
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAESTRO: MASKED ENCODING SET TRANSFORMER
WITH SELF-DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The immune system is a complex network of cells, orchestrating coordinated re-
sponses throughout the human body over a person’s lifetime. Cytometry enables
profiling of this network, but current approaches focus on enumerating and phe-
notyping immune cells, failing to quantify the system as a whole. We present
MAESTRO, a self-supervised set representation learning model that generates
vector representations of set-structured data, which we apply to learn immune
profile representations. Unlike previous studies that learn cell-level representa-
tions, MAESTRO uses all of a sample’s cells to learn a set representation. MAE-
STRO leverages attention mechanisms to handle sets of variable number of cells
and ensure permutation invariance, coupled with a self-distillation framework. It
is capable of reconstructing immune profiles (cells) even when 90% are hidden
as its training objective. We benchmark our model against existing cytometry
approaches and other existing machine learning methods that have never been
applied in cytometry. Our model outperforms existing approaches in retriev-
ing cell-type distributions and capturing clinically relevant features for down-
stream tasks such as disease diagnosis, age, sex. Anonymous code available:
https://github.com/anonymous-maestro-code/MAESTRO

1 INTRODUCTION

Cytometry, a single-cell technology, has revolutionized biomedical research by enabling high-
dimensional profiling of individual cells within biological systems (Bendall et al., 2011). Cytometry
provides information about cell-types, states, and functions, which is crucial for understanding im-
mune responses, disease mechanisms, and therapeutic interventions (Spitzer & Nolan, 2016). One
of the primary challenges in analyzing cytometry data is the number of cells and features of the
data (Wang et al., 2023). Hundreds of thousands of cells are collected for each sample, where each
cell is characterized by measurements across tens of proteins, resulting in complex datasets that
are difficult to process and interpret using conventional methods. Processing large-scale single-cell
datasets demands substantial resources and efficient algorithms capable of scaling to millions of cells
without compromising performance (Kimball et al., 2018). Variable set sizes—due to differences
in the number of cells collected from each sample—complicate the application of traditional deep
learning models that expect fixed-size inputs. Previous methods mitigate this issue by randomly
sampling cells to a fixed number, limiting the use of all available data (Hu et al.). Furthermore,
cytometry data exhibits permutation invariance, meaning the ordering of cells within a sample is
arbitrary and carries no intrinsic information. Models must be robust to such permutations to avoid
spurious correlations. Existing methods may fail under these demands, highlighting the need for
more scalable solutions.

Self-supervised learning (SSL) is a powerful paradigm for learning representations of large, high-
dimensional datasets (Chen et al., 2020; Radford et al., 2021; Kramer, 1991). In single-cell analysis,
SSL methods have demonstrated success in capturing cellular states, trajectories, and functional
characteristics, outperforming traditional gating methods, dimensionality reduction techniques, su-
pervised approaches, and standard statistical modeling (Cui et al., 2024; De Donno et al., 2023;
Bunne et al., 2024). Although current SSL models excel at understanding individual cells, there
is a significant gap in their application to cell populations, as previous methods were designed for
individual cells without incorporating sample membership information, resulting in the loss of cell
population-level insights. This limitation hinders the extraction of meaningful, compact, and compu-
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Figure 1: MAESTRO Architecture. N cells are sampled due to computational constraints. The
sampled subset is fed into a student model, while the full set is fed to a teacher model. The teacher
model only requires an encoder to provide a stable target of the full input set for the student model.
The teacher encoder parameters are the exponential moving average of the student’s, therefore it does
not have the same computational constraints. For the student model, we apply masking at various
rates to promote diverse learning and use a Set Transformer backbone for encoding, followed by a
permutation-invariant decoding and reconstruction mechanism. We use non-linear projection heads
on the latent embeddings to align representations of the full set from the teacher and the masked
subset from the student. ISAB, PMA, and SAB blocks are defined in 3.1.

tationally practical representations of the entire cellular milieu in samples, making the discovery of
multicellular interactions difficult. Consequently, set representation learning approaches are needed
to effectively encode and represent cell populations.

Current set representation learning methods are inadequate for cytometry data because they either
struggle to manage the number of cells inherent to such datasets, or rely on supervised learning
approaches instead of self-supervised methods requiring extensive labels (Van Gassen et al., 2016).
Specifically, some approaches maintain permutation invariance but struggle with the size of cy-
tometry data, limiting their effectiveness (Lee et al., 2019; Mialon et al., 2022). Conversely, other
methods can handle the size of cytometry, but do not preserve permutation invariance, making their
representations sensitive to the ordering of cells within data matrices (Lecun et al., 2015). Ad-
ditionally, many existing techniques are supervised, requiring labeled data, which is often scarce
in single-cell studies and restricts their ability to leverage large, unlabeled datasets effectively (Hu
et al.). These combined limitations prevent current set representation learning methods from effec-
tively processing and representing cytometry data in single-cell analyses.

We propose MAESTRO (Masked Encoding Set TRansformer with Self-DistillatiOn), a self-
supervised architecture for generating vector representations of set-structured data (see Figure1).
MAESTRO employs attention mechanisms tailored for sets, including multi-head attention pooling
(Lee et al., 2019), to handle large, variable-sized datasets while ensuring permutation invariance. By
integrating a masked encoding strategy and a self-distillation framework, it learns informative rep-
resentations without extensive labels. We validate MAESTRO through experiments on both global
(set-level) and local (element-level) representations, demonstrating its ability to encode sample-
wide features and individual elements that distinguish phenotypes (Chan et al., 2021). Using linear
probing, we predict sample-level features like disease phenotypes from the embeddings and as-
sess cell-level representations by retrieving cell-type distributions without labels. This showcases
MAESTRO’s proficiency in encoding fine-grained, high-dimensional cellular information relevant
to immune profiles.

To the best of our knowledge, MAESTRO is the first attention-based self-supervised set representa-
tion learning architecture capable of handling sets on the order of hundreds of thousands of elements
and variable-sized sets in the context of single-cell data. Our key contributions are as follows:
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• We introduce MAESTRO, a self-supervised set representation learning architecture that
effectively generates vector representations of immune profiles from cytometry data.

• We developed MAESTRO that addresses the size of biological datasets that were previously
too large to handle. Our method works with sets containing hundreds of thousands of
elements, expanding what’s possible in machine learning and data analysis.

• We evaluate MAESTRO against the state-of-the-art cytometry analysis method, manual
gating, as well as against novel approaches like Deep Sets, Set Transformer, and OTKE
(mentioned below) that have not previously been applied to cytometry data.

2 RELATED WORK

Current methods for analyzing cytometry data as a set include manual gating, DeepCyTOF, and
clustering algorithms to identify cell populations (Mathew et al., 2020; Hu et al.; Van Gassen et al.,
2015). Manual gating is a method where experts visually identify and select cell populations of in-
terest on scatter plots or histograms based on their characteristic protein expressions. Manual gating
is labor intensive and subject to operator bias due to manual thresholding of expression levels. Deep-
CyTOF uses a 1-dimensional convolutional neural network with pooling, which, due to architecture
design is effectively equivalent to Deep Sets (Zaheer et al., 2017). Automated clustering methods
offer scalability, but may not capture complex cellular heterogeneity (Van Gassen et al., 2015; Traag
et al., 2019) and are sensitive to parameter settings, such as the number of clusters (Pierson & Yau,
2015). For immunology research, manual gating is the state-of-the-art for analyzing cytometry data
at the cellular level as demonstratedy by ground truth labels in (Kim et al., 2024; Cheng et al., 2022;
Arvaniti & Claassen, 2017). There are no un/self-supervised methods that exist beyond manual
gating and clustering to represent cytometry set data as a compact vector, therefore these stand as
state-of-the-art for set representation.

