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Abstract
As large language models continue to advance, en-
suring their trustworthiness is critical. However,
inaccessible real-world ground truth labels pose a
significant challenge in high-stakes domains. Re-
cent studies have highlighted weak-to-strong gen-
eralization, where a strong model trained only on
a weak model’s labels surpasses the weak model
in task performance. Yet, whether critical trust-
worthiness properties such as robustness, fairness,
and privacy can generalize similarly remains an
open question. This is the first work to study
this question by examining if a stronger model
can enhance trustworthiness when fine-tuned on
a weaker model’s labels, a paradigm we term
weak-to-strong trustworthiness. To address this,
we introduce two fundamental fine-tuning strate-
gies that leverage trustworthiness regularization
during the fine-tuning of the weak and weak-to-
strong models. Our experimental evaluation on
real-world datasets reveals that while some trust-
worthiness properties, such as fairness, adversar-
ial, and OOD robustness, show significant im-
provement in trustworthiness generalization when
both models were regularized, others like privacy
do not exhibit signs of weak-to-strong trustworthi-
ness. Our results highlight the potential of weak-
to-strong trustworthiness as a practical pathway
for enhancing the trustworthiness of increasingly
capable AI systems, even under imperfect real-
world conditions.

1. Introduction
In recent years, developments in large language models
(LLMs) have demonstrated breakthroughs in capability and
scale (Radford et al., 2019; Bubeck et al., 2023). As mod-
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Figure 1. Weak-to-strong framework for when ground truth
labels are unavailable. The weak model (e.g. human supervision
or small LLM) has been trained to predict an inaccessible set of
complete ground truth labels. The weak labels (weak model’s
predictions) are then used to fine-tune the strong model.

els continue to improve, trustworthiness has emerged as a
critical aspect of AI systems, especially as LLMs are in-
creasingly deployed in high-stakes domains like healthcare,
finance, and criminal justice (Wang et al., 2023).

A fundamental challenge in developing trustworthy mod-
els is that real-world supervision is often imperfect. The
lack of ground-truth labeled data is a bottleneck for training
capable models, particularly in the domains where trust-
worthiness matters most. Consider the case of judicial bail:
training data comes from judges’ decisions about pretrial
release, but these human judgments may carry inherent bi-
ases (Lakkaraju et al., 2017). Moreover, obtaining complete
ground truth labels is practically infeasible; defendants can-
not all be released ethically simply to observe outcomes.
Similarly, in loan approval systems, we only observe repay-
ment outcomes for approved applications, rendering any
training data incomplete and unreliable due to the inherent
selection bias. The challenge of imperfect supervision par-
allels a question in AI alignment: if we only have access
to potentially biased supervision (like human supervision),
how can we control more capable AI systems to be more
aligned with human values and trustworthiness?

A recent study demonstrated the phenomenon of weak-to-
strong (WTS) generalization, where a strong model out-
performs a weak model by fine-tuning on only the weak
model’s labels (Burns et al., 2024). Weak-to-strong learn-
ing is particularly promising for studying superalignment,
where ground truth labels are unknown by humans, address-
ing the real-world inaccessibility of ground truth data (Bach
et al., 2017; Ratner et al., 2017) (Figure 1). A few follow-up
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studies have focused on applying weak-to-strong learning
to improve performance in various settings, yet none have
investigated trustworthiness (Chen et al., 2024; Yang et al.,
2024).

In this work, we introduce the weak-to-strong trustworthi-
ness paradigm. We investigate the unexplored question:
Can trustworthiness properties be generalized to a strong
model from fine-tuning on a weak model’s labels?

While previous work mainly use weak-to-strong learning to
enhance raw predictive accuracy, our objective is to show
that trustworthiness can also be improved when fully ground
truth labels remain unavailable (Chen et al., 2024; Yang
et al., 2024). In the context of the superalignment scenario,
our approach examines if superintelligent strong models
trained on human weak labels can overcome human biases
to become more trustworthy.

To enable a systematic study of this phenomenon, we find
that two fundamental fine-tuning strategies serve as strong
baselines: Weak Trustworthiness Fine-tuning (Weak TFT),
which applies trustworthiness regularization during weak
model training, and Weak and Weak-to-Strong Trustworthi-
ness Fine-tuning (Weak+WTS TFT), which adds regulariza-
tion during both weak model training and weak-to-strong
learning. These strategies are summarized in Figure 2.

We perform rigorous empirical experiments using the Pythia
model suite (Biderman et al., 2023) to analyze our fine-
tuning strategies on standard trustworthiness datasets. Our
main contributions are:

• Weak-to-strong trustworthiness is feasible: We present
the novel conceptual framework of weak-to-strong trust-
worthiness. As the first study examining whether trust-
worthiness properties generalize through WTS learning,
our results indicate that WTS trustworthiness is indeed
feasible.

• Standard weak-to-strong learning is insufficient: Sim-
ply fine-tuning a weak-to-strong model on a weak
model’s labels yields inconsistent generalization of trust-
worthiness across properties (fairness, OOD robustness,
adversarial robustness, privacy).

• Fundamental fine-tuning strategies improve weak-to-
strong trustworthiness: We introduce the Weak TFT
and Weak+WTS TFT strategies by incorporating trust-
worthiness regularization within the weak-to-strong pro-
cess. After regularizing the weak model and weak-to-
strong learning, our Weak+WTS TFT strategy consis-
tently improves trustworthiness generalization, signifi-
cantly enhancing fairness and robustness.

• Comprehensive empirical evaluation: We evaluate our
strategies across 4 properties, 20 datasets, 14 definitions
and tasks, and 5 model sizes ranging from 14M to 6.9B
parameters. In addition, our sensitivity analysis demon-

strates consistent weak-to-strong trustworthiness across
a wide range of hyperparameter values.

Our study is critical for understanding the promising po-
tential and limitations of weak-to-strong trustworthiness.
Our findings have broad implications for the future of AI
development: by demonstrating that trustworthiness prop-
erties can be systematically enhanced as models scale, we
provide a pathway for ensuring that increasingly powerful
AI systems remain aligned with human values even when
perfect supervision is unavailable.

2. Methodology
In this section, we present our methodology for investigat-
ing weak-to-strong trustworthiness. Our approach systemat-
ically explores whether and how fairness, robustness, and
privacy can be effectively generalized from weak to strong
models. We begin by outlining the weak-to-strong learn-
ing process, followed by techniques for eliciting specific
trustworthiness properties in language models. Finally, we
introduce a multi-strategy approach to investigate weak-
to-strong trustworthiness, proposing the fundamental fine-
tuning strategies: Weak TFT and Weak+WTS TFT.

See Appendix B for Preliminaries.

2.1. Fine-tuning Strategies for Studying Weak-to-Strong
Trustworthiness

We systematically study how trustworthiness can be gener-
alized through three fine-tuning strategies: No TFT, Weak
TFT, and Weak+WTS TFT. While No TFT is described in
Burns et al. (2024), we propose the later two fundamental
strategies, applying trustworthiness regularization during
weak model training (Weak TFT, Weak+WTS TFT) and
weak-to-strong learning (Weak+WTS TFT). These strate-
gies are summarized in Figure 2, with each successive strat-

No Trustworthiness Fine-tuning (No TFT)

Weak-to-Strong Learning
Weak Model Strong Model

Weak-to-Strong LearningTrustworthy
Weak Model Strong Model

Weak-to-Strong Learning
Strong Model

Weak Trustworthiness Fine-tuning (Weak TFT)

Weak & Weak-to-Strong Trustworthiness Fine-tuning (Weak+WTS TFT)
Trustworthy
Weak Model

Trustworthy

Figure 2. Fine-tuning strategies. Top: No Trustworthiness Fine-
tuning (No TFT). Middle: Weak Trustworthiness Fine-tuning
(Weak TFT). Bottom: Weak and Weak-to-Strong Trustworthiness
Fine-tuning (Weak+WTS TFT).
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egy incorporating stronger regularization.

