Abstract

Image–text models (ITMs) is the prevalent architecture to solve video question–answering tasks, which requires only a few input frames to save huge computational cost compared to video–language models. However, we find existent ITM video question–answering solutions either 1) adopt simplistic and unintentional sampling strategies, which may miss key frames to offer the answer clues; or 2) sample a large number of frames into divided groups, which the computational sources can not accommodate. In this work, we aim at an efficient sampling method towards the few-frame situations. We first summarize a family of prior sampling methods based on question–frame correlation into a unified one, dubbed most implied frames. Through some primary results and analysis, we form our hypothesis from which we further propose the other method most dominant frames. Experimental results on four public datasets and three advanced ITMs demonstrate that our proposed strategies can boost the performance for image–text pretrained models, and have a wide application scenario in terms of model architectures and dataset types.

1 Introduction

As the unprecedented advancement in visual technology, we are witnessing an explosive surge of visual data. Together, research in vision–language understanding has gained successive progress in the past decade, which endeavours to solve a wide scope of multimodal application tasks (Wang et al., 2021; Radford et al., 2021; Jia et al., 2021; Alayrac et al., 2022; Li et al., 2023), such as image captioning, visual question answering and multimodal retrieval, etc. With the continuing boost in computational power, researchers have extended conventional image–text models (ITMs) to video–text ones, mainly by substituting image encoders with their video counterparts (Yang et al., 2021, 2022; Zellers et al., 2021; Fu et al., 2021). This learning paradigm achieves decent performance on numerous video–text tasks due to incorporating temporal features into modeling. Nevertheless, 3D convolution, the core technique adopted in these video–text pretrained models, demands tremendous computational power (in terms of both time and memory), limiting models’ deployment on consumer-level GPU clusters.

A straightforward solution to reduce overhead is to extract solely key frames that describe the main content or are related to the task from a given video, so that image–text models can preprocess them (Rasheed et al., 2022; Wang et al., 2022; Li et al., 2023). Contemporary augo-regressive ITMs manage to adapt themselves to video–text tasks with a few frames sampled from those videos and yield promising results (Rasheed et al., 2022; Wang et al., 2022). In this family of approaches, image frames or clips (consecutive frames, as shown in Fig. 2a) are sampled from raw videos, cut into patches, and then encoded through a visual encoder (e.g., ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2020)). X-CLIP (Ni et al., 2022) further inserts cross-frame communication modules to construct connections across timestamps. Despite attractive achievements, we notice that the
sampling strategies employed in these models are simplistic— they are blind to the video and question and only base on statistical probability distributions (Fig. 2a). These data-agnostic approaches inevitably limit the performance when finetuning and inferring on these ITMs, since they may cause key-frame omission (Fig. 3).

On the other hand, recently a bunch of works (Li et al., 2022b,c; Wei et al., 2023) introduce learning-based sampling methods. Assisted by the Gumbel-Softmax trick (Jang et al., 2016), they build a parametric sampling network and concatenate that to the backbone. Then, as an auxiliary module, the parametric sampling strategy is jointly optimized with the main video–QA task. Although these frameworks gain competitive performance, they have the following drawbacks. First, they sacrifice efficiency owing to the additional overhead and the slow convergence speed caused by the devised sampling network, compared to direct few-frame fine-tuning on ITMs (from less than 10 epochs to more than 50 epochs) (Li et al., 2022c; Wei et al., 2023). Secondly, this learning paradigm also undermines flexibility— during the preprocessing stage in these works (Li et al., 2022c; Wei et al., 2023) encodes the presampled clips with customized pretrained encoders, like 3D ResNet101 (Hara et al., 2018) or CLIP (Radford et al., 2021), leading to incompatibility with ITMs which already have an image encoder and only accept the raw image input.

Besides, the sampling network must be optimized along with the backbones on these clip features, which prevents them from perfectly fit into ITMs.