Recent machine learning models designed for set data address permutation invariance and variable
set sizes inherent in single-cell datasets. Deep Sets (Zaheer et al., 2017) made foundational con-
tributions to set representation learning by introducing a permutation-invariant architecture capable
of handling unordered sets. They established a universal approximation theorem for set functions,
demonstrating that any permutation-invariant function can be represented by applying a function to
each element individually followed by an aggregation step, such as summation. The Set Trans-
former (Lee et al., 2019) incorporates attention mechanisms designed to process unordered sets.
Empirically, we find that size is still too large and other mechanisms must also be incorporated
alongside ISAB. The Optimal Transport Kernel Embedding (OTKE) (Mialon et al., 2022) intro-
duces a novel approach by aligning set representations through optimal transport distances while
embedding them into a feature space using kernel techniques. OTKE ensures permutation invari-
ance by treating sets as distributions, enabling robust and meaningful comparisons regardless of
element order. The Differentiable Expectation-Maximization (DIEM) (Kim, 2022) integrates the
Expectation-Maximization (EM) algorithm into a differentiable framework, enabling end-to-end
training of neural networks on set-structured data. Although the previously mentioned methods
lay the foundational framework for MAESTRO, they have not been applied to cytometry data and
present limitations. Deep Sets and Set Transformer are supervised approaches, restricting their use
to labeled datasets. Deep Sets and Set Transformer struggle to manage the number of cells in cy-
tometry data. OTKE requires fixed-size input sets and similarly cannot handle the size of cytometry
data. Lastly, DIEM is constrained by the absence of a public codebase.

In self-supervised learning, methods like Masked Autoencoders (MAE), DINO, and iBOT have
achieved remarkable success, particularly in computer vision tasks (He et al., 2022; Caron et al.,
2021; Zhou et al., 2022). MAE learns representations by reconstructing masked portions of input
data, capturing essential features without relying on explicit labels. DINO employs a student-teacher
framework for self-distillation, where the student model learns from the teacher’s outputs to achieve
high performance, enhancing the efficiency of representation learning. iBOT extends these ideas by
introducing an online tokenizer, facilitating the learning of meaningful token-based representations.
By drawing on the strengths of these frameworks, MAESTRO addresses the unique challenges of
set representation learning in cytometry data.
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3 METHOD

Let S be a set in the form of a matrix of cytometry data (where rows are single cells and columns
are features of cells). We aim to learn a function from the set of all finite sets of cells to RD,
mapping variable-sized input sets to fixed-dimensional representations. Standard transformers are
unsuitable for unordered sets due to their reliance on positional information. To overcome this, we
employ specialized attention blocks lacking positional encodings, ensuring permutation invariance
and accommodating variable cardinality. The initial layers use permutation equivariant operations
to compute attention and extract features elementwise, allowing the attention mechanism to adjust
appropriately with any input order. Finally, we apply pooling by attention to aggregate set informa-
tion into a permutation invariant output. We take advantage of an online tokenizer teacher model to
provide an encoded target of the full set of cells for a student model that encodes a masked subset
of cells, thereby learning a representation of all cells in a set.

3.1 PRELIMINARIES - TRANSFORMER ATTENTION BLOCKS

3.1.1 MULTI-HEAD ATTENTION BLOCK

The core component of our model is the Multi-Head Attention (MHA) mechanism (Vaswani et al.,
2017), which enables the model to attend to information from multiple representation subspaces si-
multaneously. Given an input set S = {x1, x2, . . . , xn} where each xi ∈ Rd, we first project S into
queries Q, keys K, and values V using learnable weight matrices WQ, WK , and WV respectively:
Q = SWQ, K = SWK , and V = SWV . The attention mechanism for a single head is defined as

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, where dk = dimensionality of K (1)

To capture diverse features, MHA employs H parallel attention heads, each computing its own atten-
tion output: headh = Attention(Qh,Kh, Vh) for h ∈ {1, . . . ,H}. These outputs are concatenated
and projected through a linear transformation with weight matrix WO ∈ RHdv×d:

MHA(Q,K, V ) = Concat(head1, . . . , headH)WO, where headj = Attention(Qj ,Kj , Vj) (2)

The Multi-Head Attention Block (MAB) integrates the MHA with additional components such as a
cell level feed-forward neural network denoted by FF to enhance cell-level representations. Specifi-
cally, given set S0 and set S1, the MAB is defined as:

MAB(S0,S1) = LayerNorm (H + FF(H)) (3)

where,
H = LayerNorm (S0 + MHA(S0,S1,S1)) (4)

Permutation Properties of MHA. The Multi-Head Attention (MHA) mechanism exhibits differ-
ent permutation properties depending on which of its inputs are permuted, crucial for understanding
how our model handles shuffled input data.
Theorem 1 (Permutation Properties of MHA). Let Q,K, V be the query, key, and value matrices
respectively, and PQ, PKV be permutation matrices. The Multi-Head Attention mechanism satisfies:

MHA(PQQ,PKV K,PKV V ) = PQ MHA(Q,K, V ).

Proof. See Appendix B.1.

3.1.2 INDUCED SET-ATTENTION BLOCK

The Induced Set-Attention Block (ISAB) extends the MAB to efficiently handle large input sets.
Based on our own studies, ISAB’s alone are insufficient for the number of cells in cytometry data.
Given an input set S ∈ Rn×d and a set of learnable inducing points I ∈ Rm×d, where n is the
number of elements in a set, m is the number of inducing points, and m << n, the ISAB is formally
defined as a two-step process:

ISABm(S) = MAB(S, H) ∈ Rn×d, where H = MAB(I,S) ∈ Rm×d (5)
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The first step transforms I into H by attending to the input set S. The second step uses H , which
encodes information about S, to produce the final output. This structure reduces the computational
complexity from O(n2) to O(nm), where n is the size of the input set. This formulation enables
efficient processing of large sets assisting in the processing of large cytometry data sets. We find
that ISAB’s are also permutation equivariant:
Theorem 2 (Permutation Equivariance of ISAB). The Induced Set-Attention Block ISABm(S) is
permutation equivariant. Formally, for any permutation matrix P , it holds that:

ISABm(PS) = P ISABm(S).

Proof. See Appendix B.2.

3.1.3 POOLING BY MULTIHEAD ATTENTION

The Pooling by Multihead Attention (PMA) block provides a learnable aggregation mechanism
for set-structured data. Given a set of input elements S = {x1,x2, . . . ,xn} where each xi ∈ Rd,
and a learnable token s ∈ Rd, the PMA is formally defined as:

PMA(S) = MAB(s,S) (6)

This attention-based pooling allows the model to assign varying importance to different set elements
during aggregation, which is beneficial for identifying and focusing on the most relevant cell popu-
lations or features in cytometry data. This module is crucial to the permutation invariance property
of MAESTRO, allowing for the collapse of hundreds of thousands of cells into a single, learnable
token.
Theorem 3 (Permutation Invariance of PMA). The Pooling by Multihead Attention operation
PMA(S) is permutation invariant. Formally, for any permutation π of the input set S, it holds
that:

PMA(π(S)) = PMA(S)

Proof. See Appendix B.3.