No trustworthiness fine-tuning (No TFT). This fine-tuning
strategy establishes baseline performance by conducting
weak model training and weak-to-strong learning without
applying trustworthiness regularization, as outlined in Burns
et al. (2024).

• Weak model: A small pretrained LLM is fine-tuned on
ground truth labels (λ = 0, no regularization). Weak
labels are collected from the fine-tuned weak model
fw(·, λ) on a held-out validation set.

• Weak-to-strong learning: We fine-tune a weak-to-
strong model through standard weak-to-strong learning
on the weak labels.

Weak trustworthiness fine-tuning (Weak TFT). We pro-
pose this fine-tuning strategy to investigate whether applying
regularization to a weak model can lead to trustworthiness
generalization through standard weak-to-strong learning.

• Trustworthy weak model: A small pretrained LLM is
fine-tuned using equations from Section B, with λ > 0
for trustworthiness regularization. Trustworthy weak
labels are collected from the fine-tuned weak model
fw(·, λ) on a held-out validation set.

• Weak-to-strong learning: We fine-tune the weak-to-
strong model through standard weak-to-strong learning
on the trustworthy weak labels.

Weak and weak-to-strong trustworthiness fine-tuning
(Weak+WTS TFT). We propose this fine-tuning strategy to
investigate whether applying regularization to both a weak
model and the weak-to-strong learning process can lead to
trustworthiness generalization.

• Trustworthy weak model: The weak model is the same
as in the Weak TFT strategy.

• Trustworthy weak-to-strong learning: Instead of the
standard weak-to-strong learning, regularization is ap-
plied to the fine-tuning process on weak labels; we call
this trustworthy weak-to-strong learning. We provide
details on this training objective in Appendix C.1.

3. Experimental Evaluation
In Section 3.1, we empirically evaluate weak-to-strong trust-
worthiness using the three weak-to-strong fine-tuning strate-
gies discussed in Section 2. Then, in Sections 3.2 and
Appendix E, we perform thorough a sensitivity analysis,
varying the regularization strength, model size, and key hy-
perparameters specific to weak-to-strong learning. We begin
by describing the real-world datasets used in our experi-
ments, followed by an overview of the models and strong
ceiling baselines used for comparison. Table 3 provides an
overview of all properties, metrics, datasets, and tasks.

Datasets. We evaluate trustworthiness generalization us-
ing 20 datasets, previously explored by Wang et al. (2023),
including the Enron Email dataset (Klimt & Yang, 2004),
the AG News dataset, the Adult dataset (Ding et al., 2021),
the PUMS ACS dataset (Ding et al., 2021), the OOD Style
Transfer datasets (Wang et al., 2023), and the AdvGLUE++
datasets (Wang et al., 2023). For all datasets, we show av-
erage results from multiple runs and report ±1 standard
deviation. While the main paper’s plots focus on Enron,
Adult, OOD Style Transfer, and AdvGlue++ datasets, sup-
porting results on the other datasets can be found in the
Appendix. Additional dataset details are in Appendix F.

Large language models. We fine-tune models from the
Pythia suite spanning five model sizes (14M, 70M, 410M,
1B, 6.9B parameters) (Biderman et al., 2023). The wide
range of sizes allows us to systematically explore how model
size impacts weak-to-strong trustworthiness.

Metrics. We evaluate a model’s trustworthiness as follows:

• Fairness: We evaluate fairness using the demographic
parity and equalized odds. For both definitions, lower val-
ues indicate better fairness, as they reflect minimal dispar-
ity in predictions between protected groups. We conduct
comprehensive experiments using using Demographic
Parity Difference (DPD), defined as DPD = P(fθ(x) =
1|a = 1) = P(fθ(x) = 1|a = 0). Additional experi-
ments on Equalized Odds Difference support the trends
observed using Demographic Parity (Figure A13).

• Robustness: For robustness, we measure both OOD ac-
curacy and adversarial accuracy, abbreviated as Robust
Accuracy (RA), by evaluating the model’s performance
on OOD and adversarially perturbed test data. Specifi-
cally, we compute the RA = 1

ntest

∑ntest
i=1 I[fθ(x′

i) = yi],
where x′ represents either an OOD sample or an adversar-
ially perturbed input, and I denotes the indicator function
that equals 1 if the prediction is correct.

• Privacy: We evaluate privacy using targeted data extrac-
tion attacks and membership inference attacks (Shokri
et al., 2017; Carlini et al., 2021). We conduct comprehen-
sive experiments using extraction attacks, where given a
prefix sequence and a generated response of k tokens, we
compute the extraction rate by determining what fraction
of the k-token continuation (suffix) matches the ground
truth continuation of the sample. A higher extraction
rate indicates a greater risk that the model memorizes
and extracts private information. We also evaluate using
standard membership inference attacks.

Strong ceiling baselines. For comparison, we establish
baselines for both trustworthiness and task performance.
We fine-tune strong models using ground truth labels with
varying levels of trustworthiness regularization. We then
select the model that achieves the best trade-off between task
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(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 3. No TFT (standard weak-to-strong) is insufficient for
trustworthiness generalization. Weak-to-strong trustworthiness
is inconsistent across properties, from no generalization of fairness
to generalization of OOD and adversarial robustness.

performance and trustworthiness. We provide an illustrative
example of this selection in Figure A1. This value, referred
to as the strong ceiling, represents the empirical upper bound
of the strong model’s capabilities for both task performance
and trustworthiness.

3.1. Evaluating Weak-to-Strong Trustworthiness

We define weak-to-strong trustworthiness as a consistent
trend – starting from the weak model at the lowest trustwor-
thiness, increasing through the WTS-Naive and WTS-Aux-
Loss models in the middle, and reaching its peak with the
strong ceiling baseline. This monotonic trend indicates that
trustworthiness is successfully generalized by the weak-to-
strong model, despite only fine-tuning on the weak model’
labels. The weak-to-strong model is able to recover some of
the trustworthiness gap from the weak model to the strong
ceiling model with ground truth data access.

We present our results for all four trustworthiness properties
across the three strategies in Table 1, and throughout Figures
3, 4, 5, 6. Figure A2 shows the properties across all three
strategies side-by-side.

No TFT. The No TFT fine-tuning strategy does not achieve
consistent weak-to-strong trustworthiness (Figure 3). For
fairness experiments, the level of unfairness (demographic
parity difference) remains constant at around 35% across
all weak and weak-to-strong models. Similarly, we do not
observe privacy generalization (Figure 6). We expected no
consistent weak-to-strong trustworthiness for No TFT (stan-
dard weak-to-strong) as the strategy lacks regularization
to explicitly enforce trustworthiness. Surprisingly, we ob-
serve a weak-to-strong trustworthiness trend for OOD and
adversarial robustness. Despite the absence of regulariza-
tion, the WTS-Naive and WTS-Aux-Loss models exhibited
improved robustness compared to the weak models, sug-
gesting that some trustworthiness properties may naturally
generalize without explicit constraints.

Weak TFT. The Weak TFT fine-tuning strategy significantly
improves the trustworthiness of weak models across all four
properties (Figures 4, 6). The effect of the additional regular-

ization applied to weak models aligns with our expectations,
as weak models are now explicitly regularized to enhance
trustworthiness. Compared to No TFT, the weak models
achieve lower unfairness (5% from 35%), increased OOD ro-
bustness (72% from 69%), increased adversarial robustness
(78% from 71%), and lower privacy extraction (15% from
19%). Despite the trustworthy weak models, Weak TFT
does not achieve consistent weak-to-strong trustworthiness.
We only observe generalization for OOD robustness (Figure
4b). The weak-to-strong models are not more trustworthy
than the weak models for fairness, adversarial robustness,
and privacy (Figures 4a, 4c, 6).

