Among them, SAT performs well and has open-source implementations, so we refer to SAT as a
primary base model for completing missing node attributes.

2.2 ACTIVE SAMPLING ON GRAPHS

Active learning assists the model to achieve as better performance as possible while labeling as few
samples as possible Ren et al. (2021). It’s usually combined with deep learning model to select
the most influential samples from unlabeled dataset and then label them for training to reduce the
annotation cost Yoo & Kweon (2019). There are also some works of active learning on graph data.
Early works Gadde et al. (2014); Gu et al. (2013); Ji & Han (2012) mainly take graph structures
into consideration and design the query strategy regardless of node attributes. With the development
of deep learning, many active learning algorithms are designed based on GNN. The query strategy
of AGE Cai et al. (2017) measures the amount of the information contained in different nodes to
select the most informative candidate node. Similar to AGE, ANRMAB Gao et al. (2018) adopts the
weighted sum of different heuristics, but it adjusts the weights based on a multi-armed bandit frame-
work. Caramalau et al. (2021) discuss two novel sampling methods: UncertainGCN and CoreGCN,
which are based on uncertainty sampling and CoreSet Sener & Savarese (2017), respectively.

Nevertheless, most of today’s popular active sampling algorithms on graphs aim to resolve the node
classification task and focus on how to reduce the annotation cost. For this node attribute comple-
tion task, since the attribute-observed nodes are limited and the dimension of node attributes is much
higher than node classes, we demand a more advanced active sampling algorithm to help the primary
model utilize the attribute-observed nodes more efficiently and learn the complicated attribute dis-
tribution better. In addition, the current query strategies measure the uncertainty by an unsupervised
manner, but we propose a supervised one to make the sampling closer to the primary model.

3 PRELIMINARY

3.1 PROBLEM DEFINITION

For node attribute completion task, we denote G = (V, A,X) as a graph with node set V =
{v1, v2, . . . , vN}, the adjacency matrix A ∈ RN×N and the node attribute matrix X ∈ RN×F .
Vo = {vo1, vo2, ..., voNo

} is the set of attribute-observed nodes. The attribute information of Vo
is Xo = {xo1, xo2, ..., xoNo

} and the structural information of Vo is Ao = {ao1, ao2, ..., aoNo
}.

Vu = {vu1 , vu2 , ..., vuNu
} is the set of attribute-missing nodes. The attribute information of Vu is

Xu = {xu1 , xu2 , ..., xuNu
} and the structural information of Vu is Au = {au1 , au2 , ..., auNu

}. More
specifically, we have V = Vu ∪ Vo, Vu ∩ Vo = ∅, and N = No +Nu. We expect to complete the
missing node attributes Xu based on the observed node attributes Xo and structural information A.

For active sampling algorithm, we denote the total training set as T , in which the node attributes are
known. The current training set of SAT model is TL and the set containing the candidate nodes is
denoted as TU . We have T = TL ∪ TU . We design a reasonable sampling strategy named ATS
which iteratively transfers the most suitable candidate nodes from TU to TL to boost the training
efficiency of SAT until TU = ∅ and the model converges.
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3.2 STRUCTURE-ATTRIBUTE TRANSFORMER
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Figure 1: The general architecture of SAT. The attributes and the structure are encoded by EX and
EA and reconstructed by DX and DA. Meanwhile, SAT matches the latent codes of structures and
attributes to a prior distribution by adversarial distribution matching.