3.1.4 SELF-ATTENTION BLOCK

The Self-Attention Block (SAB) is a specialization of the MAB where the input set attends to itself.
Given an input set S = {x1, x2, . . . , xn} where each xi ∈ Rd, the SAB is formally defined as:

SAB(S) := MAB(S,S) (7)

The SAB performs self-attention among the elements in the set, attending to itself, resulting in an
output set of the same size as the input. This operation captures pairwise interactions between set
elements, and stacking multiple SABs allows the model to encode higher-order interactions.
Theorem 4 (Permutation Equivariance of SAB). The Self-Attention Block SAB(S) is permutation
equivariant. Formally, for any permutation matrix P , it holds that:

SAB(PS) = P SAB(S).

Proof. See Appendix B.4.

3.2 MAESTRO ARCHITECTURE

In the MAESTRO model, masked autoencoding is a core component that enables the model to learn
meaningful representations of set data by reconstructing masked elements. This approach allows
the model to capture the underlying structure and dependencies within the data without relying on
labeled information. An online tokenizer by self-distillation is also implemented, allowing for effi-
cient encoding of the full set, bypassing computational constraints. The necessity of these modules
as part of MAESTRO is demonstrated in our ablation experiment (Table 1).
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3.2.1 NON-RANDOM BLOCK MASKING

Algorithm 1 Non-Random Block Masking (NRBM)
Input: Set S = {x1, . . . ,xn} ⊂ Rd, mask ratio ρ ∈
[0, 1]
Output: Masked set S ′, mask vector M
1. Select random reference xr from S
2. Compute similarities: si = sim(xi,xr) for all

xi ∈ S
3. Sort S by descending si to get Ssorted
4. Compute mask size: k = ⌊ρn⌋
5. Create S ′ by masking k contiguous elements in
Ssorted

6. Shuffle S ′
7. Generate mask vector M corresponding to S ′

Return: S ′, M

We introduce Non-Random Block Mask-
ing (NRBM), a technique designed to en-
hance the model’s learning of meaningful
patterns by considering semantic relation-
ships within the input data. Given an in-
put set S = {x1, . . . ,xn} with xi ∈ Rd

and a desired mask ratio ρ ∈ [0, 1], NRBM
first randomly selects a reference element
r from S. It then computes cosine simi-
larities between r and all other elements,
sorting the elements based on these sim-
ilarities. This ordering ensures that se-
mantically related elements are grouped
together. A block mask is then created,
with ⌊nρ⌋ masked elements in contiguous
blocks within this ordered set. The mask
is applied by replacing masked elements with a special token t. Finally, to maintain the model’s per-
mutation invariance, the resulting set is randomly shuffled. This approach destroys uninformative
relationships due to redundant elements, challenging the model to infer broader patterns and ensures
the model doesn’t rely on any particular ordering of the input. We outline NRBM in Algorithm 0.
For a detailed formulation of the NRBM process, including the specific steps and equations, please
refer to Appendix C.1.

3.2.2 ENCODER AND DECODER

The encoder f is defined as a series of nested operations, starting with a linear layer, followed by
three consecutive ISABs (3.1.2), and ending with a PMA (3.1.3) operation:

f(S) = PMA(ISAB2(ISAB1(ISAB0(Linear(S))))) = z (8)

where z = f(S) ∈ RD is the latent representation.

The decoder g takes the latent representation z and applies a PMA (3.1.3) to unpool the vector z
to the size of S, this is followed by three consecutive SAB (3.1.4) operations and a linear layer to
reduce the dimensionality back to the original size.

g(z) = Linear(SAB2(SAB1(SAB0(PMA(z))))) = Ŝ (9)

where Ŝ is the reconstructed set.

Algorithm 2 Sinkhorn Optimal Transport Dis-
tance
Input: Sets S, Ŝ, Iterations T
Output: Sinkhorn Distance d

1. Compute pairwise distance matrix Dij =

distance(xi ∈ S, x̂j ∈ Ŝ)
2. Initialize Aij = 1

n for all i, j, where A is an
n× n matrix

3. for t = 1 to T do
4. Normalize each row of A such that∑

j Aij = 1
5. Normalize each column of A such that∑

i Aij = 1
6. Update Aij = Aij · e−Dij

7. Compute d =
∑

i,j Aij ·Dij

Return: d

Reconstruction Loss We employ a method
called Sinkhorn Optimal Transport (SOT) for
reconstruction loss (Cuturi). This approach al-
lows us to compare the original and recon-
structed sets without relying on a specific order-
ing of elements. We can think of this method
as finding the best way to ”match” elements
from the original set to elements in the recon-
structed set. The Sinkhorn-Knopp algorithm it-
eratively calculates this matching. Algorithm 2
describes the distance calculation from input to
output. We define our reconstruction loss using
the Sinkhorn Distance:

Lrec = SinkhornDistance(S, Ŝ) (10)

where S = {x1, ...,xn} is the original set and
Ŝ = {x̂1, ..., x̂n} is the reconstructed set.
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This loss function ensures that the reconstruction quality is evaluated in a permutation-invariant
manner, as it only depends on how well we can match the original and reconstructed sets, not their
order. For a more detailed mathematical formulation of the SOT and the reconstruction loss, refer to
Appendix C.2.

3.2.3 ONLINE TOKENIZER VIA SELF-DISTILLATION

MAESTRO employs a self-distillation framework with an online tokenizer to tackle the computa-
tional challenges of encoding large cytometry datasets. In this context, the teacher model acts as
an online tokenizer, providing a token distribution target of the full set of cells (elements) for the
student model, which operates on a masked subset. Let S = {x1,x2, . . . ,xn} be the input set of
cells, where each xi ∈ Rd represents a cell’s high-dimensional measurement. We define the student
model fs and the teacher model ft using the encoder structure:

fs(Sm) = f(NRBM(Sm), ρ) (11)
ft(S) = f(S) (12)

where ρ is the masking rate and Sm ⊂ S is a subset of size m≪ n.

The teacher’s parameters θt are an exponential moving average (EMA) of the student’s parameters
θs:

θt = αθt + (1− α)θs (13)
where α is the EMA decay rate. The online tokenizer (teacher) provides a stable target for the
student model. The self-distillation process is achieved by minimizing the KL divergence between
the softmax distributions of the latent representations produced by the student and teacher models:

LSD =
1

m

m∑
i=1

KL(softmax(fs(xi)/τ) ∥ softmax(ft(xi)/τ)) (14)

where τ is a temperature parameter that controls the softness of the probability distributions, and
xi ∈ Sm are the elements of the masked subset. This loss encourages the student model to pro-
duce latent representations that are similar to those of the teacher model, effectively distilling the
knowledge from the full dataset into the student model that only sees a masked subset. Notably,
this approach is feasible because the teacher model, operating on the full set, does not require
back-propagation or gradient calculations, which would be computationally prohibitive for large
datasets. The student model, working on a smaller subset, can perform gradient calculations and
back-propagation, enabling it to learn and update its parameters.

