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Abstract

Image–text models (ITMs) is the prevalent ar-001
chitecture to solve video question–answering002
tasks, which requires only a few input frames003
to save huge computational cost compared to004
video–language models. However, we find005
existent ITM video question–answering solu-006
tions either 1) adopt simplistic and uninten-007
tional sampling strategies, which may miss key008
frames to offer the answer clues; or 2) sample009
a large number of frames into divided groups,010
which the computational sources can not ac-011
commodate. In this work, we aim at an efficient012
sampling method towards the few-frame situa-013
tions. We first summarize a family of prior sam-014
pling methods based on question–frame corre-015
lation into a unified one, dubbed most implied016
frames. Through some primary results and anal-017
ysis, we form our hypothesis from which we018
further propose the other method most domi-019
nant frames. Experimental results on four pub-020
lic datasets and three advanced ITMs demon-021
strate that our proposed strategies can boost the022
performance for image–text pretrained models,023
and have a wide application scenario in terms024
of model architectures and dataset types.025

1 Introduction026

As the unprecedented advancement in visual tech-027

nology, we are witnessing an explosive surge of028

visual data. Together, research in vision–language029

understanding has gained successive progress in030

the past decade, which endeavours to solve a wide031

scope of multimodal application tasks (Wang et al.,032

2021; Radford et al., 2021; Jia et al., 2021; Alayrac033

et al., 2022; Li et al., 2023), such as image cap-034

tioning, visual question answering and multimodal035

retrieval, etc. With the continuing boost in com-036

putational power, researchers have extended con-037

ventional image–text models (ITMs) to video–text038

ones, mainly by substituting image encoders with039

their video counterparts (Yang et al., 2021, 2022;040

Zellers et al., 2021; Fu et al., 2021). This learning041
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Figure 1: Procedure comparison between traditional I/O
and ours. The blue and green arrows distinguish the
dataflow between online sampling methods and ours
until the end of preprosessing. The red box highlights
the process we alter from conventional routines.

paradigm achieves decent performance on numer- 042

ous video–text tasks due to incorporating temporal 043

features into modeling. Nevertheless, 3D convolu- 044

tion, the core technique adopted in these video–text 045

pretrained models, demands tremendous computa- 046

tional power (in terms of both time and memory), 047

limiting models’ deployment on consumer-level 048

GPU clusters. 049

A straightforward solution to reduce overhead 050

is to extract solely key frames that describe the 051

main content or are related to the task from a given 052

video, so that image–text models can preprocess 053

them (Rasheed et al., 2022; Wang et al., 2022; Li 054

et al., 2023). Contemporary augo-regressive ITMs 055

manage to adapt themselves to video–text tasks 056

with a few frames sampled from those videos and 057

yield promising results (Rasheed et al., 2022; Wang 058

et al., 2022). In this family of approaches, im- 059

age frames or clips (consecutive frames, as shown 060

in Fig. 2a) are sampled from raw videos, cut into 061

patches, and then encoded through a visual encoder 062

(e.g., ResNet (He et al., 2016) and ViT (Dosovit- 063

skiy et al., 2020)). X-CLIP (Ni et al., 2022) fur- 064

ther inserts cross-frame communication modules 065

to construct connections across timestamps. De- 066

spite attractive achievements, we notice that the 067
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sampling strategies employed in these models are068