Since we combine SAT with our ATS to demonstrate how ATS works, we briefly introduce SAT
in this part. The general architecture of SAT is shown in Figure 1. SAT inputs structures and
attributes in a decoupled manner, and matches the joint distribution of structures and attributes by
a paired structure-attribute matching and an adversarial distribution matching. During the paired
structure-attribute matching, we have a structure encoder EA (a two-layer GNN such as GCN)
and an attribute encoder EX (a two-layer MLP) that encodes the structural information ai and the
attribute information xi into za and zx, respectively. Then two decoders DA and DX decode za and
zx as the structures ai and attributes xi in both parallel and cross ways. Encoders and decoders are
parameterized by ϕ and θ respectively. The joint reconstruction loss Lr of SAT can be written as:

min
θx,θa,ϕx,ϕa

Lr = −1

2
Exi

[Eqϕx (zx|xi)[log pθx(xi|zx)]]−
1

2
Eai [Eqϕa (za|ai)[log pθa(ai|za)]]

− 1

2
λc · Eai [Eqϕa (za|ai)[log pθx(xi|za)]]−

1

2
λc · Exi

[Eqϕx (zx|xi)[log pθa(ai|zx)]] (1)

where pθx and pθa are the encoders, qϕx and pϕa are the decoders. The first two terms in Eq. 1
represent the self-reconstruction stream. The latent variable zx, za are decoded to X̂o, Â by two-
layer MLP decoders DX , DA respectively. The last two terms indicate the cross-reconstruction
stream, where zx and za are decoded to Â and X̂o, respectively.

During the adversarial distribution matching, SAT expects to match the posterior distributions
qϕx

(zx|xi) and qϕa
(za|ai) to a Gaussian prior p(z) ∼ N (0, 1). Inspired by Makhzani et al. (2015),

SAT adopts an efficient adversarial matching approach between zx, za and samples from the Gaus-
sian distribution. The adversarial distribution matching loss Ladv can be written as a minimax game:

min
ψ

max
ϕx,ϕa

Ladv =− Ezp∼p(z)[logD(zp)]− Ezx∼qϕx (zx|xi)[log(1−D(zx))]

− Ezp∼p(z)[logD(zp)]− Eza∼qϕa (za|ai)[log(1−D(za))] (2)

where ψ is the parameters of the shared discriminator D.

In summary, the objective function of SAT is:

min
Θ

max
Φ

L = Lr + Ladv (3)

where Θ = {θx, θa, ϕx, ϕa, ψ}, Φ = {ϕx, ϕa}. In the training phase of the node attribute com-
pletion task, SAT aims to minimize the reconstruction loss between Â, X̂o and A, Xo in Eq. 1, as
well as the adversarial loss in Eq. 2. In testing, it encodes the structural information Au of attribute-
missing nodes by the encoder EA and then restore their missing attributes Xu by the decoder DX .

4 METHOD

We design the query strategy of ATS by measuring the representativeness and uncertainty of the
candidate nodes. Then we combine the scores of uncertainty and representativeness as the final score
by an adaptive reweighting scheme and select the nodes with the highest scores for next learning
epoch. We will explain these more in the following parts.
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4.1 QUERY STRATEGY OF ATS

Representativeness: The major and typical patterns among the nodes are vital for the model to
converge to the right direction. In this section, we introduce the concept of representativeness as
a sampling metric. This metric is composed of two parts: 1) information density ϕdensity and 2)
structural centrality ϕcentrality . The former mainly focuses on measuring the similarity between the
corresponding latent vectors of attributes and structures. The latter indicates how closely a node
is connected to its neighbours on graph. In other words, the information density is inspired by
the good representation learning ability of SAT and the structural centrality is natural to mine the
information on the graph structures. These two aspects offer us a comprehensive analysis of the
representativeness in both implicit and explicit ways.

We first focus on the information density. SAT proposes a shared-latent space assumption for node
attribute completion. We can study the node similarities through the implied features learned by
the model. If there is a dense distribution of representation vectors in a local region of the latent
space, the corresponding nodes will have more similar features and this region will contain further
mainstream information, so we expect to train these more representative nodes in priority. For
node attribute completion task, although there are attribute embeddings and structure embeddings
in shared-latent space, our ATS only uses the structure embeddings zai to calculate the ϕdensity as
shown in Eq. 4 since we rely on the structural representations to restore the missing node attributes.
In order to find the central node located in high-density region, we employ the K-means algorithm
in the latent space and calculate the Euclidean distance between each node and its clustering center.
Given d as the metric of Euclidean distance in l2-norm and Czai

as the clustering center of zai in
latent space, the formulation of ϕdensity is written as:

ϕdensity(vi) =
1

1 + d(zai , Czai
)
, vi ∈ TU (4)

The larger the ϕdensity is, the more representative the node is, and the node contains more represen-
tative features that are worthy of the model’s attention.