3.2.4 OVERALL

Using all of the above components, we describe the MAESTRO algorithm here:

Algorithm 3 MAESTRO Model Overview
Input: Input set S, mask ratio ρ, EMA decay rate α, temperature τ

Output: Reconstructed set Ŝ
1. Initialize student parameters θs and teacher parameters θt ← θs
2. Randomly sample subset SM ⊂ S
3. Apply NRBM to SM to obtain masked set S ′ and mask vector M: (S ′,M) = NRBM(SM , ρ)
4. Encode masked set using student encoder: zs = fs(S ′; θs)
5. Decode latent representation to reconstruct the set: Ŝ = g(zs; θs)
6. Encode original set using teacher encoder: zt = ft(S; θt)
7. Compute reconstruction loss: Lrec = SinkhornDistance(SM , Ŝ)

8. Compute self-distillation loss: LSD =
1

|SM |
∑|SM |

i=1 KL

(
softmax

(
zis
τ

)∥∥∥∥∥ softmax
(
zit
τ

))
9. Compute total loss: L = Lrec + LSD

10. Update student parameters: θs ← θs − η∇θs L
11. Update teacher parameters using EMA: θt ← α θt + (1− α) θs
12. Return reconstructed set Ŝ
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4 EXPERIMENT

To evaluate the effectiveness of MAESTRO in representing and analyzing cytometry set data, we
conducted experiments using a large cohort of cytometry samples. We assessed the model’s perfor-
mance in reconstructing masked cells, latent embedding representativeness, and linear probing tasks
to evaluate the effectiveness of embedding important immunological concepts in the representation.

4.1 DATA

We utilized a dataset of 1,514 whole blood cytometry samples spanning 14 cohorts and 11 pheno-
types (Appendix E.1). Data were generated at three locations over various time points (Appendix
E.2), with raw data showing batch effects (Appendix E.3.1). We employed the technical control
sample BatchControlHD2, which exhibits minimal batch effects in learned representations (Figure
3) compared to raw data (Appendix E.3.2). Disease diagnostic and meta data were provided by the
primary clinician teams for each study. Appendix E.1 displays the distribution of cell counts per
sample (minimum=11,829; maximum=1,386,520), highlighting dataset variability. Each sample is
represented as a matrix with cells as rows and proteins as columns. Notably, cell types obtained
through manual gating are used only to evaluate the representations learned by MAESTRO.

4.2 PRE-TRAINING: RECONSTRUCTION OF MASKED CELLS

Masked 

Cells 

Predicted 

Cells

Unmasked 

Input Cells

All

U
M

A
P

2

UMAP1

Figure 2: Set reconstruction. UMAP of the unmasked input cells (yellow, row two), the original
masked cells (red, row three), and the predicted cells (blue, row 4). The top row shows all of these
overlaid. Each column represents a random held-out test sample. Dotted boxes highlight areas
where very few or no cells exist in the unmasked input set but are still reconstructed by MAESTRO.

To demonstrate MAESTRO’s capability in accurately reconstructing masked cells, one of the objec-
tives during training, Figure 2 showcases the reconstruction results for eight randomly selected sam-
ples from a held-out test set during pre-training. In these plots, the unmasked input cells are depicted
in yellow (row two), the original masked cells in red (row three), and the predicted reconstructions
by MAESTRO are shown in blue (row four). The visualization shows a projection of the cells onto a
two-dimensional space using Uniform Manifold Approximation and Projection (UMAP) (McInnes
et al., 2022). The close alignment between the original and reconstructed cells indicates that MAE-
STRO effectively captures the underlying structure of the data. Due to the NRBM procedure, there
are certain regional islands (as denoted by black, dashed boxes) of the UMAP where few or no un-
masked input cells exist, but are still accurately reconstructed. This demonstrates the model’s ability
to infer complex patterns and relationships within the data, even for cells that are distinct from other
input populations. Pre-training details and implementation including runtime and memory usage
can be found in Appendix F.2.
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4.3 VECTORIZED IMMUNE PROFILES MAESTRO Latent Space 
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Figure 3: Vectorized immune profiles. a)
Sample-level (set) latent embeddings projected
into a low-dimensional space. Each diagnosis has
a unique shape-color combination for its point.
Samples tend to cluster by diagnosis. b) The y-
axis is true diagnosis of each point, the x-axis is
the diagnosis of each point’s nearest neighbor. We
show the proportion of nearest neighbor diagnosis
to each point’s true diagnosis. High values along
the diagonal demonstrate the majority of samples
have a nearest neighbor with matching diagnosis.

We evaluated the quality of MAESTRO’s la-
tent representations by projecting the 1,024-
dimensional embeddings into two dimensions
using UMAP for visualization, colored by each
sample’s diagnosis (Figure 3). The resulting
plot shows that samples cluster by diagnosis,
indicating that MAESTRO effectively captures
meaningful patterns related to disease pheno-
types. Samples denoted as BatchControlHD2
are technical controls used in our data genera-
tion process, which we see cluster among them-
selves despite exhibiting batch effects in the
raw data E.3.2. We quantitatively assessed the
representations by generating a contingency ta-
ble of nearest neighbor diagnosis proportions
(Figure 3). This reveals that many samples have
nearest neighbors with matching diagnoses, as
shown by the high values along the diago-
nal, supporting the model’s ability to represent
meaningful information.

4.4 LINEAR PROBING

To evaluate the discriminative power of the learned representations, we performed a linear probing
task where we used the latent representations as inputs to a basic regression model for predicting
diagnosis, age, and sex. Figure 4 summarizes the performance of MAESTRO compared to other
methods (see Appendix D for tabular performance metrics). We compare MAESTRO to manual
gating and clustering which are the gold standard for sample representations in biomedical research
due to the lack of set representation methods that can handle the idiosyncrasies of cytometry data.
We also provide benchmarks against previously mentioned methods (Deep Sets, Set Transformer,
and OTKE) that have never been used on cytometry data before and are suitable for set analysis.
These methods are unable to handle the number of cells in a sample or require a fixed size input
(further highlighting MAESTRO’s capabilities), so we have a random subset of 10,000 cells as
input for these models. Details on implementations for each of these methods can be found in
Appendix F.3. MAESTRO achieved superior accuracy, area under receiper operator curve, and
F1 score in classifying diagnosis and sex, and achieved the lowest MAE and highest R-squared
values for age regression. This indicates that the representations learned by our model are more
informative to downstream prediction tasks. Lastly, we perform an ablation study on the same task
using our MAESTRO architecture, indicating the importance of various design choices (Table 1).
The proposed MAESTRO model outperforms other variants of the same model.
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Figure 4: Linear probe. Classification and regression benchmark of sample diagnosis, sex, and
age. MAESTRO outperforms all benchmarked methods across all metrics. Our study provides
benchmarks against OTKE, DeepSets, and Set Transformer. These methods are suitable for set
representation learning but have never been applied to cytometry.
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Model Accuracy AUROC F1

Random Masking 0.887 ± 0.029 0.987 ± 0.007 0.837 ± 0.052
+ Multi-rate Masking 0.898 ± 0.023 0.987 ± 0.004 0.861 ± 0.036
+ Block Masking 0.909 ± 0.025 0.991 ± 0.004 0.873 ± 0.042
+ Self-Distillation (full model) 0.923 ± 0.014 0.992 ± 0.003 0.897 ± 0.029
- Random Masking 0.721 ± 0.023 0.955 ± 0.014 0.485 ± 0.029

Table 1: Ablation study. Each subsequent row builds upon the module of previous rows above
denoted by +/-. Notably, the masked modelling and self-distillation modules are imperative aspects
to the performance of the model. The removal of masked modelling has a major impact on the
performance of the model. Details of ablation implementation can be found in Appendix F.4.