To address these issues, we first explore the correlation between model’s performance and the frames output from captioning-based samplers. Specifically, we propose a learning-free sampling method, dubbed most implied frames (MIF), which can be viewed as an integration and a simplified version of previous V(visual)Q(uestion)-aware methods. It utilizes lightweight pretrained models to annotate frames and grade each of them with a caption–question score. The selected frames are those with highest scores, or the best captions that imply the answer. Then, we conclude from empirical studies on MIF that always capturing the most question-related frames is probably not a prerequisite for better accuracy. We hypothesize that a pretrained ITM can attend to the key frame once it is presented in the sampling set. Hence, a promising sampling result may not need to really collect frames most related to the question, but to include all scenes displayed in that video. Therefore, we continue to propose another self-adaptive sampling strategy— most dominant frames (MDF). The underlying logic is to diversify the input frames to minimize the dominant scenes in that video, because most of the answers can be answered from static scenes instead of dynamic segments. To this end, we first define a goal function that measures the dynamics in videos whose input is the visual feature encoded by the backbone model’s inherent image encoder. Then we devise a search algorithm to speedily locate the most static frames in that video. Since question contents no longer participates in the sampling process, MDF is a V-aware Q-agnostic method. In implementation, both MIF and MDF are executed in an offline fashion. The results show that both methods are feasible solutions towards Video–QA tasks on ITMs and indirectly substantiating the correctness of our hypothesis.

2 Related Work

2.1 Visual Language Models

Since the remarkable success of CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) in the field of zero-shot multimodal learning, there is a growing trend in training large VLMs through minimizing image–text contrastive loss (Li et al., 2020; Kim et al., 2021; Zhang et al., 2021; Yu et al., 2022) to achieve cross-modality semantic alignment. Early VLMs for multi-task purposes frequently adopt a bi-encoder architecture (Radford et al., 2021; Li et al., 2021, 2022a), where visual and textual modality are separately encoded in their individual encoders and finally combined to complete downstream tasks. Recent achievements resort to the more efficient GPT-style (Brown et al., 2020) architecture, which takes the output sequences from visual encoders as the visual prefixes and jointly tunes the decoder and visual encoder (Tsimpoukelli et al., 2021; Alayrac et al., 2022; Li et al., 2023). When confronted with video data, a common practice (Seo et al., 2020; Yang et al., 2021) replaces image encoders in these ITMs with video encoders that can capture temporal co-
Figure 2: Existent common sample strategies for video–question answering tasks. In heuristic sampling, the black puzzles are selected frames.

Figure 3: Randomly (almost uniformly) sampled frames from a video in the msrvtt-qa (Xu et al., 2016a) dataset and two of the questions. The brackets are the timestamps where we can get the cues for corresponding answers from the video. The QA-pair in the red box cannot be grounded from the four sampled frames.

3 Method

In this section, we first briefly recap the definition of the video-QA task. Then we introduce the MIF method. Next, we report preliminary results and findings. Finally, based on these discoveries we introduce the more efficient MDF method.

3.1 Problem Definition

Given a short video \(V = \{v_1, v_2, ..., v_T\} \) of \(T \) frames and a literal question \(Q = \{q_1, q_2, ..., q_l\} \) of \(l \) tokens, an ITM \(\mathcal{M} \) is expected to generate an answer
\[
\hat{A} = \{\hat{a}_i\}_{i=1}^{\alpha} \quad \text{(generative setting, } \alpha \geq 1) \quad \text{or}\quad \hat{A} = \mathcal{M}(V', Q) \quad \text{(1)}
\]
where \(V' \subset V \) is a set of sampled frames.
In evaluation, we use item-wise accuracy as the performance metric, defined as:

\[
 acc = \frac{1}{|Q|} \sum_{i=1}^{|Q|} 1(\hat{A}_i = A_i)
\]

(2)

where \(Q\) is the entire set of questions in the dataset, \(1(\cdot)\) is the indicator function that equals 1 only if the expression is true.

3.2 Most Implied Frames (MIF)

MIF uses a caption model \(M_c\) and a set of grading models \(M_g\) to select the best frame candidates, as illustrated in Fig. 4, which could also be called cue frame retrieval for a given question. Before starting the whole process, following previous work (Buch et al., 2022; Li et al., 2022c), we reduce the computational cost by uniformly sampling \(T'\) frames from the original video (\(N < T' << T\)). The caption model \(M_c\) takes every downsampled frames as input and generates a description \(C\). Then \(M_g\) computes the matching score \(s\) between question \(Q\) and the generated description (\(s = M_g(Q, C)\)). We presume that the matching score \(s\) indicates the possibility that each frame can serve as a cue to answer the given question. Hence, we rank all frames according to these scores and pick the highest \(N\) frames as the sampled results. In this sense, MIF is a QA–aware algorithm. For different questions under the same video, MIF usually generates more than one set of sampled frames.