Weak+WTS TFT. The Weak+WTS TFT fine-tuning strat-
egy significantly improves the trustworthiness of weak-to-
strong models across all four properties (Figures 5, 6). The
effect of the additional regularization applied to weak and
weak-to-strong models aligns with our expectations, as both
models are now explicitly regularized to enhance trustwor-
thiness. Compared to No TFT, the weak-to-strong models
achieve lower unfairness (2% from 35%), increased OOD
robustness (78% from 75%), increased adversarial robust-
ness (80% from 75%), and lower privacy extraction (26%
from 45%).

Unlike previous strategies, Weak+WTS TFT achieves con-
sistent weak-to-strong trustworthiness for fairness, OOD
robustness, and adversarial robustness (Figure 4a). The
weak-to-strong models are significantly more trustworthy
than the weak models, indicating successful trustworthy
generalization through Weak+WTS TFT. For fairness and
adversarial robustness, the WTS-Aux-Loss models gener-
alize more effectively than the WTS-Naive models, sug-
gesting that the auxiliary loss enables more weak-to-strong
trustworthiness.

Through Weak+WTS TFT, weak-to-strong models are able
to recover a significant portion of the trustworthiness gap
between the weak model and strong ceiling baseline (strong
models with access to ground truth labels). Despite their
lack of ground truth labels, weak-to-strong models recover
88% of the fairness gap (2.8% out of 3.2%), 41% of the
OOD robustness gap (5.5% out of 13.5%), and 31% of the
adversarial robustness gap (2% out of 6.5%) (Figure 5).

We discuss weak-to-strong privacy in-depth in Section 3.3.

Trade-off between trustworthiness and task perfor-
mance. For fairness and adversarial robustness, weak-to-
strong trustworthiness includes a slight decline in task per-
formance (Figure A2). However, the performance decrease
does not exceed 1% from weak to weak-to-strong models
while trustworthiness generalized to recover up to 88% of
the trustworthiness gap. Our results demonstrate that signif-
icant trustworthiness generalization can be achieved with
minimal impact on task performance.
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(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 4. Weak TFT improves trustworthiness of weak mod-
els. However, weak-to-strong trustworthiness is still inconsistent
across properties, from no generalization of fairness and adversar-
ial robustness to generalization of OOD robustness.

(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 5. Weak+WTS TFT achieves consistent WTS trustwor-
thiness. Weak+WTS TFT significantly improves trustworthiness
generalization for fairness, OOD robustness, and adversarial ro-
bustness.

In this section, we conduct a comprehensive sensitivity
analysis to explore how various parameter values influ-
ence trustworthiness generalization. Specifically, we ex-
amine the impact of model size and regularization strength
(λFair, λAdv, λOOD, λP ). We continue the sensitivity analysis
for the auxiliary loss parameter (α) in Appendix C. This
analysis validates the robustness of Section 3.1’s results and
demonstrates the conditions for weak-to-strong trustworthi-
ness to most effective.

Sensitivity to model size. To assess the effect of model
capacity on weak-to-strong, we experimented with multiple
combinations of weak and strong model sizes. We analyzed
experiments for five weak/strong configurations: Pythia
14M/410M, Pythia 14M/1B, Pythia 70M/410M, Pythia
70M/1B, and Pythia 14M/6.9B.

Our analysis reveals that the trustworthiness generalization
trends observed in Section 3.1 hold consistently across a
wide range of model sizes. No TFT remains unable to
achieve consistent weak-to-strong trustworthiness, Weak
TFT continues to improve weak model trustworthiness, and
Weak+WTS TFT continues to consistently achieve weak-
to-strong trustworthiness for fairness, OOD robustness, and
adversarial robustness (Figures A8, A10, A9, A11, A12).

(a) Extraction Attack (b) Membership Inference

Figure 6. No weak-to-strong privacy. While Weak+WTS TFT
does not achieve privacy generalization, it still improves the privacy
of weak-to-strong models compared to other strategies.

3.2. Sensitivity Analysis

While increasing the strong model size led to some trust-
worthiness improvements, we saw significant improvement
in weak-to-strong trustworthiness after increasing the weak
model size (Figures A10, A9, A11 in Appendix). As weak
models become more capable, their weak labels enable
weak-to-strong models to generalize trustworthiness more
effectively through Weak+WTF TFT.

Sensitivity to regularization strength (λ). We also in-
vestigated how varying the regularization strength in the
trustworthiness objective functions affects weak-to-strong
trustworthiness. For each property—fairness, OOD robust-
ness, adversarial robustness, and privacy—we experimented
with a range of λ values to observe their impact on trustwor-
thiness generalization.

The Weak+WTS TFT strategy’s ability to achieve consis-
tent weak-to-strong trustworthiness, described in Section
3.1, maintained across a wide range of λ values. The plots
of trustworthiness metrics against varying λ values demon-
strate that the weak-to-strong models consistently gener-
alized trustworthiness for fairness, OOD robustness, and
adversarial robustness (Figure A3). The results suggest that
the effectiveness of the Weak+WTS TFT strategy is robust
to the choice of λ, provided it is within a reasonable range.

Compared to the Weak TFT strategy, the Weak+WTS TFT
strategy demonstrates more significant trustworthiness gen-
eralization across various λ values (Figure A4). This be-
havior confirms our analysis in Section 3.1 that weak-to-
strong trustworthiness is enhanced with increased regulariza-
tion. Applying regularization to both the weak and weak-to-
strong models enhances the trustworthiness generalization
(from Figure A4 to Figure A3). Detailed sensitivity analyses
are included in Appendix E

3.3. Understanding weak-to-strong privacy

Privacy presents a unique situation, being the only property
to not demonstrate consistent weak-to-strong trustworthi-
ness under the Weak+WTS TFT strategy. However, note
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that the strong ceiling does not achieve better privacy than
the weak model, which prevents any monotonic weak-to-
strong privacy trend.

One reason for the distinction is that privacy is measured
with respect to the underlying training dataset (Appendix F
provides a more detailed discussion on how evaluating pri-
vacy differs from other properties). Larger models, all else
being equal, tend to memorize more information, leading
to a greater risk of private information leakage (Leemann
et al., 2024). As a result, larger models are more suscep-
tible to leak private data than smaller models. Therefore,
we observe that privacy, measured by the extraction rate or
membership inference attack success in Figure 6, degrades
when learning a the weak model to a strong model. This is
primarily due to weak-to-strong model privacy violations
being measured for the larger model, which is more capable
of memorizing information than the smaller one.

Table 1. Weak-to-strong trustworthiness across properties and
fine-tuning strategies. Weak+WTS TFT achieves consistent weak-
to-strong trustworthiness in fairness, OOD robustness, and adver-
sarial robustness.