4.5 RETRIEVAL OF CELL-TYPE DISTRIBUTIONS
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Figure 5: Cell-type distribution retrieval. Color
scheme is shared between plot a and b. a) From
each sample representation we predict the distri-
bution of 16 various cell-types. We average across
all 16 cell-types to show general performance by
mean absolute error (MAE). b) Radar plot show-
ing the performance of each model in predicting
16 different cell-types. Each line-color represents
a different model, each cell-type is represented by
a spoke, values denote MAE. As we move away
from the center the MAE gets higher, less cover-
age across the map means lower error.

Many SSL studies that operate at the cell-level
aim to predict cell-type or use it as a metric for
evaluation (Cui et al., 2024; Kim et al., 2024).
Our study operates at the sample-level, there-
fore we predict entire cell-type distributions, a
much harder task. Accurately predicting cell-
type distributions of samples is of significant
biological importance, as it can provide insight
into the immune landscape and disease mech-
anisms. We assessed MAESTRO’s ability to
retrieve these distributions by using the latent
representations as input to a single-layer neu-
ral network to predict known cell-type distribu-
tions obtained through traditional manual gat-
ing. Figure 5 benchmarks MAESTRO’s perfor-
mance in predicting cell-type distributions av-
eraged across all cells (Figure 5a) and against
16 individual cell-types (Figure 5b). We bench-
mark MAESTRO against k-means clustering,
OTKE, Deep Sets, and Set Transformer. De-
tails on each implementation can be found in
F.5. MAESTRO outperforms all benchmarks methods, suggesting that MAESTRO not only cap-
tures global patterns pertinent to diagnosis, sex, and age but also encodes local, cell-level informa-
tion critical for understanding cellular heterogeneity.

5 CONCLUSION

MAESTRO is a learning architecture that generates representations of immune profiles from high-
dimensional cytometry data—a clinically relevant modality due to its direct measurement of pro-
tein expression on immune cells, providing more immediate functional insights. MAESTRO effec-
tively handles variable set sizes, permutation invariance, and computational constraints in single-cell
datasets. It produces holistic sample representations that contain immunologically meaningful infor-
mation, complementing the standard manual gating approach, as demonstrated by probe experiments
evaluating age, sex, and strong diagnosis predictions, highlighting their clinical and immunological
relevance. Additionally, the ability to infer cell type distributions from embeddings shows that the
embeddings contain biologically meaningful information. MAESTRO’s holistic representation of
the immune system is essential for predicting outcomes, identifying health trajectories, and advanc-
ing precision medicine—capabilities that are difficult to achieve with previous approaches. Further
potential applications include treatment response prediction, early disease detection, differentiating
vaccine response across diseases, assessing patient protection levels from vaccines at specific time-
points, and disease subtyping. Limitations, such as single-sample batch processing and challenges
in detecting rare populations, are discussed in Appendix F.6. Future applications include adapting
MAESTRO to other single-cell modalities, computational histopathology, and multi-modal repre-
sentations to further advance biomedical and immunological discoveries.
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B PROOFS

B.1 PROOF OF MHA PERMUTATION PROPERTIES

We need to prove three properties of Multi-Head Attention (MHA):

1. Permutation Equivariance: When all inputs are permuted. 2. Permutation Equivariance for Q:
When only the query is permuted. 3. Permutation Invariance for K and V: When only keys and
values are permuted.

Proof. Let Q ∈ Rnq×d, K,V ∈ Rnkv×d be the query, key, and value matrices respectively, and
Pq ∈ Rnq×nq , Pkv ∈ Rnkv×nkv be permutation matrices.

1. Permutation Equivariance (all inputs): When nq = nkv and P = Pq = Pkv:

MHA(PQ,PK,PV) = softmax
(
(PQ)(PK)⊤√

dk

)
PV

= softmax
(
PQK⊤P⊤
√
dk

)
PV

= Psoftmax
(
QK⊤
√
dk

)
V

= PMHA(Q,K,V)

2. Permutation Equivariance for Q: When only Q is permuted:

MHA(PqQ,K,V) = softmax
(
(PqQ)K⊤
√
dk

)
V

= softmax
(
PqQK⊤
√
dk

)
V

= Pqsoftmax
(
QK⊤
√
dk

)
V

= PqMHA(Q,K,V)

3. Permutation Invariance for K and V: When only K and V are permuted:

MHA(Q,PkvK,PkvV) = softmax
(
Q(PkvK)⊤√

dk

)
PkvV

= softmax
(
QK⊤P⊤

kv√
dk

)
PkvV

= softmax
(
QK⊤
√
dk

)
V

= MHA(Q,K,V)

These properties together demonstrate that: a) MHA is permutation equivariant when all inputs are
permuted equally. b) MHA is permutation equivariant with respect to Q when only Q is permuted.
c) MHA is permutation invariant with respect to K and V when only K and V are permuted.
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B.2 PROOF OF ISAB PERMUTATION EQUIVARIANCE

To prove that the Induced Set-Attention Block (ISAB) is permutation equivariant, we need to show
that for any permutation matrix P, ISABm(PS) = P ISABm(S).

Proof. Let S ∈ Rn×d be the input set, I ∈ Rm×d be the set of learnable inducing points, and
P ∈ Rn×n be any permutation matrix.

Recall that ISAB is defined as a two-step process:

H = MAB(I,S,S)
ISABm(S) = MAB(S,H,H)

1) First, we examine how permutation affects H:

H′ = MAB(I,PS,PS)
= LayerNorm(I+ MHA(I,PS,PS))

From our above MHA proof, we know that MHA is invariant when only K and V are permuted.
Therefore:

H′ = H

2) Now, we examine the second step:

ISABm(PS) = MAB(PS,H,H)

= LayerNorm(PS + MHA(PS,H,H))

3) To show equivariance, we need to prove that this is equal to PISABm(S):

PISABm(S) = PMAB(S,H,H)

= PLayerNorm(S + MHA(S,H,H))

4) The equality holds because:

LayerNorm(PS + MHA(PS,H,H)) = LayerNorm(PS +PMHA(S,H,H))

= PLayerNorm(S + MHA(S,H,H))

This equality holds because: a) LayerNorm is permutation equivariant b) MHA is permutation
equivariant in its first argument (as shown in the revised MHA proof) c) H remains unchanged
under permutation of S
Therefore, we have shown that ISABm(PS) = P ISABm(S) for any permutation matrix P, proving
that ISAB is permutation equivariant.
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B.3 PROOF OF PMA PERMUTATION INVARIANCE

To prove that the Pooling by Multihead Attention (PMA) operation is permutation invariant, we
need to show that for any permutation matrix P applied to the input set S , PMA(PS) = PMA(S).

Proof. Let S ∈ Rn×d be the input set, s ∈ R1×d be the learnable token, and P ∈ Rn×n be any
permutation matrix.