Besides the feature analysis in latent space, the node representativeness can also be inferred from
the explicit graph structures. We can study the connections between nodes and develop a metric to
calculate the node centrality based on the structural information. Intuitively, the centrality can have
a positive correlation with the number of neighbours. At the early stage of training, if we can focus
on these nodes, the model will learn the approximate distribution of the data faster and reduce the
influence caused by the noisy ones. PageRank Page et al. (1999) algorithm is an effective random-
walk method to acquire the visiting probabilities of nodes. We utilize the PageRank score as the
structural centrality ϕcentrality , which is shown as below:

ϕcentrality(vi) = ρ
∑
j

Aij
ϕcentrality(vj)∑

k Ajk
+

1− ρ

NU
, vi ∈ TU (5)

where NU is the number of nodes in TU , ρ is the damping parameter. The larger ϕcentrality is, the
more representative the node is, and the node is more closely associated with its neighbours.

Uncertainty: Uncertainty reflects the learning state of the current model towards the nodes. When
the model is reliable, it’s reasonable to pay more attention on the nodes that have not been sufficiently
learned. Uncertainty is a commonly-used query criterion in active learning. However, as mentioned
before, the uncertainty in other sampling algorithms Cai et al. (2017); Caramalau et al. (2021); Zhang
et al. (2022a) usually works for node classifications and is designed in an unsupervised manner to
reduce the annotation cost. In this paper, for the node attribute completion task, in order to know
the training status of the model more accurately, we consider the observed attributes and structures
as supervision, and use the learning loss in SAT as the uncertainty metric, noted as ϕentropy(vi).

ϕentropy(vi) = Lr(vi) + Ladv(vi), vi ∈ TU (6)

We can input the attributes of candidate nodes and the corresponding graph structures into SAT, and
then obtain their loss values. The larger ϕentropy(vi) is, the more uncertainty of node vi has. From
the perspective of information theory, nodes with greater uncertainty contain more information.
Sampling these nodes can help the model get the information that has not been learned in previous
training, thus enhancing the training efficiency.
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4.2 SCORE FUNCTION AND BETA DISTRIBUTION CONTROLLED WEIGHTING SCHEME

We have presented three metrics of our query strategy. Then, a question arises: How to combine
these metrics to score each node? Combing the metrics with a weighted sum is a possible solution
but still faces great difficulties. First, the values of different metrics are incomparable because of the
distinct dimensional units. Second, the different metrics may take different effects at different learn-
ing stages. To solve these issues, we introduce a percentile evaluation and design a Beta-distribution
controlled re-weighting scheme to exert the functions of each metric, since Beta distribution is a
suitable model for the random behavior of percentages and proportions Gupta & Nadarajah (2004).

Denote Pϕ(vi, TU ) as the percentage of the candidate nodes in TU which have smaller values than
the node vi with metric ϕ. For example, if there are 5 candidate nodes and the scores of one metric
is [1, 2, 3, 4, 5], the percentile of the corresponding 5 nodes will be [0, 0.2, 0.4, 0.6, 0.8]. We apply
the percentile to three metrics and define the final score function of ATS as:

S(vi) = α · Pentropy(vi, TU ) + β · Pdensity(vi, TU ) + γ · Pcentrality(vi, TU ) (7)

where α + β + γ = 1. At the sampling stage, ATS will select one or several nodes with the largest
S and add them to the training set TL for the next training epoch of SAT.