Fairness OOD
Robustness

Adv.
Robustness Privacy

No TFT × ✓ ✓ ×
Weak TFT × ✓ × ×

Weak+WTS TFT ✓ ✓ ✓ ×

4. Conclusion
Our work provides the first systematic investigation into
whether critical trustworthiness properties like fairness, ro-
bustness, and privacy can be generalized through weak-to-
strong learning in language models. We term this process
weak-to-strong trustworthiness. Based on our novel concep-
tual framework, we make several key contributions. First,
we show that standard weak-to-strong learning alone is in-
sufficient for consistent trustworthiness generalization, un-
derlining the need for integrating regularization in weak-to-
strong learning. Consequently, we introduce two fundamen-
tal fine-tuning strategies, Weak TFT and Weak+WTS TFT,
that significantly improve the trustworthiness of weak la-
bels and achieve consistent weak-to-strong trustworthiness.
Our Weak+WTS TFT strategy, in particular, demonstrates
remarkable success in recovering up to 88% of the trust-
worthiness gap between weak models and strong ceiling
baselines, while simultaneously maintaining strong task per-
formance. While our results show consistent weak-to-strong
trustworthiness for properties like fairness and robustness,
the distinct behavior we observed with privacy generaliza-
tion highlights the nuanced and property-specific nature of
trustworthiness transfer in language models.

Our findings have broad implications for the development
of trustworthy AI systems. By demonstrating that trustwor-
thiness properties can be systematically enhanced through
our proposed strategies, we provide a practical pathway for
ensuring increasingly powerful models remain aligned with
human values - even in real-world settings with inaccessible
ground truth labels. As AI systems continue to grow in
capability and autonomy, ensuring that trustworthiness gen-
eralize without requiring perfect supervision will be crucial
for their safe deployment in high-stakes domains.

Impact Statement
Our work on weak-to-strong trustworthiness offers a path-
way for developing AI systems that are fair, robust, and
privacy-preserving in settings with inaccessible real-world
data. By demonstrating how imperfect weak labels can be
harnessed to yield more trustworthy models, we hope to
reduce the potential for harmful outcomes in high-stakes
domains such as healthcare, finance, and criminal justice,
where incorrect or biased decisions can lead to significant
societal consequences. However, as with any method that
leverages human supervision, there is a risk that entrenched
biases could be amplified if trustworthiness objectives are
not properly integrated or monitored. Researchers and prac-
titioners using our approaches should therefore be mindful
of the specific types of biases and vulnerabilities inherent in
their data, tailoring trustworthiness regularization strategies
to mitigate negative impacts. Ultimately, by promoting more
transparent and accountable model development, we believe
this work advances ethical AI deployment and fosters bene-
ficial outcomes for a wide range of real-world applications.
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structure of generative models without labeled data. In
International Conference on Machine Learning, pp. 273–
282. PMLR, 2017.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for analyz-
ing large language models across training and scaling. In
International Conference on Machine Learning (ICML),
pp. 2397–2430. PMLR, 2023.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and
Kalai, A. T. Man is to computer programmer as woman

6



Generalizing Trust: Weak-to-Strong Trustworthiness in Language Models

is to homemaker? debiasing word embeddings. Advances
in neural information processing systems, 29, 2016.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from
a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv:2303.12712, 2023.

Burns, C., Izmailov, P., Kirchner, J. H., Baker, B., Gao, L.,
Aschenbrenner, L., Chen, Y., Ecoffet, A., Joglekar, M.,
Leike, J., et al. Weak-to-strong generalization: Eliciting
strong capabilities with weak supervision. In Interna-
tional Conference on Machine Learning (ICML). PMLR,
2024.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Chen, Z., Deng, Y., Yuan, H., Ji, K., and Gu, Q. Self-
play fine-tuning converts weak language models to strong
language models. ICML’24. JMLR.org, 2024.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring
adult: New datasets for fair machine learning. Advances
in neural information processing systems, 34:6478–6490,
2021.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7,
2006. Proceedings 3, pp. 265–284. Springer, 2006.

Garg, S. and Ramakrishnan, G. BAE: BERT-based adversar-
ial examples for text classification. In Webber, B., Cohn,
T., He, Y., and Liu, Y. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6174–6181, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.498. URL https://
aclanthology.org/2020.emnlp-main.498.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/
1412.6572.

Huang, P.-S., Zhang, H., Jiang, R., Stanforth, R., Welbl, J.,
Rae, J., Maini, V., Yogatama, D., and Kohli, P. Reducing
sentiment bias in language models via counterfactual eval-
uation. In Cohn, T., He, Y., and Liu, Y. (eds.), Findings of
the Association for Computational Linguistics: EMNLP
2020, pp. 65–83, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.7. URL https://aclanthology.
org/2020.findings-emnlp.7.

Jagielski, M., Nasr, M., Lee, K., Choquette-Choo, C. A.,
Carlini, N., and Tramer, F. Students parrot their teachers:
Membership inference on model distillation. Advances
in Neural Information Processing Systems, 36, 2024.

Jin, D., Jin, Z., Zhou, J. T., and Szolovits, P. Is BERT
really robust? A strong baseline for natural language
attack on text classification and entailment. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pp. 8018–8025. AAAI Press, 2020.
doi: 10.1609/AAAI.V34I05.6311. URL https://
doi.org/10.1609/aaai.v34i05.6311.

Klimt, B. and Yang, Y. The enron corpus: A new dataset
for email classification research. In European conference
on machine learning, pp. 217–226. Springer, 2004.

Lakkaraju, H., Kleinberg, J., Leskovec, J., Ludwig, J., and
Mullainathan, S. The selective labels problem: Evalu-
ating algorithmic predictions in the presence of unob-
servables. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 275–284, 2017.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and
Jana, S. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE symposium on security
and privacy (SP), pp. 656–672. IEEE, 2019.

Leemann, T., Pawelczyk, M., and Kasneci, G. Gaussian
membership inference privacy. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Li, B., Chen, C., Wang, W., and Carin, L. Certified adver-
sarial robustness with additive noise. Advances in neural
information processing systems, 32, 2019.

Li, L., Ma, R., Guo, Q., Xue, X., and Qiu, X. BERT-
ATTACK: Adversarial attack against BERT using BERT.
In Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.), Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 6193–
6202, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.

7

https://aclanthology.org/2020.emnlp-main.498
https://aclanthology.org/2020.emnlp-main.498
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://aclanthology.org/2020.findings-emnlp.7
https://aclanthology.org/2020.findings-emnlp.7
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311


Generalizing Trust: Weak-to-Strong Trustworthiness in Language Models

500. URL https://aclanthology.org/2020.
emnlp-main.500.

Lin, T. Focal loss for dense object detection. arXiv preprint
arXiv:1708.02002, 2017.

Madry, A. Towards deep learning models resistant to adver-
sarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings, 2018. URL https://openreview.net/
forum?id=rJzIBfZAb.

Mazzone, F., van den Heuvel, L., Huber, M., Verdecchia, C.,
Everts, M., Hahn, F., and Peter, A. Repeated knowledge
distillation with confidence masking to mitigate mem-
bership inference attacks. In Proceedings of the 15th
ACM Workshop on Artificial Intelligence and Security, pp.
13–24, 2022.

Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I.,
and Talwar, K. Semi-supervised knowledge transfer for
deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S.,
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A. Related Work
This work is the first to study trustworthiness generalization from a weak supervisor to a weak-to-strong model. We discuss
related works for the topics below.

Fairness. Unfair outcomes can arise in language models when they inadvertently encode biases present in the training
data, leading to discriminatory practices against certain groups based on sensitive attributes like race, gender, or age
(Bolukbasi et al., 2016). Recent efforts to improve fairness in LLMs include data pre-processing, post-processing, and
adversarial training such as augmenting training data to balance gender representations (Zhao et al., 2018) and debiasing
word embeddings (Huang et al., 2020). Our study is distinguished by its weak-to-strong setting and integration of fairness
directly into the model’s learning objective during fine-tuning.