Recall that PMA is defined as:
PMA(S) = MAB(s,S,S)

1) First, let’s consider PMA applied to the permuted input:

PMA(PS) = MAB(s,PS,PS)

2) Expanding the MAB operation:

MAB(s,PS,PS) = LayerNorm(s+ MHA(s,PS,PS))

3) From our above MHA proof, we know that MHA is invariant when only K and V are permuted,
which is the case here since s is not permuted. Therefore:

MHA(s,PS,PS) = MHA(s,S,S)

4) Consequently:

MAB(s,PS,PS) = LayerNorm(s+ MHA(s,PS,PS))
= LayerNorm(s+ MHA(s,S,S))
= MAB(s,S,S)

5) This shows that:
PMA(PS) = PMA(S)

Therefore, we have shown that PMA(PS) = PMA(S) for any permutation matrix P, proving that
PMA is permutation invariant.
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B.4 PROOF OF SAB PERMUTATION EQUIVARIANCE

To prove that the Self-Attention Block (SAB) is permutation equivariant, we need to show that for
any permutation matrix P, SAB(PS) = PSAB(S).

Proof. Let S ∈ Rn×d be the input set and P ∈ Rn×n be any permutation matrix.

Recall that SAB is defined as:
SAB(S) := MAB(S,S,S)

1) We start by expanding the MAB operation:

SAB(S) = MAB(S,S,S)
= LayerNorm(H + FF(H))

where H = LayerNorm(S + MHA(S,S,S))

2) Now, let’s apply a permutation P to the input:

SAB(PS) = MAB(PS,PS,PS)
= LayerNorm(H ′ + FF(H ′))

where H ′ = LayerNorm(PS + MHA(PS,PS,PS))

3) Using the permutation equivariance of MHA when all inputs are permuted (proven earlier):

H ′ = LayerNorm(PS +PMHA(S,S,S))
= LayerNorm(P(S + MHA(S,S,S)))
= PLayerNorm(S + MHA(S,S,S))
= PH

4) The feedforward network FF is applied elementwise, so it’s permutation equivariant:

FF(PH) = PFF(H)

5) Combining these results:

SAB(PS) = LayerNorm(PH + FF(PH))

= LayerNorm(PH +PFF(H))

= LayerNorm(P(H + FF(H)))

= PLayerNorm(H + FF(H))

= PSAB(S)

Therefore, we have shown that SAB(PS) = PSAB(S) for any permutation matrix P, proving that
SAB is permutation equivariant.
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C FORMAL DEFINITIONS

C.1 NON-RANDOM BLOCK MASKING

Let S = {x1,x2, . . . ,xn} be an input set where each xi ∈ Rd, and let ρ ∈ [0, 1] be the desired
mask ratio. The Non-Random Block Masking (NRBM) process consists of the following steps:

1. Random Element Selection: Select a random element r from the input set:

r = xk, k ∼ Uniform{1, . . . , n}

This element serves as a reference for similarity calculations.
2. Similarity Calculation: Compute the cosine similarity between each element and the ran-

domly selected element:

si = cosine similarity(xi, r) =
xi · r
∥xi∥∥r∥

, ∀i ∈ {1, . . . , n}

3. Similarity-based Ordering: Define a permutation π : {1, . . . , n} → {1, . . . , n} that sorts
elements based on their similarity to r:

sπ(i) ≥ sπ(j) for all i < j

This ordering ensures that similar elements are grouped together.
4. Block Mask Creation: Create a binary mask M = (M1, . . . ,Mn) with the following

parameters:
• Number of elements to mask: m = ⌊nρ⌋
• Block size: b = max(1, ⌊ m

n/m⌋)
Define the mask as:

Mi =

{
1, if π−1(i) mod (2b) < b and

∑i−1
j=1 Mj < m

0, otherwise

This creates contiguous blocks of masked elements in the similarity-ordered sequence.
5. Masked Set Creation: Let t ∈ Rd be the mask token. Create the masked set S ′ by

replacing masked elements with t:

S ′ = {y1,y2, . . . ,yn}, where yi =

{
t, if Mi = 1

xi, if Mi = 0

The complete NRBM function is then defined as:

NRBM : P(Rd)× [0, 1]→ P(Rd)× {0, 1}n × Sn

NRBM(S, ρ) = (S ′,M, π)

where S ′ is the masked set, M is the binary mask, and π is the permutation used for sorting.

This formulation ensures that:

• The masking is based on similarity to a randomly chosen element, promoting semantic
coherence.

• Masks are applied in contiguous blocks, encouraging the model to learn robust patterns.
• The original ordering can be restored using the returned permutation π.
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C.2 SINKHORN OPTIMAL TRANSPORT

To ensure our reconstruction loss is permutation-invariant, we employ Sinkhorn Optimal Transport.
This method allows us to compare the original and reconstructed sets without relying on a specific
ordering of elements.

The key idea is to find an optimal ’matching” between the original set S = {x1, ...,xn} and the
reconstructed set Ŝ = {x̂1, ..., x̂n}. This matching is represented by a transport plan P.

The transport plan P is an n × n matrix where each element Pij represents how much of element
xi from the original set is ’transported” to element x̂j in the reconstructed set. Formally:

P = [Pij ] ∈ Rn×n, where 0 ≤ Pij ≤ 1

To ensure that P represents a valid matching, we constrain it to be a doubly stochastic matrix:

n∑
j=1

Pij = 1 for all i, and
n∑

i=1

Pij = 1 for all j

These constraints ensure that each original element is fully ’distributed” across the reconstructed
elements, and each reconstructed element is fully ’accounted for” by the original elements.

We define a cost matrix C, where each element Cij represents the ’cost” of transporting xi to x̂j :

Cij = ∥xi − x̂j∥22

The goal is to find the optimal transport plan P∗ that minimizes the total transport cost:

P∗ = argmin
P

∑
i,j

PijCij subject to the constraints on P

To make this optimization problem tractable, we add an entropy regularization term:

P∗ = argmin
P

∑
i,j

PijCij − ϵ
∑
i,j

Pij logPij

where ϵ > 0 is the regularization strength.

This problem can be solved efficiently using the Sinkhorn-Knopp algorithm, which iteratively up-
dates P until convergence.

Finally, we define our reconstruction loss as:

Lrec =
∑
i,j

P ∗
ijCij

This loss function ensures that the reconstruction quality is evaluated in a permutation-invariant
manner, as it only depends on the optimal matching between the original and reconstructed sets, not
their order.
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D APPENDIX TABLES

D.1 DIAGNOSIS

Model Accuracy AUROC F1

Manual Gating 0.381± 0.021 0.781± 0.027 0.190± 0.015
KMeans (k = 1024) 0.563± 0.019 0.938± 0.007 0.334± 0.019
OTKE (k = 1024) 0.878± 0.015 0.988± 0.003 0.838± 0.066
Deep Sets (supervised) 0.836± 0.016 0.981± 0.002 0.842± 0.016
Set Transformer (supervised) 0.884± 0.019 0.989± 0.001 0.851± 0.015
MAESTRO (ours) 0.923 ± 0.014 0.992 ± 0.003 0.897 ± 0.029

Table 2: Diagnosis Classification Benchmark. MAESTRO outperforms all benchmarked methods
across Accuracy, AUROC, and F1 metrics for diagnosis classification.