We use “Base” model here to take care of both efficiency and performance, but here there naturally raises the first question:

RQ1: Are larger models bound to better results? To provide a potential response, we switch to “Small” and “Large” sizes for both the caption and grading model and report the performance on MSRVTT in Table 1.

<table>
<thead>
<tr>
<th>(M_c)</th>
<th>(M_g)</th>
<th>MSVD</th>
<th>MSRVTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIT-S</td>
<td>BERT-S</td>
<td>46.5</td>
<td>42.3</td>
</tr>
<tr>
<td>GIT-B</td>
<td>BERT-B</td>
<td>46.7</td>
<td>42.4</td>
</tr>
<tr>
<td>GIT-L</td>
<td>BERT-L</td>
<td>46.9</td>
<td>42.1</td>
</tr>
</tbody>
</table>

Table 1: Results of two datasets on GIT using different captioner-grader combinations. The number of input frames are fixed at 6. “GIT-B” and “Bert-B” is the default implementation in later sections.

Among these results, we find that there is no significant correlation between the size of caption-grading system and the accuracy of Video–QA task, though larger models could produce more informative and accurate captions and grades overall. Now that question-guided sampler has reached its roof, we expect to seek an alternative.

RQ2: Can we design a question-agnostic sampler?

The answer would be “highly probable” based on the aforementioned results and conclusions. To provide a possible solution, we propose another method, most dominant frames, in the following section from the view of the vision-encoder inside these ITMs.

3.4 Most Dominant Frames (MDF)

It has been pointed out in early video sampling works (Shahraray, 1995; Nam and Tewfik, 1999) that the sampling rate in each temporal region should be proportional to the object motion speed. Besides, due to the frame lengths are fixed in ITMs (3 or 6 in our experiments).

To this end, we construct our solution based on the ITM’s cognition towards the frames from its own vision-module. The first intuition comes from the theory and experience of representation learning from large pretrained models (Bengio et al., 2013; Devlin et al., 2018; Dosovitskiy et al., 2020), which believes that learned representations output from well-tuned large models have been embedded with meaningful semantic information. We harness the inherent vision encoder to acquire visual
embeddings \(E = \{e_1, e_2, ..., e_T\} \). To quantify the invariance in each frame, we define the following score function \(\text{dom}(t) \) at for frame \(v_t \) at timestamp \(t \).

\[
\text{dom}(t) = \sum_{t'=t-W}^{t+W} \text{sim}(e_t, e_{t'}) \quad (3)
\]

The the problem can be formulated as seeking \(N \) local minima of \(\text{dom}(t) \) on the time axis \(\tau = \{t_1, t_2, ..., t_N\} \subset \{1, 2, ..., T\} \), subject to \(|\tau_i - \tau_{i+1}| \geq W \).

Algorithm 1: Most Dominant Frames (MDF)

1. **Input:** Video frames \(V = \{v_1, v_2, ..., v_T\} \), vision model \(\mathcal{M} \), width-adjusting rate \(\lambda \)
2. **Output:** Visual prefix \(F = \{f_1, f_2, ..., f_N\} \)
3. Encode frames using the vision model \(E = \mathcal{M}(V) = \{e_1, e_2, ..., e_T\} \)
4. Compute \(\text{dom} \) score for all frames and set \(W \), according to Eq. 3 and Eq. 4).
5. **Init** \(\{f_{\text{argmax}_i, \text{dom}(t)}\} \), index set \(I = \{0, 1, ..., i - W, i + W, ..., T\} \)
6. **while** \(|F| < N \) and \(I \neq \emptyset \) **do**
7. \(t' \leftarrow \text{argmax}_i \text{dom}(t) \)
8. \(F \leftarrow F \cup \{f_t\} \)
9. \(I \leftarrow I \setminus \{t'\} \)
10. **if** \(|F| < N \) **then**
11. \(\tau \leftarrow \text{argmax}_i \{\text{dom}(t)\}_{t \in T} \)
12. **else**
13. **return** \(F \cup \{f_t\} \) for \(t \in \tau \)

The details of the algorithm is given in Algorithm 1. Considering the disparity in the lengths of videos, instead of keeping a constant \(W \), we set \(W \) automatically in an self-adaptive way:

\[
W_v = \frac{L_v}{\lambda \cdot N} \quad (4)
\]

where \(L_v \) is the length of video \(V \) in terms of frame numbers, \(\lambda \) is the constant width-adjusting rate that controls the scope to search in every steps. Fig. 5 visualizes an example of searching results on the similarity map.