Out-of-distribution robustness. OOD robustness describes a model’s ability to perform well on inputs that differ from
its training distribution. Various methods aim to enhance OOD robustness, including data augmentation techniques like
adversarial perturbations (Madry, 2017; Lecuyer et al., 2019), EDA (Wei & Zou, 2019), as well as training modifications
like label smoothing (Szegedy et al., 2016) and focal loss (Lin, 2017). However, recent research has shown that many
of these methods do not reliably improve OOD robustness and may even degrade performance on in-distribution tasks;
standard fine-tuning often remains a strong baseline (Yuan et al., 2023). In this work, we employ adversarial perturbation as
a representative robustness technique, which has been explored in existing LLM robustness literature (Zhu et al., 2019; Ye
et al., 2023). Unlike prior approaches, we focus on generalizing OOD robustness from weak models to larger strong models,
both with and without the use of robustness-enhancing regularization.

Adversarial robustness. Machine learning model outputs can be changed by introducing minimal perturbations to a benign
input, causing the model to malfunction (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018). Existing
adversarial attack algorithms have been shown to degrade a large language model’s performance on natural language
processing tasks such as sentiment analysis, question answering, text classification, and entailment (Jin et al., 2020; Zang
et al., 2020; Wang et al., 2020; Li et al., 2020; Garg & Ramakrishnan, 2020). Our work differs from these existing studies
and is the first to examine if adversarial robustness can generalize from a weak model to a larger strong model fine-tuned on
weak labels.

Privacy and model distillation. Prior research has explored knowledge distillation as a mechanism to mitigate privacy
attacks. One example is the PATE framework (Papernot et al., 2016), where knowledge distillation is employed to reduce
an ensemble of teacher models into a single model with provable privacy guarantees (Dwork et al., 2006). Other works
have built on this idea, such as Zheng et al. (2021) and Tang et al. (2022), to similarly construct privacy-preserving model
ensembles and consolidate them through distillation. Some research suggests that distillation alone can serve as an effective
privacy defense (Shejwalkar & Houmansadr, 2021). Building on this, Mazzone et al. (2022) investigate the use of repeated
distillation to protect against membership inference attacks. However, Jagielski et al. (2024) demonstrate through privacy
attacks that distilled models without privacy guarantees can still leak sensitive information. In contrast to prior work,
our research focuses on the privacy implications of weak-to-strong learning. This approach is the inverse of traditional
model distillation. Nothing is known about the privacy risks when this process is reversed, making our work an important
contribution to the field.
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B. Preliminaries
First, we discuss how we adapt the weak-to-strong learning framework introduced by Burns et al. (2024). Following this, we
examine regularization strategies to enhance trustworthiness properties such as fairness, robustness, and privacy.

Notation. We consider training datasets of the form {(xi, yi)}Ni=1 where yi ∈ Y is the ground-truth label. We denote a
classifier fθ : X → Y parametrized by θ ∈ Rd, mapping inputs x ∈ X , to labels Y . We define the outputs of a fine-tuned
smaller classifier fw(x) as weak labels, where w ∈ Rk denotes a lower-capacity parameterization than θ where k ≪ d. Let
ℓ : R× R → R represent an appropriate loss function such as cross-entropy loss.

Weak-to-strong learning. In the weak-to-strong (WTS) framework, a pre-trained strong model accomplishes knowledge
generalization by fine-tuning on a weak model’s labels. This process incorporates an additional auxiliary loss, weighted
by α ∈ [0, 1] to adjust the confidence in the strong model’s predictions relative to the weak labels. This auxiliary loss
encourages the strong model to make confident predictions, even when they diverge from the weak labels, potentially
enhancing generalization. When α = 0, we refer to the weak-to-strong learning as WTS-Naive, since we train on only the
weak labels. When α > 0, we refer to the weak-to-strong learning as WTS-Aux-Loss:

ℓAUX
WTS = (1− α)ℓ

(
fθ(x), fw(x;λ)

)
+ αℓ

(
fθ(x;λ), f̂t,θ(x)

)
. (1)

We define our weak-to-strong loss function as a linear combination of the cross-entropy losses from the weak and strong
models where fw(x;λ) denotes the weak model fine-tuned with trustworthiness regularization strength λ and fθ(x) denotes
the strong model. Further, f̂t,θ(x) represents the hardened strong model predictions according to threshold t set proportional
to the dataset class weights. When λ = 0, we are in the standard weak-to-strong setting studied by Burns et al. (2024) (No
TFT). In our proposed fine-tuning strategies, we apply trustworthiness regularization with λ > 0 to the weak model (Weak
TFT, Weak+WTS TFT) and the weak-to-strong learning (Weak+WTS TFT).

Next, we describe our techniques for enhancing trustworthiness to obtain weak trustworthy models fw(·;λ) through various
regularization techniques.

Fairness. We enhance fairness through various definitions, one of which is Demographic Parity, which requires: P(fw(x) =
1|a = 1) = P(fw(x) = 1|a = 0). We denote a as a protected attribute, like gender. To enforce this fairness constraint
during fine-tuning, we use the following objective function from Zafar et al. (2017):

min
w

1

N

N∑
i=1

ℓ(fw(xi), yi) + λFair(ai − ā)fw(xi), (2)

where ā = 1
N

∑N
i=1 ai is the base rate of the protected attribute. The first term incentivizes correct predictions while the

second term acts as a fairness regularizer. Specifically, this term minimizes the covariance between the sensitive attribute
ai and the model outputs fw(xi), incentivizing the model to satisfy demographic parity by becoming independent of the
protected attribute a. Hyperparameter λFair controls the trade-off between accuracy and fairness, where increasing λFair
emphasizes more fairness. We construct a similar objective function for Equalized Odds, another definition of fairness.
Equalized Odds requires that true positive rates, P(fw(x) = 1|y = 1), and false positive rates, P(fw(x) = 1|y = 0), are
equal across sensitive attributes.

Adversarial robustness. To enhance adversarial robustness, we introduce adversarially perturbed samples during the
training process. As a result, the model learns to become invariant to small input perturbations and more robust to adversarial
attacks. In this setting, the training dataset consists of triplets (x, x′, y), where x is a clean input sample, x′ is an adversarially
manipulated version of x, and y is the ground truth label of x. The objective function combines the losses from both clean
and adversarial samples:

min
w

1

N

N∑
i=1

(1− λAdv)ℓ(fw(xi), yi) + λAdvℓ(fw(x
′
i), yi), (3)

where λAdv controls the trade-off between clean and adversarial losses. Increasing λAdv places greater emphasis on robustness
to adversarial perturbations.

Out-of-distribution robustness. We use embedding perturbations to enhance out-of-distribution robustness, following
approaches from Madry (2017); Lecuyer et al. (2019); Zhu et al. (2019). Specifically, we experiment with a setting that
adds independent and identically distributed Gaussian noise to the word embeddings (Bowman et al., 2015; Li et al.,
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2019). Define e(x) ∈ Rd as the word embedding of input x, where d is the embedding dimension. We add Gaussian
noise z ∼ N (0, λOOD · Id) drawn from a distribution with mean 0 and covariance matrix λOOD · Id to the word embedding,
yielding a noisy embedding: ẽ(x;λOOD) = e(x) + z. The noisy embedding is used to fine-tune the model. Denote
fw(x;λOOD) = gw(ẽ(x;λOOD)) as the output of the LLM parametrized by w. We use the following objective function:

min
w

1

N

N∑
i=1

ℓ
(
yi, fw(xi;λOOD))

)
, (4)

where λOOD controls the strength of the OOD regularizer. Decreasing λOOD → 0 decreases OOD robustness.