D.2 SEX

Model Accuracy AUROC F1

Manual Gating 0.528± 0.066 0.540± 0.074 0.515± 0.078
KMeans (k = 1024) 0.631± 0.029 0.687± 0.036 0.601± 0.052
OTKE (k = 1024) 0.513± 0.053 0.521± 0.072 0.510± 0.083
Deep Sets (supervised) 0.682± 0.058 0.721± 0.065 0.665± 0.071
Set Transformer (supervised) 0.698± 0.062 0.756± 0.059 0.685± 0.067
MAESTRO (ours) 0.723 ± 0.061 0.800 ± 0.051 0.726 ± 0.062

Table 3: Sex Prediction Benchmark. MAESTRO achieves superior performance across Accuracy,
AUROC, and F1 metrics for sex prediction tasks compared to other methods.

D.3 AGE

Model MAE R2

Manual Gating 19.96 ±39.98 −0.670 ± 0.128
KMeans (k = 1024) 18.74 ±34.58 −0.370 ± 0.111
OTKE (k = 1024) 8.46 ±18.69 0.647 ± 0.099
Deep Sets (supervised) 7.836 ± 1.211 0.662 ± 0.082
Set Transformer (supervised) 7.455 ± 1.056 0.687 ± 0.054
MAESTRO (ours) 6.700 ± 0.998 0.711 ± 0.088

Table 4: Age Prediction Benchmark. MAESTRO outperforms all benchmarked methods with the
lowest Mean Absolute Error (MAE) and the highest R2 score in age prediction tasks.
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E APPENDIX FIGURES

E.1 DATA

Sample Counts by Diagnosis
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a) b)

Figure 6: a) We show the counts of samples for each of the 11 different phenotypes (BatchCon-
trolHD2 is Healthy) used in our analysis. In total, there are 1,514 samples used. b) We show the
distribution of number of cells per sample (the set size). The minimum set size is 11,829 cells and
the maximum set size is 1,386,520 cells.

E.2 DATA GENERATION: TIME AND PLACE
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Figure 7: The x-axis denotes the date that the sample was stained with antibodies for protein marker
detection, the y-axis denotes the preparation date, with histograms showing the distribution across
these dates. The color denotes the location that the sample was processed which we keep anonymous
for double blind review.
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E.3 BATCH EFFECTS

E.3.1 ALL SAMPLES
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Figure 8: We randomly sample 1000 cells from all of our samples. a) We plot all of the cells on
a UMAP colored by their study cohort. While the cells globally cluster by cell-type, we show that
there are clear batch effects across the cohorts. b) We take the marker intensity distributions for each
study and plot the density. This plot clearly demonstrates batch effects across the studies.

E.3.2 BATCHCONTROLHD2 TECHNICAL CONTROL ONLY
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Figure 9: We use BatchControlHD2 as a technical control across the denoted studies. a) Here we
randomly sample 1000 cells from each of these samples and plot them using on a UMAP which
clearly show batch effects. b) We plot the distribution of protein marker expression for each study
that BatchControlHD2 is in. Lastly, in Figure 3 we show that BatchControlHD2 clusters together
demonstrating that there are less batch effects after processing with MAESTRO.
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F APPENDIX INFORMATION

F.1 DATA

We use CyTOF (Cytometry by Time of Flight) to generate our cytometry dataset. CyTOF captures
high-dimensional data through mass cytometry, a technique that simultaneously measures up to 50 or
more protein markers at the single-cell level. Unlike traditional flow cytometry, CyTOF uses metal
isotopes conjugated to antibodies to bind specific cellular proteins. These metal-tagged antibodies
are then detected using time-of-flight mass spectrometry, which minimizes signal overlap and allows
for precise and comprehensive profiling of cellular phenotypes. This method facilitates in-depth
analysis of complex biological systems, offering a detailed snapshot of cellular states and functions
across large cell populations.

F.2 PRE-TRAINING

Using 1,514 whole blood cytometry samples, we create a train and test set using an 80/20 random
split within each diagnosis to ensure that all diagnoses are represented in the test set. This test
dataset is never used for training during pre-training, linear probing, ablation, or cell-type propor-
tion retrieval. We pre-train MAESTRO on four NVIDIA A100 GPU’s for 156 hours at 29 minutes
per epoch (324 epochs). Memory usage varies as each sample is of variable size, but on average
the model consumes 58 GB per GPU. We train on our dataset with AdamW optimizer and a batch
size of 1. Due to varaible size inputs, we can only use a batch size of one (one for each GPU -
four samples at once). The learning rate starts at 1e-4 and using a cosine annealing scheduler to a
minimum of 1e-8. We use NRBM to mask four different copies of our samples at masking rates of
20%, 40%, 60%, and 80%. Masking is done on the fly during pre-training and not before-hand. We
mask by replacing selected indices with a learnable mask token. MAESTRO is configured with four
attention heads, a hidden size of 2,048, and a latent dimension of 1,024. Our input cells start at 30
dimensions (representing 30 different protein markers), which we use a linear layer to transform to
1,024 dimensions before using three ISAB (with 2,500 learned points per ISAB) blocks, followed by
PMA. After pooling to a single learnable seed (vector), we decode the vector by copying the pooled
input to each index of the unmasked cells and use the masking token to denote indices where the
original cell was masked. We follow this with a PMA block with number of seeds equal to the size
of the input matrix, and follow this with three SAB blocks. Finally we use a linear layer to transform
our output to its original 30 dimensions. All attention blocks use a SwiGLU activation function to
learn both linear and non-linear relationships (Shazeer, 2020). Reconstruction is calculated using
Sinkhorn Optimal Transport with Euclidean distance for the cost matrix calculation. We align latent
representations from the student and teacher model by using a non-linear projection head on the
latent representation. Following the projection head we use softmax activation to convert our repre-
sentations to probability distributions. We use Kullback-Leibler (KL) - Divergence to minimize the
difference in distributions. The teacher model is updated with the exponential moving average of
the student and a momentum value of 0.999. Student and teacher model temperatures are set to 0.1
and 0.07, respectively.

F.3 BENCHMARKING METHOD IMPLEMENTATION

MAESTRO is pre-trained with an 80/20 train/test set. For linear probing, the same split is used
for training and testing the logistic regression model in all benchmarked methods. The logistic
regression model is implemented using scikit-learn LogisticRegression(). We repeat five-fold cross-
validation 10 times for each method. Due to imbalances of diagnoses we report the Accuracy,
AUROC, AUPRC, and F1-Score.

MAESTRO MAESTRO is pre-trained according to the above. Following pre-training, latent rep-
resentation for all samples are derived using the pre-trained MAESTRO model. Each representation
is a vector with 1,024 dimensions. Following, the samples are split into the train and test groups
as was used during pre-training to train and test a logistic regression model. The logistic regression
model is fit on the training set for 14 various diagnoses, and then inference is done on the held-out
test set.
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K-means We build two version of the K-means representation. One where we set k = 512, and the
other k = 1024. We build these representations using the same 80% of training samples used for all
other methods. We perform k-means clustering on all available cells across the samples. Then, for
each sample we calculate the proportions of each cluster that exist. This vector of cluster proportions
is used as the input to a logistic regression model. The logistic regression model is fit on the training
set for 14 various diagnoses, and then inference is done on the held-out test set. Due to imbalances
of diagnoses we report the Accuracy, AUROC, AUPRC, and F1-Score.