simplistic—they are blind to the video and ques-069

tion and only base on statistical probability distri-070

butions (Fig. 2a). These data-agnostic approaches071

inevitably limit the performance when finetuning072

and inferring on these ITMs, since they may cause073

key-frame omission (Fig. 3).074

On the other hand, recently a bunch of works (Li075

et al., 2022b,c; Wei et al., 2023) introduce learning-076

based sampling methods. Assisted by the Gumbel-077

Softmax trick (Jang et al., 2016), they build a para-078

metric sampling network and concatenate that to079

the backbone. Then, as an auxiliary module, the080

parametric sampling strategy is jointly optimized081

with the main video–QA task. Although these082

frameworks gain competitive performance, they083

have the following drawbacks. First, they sacrifice084

efficiency owing to the additional overhead and085

the slow convergence speed caused by the devised086

sampling network , compared to direct few-frame087

fine-tuning on ITMs (from less than 10 epochs to088

more than 50 epochs) (Li et al., 2022c; Wei et al.,089

2023). Secondly, this learning paradigm also under-090

mines flexibility—during the preprocessing stage091

in these works (Li et al., 2022c; Wei et al., 2023)092

encodes the presampled clips with customized pre-093

trained encoders, like 3D ResNet101 (Hara et al.,094

2018) or CLIP (Radford et al., 2021), leading to095

incompatibility with ITMs which already have an096

image encoder and only accept the raw image input.097

Besides, the sampling network must be optimized098

along with the backbones on these clip features,099

which prevents them from perfectly fit into ITMs.100

To address these issues, we first explore the101

correlation between model’s performance and the102

frames output from captioning-based samplers.103

Specifically, we propose a learning-free sampling104

method, dubbed most implied frames (MIF), which105

can be viewed as an integration and a simplified106

version of previous V(isual)Q(uestion)-aware meth-107

ods. It utilizes lightweight pretrained models to108

annotate frames and grade each of them with a109

caption–question score. The selected frames are110

those with highest scores, or the best captions that111

imply the answer. Then, we conclude from empiri-112

cal studies on MIF that always capturing the most113

question-related frames is probably not a prereq-114

uisites for better accuracy. We hypothesize that a115

pretrained ITM can attend to the key frame once it116

is presented in the sampling set. Hence, a promis-117

ing sampling result may not need to really collect118

frames most related to the question, but to include 119

all scenes displayed in that video. Therefore, we 120

continue to propose another self-adaptive sampling 121

strategy—most dominant frames (MDF). The un- 122

derlying logic is to diversify the input frames to 123

minimize the dominant scenes in that video, be- 124

cause most of the answers can be answered from 125

static scenes instead of dynamic segments. To this 126

end, we first define a goal function that measures 127

the dynamics in videos whose input is the visual 128

feature encoded by the backbone model’s inherent 129

image encoder. Then we devise a search algorithm 130

to speedily locate the most static frames in that 131

video. Since question contents no longer partici- 132

pates in the sampling process, MDF is a V-aware 133

Q-agnostic method. In implementation, both MIF 134

and MDF are executed in a offline fashion Fig- 135

ure 1, enhancing the training efficiency compared 136

to those online sampling algorithms. We further 137

conduct experiments on three ITMs (CLIP (Rad- 138

ford et al., 2021), GIT (Wang et al., 2022) and 139

All-in-one (Wang et al., 2023)) and four datasets. 140

The results show that both methods are feasible 141

solutions towards Video–QA tasks on ITMs and 142

indirectly substantiating the correctness of our hy- 143

pothesis. 144

2 Related Work 145

2.1 Visual Language Models 146

Since the remarkable success of CLIP (Radford 147

et al., 2021) and ALIGN (Jia et al., 2021) in the 148

field of zero-shot multimodal learning, there is 149

a growing trend in training large VLMs through 150

minimizing image–text contrastive loss (Li et al., 151

2020; Kim et al., 2021; Zhang et al., 2021; Yu 152

et al., 2022) to achieve cross-modality semantic 153

alignment. Early VLMs for multi-task purposes 154

frequently adopt a bi-encoder architecture (Rad- 155

ford et al., 2021; Li et al., 2021, 2022a), where 156

visual and textual modality are separately encoded 157

in their individual encoders and finally combined 158

to complete downstream tasks. Recent achieve- 159

ments resort to the more efficient GPT-style (Brown 160

et al., 2020) architecture, which takes the output 161

sequences from visual encoders as the visual pre- 162

fixes and jointly tunes the decoder and visual en- 163

coder (Tsimpoukelli et al., 2021; Alayrac et al., 164

2022; Li et al., 2023). When confronted with video 165

data, a common practice (Seo et al., 2020; Yang 166

et al., 2021) replaces image encoders in these ITMs 167

with video encoders that can capture temporal cor- 168
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Figure 2: Existent common sample strategies for video–question answering tasks. In heuristic sampling, the black
puzzles are selected frames.

𝑡 = 0 𝑡 = 1

𝑡 = 2 𝑡 = 3

Question: How many men are laughing? (t=0) Answer: 2

Question: Who is punished by his teachers? (t=3) Answer: boy

Question: Who slaps another man? Answer: student.

Question: Who gets hit? Answer: student.

Figure 3: Randomly (almost uniformly) sampled frames
from a video in the msrvtt-qa (Xu et al., 2016a) dataset
and two of the questions. The brackets are the times-
tamps where we can get the cues for corresponding
answers from the video. The QA-pair in the red box
cannot be grounded from the four sampled frames.

