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Abstract
Geospatial raster (imagery) data, such as that
collected by satellite-based imaging systems at
different times and spectral bands, hold immense
potential for enabling a wide range of high-impact
applications. Recent work has adapted existing
self-supervised learning approaches for such
geospatial data. However, they fall short of
scalable model architectures, leading to inflex-
ibility and computational inefficiencies when
faced with an increasing number of channels
and modalities. To address these limitations, we
introduce our Low-rank Efficient Spatial-Spectral
Vision Transformer (LESS ViT) architecture.
We pretrain LESS ViT using a Multi-spectral
Masked Autoencoder paradigm, and evaluate
the resulting performance on our constructed
GFM-Bench, a comprehensive benchmark for
such geospatial raster data. Experimental results
demonstrate that our proposed method achieves
competitive performance against state-of-the-art
multi-modal geospatial foundation models
while outperforming them on cross-satellite
generalization tasks with higher computational
efficiency. The flexibility and extensibility of
our framework make it a promising direction for
future geospatial data analysis tasks that involve
a wide range of modalities and channels.

1. Introduction
Geospatial data provides location-specific, timestamped in-
formation about the Earth’s surface. The rapid development
and proliferation of satellite-based imaging systems have
led to a significant increase in geospatial raster (e.g., im-
agery) data collection, offering valuable insights into various
aspects of our planet. Geospatial raster data is inherently
multi-modal, integrating observations from diverse sensing
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systems such as optical and radar satellites. Each modality
captures distinct data dimensions through multiple chan-
nels (e.g., spectral bands, polarizations), while introducing
complexities from multi-temporal observations, non-ideal
imaging conditions, and varying spatial resolutions.

Self-supervised learning (SSL) allows models to benefit
from the vast amounts of unlabeled geospatial data and
learning useful representations. Recent works on geospa-
tial foundation models have attempted to adapt existing
SSL paradigm to geospatial datasets using various strategies.
However, although these approaches achieved empirical suc-
cess, their underlying architectures and objectives remain
largely the same as those designed for natural images and
thus do not fundamentally suitable to fully capture the spa-
tial, spatial-channel and inter-channel relations of geospatial
data. Therefore, developing model architectures that ex-
plicitly encode these distinctive relationships in geospatial
data and while efficiently scaling to thousands of spectral
channels would significantly advance existing approaches
that predominantly leverage spatial features.

In this work, we design a novel model architecture,
Low-rank Efficient Spatial-Spectral Vision Transformer
(LESS ViT), which compute the spatial-spectral attention
of multi-spectral geospatial data efficiently. For pretrain-
ing, we extend the Masked Autoencoder framework to
Multi-spectral MAE (Multi-MAE), which introduces a
more challenging pretraining objective that encourages
learning of inter-channel relationships. To standardize
evaluation protocols, we construct GFM-Bench with
proper validation splits and consistent metrics across
diverse geospatial tasks. Extensive experiments demon-
strate the effectiveness of our proposed architecture and
pretraining strategy. Code and project page available at
https://uiuctml.github.io/GeospatialFM/.

2. Low-rank Efficient Spatial-Spectral ViT
In this section, we introduce our Low-rank Efficient Spatial-
Spectral (LESS) ViT architecture. Specifically, we elabo-
rate the three key components of the framework: the multi-
spectral patch embedding block, the LESS Attention Block
and the Perception Field Mask.
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Figure 1. Multi-spectral Patch Embedding. Multi-spectral im-
ages, with dimensions C × H × W , are embedded into spatial-
spectral tokens through the Tied Patch Embedding Layer. We
then prepend the Spatial, Spectral and global [CLS] tokens to the
resulting patch tokens.

2.1. Multi-spectral Patch Embedding

Multi-spectral images can contain tens to thousands of chan-
nels, which exhibit strong physical correlations that must be
effectively leveraged. To exploit these rich spectral informa-
tion in subsequent attention blocks, we adopt a Tied Patch
Embedding Layer that maintains spectral fidelity by explic-
itly embedding each channel’s information, and incorporate
a continuous positional-channel embedding to capture both
spatial and spectral relationships.

Tied Patch Embedding Layer. Given a multi-spectral im-
age with dimensions C × H × W , where C denotes the
number of channels, the tied patch embedding layer (Bao
et al., 2023) partitions the image into C × H

P × W
P patches

of size P × P . A shared learnable projection matrix
W ∈ RP 2×D transforms patches from each channel into D-
dimensional tokens. This weight-sharing mechanism across
channels (Ghiasi et al., 2022) ensures channel-independence,
making the architecture adaptable to geospatial data with
varying spectral dimensions. The resulting spatial-spectral
tokens have dimension RN×C×D, where N = H

P × W
P .