Privacy. In (λP , δ)-differential privacy, the goal is to ensure that an algorithm’s output A is nearly indistinguishable to
whether any single data point is included in the dataset. Specifically, for any two datasets D1 and D2 that differ by only one
element, the algorithm A satisfies (λP , δ)-differential privacy if:

P(A(D1) ∈ S) ≤ exp(λP ) · P(A(D2) ∈ S) + δ, (5)

for any possible output set S. Here, λP controls the privacy loss, with smaller values indicating stronger privacy guarantees,
while δ allows for a small probability of the privacy guarantee being violated. To operationalize (λP , δ)-differential privacy,
we use the most popular privacy algorithm called DP-SGD (Abadi et al., 2016), which is a variant of classical SGD with
privacy guarantees. In summary, the algorithm consists of three fundamental steps: gradient clipping with clipping constant
C (i.e. γ = g(xi, yi) ·max(1, C/∥g(xi, yi)∥) where g(xi, yi) = ∇wL(xi, yi) is the gradient of the loss function ℓ with
respect to the model parameters), aggregation (i.e. m = 1

n

∑n
i=1 γi), and adding Gaussian noise (i.e. m̃ = m+ Y where

Y ∼ N (0, τ2I) with variance parameter τ2). By tuning the noise level τ2, we ensure that the model satisfies the privacy
guarantees specified by λP and δ.
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C. Weak to Strong Learning Process
C.1. Training Objective for Weak+WTS TFT

In this section, we give a detailed description of the loss used for the third fine-tuning strategy presented in Section 2.1.

Fairness. To incorporate the fairness constraint into the fine-tuning process, we apply regularization twice yielding the
following objective

θ∗ ∈ argmin
θ

LWTS
Fair (θ;λ

W
Fair, λ

WTS
Fair , α, fw)

= argmin
θ

1

N

N∑
i=1

ℓWTS-AUX(xi, fθ;α, λ
W
Fair, fw) + λWTS

Fair · (ai − ā) · fθ(xi),
(6)

where α ∈ [0, 1] is the auxiliary confidence loss weight and where ā = 1
N

∑N
i=1 ai is the base rate of the protected attribute.

The first term in equation 6 encourages the weak-to-strong model to make correct predictions while the second term acts as
an additional fairness regularizer. The hyperparameter λW

Fair corresponds to the regularization strength of the weak model
while λWTS

Fair controls the regularization strength for training in this stage.

Out-of-distribution robustness. The objective during fine-tuning is to minimize the following loss

θ∗ ∈ argmin
θ

LOOD(θ;λ
W
OOD, λ

WTS
OOD, α, fw)

= argmin
θ

1

N

N∑
i=1

ℓWTS-AUX
(
xi, fθ(xi;λ

WTS
OOD);α, λ

W
OOD, fw

)
,

(7)

where α ∈ [0, 1] is the auxiliary confidence loss weight. Further, λW
OOD controls the regularization strength of the fixed weak

classifier, while λWTS
OOD controls the regularization strength of the transfer process. As λWTS

OOD = 0, we are back to our Weak
TFT strategy, and as λWTS

OOD = λW
OOD = 0 the model is trained without any regularization, reverting to the No TFT strategy.

Adversarial Robustness. The training objective combines the losses from both clean and adversarial samples:

θ∗ ∈ argmin
θ

LAdv(θ;λ
W
Adv, λ

WTS
Adv , α, fw)

= argmin
θ

1

N

N∑
i=1

(1− λWTS
Adv ) ℓWTS-AUX(xi, fθ;α, λ

W
Adv, fw) + λWTS

Adv ℓWTS-AUX(x
′
i, fθ;α, λ

W
Adv, fw),

(8)

where λW
Adv controls the regularization strength of the fixed weak classifier, while λWTS

Adv controls the regularization strength
of the transfer process. As λWTS

Adv = 0, we are back to our Weak TFT strategy, and as λWTS
Adv = λW

Adv = 0 the model is trained
without any regularization, reverting to the No TFT strategy.

C.2. Choosing the Hyperparameters Based on Trade-off Curves

In this section, we provide an illustrative example of how we selected the parameters for the strong baselines, using
adversarial robustness as a case study. We plotted trade-off curves between the trustworthiness properties and task
performance, selecting the parameter that corresponds to the optimal trade-off in the top right corner of the Figure A1. We
set λAdv for the weak and strong model by independently fine-tuning them on training subset and evaluating on the test
subset. We plot original task performance vs. adversarial performance for different values of λAdv and pick the value that
offers the best trade-off between clean and adversarial accuracy. Figures A1a and A1b show that λAdv = 0.3 achieves
the best combined accuracies on original and adversarial samples for both models. Fixing λAdv for the weak model to
0.3, we repeat the same analysis for the weak-to-strong model trained with the naive loss function. Figure A1c shows that
λAdv = 0.3 offers the best trade-off for the weak-to-strong model as well. Fixing the λAdv parameter to 0.3 for the weak
and weak-to-strong models, we vary the α parameter for the auxiliary loss function and plot in figure A1d. We observe
that α = 0.1 achieves the highest accuracy on both original and adversarial samples. We perform similar analyses for
the warm-up period, α, and the number of fine-tuning epochs in Figures A1e and A1f. We select the values 0.2 and 6,
respectively, for these training parameters.
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(a) Weak model λAdv (b) Strong model λAdv (c) Weak-to-strong λAdv

(d) Weak-to-strong α (e) Warm-up period. (f) Number of epochs for WTS.

Figure A1. Trade-off between original and adversarial accuracy for different training parameters.

Similarly, for OOD robustness, we set the standard deviation of the Gaussian Noise to 2e − 3 for both the weak model
(Pythia 14M) and the strong model (Pythia 410M). This value was chosen as it allows both models to achieve a balanced
trade-off between OOD robustness and task performance. With the noise standard deviation fixed, we conduct trade-off
experiments by separately adjusting the maximum α value for auxiliary loss, the warm-up period, and the number of training
epochs. For optimal balance between OOD robustness and task performance, these parameters are set to 0.25, 0.2, and 1,
respectively.
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D. Comprehensive Plots Across Strategies
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(b) OOD Robustness (c) Adv. Robustness (d) Privacy

Figure A2. Weak-to-strong trustworthiness for Pythia 14M/410M models. Trustworthiness properties and task performance for our
four properties: Fairness, OOD Robustness, Adversarial Robustness, and Privacy. Note that lower values are better for the top plot
in Figure A2a as the y-axis is Unfairness (DPD). Similarly, lower values are better for the top plot in Figure A2d as the the y-axis is
Extraction Rate. Results for WTS-Aux-Loss for privacy are omitted since it was the only task involving free data generation, making the
auxiliary loss function inapplicable.
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E. Detailed Sensitivity Analysis
In this section, we study the sensitivity of the weak-to-strong trustworthiness fine-tuning to key training parameters like λ
and α.

(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure A3. Weak+WTS TFT improves trustworthiness generalization across regularization strengths (λ). Sensitivity analysis
demonstrates the consistency of Weak+WTS TFT strategy to generalize fairness, OOD robustness, and adversarial robustness across a
wide range of λ values for weak-to-strong trustworthiness regularization.
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Figure A4. Full Plot for Varying Lambda for Weak TFT. Results for WTS-Aux-Loss for privacy are omitted since it was the only task
involving free data generation, making the auxiliary loss function inapplicable.

Impact of Auxiliary Loss Weighting (αmax). The auxiliary loss weighting parameter αmax (maximum alpha) plays a
crucial role in balancing the adherence to the weak model’s outputs and the strong model’s confidence in its predictions.
Higher values of αmax place more emphasis on the strong model’s own predictions rather than closely following the weak
model’s outputs. We examine the effect of varying αmax from 0 to 1 on the performance of the weak-to-strong models. Our
experiments showed a degradation of performance with increasing αmax. As αmax increases from 0 to 1, the performance
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(a) Fairness
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(b) OOD Robustness (c) Adv. Robustness (d) Privacy

Figure A5. Full Plot for Varying Lambda for Weak+WTS TFT. Results for WTS-Aux-Loss for privacy are omitted since it was the
only task involving free data generation, making the auxiliary loss function inapplicable.

of the weak-to-strong models trained with the auxiliary loss (WTS-Aux-Loss) tends to worsen. Therefore, selecting an
appropriate value of αmax is essential to maintain a balance between leveraging the weak model’s trustworthiness and
allowing the strong model to develop its capabilities. Our results suggest that lower αmax values are preferable for effective
weak-to-strong trustworthiness transfer. For our models, we chose αmax values from 0.1 to 0.4.