4 Experiments

4.1 Datasets

To evaluate our proposed methods, we conduct extensive experiments on the following 4 frequently tested datasets:

MSVD-QA and MSRVTT-QA These two datasets (Xu et al., 2016a) are adapted from two general video captioning datasets—Microsoft Research Video Description Corpus (Chen and Dolan, 2011) and MSR-VTT dataset (Xu et al., 2016b). Both datasets have five types of questions—what, where, who, when, how.

TGIF-QA The TGIF-QA (Jang et al., 2019) dataset contains 165K QA pairs for the animated GIFs from the TGIF dataset (Li et al., 2016). Its question-answer pairs are annotated via crowdsourcing with a carefully designed user interface to ensure quality. TGIF-QA has three question types: frame, transition, and (repetition) count. We only test on the frame-QA task because others do not belong to the open-ended QA category.

NExT-QA The NExT-QA (Xiao et al., 2022) targets at reasoning from causal and temporal relationships between actions. There are three question types including descriptive, temporal and causal reasoning, which respectively targets at evaluating model’s different aspects of capability.

4.2 Backbone Models

CLIP CLIP (Rasheed et al., 2022) is the first ITM that focuses on zero-shot transfer onto diverse multimodal downstream tasks. It is composed of two modality-specific encoders to process input modality signals separately. In our experiments, we also modify its structure by adding a single-layer transformer decoder on the top of the two encoders (dubbed “CLIP-dec” but we still use "CLIP" to denote it for simplicity, see Fig. 6). We decode for only one step to get the answer, not alike other generative ITMs that predict the whole sequence containing both the question and answer words.
GIT is one of the state-of-the-art ITMs for video question answering tasks, released by Microsoft Research. It adopts ViT-B-16 (Radford et al., 2021) as its visual encoder and has a GPT-style decoder that receives both the encoded image patches (as prefix) and textual embeddings to generate the entire sequence of the question and answer in an auto-regressive fashion. Currently, the GIT family consists of four versions\(^1\). In our experiments, we tune GIT-Base on these three datasets (denoted as GIT in later context for simplicity).

All-in-one (AIO) All-in-one (Wang et al., 2023) is another family of ITMs which follows the philosophy of learning-by-fusion. The model is composed of many stacked multimodal attention layers called unified transformer that takes concatenated video–text input as the basic fusion modules. Similar to previous two ITMs, by appropriate formulation, it can employ the output embeddings to solve many downstream video–language tasks. Particularly, we use All-in-one(-Base) in all our experiments.

In later context, by default “CLIP” and “AIO” respectively denote CLIP-ViT-base-patch16\(^2\) with a decoder and All-in-one-Base\(^3\). For GIT-related models, we follow (Wang et al., 2022) to finetune the pretrained GIT-Base\(^4\) on four datasets.

4.3 Baselines

Direct Finetuning We first consider directly finetuning each backbone model, which can be categorized into online learning-free sampling. Since the exact sampling strategy adopted by GIT is unknown, we examine the results using uniform sampling and find that they are closed to the reported numbers on three datasets (MSVD, MSRVTT, TGIF). Hence, we treat uniform sampling as baseline for GIT and CLIP-series (because there is not open-sourced implementation provided for CLIP on these datasets as well). AIO has released the code publicly, in which the sampling strategy is explicitly implemented. Therefore, we just simply reproduce with the code and report the result as baseline for comparison. For all experiments, we keep the sampling strategy (including their hyperparameters if any) unchanged in training and testing.

Learning-based Sampler We compare with two advanced learning-based samplers, IGV (Li et al., 2022c) and VCSR (Wei et al., 2023). Both methods construct two or more complement segment groups with contrary property and jointly optimize the main network and sampler by minimizing a line of auxiliary losses. In original implementation, both IGV and VCSR samples much more frames than the default input lengths of backbone ITMs (\(|V|=16\) in IGV and \(|V|\)=frames/clip×clip = 6 × 4 = 24 in VCSR) to the same value (1 × 3 for VCSR). Because enlarging input size leads to an increment in accuracy (see Section 5.1), for fair comparison, we reset the sampling size when implementing the two methods on each backbone model.