Continuous Positional-Channel Embeddings. To ensure
positional consistency across datasets with varying spatial
resolutions, we compute absolute geographic distances:

PE(x,r,p,2i) = sin(xrp/100002i/d),

PE(x,r,p,2i+1) = cos(xrp/100002i/d),
(1)

where x denotes the grid index, p is the patch size, r repre-
sents the image spatial resolution in meters per pixel, d is the
model’s embedding dimension, and i ∈ {0, 1, . . . , ⌊d/2⌋ −
1}. For the spectral axis, we encode the central wavelength
λ of each multi-spectral band using a similar formulation:

PE(λ, 2i) = sin(λ/100002i/d),

PE(λ, 2i+ 1) = cos(λ/100002i/d),
(2)

This physics-informed embedding enables the model to
arbitrary spectral bands, as it maps channels to a continuous
spectral space rather than treating them as discrete indices.
Finally, we sum the spatial and spectral embeddings to form
our continuous positional-channel embedding that jointly
encodes both geographic distances and spectral wavelength.
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Figure 2. LESS Attention Block. An illustration of the LESS
Attention Block, which decomposes spatial and spectral attention
computations and approximates the full spatial-spectral attention
through a Kronecker product of the individual attention maps.

2.2. Low-rank Efficient Spatial-Spectral Attention

Given the spatial-spectral tokens X ∈ RN×C×D, we would
like to apply the attention mechanism to capture the correla-
tions of the spatial and spectral patches. A straightforward
yet inefficient approach (Bao et al., 2023) is to flatten the
spatial-spectral tokens into X̄ ∈ RNC×D and apply the
standard attention mechanism. The computational complex-
ity of this approach scales quadratically with the number
of channels and tokens (O(N2C2)), making it infeasible
for geospatial data with a large number of channels or to-
kens. To address this limitation, we propose the Low-rank
Efficient Spatial-Spectral Vision Transformer (LESS ViT).
LESS ViT consists of multiple LESS attention blocks specif-
ically designed for spatial-spectral tokens. An illustration
of the blocks is shown in Figure 2. The computation com-
plexity of LESS ViT is reduced to O(NC), which scales
linearly with the number of spatial-spectral tokens.

To efficiently model spatial-spectral interactions, our LESS
attention block approximates the full spatial-spectral atten-
tion matrix using a Kronecker product of separate spatial
and spectral attention matrices. Specifically, the block first
decomposes input tokens X into spatial tokens XS and spec-
tral tokens XC . Then, the spatial attention matrix AS and
the spectral attention matrix AC are calculated separately us-
ing XS and XC , along with their respective value matrices
VS and VC . Since AS and AC represent convex combina-
tions of spatial and spectral dimensions respectively, their
Kronecker product A = AC ⊗AS yields a convex combina-
tion over the joint spatial-spectral dimensions. Leveraging
the mixed-product property, we efficiently obtain a low-rank
approximation of the full attention computation:

Y :=

r∑
i=1

(Ai
C ⊗Ai

S)(VC ⊗ VS) =

r∑
i=1

Y i
C ⊗ Y i

S , (3)

where Y i
S = Ai

SVS ∈ RN×d1 and Y i
C = Ai

CVC ∈ RC×d2 ,
∀i ∈ {1, · · · r}. This approach avoids explicitly construct-

2



Towards Scalable Foundation Model for Multi-modal and Multi-spectral Geospatial Data

LE
SS

 V
iT

En
co

de
r

LE
SS

 V
iT

D
ec

od
er

Spectral Masks

Sp
at

ia
l M

as
ks

Figure 3. Multi-MAE. Multi-MAE employs a LESS ViT encoder-
decoder architecture. The framework incorporates decoupled
spatial and spectral masking to create a more challenging self-
supervised pretraining objective.

ing the full attention matrix A, thereby reducing computa-
tional complexity. Note that r in Equation (3) is a hyper-
parameter for rank control. By adjusting the rank, we can
increase the capacity of the attention map while maintaining
the same computational complexity order.

The LESS attention block offers significant efficiency ad-
vantages compared to the previous spatial-spectral atten-
tion approach (Bao et al., 2023), which directly applies
attention to the reshaped tokens X̄ ∈ RNC×D. It re-
duces the computational complexity from O(N2C2D) to
O(rN2d1 + rC2d2 + rNCD), where d1d2 = D and
r ≪ min(N,D) is a small constant.