relations, like S3D (Xie et al., 2017) and video169

Swin-Transformer (Liu et al., 2021b).170

2.2 Sampling Techniques in Video171

Question–Answering Tasks172

To use ITMs on video tasks, video data must be173

first transformed to frame sequences through sam-174

pling. Most of the current sampling algorithms175

are online algorithms, i.e., sampling happens af-176

ter loading the streaming-in video data into the177

memory. The heuristic sampling methods (Fig. 2a)178

are prevalent in default ITM implementations (Lei179

et al., 2021; Fu et al., 2021; Wang et al., 2022,180

2023), since these algorithms are learning-free181

and convenient to adjust. However, (Buch et al.,182

2022) points out that for most video understanding183

tasks, Therefore, recent works endeavours to build184

learning-with-sampling frameworks. As shown185

in Fig. 2b, these architectures have a parameter- 186

ized sampler, which is trained with pseudo labels 187

generated from a question-guided indices generator 188

and then jointly optimized with the predictions of 189

the main task (Li et al., 2022b,c; Wei et al., 2023). 190

Based on the causal theory (Pearl et al., 2016), Li 191

et al. (2022b) separate the clips into causal and 192

complement ones;while Li et al. (2022c) and Wei 193

et al. (2023) consider invariant/transient and posi- 194

tive/negative scenes. Both splits are then forwarded 195

in the backbone model to generate the answer. Dis- 196

tinct to these online sampling algorithms, our pro- 197

posed methods are offline learning-free algorithms 198

and only require a one-time running. The sampled 199

frames are saved in an HDF5 file for fast loading, 200

which greatly cut off the training time. 201

3 Method 202

In this section, we first briefly recap the definition 203

of the video-QA task. Then we introduce the MIF 204

method. Next, we report preliminary results and 205

findings. Finally, based on these discoveries we 206

introduce the more efficient MDF method. 207

3.1 Problem Definition 208

Given a short video V = {v1, v2, ..., vT } of T 209

frames and a literal question Q = {q1, q2, ..., ql} 210

of l tokens, an ITM M is expected to generate an 211

answer Â = {âi}ni=1 (generative setting, n ≥ 1) or 212

the answer index (multiple choice setting, n = 1) 213

to match a reference answer which serves as a valid 214

response to the given question. 215

Â = M(V ′, Q) (1) 216

where V ′ ⊂ V is a set of sampled frames. 217
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In evaluation, we use item-wise accuracy as the218

performance metric, defined as:219

acc =
1

|Q|

|Q|∑
i=1

1(Âi = Ai) (2)220

where Q is the entire set of questions in the dataset,221

1(·) is the indicator function that equals 1 only if222

the expression is true.223

3.2 Most Implied Frames (MIF)224

MIF uses a caption model Mc and a set of grading225

models Mg to select the best frame candidates, as226

illustrated in Fig. 4, which could also be called cue227

frame retrieval for a given question. Before starting228

the whole process, following previous work (Buch229

et al., 2022; Li et al., 2022c), we reduce the com-230

putational cost by uniformly sampling T ′ frames231

from the original video (N < T ′ << T ). The cap-232

tion model Mc takes every downsampled frames233

as input and generates a description C. Then Mg234

computes the matching score s between question235

Q and the generated description (s = Mg(Q,C)).236

We presume that the matching score s indicates the237

possibility that each frame can serve as a cue to an-238

wer the given question. Hence, we rank all frames239

according to these scores and pick the highest N240

frames as the sampled results. In this sense, MIF241

is a QA–aware algorithm. For different questions242

under the same video, MIF usually generates more243

than one set of sampled frames.244

Image Caption 
Model

Question-Answer
Scoring Model

💬Caption1: A man in a yellow …

💬Caption2: A woman takes a …

❓Question: who brought 
two girls to his group on 
the beach?

Score

Figure 4: MIF workflow. Here we just show an example
of how it selects one frame out of two frames.

3.3 Preliminary Results on MIF245

We test MIF sampled datasets on three ITMs. The246

results using GIT-Base for captioning and BERT-247

Base for question answer matching are shown in Ta-248

ble 1. We can observe that MIF significantly outper-249

forms ITMs’ implementations and gain competitive250

or even better results than contemporary baselines.251

We use “Base" model here to take care of both ef- 252

ficiency and performance, but here there naturally 253

raises the first question: 254

RQ1: Are larger models bound to better results? 255

To provide a potential response, we switch to 256

“Small” and “Large” sizes for both the caption 257

and grading model and report the performance on 258

MSRVTT in Table 1.

Mc Mg MSVD MSRVTT

GIT-S BERT-S 46.5 42.3
GIT-B BERT-B 46.7 42.4
GIT-L BERT-L 46.9 42.1

Table 1: Results of two datasets on GIT using different
captioner-grader combinations. The number of input
frames are fixed at 6. “GIT-B" and “Bert-B" is the
default implementation in later sections.

259

Among these results, we find that there is no 260

significant correlation between the size of caption- 261

grading system and the accuracy of Video–QA task, 262

though larger models could produce more informa- 263

tive and accurate captions and grades overall. Now 264

that question-guided sampler has reached its roof, 265

we expect to seek an alternative. 266

RQ2: Can we design a question-agnostic sam- 267

pler? 268

The answer would be “highly probable" based 269

on the aforementioned results and conclusions. To 270

provide a possible solution, we propose another 271

method, most dominant frames, in the following 272

section from the view of the vision-encoder inside 273

these ITMs. 274

3.4 Most Dominant Frames (MDF) 275

It has been pointed out in early video sam- 276

pling works (Shahraray, 1995; Nam and Tewfik, 277

1999) that the sampling rate in each temporal re- 278

gion should be proportional to the object motion 279

speed. Besides, due to the frame lengths are fixed 280

in ITMs (3 or 6 in our experiments). 281

To this end, we construct our solution based on 282

the ITM’s cognition towards the frames from its 283

own vision-module. The first intuition comes from 284

the theory and experience of representation learn- 285

ing from large pretrained models (Bengio et al., 286

2013; Devlin et al., 2018; Dosovitskiy et al., 2020), 287

which believes that learned representations output 288

from well-tuned large models have been embedded 289

with meaningful semantic information. We har- 290

ness the inherent vision encoder to acquire visual 291
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Figure 5: An illustration of the sampling process by
MDF (6 frames). The heatmap visualizes the frame
similarity matrix calculated as the cosine value between
pairs of frame vectors. The entry at ith row jth column
represents the similarity between frame i and frame j.
Blue points are the eventually extracted frames in the
video.