ALGORITHM 1: ATS algorithm
Input: SAT parameters, G, TU , TL

initialization of TL and hyper-parameters;
while ne < total epoch do

// Training stage

loss← SAT (TL);
// Update SAT
loss.backward();
update(SAT.params);
// Sampling stage

if #TU > 0 then
// SAT returns the loss values and latent representations za
za, ϕentropy ← SAT (TU ); ϕdensity ← getDensity(za); ϕcentrality ← getCentrality(G);
γ ← Beta(1, nt); α, β ← 1−γ

2
;

S ← α · Pentropy + β · Pdensity + γ · Pcentrality;
// select the node with the highest score

TS ← activeSample(S, TU );
// renew the training set of SAT

TL ← TL ∪ TS ;
// renew the candidate set

TU ← TU \ TS ;
end

end

Further, it is worth noting that the uncertainty and the information density are determined by the
training result returned from SAT. At an early training stage, the model is unstable and the returned
training result may not be quite reliable. A sampling process based on inaccurate model-returned
results may lead to undesirable results. Hence, we set the weights to time-sensitive ones. The
structure-related weight γ is more credible so it can be larger initially. As the training epoch in-
creases, the model can pay more attention to ϕentropy and ϕdensity , while the weight γ will decrease
gradually. We formalize this by sampling γ from a Beta distribution, of which the expectation be-
comes smaller with the increase of training epoch. The weighting values are defined as:

γ ∼ Beta(1, nt), nt =
ne
ϵ

and α = β =
1− γ

2
. (8)

where nt is one of the determinants in Beta distribution; ϵ is used to control the expectation of γ; ne
denotes the current number of epochs. We obtain the expectation by calculating the average value
of 10,000 random samples.
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4.3 ITERATIVE TRAINING AND IMPLEMENTATION

In general, our method consists of two stages: one is SAT, responsible for the training stage; the
other is ATS, responsible for the sampling stage. Before the training, we divide total training set
T into TU and TL. We randomly sample 1% of the nodes in T as the initial nodes of TL and the
rest composes TU . SAT will be trained on the changeable TL. Once SAT accomplishes a single
training epoch, ATS starts the sampling process. We sample the most representative and informative
candidate nodes from TU according to the query strategy. These selected nodes are added to TL
and removed from TU . Then SAT will be trained on the renewed TL at next epoch. The training
stage and the sampling stage alter iteratively until TU is null. Finally ATS is terminated and SAT
will continue training to convergence. We clarify the learning process in Algorithm 1.

5 EXPERIMENTS AND ANALYSIS

5.1 DATASETS

We utilize 4 public benchmarks whose node attributes are categorical vectors. The information of
used datasets is as follows: 1) Cora. Cora McCallum et al. (2000) is a citation graph with 2,708
papers as nodes and 10,556 citation links as edges. Each node has a multi-hot attribute vector with
1,433 dimensions. The attribute vectors consist of different word tokens to determine whether they
appear or not. 2) Citeseer. Citeseer Sen et al. (2008) is another citation graph which is larger than
Cora. It contains 3,327 nodes and 9,228 edges. Like Cora, each node has a multi-hot attribute vector
with 3,703 dimensions. 3) Amazon-Computer and 4) Amazon-Photo. These two datasets are
generated from Amazon co-purchase graph. The node represents the item and the edge represents
the two items are usually purchased at the same time. The node attribute is a multi-hot vector with
the set of words involved in the item description. Amazon-Computer Shchur et al. (2018) has 13,752
items and 245,861 edges. Amazon-Photo Shchur et al. (2018) has 7,650 nodes and 119,081 edges.

5.2 EXPERIMENTAL SETUP

Baselines: We compare SAT model combined with ATS with other baselines introduced in Chen
et al. (2022): NeighAggre Şimşek & Jensen (2008), VAE Kingma & Welling (2013), GCN Kipf
& Welling (2017), GraphSage Hamilton et al. (2017), GAT Veličković et al. (2018), Hers Hu et al.
(2019), GraphRNA Huang et al. (2019), ARWMF Lei Chen & Bronstein (2019) and original SAT.
Details about how they work on node attribute completion are illustrated in Appendix A.1.