2.3. Perception Field Mask

To explicitly model spatial autocorrelation in geospatial data,
we introduce the Perception Field Mask. The Perception
Field Mask constrains the spatial attention computation by
allowing each token to attend only to patches within a speci-
fied distance threshold. Consequently, This distance-based
masking mechanism offers two key advantages: (1) it pro-
vides a tunable hyperparameter to control the locality of
attention computation, aligning with Tobler’s law, and (2) it
enables the model to process images of varying sizes with-
out downsampling, as the attention field remains spatially
consistent regardless of resolution.

3. Multi-spectral Masked Autoencoder
We extend the Masked Autoencoder (MAE) framework and
propose the Multi-spectral Masked Autoencoder (Multi-
MAE), which decouples spatial and spectral masking. An
illustration is shown in Figure 3. During training, we ran-
domly mask 75% of spatial patches and 50% of spectral
channels before encoding. The decoder then reconstructs
the complete multi-spectral image at pixel level from these
partially observed tokens. Importantly, we apply identi-
cal spatial masks across all unmasked channels, similar to
the tube masking strategy in (Tong et al., 2022). This ap-
proach encourages the model to learn intrinsic spatial and
spectral correlations in geospatial data, as it cannot rely on
positional information from other channels to reconstruct
masked spatial patches.

4. GFM-Bench
Several datasets do not include validation sets, forcing prior
work to tune hyperparameters on test data. To address
this limitation, we introduce GFM-Bench, implemented
using the HuggingFace framework and providing standard-
ized evaluation protocols. The current version of GFM-
Bench consists three classification tasks (EuroSAT (Hel-
ber et al., 2019), BigEarthNet (Sumbul et al., 2019) and
So2Sat (Zhu et al., 2020) and four segmentation tasks (Seg-
Munich (Hong et al., 2024), DFC2020 (Yokoya et al., 2020),
MARIDA (Kikaki et al., 2022), NLCD-L (Stewart et al.,
2024)). All datasets are derived from data of the Sentinel
constellation except NLCD-L, which uses Landsat data. For
datasets without validation splits, we either allocate 10% of
the training data for validation or utilize alternate versions
that include validation sets. We implement consistent evalu-
ation metrics to ensure fair hyperparameter selection across
models. GFM-Bench enforces hyperparameter tuning on
validation sets and performance reporting on test sets.

5. Experiments
We pretrain a LESS ViT-Base model using Multi-MAE on
the Senetinel 1&2 data from SSL4EO-S12 dataset (Wang
et al., 2023). We evaluate our models and the publicized
checkpoints from the baseline methods on GFM-Bench
and present quantitative experimental results to demon-
strate out competitive performance against state-of-the-art
approaches.

5.1. Multispectral Optical Experiments

Our experimental results for classification and segmentation
tasks are summarized in Table 1. LESS ViT demonstrates
competitive performance across most benchmarks com-
pared to existing approaches. Among ViT-Base-sized
models, our approach achieves the second-highest average
performance, indicating robust generalization across diverse
downstream tasks. Notably, LESS ViT outperforms several
ViT-Large-sized baselines on specific benchmarks, despite
its more compact architecture. The linear probing (LP)
results demonstrate that LESS ViT learns transferable
representations for multi-spectral geospatial data, while
the fine-tuning (FT) results highlight its strong task-specific
adaptation capabilities. However, we observe performance
gaps on So2Sat(Zhu et al., 2020) and DFC2020 (Yokoya
et al., 2020) datasets. These gaps arise from distribution
shifts between training and test sets, motivating future
work to enhance training robustness through improved
self-supervision objectives.
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Table 1. Quantitative results on seven benchmarks under Fine-tuning (FT) and Linear Probing (LP). We report Top 1 accuracy
for classification tasks, mean Average Precision (mAP) for multi-label classification tasks, and mean Intersection over Union (mIoU)
for segmentation tasks. * indicates only 10% of the training and validation sets are used, following previous works. We also report the
average performance of each method on all benchmarks. Bold and underlined values indicating the highest and second-highest results.
The bottom two rows show ViT-Large models, which serve as references and are not directly compared with the ViT-Base approaches.

EuroSAT BigEarthNet* So2Sat* SegMunich DFC2020 MARIDA
Top 1 Acc. mAP Top 1 Acc. mIoU mIoU mIoU Avg.