embeddings E = {e1, e2, ..., eT }. To quantify the292

invariance in each frame, we define the following293

score function dom(t) at for frame vt at timestamp294

t.295

dom(t) =
t+W∑

t′=t−W

sim(et, e
′
t) (3)296

The the problem can be formulated as seeking297

N local minima of dom(t) on the time axis298

τ = {t1, t2, ..., tN} ⊂ {1, 2, ..., T}, subject to299

|τi − τi+1|≥ W .300

Algorithm 1: Most Dominant Frames
(MDF)

Input: Video frames V = {v1, v2, ..., vT }, vision
modelM, width-adjusting rate λ

Output: Visual prefix F = {f1, f2, ..., fN}
1 Encode frames using the vision model

E =M(V ) = {e1, e2, ..., eT }
2 Compute dom score for all frames and set W ,

according to Eq. 3 and Eq. 4).
3 Init F = {fargmaxt dom(t)}, index set

I = {0, 1, ..., i−W, i+W, ..., T}
4 while |F |< N and I ̸= ⊘ do
5 t′ ← argmaxt dom(t)
6 F ← F ∪ {ft′}
7 I ← I \ {t′′}t′′−t′<W

8 if |F |< N then
9 τ ← argtopN ({dom(t)}t∈T )

10 return F ∪ {f ′
t}t′∈τ

11 else
12 return F

The details of the algorithm is given in Algo-301

rithm 1. Considering the disparity in the lengths of302

videos, instead of keeping a constant W , we set W303

automatically in an self-adaptive way: 304

WV = LV /(λ ·N) (4) 305

where LV is the length of video V in terms of frame 306

numbers, λ is the constant width-adjusting rate that 307

controls the scope to search in every steps. Fig. 5 308

visualizes an example of searching results on the 309

similarity map. 310

4 Experiments 311

4.1 Datasets 312

To evaluate our proposed methods, we conduct ex- 313

tensive experiments on the following 4 frequently 314

tested datasets: 315

MSVD-QA and MSRVTT-QA These two 316

datasets (Xu et al., 2016a) are adapted from two 317

general video captioning datasets—Microsoft Re- 318

search Video Description Corpus (Chen and Dolan, 319

2011) and MSR-VTT dataset (Xu et al., 2016b). 320

Both datasets have five types of questions—what, 321

where, who, when, how. 322

TGIF-QA The TGIF-QA (Jang et al., 2019) 323

dataset contains 165K QA pairs for the animated 324

GIFs from the TGIF dataset (Li et al., 2016). Its 325

question–answer pairs are annotated via crowd- 326

sourcing with a carefully designed user interface to 327

ensure quality. TGIF-QA has three question types: 328

frame, transition, and (repetition) count. We only 329

test on the frame-QA task because others do not 330

belong to the open-ended QA category. 331

NExT–QA The NExT-QA dataset (Xiao et al., 332

2022) targets at reasoning from causal and tempo- 333

ral relationships between actions. There are three 334

question types including descriptive, temporal and 335

causal reasoning, which respectively targets at eval- 336

uating model’s different aspects of capability. 337

4.2 Backbone Models 338

CLIP CLIP (Rasheed et al., 2022) is the first 339

ITM that focuses on zero-shot transfer onto diverse 340

multimodal downstream tasks. It is composed of 341

two modality-specific encoders to process input 342

modality signals separately. In our experiments, we 343

also modify its structure by adding a single-layer 344

transformer decoder on the top of the two encoders 345

(dubbed “CLIP-dec” but we still use "CLIP" to 346

denote it for simplicity, see Fig. 6). We decode 347

for only one step to get the answer, not alike other 348

generative ITMs that predict the whole sequence 349

containing both the question and answer words. 350
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Figure 6: The architecture of CLIP (left) and our imple-
mented CLIP-dec (right) for video–QA.