Evaluation metrics: In node attribute completion, the restored attributes can provide side infor-
mation for nodes and benefit downstream tasks. By following SAT Chen et al. (2022), we study
the effect of ATS on two downstream tasks including node classification task in the node level and
profiling task in the attribute level. In node classification, the restored attributes serve as one kind of
data augmentation and supply more information to the down-stream classification task. In profiling,
we aim to predict the possible profile (e.g. key terms of papers in Cora) in each attribute dimension.

Parameters setting: In the experiment, we randomly sample 40% nodes with attributes as training
data, 10% nodes as validation data and the rest as test data. The attributes of validation and test nodes
are unobserved in training. For the baselines, the parameters setting and the experiment results refer
to Chen et al. (2022). For our ATS method, the SAT’s setting remains the same, such as λc. We
mainly have two hyper-parameters: ϵ in the weighting scheme and cluster numbers in the estimation
of density ϕdensity . Considering the objective of the Beta distribution weighting scheme, ϵ should
be larger than the total sampling times. Hence in Cora and Citeseer, we set ϵ = 1500 and when it
comes to Amazon Photo and Amazon Computer, we set ϵ = 2000. In addition, we set the cluster
number as 10, 15, 10, 15 for Cora, Citeseer, Amazon Photo and Amazon Computer.

5.3 OVERALL COMPARISON

5.3.1 NODE CLASSIFICATION

Classification is an effective downstream task to test the quality of the recovered attributes. In
node classification task, the nodes with restored attributes are split into 80% training data and 20%
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test data. Then we conduct five-fold cross-validation in 10 times and take the average results of
evaluation metrics as the model performance. We use two supervised classifiers: MLP and GCN.
The MLP classifier is composed by two fully-connected layers, which classifies the nodes based on
attributes. The GCN classifier is an end-to-end graph representation learning model, which can learn
the structure and attributes simultaneously. Results are shown in Table 1.

According to the results of “X” row where only node attributes are used, the optimized SAT model
with our proposed ATS algorithm achieves obvious improvement than original SAT model. Our
ATS can also adapt to SAT with different GNN backbones (e.g. GCN and GAT) and achieve higher
classification accuracy than the original models. For the results of “A+X” row where both structures
and node attributes are used by a GCN classifier, our method achieves the highest score in Cite-
seer and Amazon-Computer, with 0.84% and 0.56% respectively, because ATS contains the density
metric and can help the model better learn the inner semantic structures.

Table 1: Node classification of the node-level evaluation for node attribute completion. ”X” indicates
the MLP classifier that only considers the node attributes. ”A+X” indicates the GCN classifier that
considers both the structures and node attributes.

Method Cora Citeseer Amazon-Computer Amazon-Photo

X

NeighAggre 0.6248 0.5539 0.8365 0.8846
VAE 0.2826 0.2551 0.3747 0.2598
GCN 0.3943 0.3768 0.3660 0.2683

GraphSage 0.4852 0.3933 0.3747 0.2598
GAT 0.4143 0.2129 0.3747 0.2598
Hers 0.3046 0.2585 0.3747 0.2598

GraphRNA 0.7581 0.6320 0.6968 0.8407
ARWMF 0.7769 0.2267 0.5608 0.4675

SAT(GCN) 0.7644 0.6010 0.7410 0.8762
SAT(GAT) 0.7937 0.6475 0.8201 0.8976

ATS+SAT(GCN) 0.7850 0.6370 0.8198 0.8827
ATS+SAT(GAT) 0.8065 0.6662 0.8402 0.9028

A+X

NeighAggre 0.6494 0.5413 0.8715 0.901
VAE 0.3011 0.2663 0.4023 0.3781
GCN 0.4387 0.4079 0.3974 0.3656