Method Backbone FT LP FT LP FT LP FT FT FT
SatMAE (Cong et al., 2022) ViT-B 98.78 96.04 85.84 78.69 64.97 64.65 44.87 52.84 54.33 71.22
CROMA (Fuller et al., 2024) ViT-B 98.83 95.87 87.57 84.90 66.53 65.04 39.61 49.48 43.04 70.10

SpectralGPT (Hong et al., 2024) ViT-B 97.94 90.57 83.78 73.29 61.63 57.49 44.73 48.23 44.72 66.93
Ours LESS ViT-B 98.06 95.12 86.08 82.94 63.25 64.66 42.29 45.60 55.64 70.40

Scale-MAE (Reed et al., 2023) ViT-L 98.78 96.41 84.66 73.69 66.48 60.84 44.84 48.75 41.12 68.51
SatMAE++ (Noman et al., 2024) ViT-L 98.91 94.61 85.89 79.08 65.18 60.40 45.86 52.02 59.82 71.31

Table 2. Cross-Satellite Generalization to Landsat and Model Efficiency. We evaluate architectures for cross-satellite generalization
and computational efficiency on NLCD-L (Stewart et al., 2024), a 20-channel Landsat segmentation dataset. To enable direct comparison,
we normalize both FLOPs and wall-clock times relative to LESS ViT’s baseline measurements.

Dataset Architecture Backbone #Param. Fine-Tuning Time # FLOPs Inference Time mAP

NLCD-L (Stewart et al., 2024)
SatMAE (Cong et al., 2022) ViT-B 86.1M ×0.3 ×0.6 ×0.3 18.05
Channel-ViT (Bao et al., 2023) Channel-ViT-B 85.4M ×2.6 ×3.1 ×3.6 10.35
Ours LESS ViT-B 83.2M ×1.0 ×1.0 ×1.0 24.31

5.2. Cross-Satellite Generalization

We consider cross-satellite generalization as a critical abil-
ity of future geospatial foundation models. To demon-
strate the flexibility of our LESS ViT architecture in han-
dling satellites with varying channel counts without architec-
tural modifications, we evaluate our model on the NCLD-L
dataset from GFM-Bench. We construct this dataset by
combining optical data from Landsat 7 and Landsat 8-9
from SSL4EO-L (Stewart et al., 2024), resulting in a 20-
channel geospatial dataset that exceeds Sentinel-2’s channel
count. We compare LESS ViT against two baseline architec-
tures: SatMAE (Cong et al., 2022), a ViT-based model, and
Channel-ViT (Bao et al., 2023), which explicitly models
spatial-spectral attention. We fine-tune the three Sentinel-
pretrained base models on NCLD-L for 10 epochs, with
results shown in Table 2. Beyond channel count differences,
Landsat features lower spatial resolution (30.0 meters/pixel)
compared to Sentinel (10.0 meters/pixel). From the results
we can see that our model architecture generalizes to these
variations better than the previous architectures.

5.3. Model Efficiency

To evaluate LESS ViT’s efficiency, we measure fine-tuning
and inference wall-clock time, parameter counts, and
floating point operations (FLOPs) compared to ViT-based
SatMAE (Cong et al., 2022) and Channel-ViT (Bao et al.,
2023) on NLCD-L (Dewitz et al., 2021). As shown in
Table 2, both LESS ViT and Channel-ViT reduce parameter
counts compared to ViT through their tied patch embedding
layers, which share embedding weights across spectral
channels. LESS ViT achieves the lowest parameter count
through its low-rank attention module. ViT demonstrates
the fastest fine-tuning and inference times by collapsing the

spectral dimension during patch embedding, though it omits
the spectral attention. In contrast, Channel-ViT’s explicit
spatial-spectral attention computation leads to the highest
FLOPs and lowest computational efficiency. Despite
computing spatial-spectral attention explicitly, Channel-ViT
fails to benefit from this approach as it does not outperform
ViT-based models, constrained by the inevitable random
channel masking during training. Conversely, our LESS
ViT approximates spatial-spectral attention more efficiently,
eliminating the need for channel masking and enabling
better training data utilization.

6. Limitations and Future Works
While LESS ViT demonstrates competitive performance
with improved computational efficiency, extending the ap-
proach to extra dimensions (e.g., temporal dimension) re-
mains a challenge. Although LESS attention can accommo-
date additional dimensions, this expansion results in reduced
embedding dimensions dn per dimension. We propose ex-
ploring model scaling strategies through enhanced embed-
ding dimension allocation in future research. Additionally,
our current approach is limited to raster representations,
while the remote sensing community possesses rich domain
knowledge typically represented in vector formats, such as
digital elevation models and slope models. Integrating these
vector-based domain knowledge with raster (imagery) data
remains an unresolved research challenge for future method-
ological advancements. Nevertheless, this work advances
architectural design for hyperspectral data processing and
deepens our understanding of multidimensional correlations.
The proposed framework establishes a foundation for future
developments in Earth Observation tasks and geospatial data
analysis in the remote sensing community.
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