Impact of Larger Models (6.9B). We show that WTS trustworthiness trends are consistent when scaling up the strong
model. As referenced in Section 3.2, Figures A8 to A11, show four different weak/strong model size configurations
(14M/410M, 70M/410M, 14M/1B, 70M/1B) with consistent property-specific weak-to-strong trustworthiness trends holding
across model sizes. We also extended our model size sensitivity analysis to include Pythia 6.9B as the strong model for
fairness, OOD robustness, and adversarial robustness. The 6.9B model required multiple GPUs to train, and DP-SGD
currently does not support multi-GPU computations, so we did not provide 6.9B results for privacy. Figure A12 displays
the results and demonstrates similar weak-to-strong trustworthiness trends as the previous model configurations. While
weak-to-strong trustworthiness is inconsistent at the Weak TFT strategy, we see consistent weak-to-strong trustworthiness at
the Weak+WTS TFT strategy.

Impact of Additional Metrics. We include multiple trustworthiness definitions to further support the weak-to-strong
trustworthiness trends we observed. In Figure A13, we examine an additional fairness metric: equalized odds (true positive
rate). The consistent weak-to-strong fairness trend is maintained across both demographic parity and equalized odds. In
Figure A14, we examine an additional privacy metric: membership inference attack. We continue to see no weak-to-strong
privacy across both extraction and membership inference attacks.
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(a) Fairness
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Figure A6. Varying Max Alpha for Weak TFT. Results on privacy are omitted since it was the only task involving free data generation,
making the auxiliary loss function inapplicable.

(a) Fairness

0.0 0.2 0.4 0.6 0.8 1.0
Max Alpha

50

55

60

65

70

75

80

85

OO
D 

Ro
bu

st
ne

ss
 (

be
tte

r)

Weak
WTS-Naive
Strong Ceiling
WTS-Aux-Loss

0.0 0.2 0.4 0.6 0.8 1.0
Max Alpha

50

60

70

80

90

Ta
sk

 P
er

fo
rm

an
ce

 (
be

tte
r)

Weak
WTS-Naive
Strong Ceiling
WTS-Aux-Loss

(b) OOD Robustness (c) Adv. Robustness

Figure A7. Varying Max Alpha for Weak+WTS TFT. Results for WTS-Aux-Loss for privacy are omitted since it was the only task
involving free data generation, making the auxiliary loss function inapplicable.
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(a) 14M - 410M (b) 70M - 410M (c) 14M - 1B (d) 70M - 1B

Figure A8. Varying model size for fairness. Weak-to-strong trustworthiness trends hold for fairness cross multiple model size configura-
tions.
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(b) 70M - 410M
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(c) 14M - 1B
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(d) 70M - 1B

Figure A9. Varying model size for OOD Robustness. Weak-to-strong trustworthiness trends hold for OOD robustness cross multiple
model size configurations.
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(a) 14M - 410M (b) 70M - 410M (c) 14M - 1B (d) 70M - 1B

Figure A10. Varying model size for adversarial robustness. Weak-to-strong trustworthiness trends hold for adversarial robustness cross
multiple model size configurations.

(a) 14M - 410M (b) 70M - 410M

Figure A11. Varying model size for privacy. No weak-to-strong trustworthiness trends hold for privacy cross multiple model size
configurations. Due to memory limitations of training models with DP-SGD we did not train the 1B or 6.9B models.
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(a) Fairness (b) Adv. Robustness
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Figure A12. Model Size Analysis on Pythia 6.9B. Results for model size sensitivity with Pythia 14M as the weak model and Pythia 6.9B
as the strong model for fairness, adversarial robustness, and OOD robustness properties. We see that the WTS trends we identified earlier
are maintained for the larger strong model.

(a) Demographic Parity (b) Equalized Odds

Figure A13. Sensitivity to Fairness Metrics. Side-by-side results for two fairness metrics: Demographic Parity and Equalized Odds
(True Positive Rate). The weak-to-strong trustworthiness trends are maintained across both metrics.
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(a) Extraction Attack (b) Membership Inference Attack

Figure A14. Sensitivity to Privacy Metrics. Side-by-side results for two privacy metrics: Extraction Attack and Membership Inference
Attack. While Weak+WTS TFT does not achieve weak-to-strong trustworthiness, it still leads to simultaneous improvement of privacy
and performance for weak-to-strong models.

Figure A15. Additional Fairness Dataset: ACS PUMS Employment
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Table 2. Additional Privacy Dataset: AG News

Strategy Model Extraction Rate

No TFT Weak 0.059
No TFT WTS-Naive 0.081
Weak TFT Weak 0.050
Weak TFT WTS-Naive 0.102
Weak+WTS TFT Weak 0.051
Weak+WTS TFT WTS-Naive 0.092
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F. Dataset and Evaluation Details
F.1. Dataset Details

• Adult: The Adult dataset is derived from the 1994 U.S. Census database and contains 48,842 instances with 14 attributes.
The task is to classify whether an individual’s income exceeds $50K (USD) per year. We selected the “sex” feature as the
sensitive attribute to evaluate fairness-related properties. Extraction was done by Barry Becker from the 1994 Census
database. Adult dataset has a CC-BY-4.0 license, which we abide by.

• ACS PUMS Employment: The Census Bureau’s American Community Survey (ACS) Public Use Microdata Sample
(PUMS) includes information about U.S. residents’ age, sex, race, education, employment, and other demographics. The
task is to classify whether an individual is employed. ACS PUMS dataset has a CC-BY-4.0 license, which we abide by.

• OOD Style Transfer: The OOD Style Transfer dataset is based on the SST-2 sentiment classification dataset but
incorporates a variety of text and style transformations. The transformations (e.g., shifts in language style, vocabulary,
syntax, and tone) are applied at both the word and sentence level while preserving the original meaning (Wang et al.,
2023). The task is to correctly classify the sentiment of inputs. OOD Style Transfer dataset has a CC-BY-SA-4.0 license,
which we abide by.

• AdvGLUE++: AdvGLUE++ is a collection of six datasets contain clean and adversarial input samples for six NLP
tasks: Sentiment analysis (SST-2), duplicate question detection (QQP), multi-genre natural language inference (MNLI,
MNLI-mm), recognizing textual entailment (RTE), and question answering (QNLI) (Wang et al., 2023). It contains
around 2K to 15K samples for each of the six tasks. We randomly sample up to 10K samples for each task and aggregate
the performance by averaging over these six tasks. AdvGLUE++ datasets have a CC-BY-SA-4.0 license, which we abide
by.

• Enron Emails: The Enron Emails dataset contains over 600K emails generated by employees of the Enron Corporation
(Klimt & Yang, 2004). it includes sensitive personal information, such as email addresses, phone numbers, credit card
numbers, and Social Security Numbers, which could be memorized and extracted by language models. For fine-tuning,
we randomly subsampled 10K data points. Enron Emails dataset has a Apache License 2.0, which we abide by.