GraphSage 0.5779 0.4278 0.4019 0.3784
GAT 0.4525 0.2688 0.4034 0.3789
Hers 0.3405 0.3229 0.4025 0.3794

GraphRNA 0.8198 0.6394 0.8650 0.9207
ARWMF 0.8025 0.2764 0.7400 0.6146

SAT(GCN) 0.8327 0.6599 0.8519 0.9163
SAT(GAT) 0.8579 0.6767 0.8766 0.9260

ATS+SAT(GCN) 0.8366 0.6750 0.8752 0.9181
ATS+SAT(GAT) 0.8573 0.6851 0.8822 0.9251

5.3.2 PROFILING

The model outputs the restored attributes in different dimensions with probabilities. Higher corre-
sponding probabilities of ground-truth attributes signify better performance. In this section, we use
two common metrics Recall@k and NDCG@k to evaluate the profiling performance. The experi-
ment results are shown in Table 2.

According to the profiling results in Table 2, on the basis of the advantages established by the SAT
model towards other baselines, the combination of the ATS algorithm and SAT model (ATS+SAT)
obtains even higher performance in almost all the evaluation metrics and almost all the datasets. For
example, ATS+SAT(GAT) obtains a relative 13.5% gain of Recall@10 and a relative 13.3% gain
of NDCG@10 on Citeseer compared with SAT(GAT). The main reason of these results is that the
active sampling algorithm ATS helps SAT model to realize different importance of different nodes
in learning, and thus facilitates better distribution modeling of the high-dimensional node attributes.

5.4 STUDY OF THE WEIGHTING SCHEME

Besides the active sampling metrics, the Beta distribution controlled weighting scheme is also a
highlight of the ATS algorithm. We will verify the effectiveness of our proposed scheme in com-
parison with other weighting schemes, such as the fixed weighting scheme and the linear variation
weighting scheme. For the fixed one, the values of γ are 0.2, 13 , 0.6, and α = β = 1−γ

2 . For the
linear variation one, γ decreases linearly from 1 to 0.5 or from 1 to 0.
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Table 2: Profiling of the attribute-level evaluation for node attribute completion.
Method Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50

Cora
NeighAggre 0.0906 0.1413 0.1961 0.1217 0.1548 0.1850

VAE 0.0887 0.1228 0.2116 0.1224 0.1452 0.1924
GCN 0.1271 0.1772 0.2962 0.1736 0.2076 0.2702

GraphSage 0.1284 0.1784 0.2972 0.1768 0.2102 0.2728
GAT 0.1350 0.1812 0.2972 0.1791 0.2099 0.2711
Hers 0.1226 0.1723 0.2799 0.1694 0.2031 0.2596

GraphRNA 0.1395 0.2043 0.3142 0.1934 0.2362 0.2938
ARWMF 0.1291 0.1813 0.296 0.1824 0.2182 0.2776

SAT(GCN) 0.1508 0.2182 0.3429 0.2112 0.2546 0.3212
SAT(GAT) 0.1653 0.2345 0.3612 0.2250 0.2723 0.3394

ATS+SAT(GCN) 0.1560 0.2259 0.3527 0.2161 0.2628 0.3298
ATS+SAT(GAT) 0.1640 0.2355 0.3616 0.2258 0.2733 0.3405

Citeseer
NeighAggre 0.0511 0.0908 0.1501 0.0823 0.1155 0.1560

VAE 0.0382 0.0668 0.1296 0.0601 0.0839 0.1251
GCN 0.0620 0.1097 0.2052 0.1026 0.1423 0.2049

GraphSage 0.0612 0.1097 0.2058 0.1003 0.1393 0.2034
GAT 0.0561 0.1012 0.1957 0.0878 0.1253 0.1872
Hers 0.0576 0.1025 0.1973 0.0904 0.1279 0.1900