4.4 Implementation Details

The details of MIF has been introduced in Section 3.2. In MDF, we use each model’s inherent vision encoder to encode the sampled frames, and then calculate the cosine values between these vectors as the measure of frame similarity. A special case is that AIO does not have an independent visual encoder. Hence, we use ViT-B-16 (the same visual encoder as CLIP and GIT) as the “pseudo visual encoder”, and following the same procedure to obtain the sampled frames in each video.

<table>
<thead>
<tr>
<th>Model</th>
<th>MSVD</th>
<th>MSRVTT</th>
<th>TGIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIP (Radford et al., 2021)</td>
<td>33.8</td>
<td>33.7</td>
<td>59.9</td>
</tr>
<tr>
<td>CLIP+IGV (Li et al., 2022c)</td>
<td>34.8</td>
<td>34.1</td>
<td>61.9</td>
</tr>
<tr>
<td>CLIP+VCSR (Wei et al., 2023)</td>
<td>34.6</td>
<td>34.5</td>
<td>61.6</td>
</tr>
<tr>
<td>CLIP+MIF (Ours)</td>
<td>35.0</td>
<td>35.4</td>
<td>62.5</td>
</tr>
<tr>
<td>CLIP+MDF (Ours)</td>
<td>35.1</td>
<td>35.2</td>
<td>63.2</td>
</tr>
</tbody>
</table>

Table 2: Experimental results with CLIP (\(|V|=3\)) backbone on three datasets.
4.5 Results

Results on CLIP The results of three datasets (msvd-qa, msrvtt-qa, tgif-frame) are shown in Table 2. From the table we note that MIF and MDF achieves significant improvement over original CLIP with online random sampling (1.2%~3.3%), as well as CLIP plus learning-based sampling methods. However, the performance difference between two proposed sampling strategies is not significant on both MSVD and MSRVTT, which manifests that question-aware is not a necessity for better performance.

<table>
<thead>
<tr>
<th>Model</th>
<th>GIT Backbone</th>
<th>MSVD</th>
<th>MSRVTT</th>
<th>TGIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIT</td>
<td></td>
<td>52.2</td>
<td>41.1</td>
<td>67.5</td>
</tr>
<tr>
<td>GIT+IGV</td>
<td></td>
<td>53.2</td>
<td>41.5</td>
<td>68.1</td>
</tr>
<tr>
<td>GIT+VCSR (Wei et al., 2023)</td>
<td>52.7</td>
<td>41.6</td>
<td>68.6</td>
<td></td>
</tr>
<tr>
<td>GIT+MIF</td>
<td></td>
<td>54.5</td>
<td>42.3</td>
<td>69.9</td>
</tr>
<tr>
<td>GIT+MDF</td>
<td></td>
<td>55.3</td>
<td>42.0</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Table 3: Experimental results on the test set of three datasets. Best scores of each backbone model are highlighted in bold.

<table>
<thead>
<tr>
<th>Model</th>
<th>AIO Backbone</th>
<th>Val</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIO</td>
<td></td>
<td>46.1</td>
<td>42.7</td>
</tr>
<tr>
<td>AIO+IGV (Li et al., 2022c)</td>
<td>46.3</td>
<td>43.3</td>
<td>64.7</td>
</tr>
<tr>
<td>AIO+VCSR (Wei et al., 2023)</td>
<td>46.4</td>
<td>43.0</td>
<td>64.5</td>
</tr>
<tr>
<td>AIO+MIF</td>
<td></td>
<td>46.7</td>
<td>44.0</td>
</tr>
<tr>
<td>AIO+MDF</td>
<td></td>
<td>46.9</td>
<td>43.8</td>
</tr>
</tbody>
</table>

Table 4: Experimental results on the validation and test set of the NExT-QA multi-choice dataset (choose 1 from 5).

Results on GIT and All-in-one. Table 3 and Table 4 displays the results of GIT and All-in-one on four datasets. There are the following three key points to highlight. Firstly, compared to the original implementation results, both MIF and MDF can enhance the accuracy on all three datasets regardless of model architectures. These results are consistent with CLIP, which demonstrates our proposed methods are broadly applicable to diverse datasets and models. Secondly, the increment in accuracy is higher on models with more sampled frames (6 for GIT v.s. 3 for All-in-one), which implies that our proposed methods are possibly more effective when the input frame. Lastly, we notice that the improvement on TGIF-Frame by MIF and MDF over the uniform sampling is more drastic than the other two datasets. This quite contradicts to our belief since “video” (GIT strictly) in TGIF-frame is much shorter with fewer switching in scenes than the other two datasets. Hence we deem that it should be less sensitive to the sampling methods. Meanwhile, All-in-one adopts wall-random sampling in training and uniform sampling in the testing phase, and correspondingly its reported accuracy on TGIF-Frame is higher. This fact further confirms that the TGIF-Frame dataset is more sensitive to the sampling strategy.