OTKE The OTKE method is unable to take variable sized sets and using large input sets over-
loaded the available GPU memory. For each sample, we use a random subset of 10,000 cells (equal
to the number of cells input to the student model of MAESTRO). Then, we train the OTKE method,
unsupervised, using our training samples. We use the default parameters as described by OTKE
(Mialon et al., 2022). We then create representations for all of our samples using the learned kernel.
We use the training samples to train a logistic regression model and report metrics on the held-out
test set.

Deep Sets As above, Deep Sets is subset to 10,000 cells (same as student model of MAESTRO).
Deep Sets is inherently a supervised model so we directly train the model to predict the 14 diagnoses
using the 80% training set. We traing using hidden dimension of 2,048 (same as MAESTRO), and
train until convergence or max 300 epochs (same as MAESTRO). We report metrics on the held-out
test set.

Set Transformer As above, Set Transformer is subset to 10,000 cells (same as student model of
MAESTRO). Set Transformer is inherently a supervised model so we directly train the model to
predict the 14 diagnoses using the 80% training set. We traing using the same encoder architecture
as MAESTRO (linear layer, three ISABs, and a PMA) using hidden dimension of 2,048 (same as
MAESTRO), and a latent dimension of 1,024 (same as MAESTRO) and train until convergence or
max 300 epochs (same as MAESTRO). We report metrics on the held-out test set.

F.4 ABLATION IMPLEMENTATION

Unless otherwise denoted, all models in the ablation study use the same training parameters as the
above section for MAESTRO pre-training. As above, we use the same 80/20 train/test split for our
benchmarking studies.

Random Masking We begin with the most simple model possible. We use only the masked
autoencoding module of MAESTRO. We randomly subset each sample to 10,000 cells as we would
with the Set Transformer. We randomly mask out elements of the set using a 50% masking rate. We
encode and decode each sample as described above in MAESTRO pre-training. After pre-training
we derive representations for each sample using the pre-trained model. Using these representations,
we use the 80% training set from pre-training to also train a logistic regression model to predict our
14 diagnoses. We report metrics using the held-out test set.

Multi-rate Masking We hypothesize that better representations can be learned using various
masking rates, forcing the model to reconstruct missing cells using different amounts of informa-
tion. Again, we randomly subset each sample to 10,000 cells as we would with the Set Transformer.
We randomly mask out elements of the set at rates of 20%, 40%, 60%, and 80%. These values are
arbitrarily chosen to cover the spectrum of 0% to 100%. We encode and decode each sample as
described above in MAESTRO pre-training. After pre-training we derive representations for each
sample using the pre-trained model. Using these representations, we use the 80% training set from
pre-training to also train a logistic regression model to predict our 14 diagnoses. We report metrics
using the held-out test set.

Block Masking We hypothesize that our model is able to reconstruct the masked cells because
they are randomly masked, and it’s able to learn the reundancy of cells in an entire set. We implement
NRBM to prevent our model from learning these relationships. Using the same implementation as
the above multi-rate masking, we swap out random masking for NRBM. We encode and decode each
sample as described above in MAESTRO pre-training. After pre-training we derive representations
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for each sample using the pre-trained model. Using these representations, we use the 80% training
set from pre-training to also train a logistic regression model to predict our 14 diagnoses. We report
metrics using the held-out test set.

Self-Distillation From the above we see minimal, although, improving performances for each
added module. Here, we introduce our online tokenizer via self-distillation which allows for the
encoding of the full set of cells. This is our full model and details on implementation can be found
in the above section on MAESTRO pre-training.

without Random Masking Finally, to test that the self-distillation method itself is not what allows
for rich representations in MAESTRO, we test performance using only the self-distillation module.
We encode sets using a student teacher model and align the latents of the full set and subset of cells.
Notably, there is a large decrease in performance when we remove the masked modelling section.

F.5 CELL-TYPE PROPORTION RETRIEVAL

For each sample, 16 cell-type proportions were derived using manual gating, the gold-standard in
immunology. We use these 16 cell-type proportions as the target for retrieval for each representation
learning method. Since manual gating was used to derive these values, it is not benchmarked against
in this section.

MAESTRO We pre-train MAESTRO using the above setting. After pre-training we derive each
of the latent representations of each of our samples. Using the same 80/20 train/test split we train
a one-layer neural network to simultaneously predict all 16 cell-type proportions. This is important
because each value depends on the others. To demonstrate that this information is already encoded
into the latent representation we only train for three epochs.

K-means K-means clustering is an alternative method to identifying cell-types, but is not consid-
ered the gold-standard like manual gating is. Because of this, k-means clustering serves as a strong
baseline for other methods to outperform. Although we use k values of 512 and 1024 (well above
the expected number of cell-types), we still expect this representation to be predictive of cell-type
proportions. Using the same 80/20 train/test split we train a one-layer neural network to simulta-
neously predict all 16 cell-type proportions. This is important because each value depends on the
others. To test whether information is already encoded into the latent representation we only train
for three epochs.

OTKE We derive OTKE sample latent representations as described above. Using the same 80/20
train/test split we train a one-layer neural network to simultaneously predict all 16 cell-type propor-
tions. This is important because each value depends on the others. To test whether this information
is already encoded into the latent representation we only train for three epochs.

Deep Sets Deep Sets is supervised and therefore we do not use the one-layer neural network as
described above. Instead, we use the default Deep Sets model with the 16 cell-type proportions as the
target values. For each sample we subset their matrix randomly to 10,000 cells due to computational
constraints. Using default parameters we train the model to predict 16 cell-type proportions. As
above, because the information is inherently within the input we only use three epochs to train the
model to test whether it is able to encode the 16 cell-types.

Set Transformer Set Transformer is supervised and therefore we do not use the one-layer neural
network as described above. Instead, we use the Set Transformer encoder as described above, with
the 16 cell-type proportions as the target values. For each sample we subset their matrix randomly
to 10,000 cells due to computational constraints. Using default parameters we train the model to
predict 16 cell-type proportions. As above, because the information is inherently within the input
we only use three epochs to train the model to test whether it is able to encode the 16 cell-types.
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F.6 LIMITATIONS

MAESTRO faces several limitations that span computational, methodological, and interpretive chal-
lenges. The model has high computational demands, including long training times and reliance on
advanced hardware such as multiple GPUs with high memory bandwidth, make it inaccessible to
research groups with limited resources. MAESTRO requires single-sample batch processing due
to variable input sizes limits optimization strategies, resulting in longer convergence times. Mask-
ing and reconstruction strategies like Non-Random Block Masking (NRBM) depend on specific
assumptions about data redundancy, which may not generalize well to diverse datasets. The model’s
focus on global representations risks underrepresenting rare cell populations and outliers, which are
biologically significant in many studies. Interpretability is another major concern, as the latent repre-
sentations encode diagnostically relevant information but lack transparency in how specific features
are prioritized, complicating biological insights. MAESTRO’s dependency on fixed protein panels
restricts its application to datasets with variable panels, while its computational intensity renders
it unsuitable for real-time analysis. The absence of multi-modal data integration limits its adapt-
ability to more complex biological studies involving diverse data types. Additionally, its reliance
on manual gating for validation—a labor-intensive and operator-dependent process—hinders scala-
bility for larger datasets. These limitations collectively underscore the need for further refinement
of the model, increased validation across heterogeneous datasets, and improved accessibility and
interpretability to expand its utility in biomedical research.
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