GraphRNA 0.0777 0.1272 0.2271 0.1291 0.1703 0.2358
ARWMF 0.0552 0.1015 0.1952 0.0859 0.1245 0.1858

SAT(GCN) 0.0764 0.1280 0.2377 0.1298 0.1729 0.2447
SAT(GAT) 0.0811 0.1349 0.2431 0.1385 0.1834 0.2545

ATS+SAT(GCN) 0.0854 0.1400 0.2580 0.1441 0.1896 0.2672
ATS+SAT(GAT) 0.0921 0.1487 0.2635 0.1570 0.2037 0.2791

Amazon-Computer
NeighAggre 0.0321 0.0593 0.1306 0.0788 0.1156 0.1923

VAE 0.0255 0.0502 0.1196 0.0632 0.0970 0.1721
GCN 0.0273 0.0533 0.1275 0.0671 0.1027 0.1824

GraphSage 0.0269 0.0528 0.1278 0.0664 0.1020 0.1822
GAT 0.0271 0.0530 0.1278 0.0673 0.1028 0.1830
Hers 0.0273 0.0525 0.1273 0.0676 0.1025 0.1825

GraphRNA 0.0386 0.0690 0.1465 0.0931 0.1333 0.2155
ARWMF 0.0280 0.0544 0.1289 0.0694 0.1053 0.1851

SAT(GCN) 0.0391 0.0703 0.1514 0.0963 0.1379 0.2243
SAT(GAT) 0.0421 0.0746 0.1577 0.1030 0.1463 0.2346

ATS+SAT(GCN) 0.0421 0.0746 0.1575 0.1032 0.1464 0.2347
ATS+SAT(GAT) 0.0440 0.0775 0.1617 0.1074 0.1519 0.2412

Amazon-Photo
NeighAggre 0.0329 0.0616 0.1361 0.0813 0.1196 0.1998

VAE 0.0276 0.0538 0.1279 0.0675 0.1031 0.1830
GCN 0.0294 0.0573 0.1324 0.0705 0.1082 0.1893

GraphSage 0.0295 0.0562 0.1322 0.0712 0.1079 0.1896
GAT 0.0294 0.0573 0.1324 0.0705 0.1083 0.1892
Hers 0.0292 0.0574 0.1328 0.0714 0.1094 0.1906

GraphRNA 0.0390 0.0703 0.1508 0.0959 0.1377 0.2232
ARWMF 0.0294 0.0568 0.1327 0.0727 0.1098 0.1915

SAT(GCN) 0.0410 0.0743 0.1597 0.1006 0.1450 0.2359
SAT(GAT) 0.0427 0.0765 0.1635 0.1047 0.1498 0.2421

ATS+SAT(GCN) 0.0426 0.0765 0.1631 0.1039 0.1491 0.2411
ATS+SAT(GAT) 0.0438 0.0785 0.1651 0.1067 0.1529 0.2450
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Figure 2: Visualization of profiling performance of different weighting schemes on test data during
training process. We compare our Beta distribution controlled weighting scheme with other weight-
ing schemes(e.g. fixed weight, linear variation).

From Figure 2, we see our proposed weighting scheme outperforms other schemes because Beta
distribution changes the weights dynamically during the sampling process and meanwhile remains
some randomness to improve the robustness of the algorithm.

6 CONCLUSION

In this paper, we propose a novel active sampling algorithm ATS to better solve the node attribute
completion problem. In order to distinguish the differences in the amount of information among
nodes, ATS utilizes the proposed uncertainty and representativeness metrics to select the most in-
formative nodes and renew the training set after each training epoch. Further, the Beta distribution
controlled weighting scheme is proposed to adjust the metric weights dynamically according to the
training status. The sampling process increases the running time of each epoch within an afford-
able cost, but meanwhile helps the base model achieve superior performance on profiling and node
classification tasks. Therefore, ATS is effective in boosting the quality of restored attributes.
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Figure 3: Ablation study of different metrics in ATS. We show the recall@20 result of different
combinations of the sampling metrics on 3 benchmarks. The horizontal coordinate refers to the
different sampling criteria combinations. ’E’ indicates the entropy metric; ’D’ indicates the density
metric; ’C’ indicates the centrality metric; ’E+D+C’ indicates our ATS algorithm.