5 Analysis

5.1 Impact of Input Frame Length
Recall we fix all baselines’ input frame lengths in all experiments. However, intuitively the number (length) of input frames should be regarded as a potential factor to the accuracy, since increasing the input frames equals to exposing larger amount of training data to the model. To see how this factor affects backbone models’ performance and whether our proposed sampling methods can consistently enhance the accuracy when sampling more or fewer frames, we continue to fine-tune GIT on the MSRVTT–QA dataset with distinct frame lengths. The results of this set of experiments are plotted in Figure 7a. From the figure we firstly discover that as expected, after increasing the number of input frames, the accuracy scores become higher. Moreover, the accuracy of the proposed two sampling strategies MDF and MIF consistently surpasses the uniform sampling is more drastic than the other two datasets. This quite contradicts to our belief since “video” (GIT strictly) in TGIF-frame is much shorter with fewer switching in scenes than the other two datasets. Hence we deem that it should be less sensitive to the sampling methods. Meanwhile, All-in-one adopts wall-random sampling in training and uniform sampling in the testing phase, and correspondingly its reported accuracy on TGIF-Frame is higher. This fact further confirms that the TGIF-Frame dataset is more sensitive to the sampling strategy.

5.2 Auto-generated Captions in MIF
In MIF, we invoke a captioning model and anticipate it to provide an precise and informative annotation to each frame. Since intuitively, the question–answering matching judgement model can not probably differentiate nuance in two sentences if their pattern looks quite similar. However, the actual results are opposite to our expectation. Take our randomly selected video from MSVD-QA in Table 5 as an example, where Q1 and Q2...
represent two questions “what does a small dog wildly play with?” and “what wildly plays with a ball?”. First we observe that the titles generated by the VLM looks similar to each other, i.e., “[noun] [verb] [prep. phrase]”, suggesting that a model may tend to generate captions in a nearly fixed pattern. Moreover, the sentence similarity among these captions confuse the QA pair scoring model—Q1 and Q2 describe nearly the same scenario and should share some cue frames, but the key frame (the 12th frame) is captured by Q1 but overlooked by Q2, as well as the secondary important frame (the 3rd frame). Therefore, we believe that a captioning model that can provide diversified output and a robust scoring model that can offer objective and fair ratings to question–answer pairs are necessary to guarantee sampling effectiveness which is vulnerable to possible intermediate noises.

Table 5: An example of frame captions and sampling results. “✓” means this frame is chosen to constitute the input together with the question of that column.

<table>
<thead>
<tr>
<th>ID</th>
<th>Caption</th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a white puppy playing with toys.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a white puppy playing with a toy.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a white puppy with black eyes and a blue ball.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a puppy that is laying down on the floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a puppy playing with a blue ball.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>a puppy that was found in a house.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>a puppy that is laying down on the floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>a puppy that is sitting on the floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>a puppy is sitting on the floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>a white puppy sitting on a table.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>a white puppy laying on the floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>a puppy playing with a blue ball.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>a white dog standing on top of a floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>a white dog walking on the floor.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>a small white dog playing with a ball.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>a dog chewing on a toy in a cage.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Sampling Interval in MDF

In MDF, we prevent the sampling frames from being excessively close by setting a hyperparameter λ ($W = L/(\lambda \cdot N)$). However, decreasing λ (enlarging the interval W) causes more failure for a model to sample enough frames, and in this case some of the sampled frames may get too closed to degrade model’s performance. In our experiments, we surprisingly found that such situations do not always happen. To delve into this phenomenon, we define the outcome where the collected K frames satisfy the interval requirements as “success” and otherwise as “failure”. We test and plot the curve of success rate ($r_{success} = n_{success}/n_{total}$) and accuracy against λ on three datasets produced by GIT, as shown in Figure 7b. The horizontal axis denotes the hyperparameter λ that controls the minimal sampling interval. The figure shows that there is a critical point that failure will never happen if continuing to increase λ—we do not know the precise value but choose to mark the minimal value during our experiments that we can earn 100% success. Moreover, there is no strong correlation between the success rate and model performance, but a minimum interval should be reached to ensure a promising performance. The performance peak is achieved under a hybrid sampling strategy ($\lambda = 2.3, r_{success} = 79.1\%$).

