Medical Imaging with Deep Learning

Virtual staining overlay enabled combined morphological
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Abstract

B-cell lymphomas are complex entities consisting of a component of malignant B-cells
admixed in a local tumor microenvironment (TME) inflammatory milieu. Discrete char-
acterization of both compartments can drive deeper understanding of pathophysiology,
allowing more accurate diagnoses and prognostic predictions. However, limitations in both
pathologist time and input tissue to generate multiple stains can greatly limit accurate
identification of minute, cellular-level regions of interest necessary to achieve the full po-
tential of spatial biology. Here, we present a novel method to perform precise sampling
of cells for transcriptomic analysis using virtual staining of autofluorescence images via
deep learning algorithms. We validated the performance of the model on regions of inter-
est (ROIs) identified on chemically stained images by board certified pathologists against
virtually stained images. The results confirmed the usability and accuracy of the workflow
and identified distinct transcriptomic profiles across a range of virtually identified ROIs,
raising the possibility of our workflow’s applicability across a broader range of pathologies
and tissue types.
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1. Introduction

B-cell lymphomas are heterogeneous diseases with respect to gene expression and tumor mi-
croenvironment, with some entities containing a minority of malignant B-cells in a largely
inflammatory background. These rare malignant cells have unique interactions with the
local tumor microenvironments (TME) which may drive clinical behavior and treatment re-
sponsiveness. Accurate elucidation of such interactions requires sampling of both malignant
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cells and background TME for ancillary studies such as transcriptomic analysis, though ex-
isting /standard technologies cannot achieve high precision, complete spatial alignment with
preservation of architectural and structural context.

Previously (Rivenson et al., 2019), it has been demonstrated that a fully supervised deep
learning technique can be used to virtually stain autofluorescence images of unlabelled tissue
into various stain combinations using deep learning. Here we applied the same technique
and generated virtually-stained H&E images based on the autofluorescence images of the
sample tissue slides. Using this novel computational technique, board certified pathologists
reviewed perfectly spatially aligned virtual stains to precisely identify and annotate spe-
cific populations at the cellular-level; these areas were then seamlessly incorporated into
Nanostring’s GeoMx® Digital Spatial Profiler (Zollinger et al., 2020) platform allowing
analysis at hitherto unrealizable levels of resolution. Analysis of the ROIs revealed distinct
transcriptional profiles between areas enriched in Reed-Sternberg cells and the associated
inflammatory milieu demonstrating the viability and utility of virtual H&E staining tech-
nology as a part of spatial genetic workflow.

2. Methods

58 unstained sections cut at 4 microns were prepared from a total of 12 Formalin-Fixed
Paraffin-Embedded (FFPE) tissue blocks. These unstained slides were first scanned into
autofluorescence images using four fluorescent filter cubes (BGYR) on the GeoMx® DSP
platform. 17 were then deparaffinized and chemically stained with H&E whereas the other
41 underwent an additional mock GeoMx® CTA assay before chemical H&E staining. The
brightfield whole slide images (WSIs) of all 58 chemically stained H&E slides were cap-
tured using a slide scanner microscope (AxioScan Z1, Zeiss) at 20x. For each tissue slide,
a multi-stage registration was performed to match the brightfield (BF) WSI to its autoflu-
orescence (AF) counterpart at subpixel level, enabling a supervised training approach. In
order to learn an accurate transformation from 4-channel autofluorescence images to their
corresponding brightfield H&E stained images, a conditional GAN-based (Goodfellow et al.,
2014) model with an L1 loss was utilized, with a U-net architecture (Ronneberger et al.,
2015) for the generator. The training framework is shown in Figure 1.
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Figure 1: Training framework of the virtual stain neural network.
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3. Results

Once the virtual H&E model was trained and validated, it was used to virtually stain
autofluorescence images of unlabeled tissue from Classic Hodgkin Lymphoma (CHL) and
normal/reactive lymphoid tissue not previously used for training. This virtual H&E was
imported into the GeoMx® DSP platform and aligned such that any ROIs created by
pathologists based on the virtual H&E would directly map to matched tissue coordinates.
These selected regions were then targeted for spatially precise transcriptomic analysis. In
this study, pathologists were able to identify and create ROIs for areas enriched in Reed
Sternberg cells, the malignant B-cells in CHL, and separate TME regions enriched for the
inflammatory milieu on the virtual H&E. Additional analysis showed clear differences in
transcriptional profiles between areas as a function of the ratio of Reed Sternberg cells vs
the inflammatory milieu in CHL (see Figure 2). The unstained tissue slides which were
previously virtually stained were later histochemically stained by H&E for side-by-side
comparison by board certified pathologists. This visual assessment further validated our
virtual staining model as all selected ROIs from the virtual H&E were correctly identified
and confirmed on the histochemical H&E slides.
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Figure 2: Volcano plot resulting from the differential expression analysis.
4. Conclusion

The ability to produce and review virtually stained H&E slides embedded within a down-
stream spatial transcriptomics pipeline greatly improves the speed, accuracy, and function-
ality of this complex workflow. Compared with existing processes, in which downstream
analytics such as transcriptomics are deployed without careful architectural and structural
context, inserting a virtual H&E annotation step enhances the ability of users to precisely de-
fine areas of interest and avoid off-target analytics. This seamless hybrid workflow increases
the relevance of output transcriptomics analysis, provides accurate, real-time segmentation
of different constituents of a mixed malignant/TME lesion, and preserves additional tissue.
Our analysis demonstrates that the virtually stained images are concordant with chemically
stained H&E slides and can be used for QC, ROI identification, and other downstream anal-
yses. As more virtual staining models are developed, these novel capabilities will further
improve the ability to precisely segment the original scanned image, unlocking increasing
larger amounts of data from diminishing input tissues.
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