A APPENDIX

A.1 DETAILS ABOUT THE BASELINES

NeighAggre is an intuitive attribute aggregation algorithm. It completes one node’s missing at-
tributes by averaging its neighbour nodes’ attributes, which is a simple but efficient method to take
advantage of the structural information. VAE is a famous generative model, which consists of an
encoder and a decoder. For test nodes without the attributes, the encoder will generate the corre-
sponding latent code through the neighbour aggregation. Then the decoder will restore the missing
attributes. GCN, GraphSage and GAT are three typical graph representation learning methods. For
attribute-missing scenario, only the graph structure will be encoded to latent codes. The missing
attributes will be recovered by the decoders of these GNN methods from the latent code generated
by the encoders. Hers is a cold-start recommendation method. GraphRNA and ARWMF are two
attributed random walk based methods to learn the node representations, which can be extended to
deal with the missing attributes problems. They separate the graph structure and node attributes and
learn the node embeddings by random walks.

A.2 ABLATION STUDY OF DIFFERENT METRICS IN ATS

In this section, we conduct the ablation study to investigate the effects of three different metrics in
ATS. The experimental settings remain the same as the profiling task. We use Recall@20 to evaluate
the performance of different metric combinations. The results are shown in Figure 3.

In Cora, centrality-only sampling method hurts the profiling performance. Different metrics focus
on different aspects and the result shows that they can complement each other. The uncertainty
metric focuses on the training status of the model, while the representativeness metric focuses on
the implied information from both the structure and attribute aspects. Generally, any subgroup of
the sampling criteria is inferior to the results achieved by the complete ATS.

A.3 EMPIRICAL TIME COMPLEXITY ANALYSIS

Our ATS is an active sampling procedure based on the SAT model, so it’s critical to study the
extra processing time cost by the ATS. Thus we conduct an experiment to count the running time of
different parts of the ATS compared with the original SAT. These different parts are forward process,
uncertainty and representativeness. The forward process means the forward propagation, which is
essential to calculate the uncertainty score. We implement the experiment on a machine with one
Nvidia 1080Ti GPU.

According to the running time shown in Figure 4, the forward propagation in ATS is much faster
than SAT due to the time-consuming back propagation in SAT. Although the processing time of
uncertainty metric and representativeness metric is relatively higher than SAT because of the clus-
tering and percentile calculations, it’s comparable with the time of SAT. With the addition of the
ATS algorithm, the time required for each epoch will increase within an acceptable range.
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Figure 4: The comparison among the average processing GPU time per epoch of different model
components. ’Forward’ indicates the forward propagation that is a part of the calculation in uncer-
tainty metric.

A.4 SENSITIVITY OF THE HYPERPARAMETERS

As mentioned in Section 5.2, cluster number is a vital hyper-parameter that determines the informa-
tion density of each node. We conduct the experiments on both the profiling and classification tasks
with different cluster numbers.
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Figure 5: Results with different cluster numbers when calculating the density score in the represen-
tativeness metric. (a-c) show the Recall@20 results for profiling task. (d-f) show the attribute-only
classification accuracy with the use of MLP classifier. (g-h) show the classification accuracy con-
sidering both the structure and attribute information.

The results of Figure 5 show that too large or too small cluster numbers are not conducive to the
training. If there are not enough cluster centers, the sampling algorithm is not robust to extract the
density of the embedding distribution. On the other hand, if there are too many cluster centers, it will
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introduce more disturbance and might separate the nodes belonging to the same class. We determine
the value of hyper-parameter based on the Recall@20 results in the profiling task.
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