6 Conclusion

In this paper, we focus on the frame sampling issue inhering in the task of video question–answering and propose two simple and effective methods—most implied frames (MIF) and most dominant frames (MDF). MIF streamlines a set of sampling methods in the textual space by projecting heterogeneous inputs (question and video) to a common space through pretrained ITMs. It then identifies frames with the highest matching scores generated from a scoring model. Based on the insights and analysis derived from MIF, we further propose most dominant frames (MDF), which exploits a more concise, self-adaptive formulation for sampling. The success on these sampling strategies from CLIP to All-in-one demonstrates the broad applicability of our proposed methods across a spectrum of general scenarios.

Limitations

Despite the promising results gained from the proposed methods, from a wider horizon we still notice...
some limitations in our work. First, due to the restriction of computation resource, we only evaluate our proposed methods on the video question answering task, and we do not have the opportunity to test on more emerged ITMs to further substantiate our methods’ efficacy. Secondly, we do not try MIF-style methods on large language models like GPT-4. We believe this could serve as a future direction.

References

Yunseok Jang, Yao Song, Chris Dongjoo Kim, Young-jae Yu, Youngjin Kim, and Gunhee Kim. 2019. Video Question Answering with Spatio-Temporal Reasoning. IJCV.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerrig. 2021. Scaling up visual and vision-language representation learning with noisy text supervision. In International Conference on Machine Learning, pages 4904–4916. PMLR.

A Implementation Details

To enforce a fair comparison, we run both training and testing stages for each VLM on a single NVIDIA RTX-A6000 GPU (except All-in-one because its implementation only has multi-GPU version, therefore we run it on 2 GPUs) while holding other hyperparameters and settings consistent with the default ones introduced in their original papers or codes (e.g., number of frames sampled per video, learning rate, training epoch, numerical precision in computation, etc). Gradient accumulation is applied to enable a large batch size (≥ 512) required in the fine-tuning process. To further reduce the computational complexity, all experiments are implemented with the pytorch Automatic Mixed Precision (AMP) package. The checkpoints in our finetuning stage can all be found and downloaded from publicly available links.

B Baseline Models

We compare the results on the listed image–text pretrained models to other models in similar sizes that have (1) an image encoder inside but experience no or a different pretraining procedure (including the pretraining task selection and design, the goal function, datasets and annotation methods, etc) (Huang et al., 2020; Jiang et al., 2020; Liu et al., 2021a; Lei et al., 2021). (2) a video encoder to tune during training time or merely use feature vectors extracted from pretrained video networks (I3D (Carreira and Zisserman, 2017), S3D (Xie et al., 2018)) (Xiao et al., 2022; Zellers et al., 2021; Yang et al., 2021; Fu et al., 2021). For baselines that work as our backbone network and finetuning starting point, we report our reproducing results as a more accurate benchmark, since we found many of these results are distinct from those reported in the original paper owing to the disparity in implementation environments.

Particularly, since we do not find any details introduced in the paper or official implementations online regarding the sampling strategies in GIT, and our implementation with uniform sampling in both training and testing can achieve comparable results as the reported ones (Wang et al., 2022) on 2 of 3 datasets, we treat this implementation as the reproduced results of GIT standalone.

C Evaluation Metrics

In all models, the sampled raw frames V' are resized to match the model-acceptable scales and then normalized. VLMs then take these frames as input and embed them into a sequence of vectors.

5https://pytorch.org/docs/stable/amp.html
Since the decoding mechanisms are different in these models, we illustrate them one by one:

In non-generative Video–LM (CLIP), the outputs from both modality encoders first pass through a transformer decoder layer and a classification layer:

\[\hat{A} = f(E_v, E_q) \quad (5) \]

In generative VLM (CLIP-Dec, GIT), the visual (from the visual encoder, like a prefix prepended to the text) and textual embeddings (from the embedding layer) constitute the input of the decoder. The decoder keeps generating the whole question and answer sequence in an auto-regressive manner:

\[P(Q, A|V, Q) = \sum_{t=1}^{n+I-1} \log P(y_{t+1}|y_1, y_2, ..., y_t, V) \quad (6) \]

In All-in-one, the model first generates answer predictions \(z_i \) for each frame. Then, these predictions are fused together by summation to form a consensus at the video level (Wang et al., 2023).

\[p = \frac{1}{S} \sum_{i=1}^{S} z_i \quad (7) \]

D Speedup and Overhead Analysis

From video–text models to image–text ones.