GIT GIT (Wang et al., 2022) is one of the state-351

of-the-art ITMs for video question answering tasks,352

released by Microsoft Research. It adopts ViT-353

B-16 (Radford et al., 2021) as its visual encoder354

and has a GPT-style decoder that receives both355

the encoded image patches (as prefix) and textual356

embeddings to generate the entire sequence of the357

question and answer in an auto-regressive fashion.358

Currently the GIT family consists of four versions1.359

In our experiments, we tune GIT-Base on these360

three datasets (denoted as GIT in later context for361

simplicity).362

All-in-one (AIO) All-in-one (Wang et al., 2023)363

is another family of ITMs which follows the phi-364

losophy of learning-by-fusion. The model is com-365

posed of many stacked multimodal attention lay-366

ers called unified transformer that takes concate-367

nated video–text input as the basic fusion modules.368

Similar to previous two ITMs, by appropriate for-369

mulation, it can employ the output embeddings370

to solve many downstream video–language tasks.371

Particularly, we use All-in-one(-Base) in all our372

experiments.373

In later context, by default “CLIP" and “AIO"374

repectively denote CLIP-ViT-base-patch16 2 with375

a decoder and All-in-one-Base 3. For GIT-related376

models, we follow (Wang et al., 2022) to finetune377

the pretrained GIT-Base 4 on four datasets).378

4.3 Baselines379

Direct Finetuning We first consider directly fine-380

tuning each backbone model, which can be cate-381

gorized into online learning-free sampling. Since382

the exact sampling strategy adopted by GIT is un-383

1GIT-Base, GIT-Large, GIT and GIT2, as of July 2023
2https://huggingface.co/openai/clip-vit-base-patch16
3https://github.com/showlab/all-in-one
4https://huggingface.co/microsoft/git-base

known, we examine the results using uniform sam- 384

pling and find that they are closed to the reported 385

numbers on three datasets (MSVD, MSRVTT, 386

TGIF). Hence, we treat uniform sampling as base- 387

line for GIT and CLIP-series (because there is not 388

open-sourced implementation provided for CLIP 389

on these datasets as well). AIO has released the 390

code publicly, in which the sampling strategy is 391

explicitly implemented. Therefore, we just sim- 392

ply reproduce with the code and report the result 393

as baseline for comparison. For all experiments, 394

we keep the sampling strategy (including their hy- 395

perparameters if any) unchanged in training and 396

testing. 397

Learning-based Sampler We compare with two 398

advanced learning-based samplers, IGV (Li et al., 399

2022c) and VCSR (Wei et al., 2023). Both meth- 400

ods construct two or more complement segment 401

groups with contrary property and jointly optimize 402

the main network and sampler by minimizing a 403

line of auxiliary losses. In original implementa- 404

tion, both IGV and VCSR samples much more 405

frames than the default input lengths of backbone 406

ITMs (|V |= 16 in IGV and |V |=frames/clip×clip 407

= 6× 4 = 24 in VCSR) to the same value (1× 3 408

for VCSR). Because enlarging input size leads to 409

an increment in accuracy (see Section 5.1), for 410

fair comparison, we reset the sampling size when 411

implementing the two methods on each backbone 412

model. 413

4.4 Implementation Details 414

The details of MIF has been introduced in Sec- 415

tion 3.2. In MDF, we use each model’s inherent 416

vision encoder to encode the sampled frames, and 417

then calculate the cosine values between these vec- 418

tors as the measure of frame similarity. A special 419

case is that AIO does not have an independent vi- 420

sual encoder. Hence, we use ViT-B-16 (the same 421

visual encoder as CLIP and GIT) as the “pseudo 422

visual encoder”, and following the same procedure 423

to obtain the sampled frames in each video. 424

Model MSVD MSRVTT TGIF

CLIP (Radford et al., 2021) 33.8 33.7 59.9
CLIP+IGV (Li et al., 2022c) 34.8 34.1 61.9
CLIP+VCSR (Wei et al., 2023) 34.6 34.5 61.6

CLIP+MIF (Ours) 35.0 35.4 62.5
CLIP+MDF (Ours) 35.1 35.2 63.2

Table 2: Experimental results with CLIP (|V |= 3) back-
bone on three datasets.
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4.5 Results425

Results on CLIP The results of three datasets426

(msvd-qa, msrvtt-qa, tgif-frame) are shown in Ta-427

ble 2. From the table we note that MIF and MDF428

achieves significant improvement over original429

CLIP with online random sampling (1.2%∼3.3%),430

as well as CLIP plus learning-based sampling meth-431

ods. However, the performance difference between432

two proposed sampling strategies is not significant433

on both MSVD and MSRVTT, which manifests434

that question-aware is not a necessity for better435

performance.436

Model MSVD MSRVTT TGIF

GIT Backbone

GIT (Wang et al., 2022) 52.2 41.1 67.5
GIT+IGV (Li et al., 2022c) 53.2 41.5 68.1
GIT+VCSR (Wei et al., 2023) 52.7 41.6 68.6

GIT+MIF 54.5 42.3 69.9
GIT+MDF 55.3 42.0 70.0

AIO Backbone

AIO (Wang et al., 2023) 46.1 42.7 64.0
AIO+IGV (Li et al., 2022c) 46.3 43.3 64.7
AIO+VCSR (Wei et al., 2023) 46.4 43.0 64.5

AIO+MIF 46.7 44.0 65.9
AIO+MDF 46.9 43.8 66.2

Table 3: Experimental results on the test set of three
datasets. Best scores of each backbone model are high-
lighted in bold.

Model Val Test

AIO (Wang et al., 2023) 47.1 45.9
AIO+IGV (Li et al., 2022c) 48.3 47.1
AIO+VCSR (Wei et al., 2023) 48.0 47.4

AIO+MIF (Ours) 48.5 48.2
AIO+MDF (Ours) 48.8 48.0

Table 4: Experimental results on the validation and test
set of the NExT-QA multi-choice dataset (choose 1 from
5).