• AG News: The AG News dataset consists of 120,000 training samples and 7,600 test samples of news articles catego-
rized into 4 classes: World, Sports, Business, and Science/Technology. Each sample contains a title and description
extracted from AG’s news corpus, with balanced distribution across classes. AG News data was made by Antonio
Gulli (http://groups.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html) and permitted
for non-commercial use, which we abide by.

DW fw DWTS′ fθ

λW λWTS

Weak Model
trained on DW

Query Weak Model

on DWTS

WTS Model
trained on DWTS′

Regularizer ≥ 0 Regularizer ≥ 0

(a) Model training overview. The weak model fw is trained on DW = {(xi, yi)}. Subsequently, we use the weak model fw to label
the weak-to-strong learning dataset DWTS = {(xi, yi)} resulting in DWTS′ = {(xi, fw(xi))}. We use DWTS′ to train the weak-to-strong
model fθ .

DT fθ
WTS Model

evaluated on DT

(b) Trustworthiness property evaluation. Typically, the trustwor-
thiness properties for the WTS model are evaluated on a separate
test set DT.

DWTS fθ
WTS Model

evaluated on DWTS

(c) Privacy Leakage Evaluation. The privacy leakage for the WTS
model is evaluated using the ground truth train set DWTS.

Figure A16. Data usage during training and evaluation. In Figure A16a, we describe which data is used to train the weak and the
weak-to-strong models, while Figures A16b and A16c describe which data is used for evaluation.
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F.2. Data Usage During Training and Evaluation

Figure A16 describes which data is used for training the weak and the weak-to-strong models as well as for evaluating of the
weak-to-strong model.

Data used to train the WTS model. The weak model fw is trained on the labeled dataset DW = {(xi, yi)}. Once trained, we
use the weak model fw to label the weak-to-strong learning dataset DWTS = {(xi, yi)} resulting in DWTS′ = {(xi, fw(xi))}.
We use DWTS′ to train the weak-to-strong model fθ. Notably, there is no overlap between DWTS and DW.

Trustworthiness Evaluation. We evaluate the trustworthiness properties adversarial robustness, OOD robustness as well as
Demographic Parity and Equalized Odds for all models (weak model, weak-to-strong model, and strong ceiling) on the
same held out test set for the respective problem. For privacy, we evaluate the trustworthiness properties of the weak and the
weak-to-strong model on their training set DW while the privacy leakage for the WTS model is evaluated on DWTS. For
privacy considerations, we evaluated the trustworthiness properties of models on their training set DW, while the privacy
leakage for the WTS model is assessed on DWTS.

F.3. Additional Adversarial Robustness Dataset Details

We create training, holdout and test subsets of the AdvGLUE++ dataset using 40%, 40% and 20% of samples, respectively,
from each task in the dataset. We use the training subset to fine-tune our models to be adversarially robust. We use the
holdout subset to generate labels from the weak model to be used in the weak-to-strong learning process. To evaluate the
clean and adversarial accuracy of our models, we evaluate them on a test subset of the AdvGLUE++ dataset and average the
performance across the six NLP tasks in this dataset.

In particular, to evaluate weak-to-strong trends in adversarial robustness, we use the AdvGLUE++ dataset (Wang et al.,
2023), an extension of the AdvGLUE dataset (Wang et al., 2021). AdvGLUE++ is a comprehensive benchmark designed
to test adversarial robustness across multiple natural language processing (NLP) tasks and adversarial attack algorithms.
This dataset includes adversarial examples for six widely used NLP tasks, each representing a distinct domain or linguistic
challenge. The Stanford Sentiment Treebank (SST-2) task involves sentiment analysis, requiring the classification of
sentences as having a positive or negative sentiment. The Quora Question Pairs (QQP) task identifies whether two questions
convey the same meaning. The Multi-Genre Natural Language Inference (MNLI) task requires reasoning about entailment,
contradiction, or neutrality between pairs of sentences. It includes a mismatched variant, MNLI-mm, where validation and
test data originate from out-of-domain sources, increasing the challenge of generalization. The Question-answering NLI
(QNLI) task is framed as an entailment problem between a question and an answer candidate. The Recognizing Textual
Entailment (RTE) is a binary entailment task that aims to determine whether the meaning of one text can be inferred from
another.

Adversarial examples in AdvGLUE++ are generated using a variety of attack algorithms, each representing a distinct
perturbation strategy. TextBugger introduces typo-based perturbations that minimally alter characters while preserving the
utility of benign text. TextFooler generates embedding similarity-based perturbations by substituting words with contextually
plausible alternatives. BERT-ATTACK leverages BERT’s language modeling capabilities to create context-aware adversarial
samples. SememePSO relies on semantic representations and combinatorial optimization to generate knowledge-guided
perturbations. SemAttack employs semantic optimization-based techniques by manipulating various semantic spaces to
produce natural-looking adversarial texts.

The experimental results for adversarial robustness are presented as aggregated accuracy values across all six tasks and five
attack algorithms. This approach enables us to evaluate the weak-to-strong trends in a comprehensive and robust manner.
The results show that our findings are consistent across a wide range of NLP tasks and adversarial attacks, indicating that
they are not influenced by the specific characteristics of any single setting.

F.4. Additional OOD Dataset Details

We use the same OOD data created by Wang et al. (2023). For ID data, we use the original SST-2 dataset but exclude the
samples that are source samples for creating the OOD data. We split the ID data into training, validation, and heldout subsets.
Specifically, 50% of the ID data is allocated for training and validation, where 95% of that portion is used for training and
the remaining 5% is for validation. The other half represents the held-out data that is used for generating labels from the
weak model for weak-to-strong fine-tuning. For evaluation, we use the in-distribution validation samples to measure ID
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performance and the OOD test samples to obtain OOD performance.
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G. Overview Table

Table 3. Overview table. Trustworthiness properties, their corresponding metrics, datasets used, and tasks performed on each dataset.

Property Metrics Datasets Tasks

Fairness
• Demographic Parity
• Equalized Odds

• Adult
• ACS PUMS

• Income classification with “sex”
as the sensitive attribute

OOD
Robustness • Robust Accuracy (RA) on

OOD test data
• OOD Style Transfer: a col-

lection of 10 datasets with
different text and style
transformations (based on
the SST-2 dataset)

• Sentiment classification on 10 dif-
ferent text and style transforma-
tions

Adversarial
Robustness • Robust Accuracy (RA) on

adversarial test data
• AdvGLUE++: a collection

of six datasets
1. SST-2
2. QQP
3. MNLI
4. MNLI-mm
5. RTE
6. QNLI

• Sentiment analysis
• Duplicate question detection
• Multi-genre natural language in-

ference
• Recognizing textual entailment
• Question answering

Privacy
• Extraction attack
• Membership inference at-

tack

• Enron Emails
• AG-News

• Sensitive data leakage detection

H. Experimental Details
Models: We use the Pythia models from EleutherAI (Biderman et al., 2023). They have a Apache License 2.0, which we
abide by.

Statistical Significance: We report 1 standard deviations for our experiments over multiple trials (10 for fairness, 15 for
OOD robustness, 15 for adversarial robustness, 3 for privacy).

Compute: Each experiment was run on 1 NVIDIA A100 80GB GPU on an internal cluster.

Table 4. Hyperparameters

Hyperparameter Fairness OOD Robustness Adversarial Robustness Privacy

Epochs 5 1 6 1
Learning rate 5e-5 1e-5 1e-5 5e-5
Optimizer AdamW AdamW AdamW Adam
Lambda 4.25 0.002 0.3 1e6
Alpha 0.3 0.2 0.1 N/A
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I. Limitations
While this study investigated models up to 6.9 billion parameters, further exploration with even larger models was constrained
by available computational resources. Future work with access to greater computational capacity could extend these findings
to assess the weak-to-strong trustworthiness to the frontier of model sizes.
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