By adopting image–text VLMs (even without HDF5 as storage), we can obtain a 2.5 ~ 4 × acceleration during training and inference stage. Moreover, the training can be completed with a single A6000 GPU (46 GB memory) for all image–text VLMs in our experiments (for all-in-one although it runs on 2 GPUs, the total memory usage can fit to a single GPU, i.e., much less than 46 GB), while video–text VLMs listed as our baselines (e.g., MERLOT (Zellers et al., 2021)) consume 4 same type of GPUs with the same batch size.

From on-the-fly sampling to offline sampling plus HDF5 I/O.

Conventional approaches for image–encoder based VLMs to generate input frames directly read from raw videos and then sample frames among them on-the-fly, which consumes a large amount of storage and running time during training. As our proposed methods are offline algorithms, we can save all sampled frames for each video into a unified HDF5 file and meanwhile create a vid-to-id mapping file, (a.k.a. meta data) for the model to look up during its running time. HDF5 (Hierarchical Data Format) is a file format designed to store and organize large amounts of data by creating a set of “datasets”, and to address current and anticipated requirements of modern systems. The contents saved in an HDF5 file can be mapped to RAM for fast loading during training, which greatly reduces the time needed for model training.

As a direct comparison, in our implementation of All-in-one, a 2.5 ~ 2.9 × speed-up during training stage is recorded when using HDF5 to substitute original reading from video-files and then sampling on-the-fly. For GIT and CLIP, this kind of comparison is infeasible since the training time can not be found neither in their papers nor replicated by our implementations (since we do not find open-sourced code for them on these video–QA datasets, the replication of their results also adopts the HDF5 I/O).

Removal of Redundant Sampling.

Although the sampling process in the preprocessing stage produces additional overhead, we further highlight that the sampling process has to be run only once per dataset even for two different models if they consume the same number of frames as input. This feature further reduces the consumption of redundant computational power compared to those on-the-fly sampling methods since they need to recalculated the duplicated sample process during every tuning stages, not to mention that the HDF5 file can be shared online with potential users and researchers to download.

Case Study

We take the experiment using All-in-one on TGIF-QA as an example. If using on-the-fly uniform sampling, the training time per epoch is 52 min and the model takes 15 epochs to converge (780 min in total). As comparison, after applying our sampling methods, the training time per epoch reduces to 18 min per epoch (270 min in total) while the additional overhead to generate the .h5 file is 3 hour (180 min). The total time combining sampling and training and is \(270 + 180 = 450 \) min, much shorter than the implementation with on-the-fly sampling.

E Dataset Statistics

We list the specifications of the datasets used in our evaluation process in Table 6.

F Hyperparameter Search

In MDF, we run experiments on the sampled datasets with \(\alpha \in \{2.3, 2.5, 2.7\} \). In MIF, we first
<table>
<thead>
<tr>
<th>Item</th>
<th>Split</th>
<th>MSVD</th>
<th>MSRVTT</th>
<th>TGIF</th>
<th>NExT</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Video</td>
<td>Train</td>
<td>1,200</td>
<td>6,513</td>
<td>37,089</td>
<td>3,870</td>
</tr>
<tr>
<td></td>
<td>Dev</td>
<td>250</td>
<td>497</td>
<td>-</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>520</td>
<td>2,990</td>
<td>9,219</td>
<td>1,000</td>
</tr>
<tr>
<td>#Q&A</td>
<td>Train</td>
<td>30,933</td>
<td>158,581</td>
<td>39,392</td>
<td>31,173</td>
</tr>
<tr>
<td></td>
<td>Dev</td>
<td>6,415</td>
<td>12,278</td>
<td>-</td>
<td>4,682</td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>13,157</td>
<td>72,821</td>
<td>13,691</td>
<td>16,189</td>
</tr>
</tbody>
</table>

Table 6: Statistics of the four QA datasets evaluated in this paper. The split row lists the number of corresponding items in train/dev/test set. Note TGIF-QA does not have a validation set.

uniformly pre-sample 16 frames in all experiments, then we calculate question–caption matching score based on these sampled frames. For all other hyperparameters (batch size, vocabulary size, learning rate, etc), we keep them same as original setting from their blogs or papers (for CLIP we adopt the same setting as GIT).