Results on GIT and All-in-one. Table 3 and Ta-437

ble 4 displays the results of GIT and All-in-one438

on four datasets. There are the following three key439

points to highlight. Firstly, compared to the original440

implementation results, both MIF and MDF can en-441

hance the accuracy on all three datasets regardless442

of model architectures. These results are consis-443

tent with CLIP, which demonstrates our proposed444

methods are broadly applicable to diverse datasets445

and models. Secondly, the increment in accuracy446

is higher on models with more sampled frames (6 447

for GIT v.s. 3 for All-in-one), which implies that 448

our proposed methods are possibly more effective 449

when the input frame Lastly, we notice that the im- 450

provement on TGIF-Frame by MIF and MDF over 451

the uniform sampling is more drastic than the other 452

two datasets. This quite contradicts to our belief 453

since “video” (GIF strictly) in TGIF-frame is much 454

shorter with fewer switching in scenes than the 455

other two datasets. Hence we deem that it should 456

be less sensitive to the sampling methods. Mean- 457

while, All-in-one adopts wall-random sampling in 458

training and uniform sampling in the testing phase, 459

and correspondingly its reported accuracy on TGIF- 460

Frame is higher. This fact further confirms that the 461

TGIF-Frame dataset is more sensitive to the sam- 462

pling strategy. 463

5 Analysis 464

5.1 Impact of Input Frame Length 465

Recall we fix all baselines’ input frame lengths 466

in all experiments. However, intuitively the num- 467

ber (length) of input frames should be regarded as 468

a potential factor to the accuracy, since increas- 469

ing the input frames equals to exposing larger 470

amount of training data to the model. To see how 471

this factor affects backbone models’ performance 472

and whether our proposed sampling methods can 473

consistently enhance the accuracy when sampling 474

more or fewer frames, we continue to fine-tune GIT 475

on the MSRVTT–QA dataset with distinct frame 476

lengths. The results of this set of experiments are 477

plotted in Figure 7a. From the figure we firstly 478

discover that as expected, after increasing the num- 479

ber of input frames, the accuracy scores become 480

higher. Moreover, the accuracy of the proposed 481

two sampling strategies MDF and MIF consistently 482

surpasses the uniform baseline, indicating that they 483

can really locate those key frames in videos even 484

after changing the input length. 485

5.2 Auto-generated Captions in MIF 486

In MIF, we invoke a captioning model and an- 487

ticipate it to provide an precise and informative 488

annotation to each frame. Since intuitively, the 489

question–answering matching judgement model 490

can not probably differentiate nuance in two sen- 491

tences if their pattern looks quite similar. However, 492

the actual results are opposite to our expectation. 493

Take our randomly selected video from MSVD- 494

QA in Table 5 as an example, where Q1 and Q2 495

7



(a) (b)

Figure 7: Performance variance under (a) varied input
frame lengths in both MDF and MIF (b) varying sepa-
ration factor λ in MDF on the MSRVTT-qa dataset by
GIT.

represent two questions “what does a small dog496

wildly play with?” and “what wildly plays with a497

ball?”. First we observe that the titles generated by498

the VLM looks similar to each other, i.e., “ [noun]499

[verb] [prep. phrase]”, suggesting that a model500

may tend to generate captions in a nearly fixed501

pattern. Moreover, the sentence similarity among502

these captions confuse the QA pair scoring model—503

Q1 and Q2 describe nearly the same scenario and504

should share some cue frames, but the key frame505

(the 12th frame) is captured by Q1 but overlooked506

by Q2, as well as the secondary important frame507

(the 3rd frame). Therefore, we believe that a cap-508

tioning model that can provide diversified output509

and a robust scoring model that can offer objective510

and fair ratings to question–answer pairs are neces-511

sary to guarantee sampling effectiveness which is512

vulnerable to possible intermediate noises.513

ID Caption Q1 Q2
1 a puppy playing with toys.
2 a white puppy playing with a toy.

3
a white puppy with black eyes and

a blue ball. ✓

4 a puppy that is laying down on the floor.
5 a puppy playing with a blue ball.
6 a puppy that was found in a house. ✓

7 a puppy that is laying down on the floor.
8 a puppy that is sitting on the floor. ✓

9 a puppy is sitting on the floor. ✓ ✓

10 a white puppy sitting on a table. ✓

11 a white puppy laying on the floor. ✓ ✓

12 a puppy playing with a blue ball. ✓

13 a white dog standing on top of a floor. ✓ ✓

14 a white dog walking on the floor. ✓

15 a small white dog playing with a ball.
16 a dog chewing on a toy in a cage.

Table 5: An example of frame captions and sampling
results. “✓” means this frame is chosen to constitute the
input together with the question of that column.

5.3 Sampling Interval in MDF 514

In MDF, we prevent the sampling frames from be- 515

ing excessively close by setting a hyperparameter 516

λ (W = L/(λ · N ) However, decreasing λ (en- 517

larging the interval W ) causes more failure for a 518

model to sample enough frames, and in this case 519

some of the sampled frames may get too closed to 520

degrade model’s performance. In our experiments, 521

we surprisingly found that such situations do not 522

always happen. To delve into this phenomenon, we 523

define the outcome where the collected K frames 524

satisfy the interval requirements as “success” and 525

otherwise as “failure”. We test and plot the curve 526

of success rate (rsuccess = nsuccess/ntotal) and 527

accuracy against λ on three datasets produced by 528

GIT, as shown in Figure 7b. The horizontal axis 529

denotes the hyperparameter λ that controls the min- 530

imal sampling interval. The figure shows that there 531

is a critical point that failure will never happen if 532

continuing to increase λ—we do not know the pre- 533

cise value but choose to mark the minimal value 534

during our experiments that we can earn 100% 535

success. Moreover, there is no strong correlation 536

between the success rate and model performance, 537

but a minimum interval should be reached to en- 538

sure a promising performance. The performance 539

peak is achieved under a hybrid sampling strategy 540

(λ = 2.3, rsuccess = 79.1%). 541

6 Conclusion 542

In this paper, we focus on the frame sampling issue 543

inhering in the task of video question–answering 544

and propose two simple and effective methods— 545

most implied frames (MIF) and most dominant 546

frames (MDF). MIF streamlines a set of sampling 547

methods in the textual space by projecting hetero- 548

geneous inputs (question and video) to a common 549

space through pretrained ITMs. It then identifies 550

frames with the highest matching scores gener- 551

ated from a scoring model. Based on the insights 552

and analysis derived from MIF, we further pro- 553

pose most dominant frames (MDF), which exploits 554

a more concise, self-adaptive formulation for sam- 555

pling. The success on these sampling strategies 556

from CLIP to All-in-one demonstrates the broad ap- 557

plicability of our proposed methods across a spec- 558

trum of general scenarios. 559

Limitations 560

Despite the promising results gained from the pro- 561

posed methods, from a wider horizon we still notice 562
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some limitations in our work. First, due to the re-563

striction of computation resource, we only evaluate564

our proposed methods on the video question an-565

swering task, and we do not have the opportunity566

to test on more emerged ITMs to further substan-567

tiate our methods’ efficacy. Secondly, we do not568

try MIF-style methods on large language models569

like GPT-4. We believe this could serve as a future570

direction.571
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A Implementation Details827

To enforce a fair comparison, we run both train-828

ing and testing stages for each VLM on a single829

NVIDIA RTX-A6000 GPU (except All-in-one be- 830

cause its implementation only has multi-GPU ver- 831

sion, therefore we run it on 2 GPUs) while holding 832

other hyperparameters and settings consistent with 833

the default ones introduced in their original papers 834

or codes (e.g., number of frames sampled per video, 835

learning rate, training epoch, numerical precision 836

in computation, etc). Gradient accumulation is ap- 837

plied to enable a large batch size (≥ 512) required 838

in the fine-tuning process. To further reduce the 839

computational complexity, all experiments are im- 840

plemented with the pytorch Automatic Mixed Pre- 841

cision (AMP) 5 package. The checkpoints in our 842

finetuning stage can all be found and downloaded 843

from publicly available links. 844

B Baseline Models 845

We compare the results on the listed image–text 846

pretrained models to other models in similar sizes 847

that have (1) an image encoder inside but experi- 848

ence no or a different pretraining procedure (in- 849

cluding the pretraining task selection and design, 850

the goal function, datasets and annotation methods, 851

etc) (Huang et al., 2020; Jiang et al., 2020; Liu 852

et al., 2021a; Lei et al., 2021). (2) a video encoder 853

to tune during training time or merely use feature 854

vectors extracted from pretrained video networks 855

(I3D (Carreira and Zisserman, 2017), S3D (Xie 856

et al., 2018)) (Xiao et al., 2022; Zellers et al., 2021; 857

Yang et al., 2021; Fu et al., 2021). For baselines 858

that work as our backbone network and finetuning 859

starting point, we report our reproducing results as 860

a more accurate benchmark, since we found many 861

of these results are distinct from those reported in 862

the original paper owing to the disparity in imple- 863

mentation environments. 864

Particularly, since we do not find any details 865

introduced in the paper or official implementations 866

online regarding the sampling strategies in GIT, 867

and our implementation with uniform sampling in 868

both training and testing can achieve comparable 869

results as the reported ones (Wang et al., 2022) on 870

2 of 3 datasets, we treat this implementation as the 871

reproduced results of GIT standalone. 872

C Evaluation Metrics 873

In all models, the sampled raw frames V ′ are re- 874

sized to match the model-acceptable scales and 875

then normalized. VLMs then take these frames as 876

input and embed them into a sequence of vectors. 877

5https://pytorch.org/docs/stable/amp.html

11



Since the decoding mechanisms are different in878

these models, we illustrate them one by one:879

In non-generative Video–LM (CLIP), the outputs880

from both modality encoders first pass through a881

transformer decoder layer and a classification layer:882

Â = f(Ev, Eq) (5)883

In generative VLM (CLIP-Dec, GIT), the visual884

(from the visual encoder, like a prefix prepended to885

the text) and textual embeddings (from the embed-886

ding layer) constitute the input of the decoder. The887

decoder keeps generating the whole question and888

answer sequence in an auto-regressive manner:889

P (Q,A|V,Q) =
n+l−1∑
t=1

logP (yt+1|y1, y2, ..., yt, V )

(6)890

In All-in-one, the model first generates answer891

predictions zi for each frame. Then, these predic-892

tions are fused together by summation to form a893

consensus at the video level (Wang et al., 2023).894

p =
1

S

S∑
i=1

zi (7)895

D Speedup and Overhead Analysis896

From video–text models to image–text ones.897

By adopting image–text VLMs (even without898

HDF5 as storage), we can obtain a 2.5 ∼ 4× accel-899

eration during training and inference stage. More-900

over the training can be completed with a single901

A6000 GPU (46 GB memory) for all image–text902

VLMs in our experiments (for all-in-one although903

it runs on 2 GPUs, the total memory usage can904

fit to a single GPU, i.e., much less than 46 GB),905

while video–text VLMs listed as our baselines (e.g.,906

MERLOT (Zellers et al., 2021)) consume 4 same907

type of GPUs with the same batch size.908

From on-the-fly sampling to offline sampling909

plus HDF5 I/O. Conventional approaches for910

image–encoder based VLMs to generate input911

frames directly read from raw videos and then sam-912

ple frames among them on-the-fly, which consumes913

a large amount of storage and running time during914

training. As our proposed methods are offline al-915

gorithms, we can save all sampled frames for each916

video into a unified HDF5 file and meanwhile cre-917

ate a vid-to-id mapping file, (a.k.a. meta data) for918

the model to look up during its running time. HDF5919

(Hierarchical Data Format) is a file format designed920

to store and organize large amounts of data by cre- 921

ating a set of "datasets", and to address current 922

and anticipated requirements of modern systems. 923

The contents saved in an HDF5 file can be mapped 924

to RAM for fast loading during training, which 925

greatly reduces the time needed for model training. 926

As a direct comparison, in our implementation of 927

All-in-one, a 2.5 ∼ 2.9× speed-up during training 928

stage is recorded when using HDF5 to substitute 929

original reading from video-files and then sampling 930

on-the-fly. For GIT and CLIP, this kind of compar- 931

ison is infeasible since the training time can not 932

be found neither in their papers nor replicated by 933

our implementations (since we do not find open- 934

sourced code for them on these video–QA datasets, 935

the replication of their results also adopts the HDF5 936

I/O). 937

Removal of Redundant Sampling. Although 938

the sampling process in the preprocessing stage pro- 939

duces additional overhead, we further highlight that 940

the sampling process has to be run only once per 941

dataset even for two different models if they con- 942

sume the same number of frames as input. This fea- 943

ture further reduces the consumption of redundant 944

computational power compared to those on-the-fly 945

sampling methods since they need to recalculated 946

the duplicated sample process during every tuning 947

stages, not to mention that the HDF5 file can be 948

shared online with potential users and researchers 949

to download. 950

Case Study We take the experiment using All-in- 951

one on TGIF-QA as an example. If using on-the-fly 952

uniform sampling, the training time per epoch is 52 953

min and the model takes 15 epoches to converge 954

(780 min in total). As comparison, after applying 955

our sampling methods, the training time per epoch 956

reduces to 18 min per epoch (270 min in total) 957

while the additional overhead to generate the .h5 958

file is 3 hour (180 min). The total time combining 959

sampling and training and is 270 + 180 = 450 960

min, much shorter than the implementation with 961

on-the-fly sampling. 962

E Dataset Statistics 963

We list the specifications of the datasets used in our 964

evaluation process in Table 6. 965

F Hyperparameter Search 966

In MDF, we run experiments on the sampled 967

datasets with α ∈ {2.3, 2.5, 2.7}. In MIF, we first 968
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Item Split MSVD MSRVTT TGIF NExT

#Video
Train 1,200 6,513 37,089 3,870
Dev 250 497 - 570
Test 520 2,990 9,219 1,000

#Q&A
Train 30,933 158,581 39,392 31,173
Dev 6,415 12,278 - 4,682
Test 13,157 72,821 13,691 16,189

Table 6: Statistics of the four QA datasets evaluated in
this paper. The split row lists the number of correspond-
ing items in train/dev/test set. Note TGIF-QA does not
have a validation set.

uniformly pre-sample 16 frames in all experiments,969

then we calculate question–caption matching score970

based on these sampled frames. For all other hyper-971

parameters (batch size, vocabulary size, learning972

rate, etc), we keep them same as original setting973

from their blogs or papers (for CLIP we adopt the974

same setting as GIT).975
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