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ABSTRACT

Time-frequency domain analysis has emerged as an effective method to remove
noise in audio signals. However, the image generation quality of the frequency
domain is not yet well explored. In this paper, we turn the audio denoising task
into an image generation problem. We present an audio image generation model
for audio denoising named AIGD and use it to estimate the posterior distribution
of clean complex images conditioned on noisy complex images. Given any noisy
audio signals, our AIGD model could directly generate denoised complex images
and output clean audio signals. We further optimize complex L2 and complex
absolute structure similarity losses to improve the quality of generated images. An
SDR loss is proposed to reconstruct better-denoised audios. Extensive experimental
results demonstrate that by generating high-quality frequency domain images, our
AIGD model achieves state-of-the-art performance audio denoising.

1 INTRODUCTION

Audio signals are commonly used as a means of information transmissions, such as cellular communi-
cation and teleconferences (Kong et al., 2021), human-robot communication (Xu et al., 2020). Other
than communication, audio signals are also used for disease diagnoses, e.g., lung sound (Pouyani
et al., 2022) and heart sound (Kui et al., 2021) detection, and other practical applications. Different
from human-human communication, these applications depend greatly on the quality of audio signals.
In a real-life environment, audio signals are inevitably affected by natural and man-made noises,
resulting in lower-quality audio signals with reduced transferable information. To cope with this
challenge, audio denoising becomes an important technique to remove unwanted noise in the audio
to retain as much useful information as possible.

The key to audio denoising is to separate clean audio signals from noises to form high-quality
transferable signals. Some traditional methods were developed to perform this task, such as spectral
subtraction (Boll, 1979; Berouti et al., 1979), Wiener filtering (Chen et al., 2006; Lim & Oppenheim,
1979), and Wavelet transformation (Zhao & Cui, 2015; Srivastava et al., 2016). However, the
performance of these methods is constrained by the presence of natural noise. The introduction of
deep learning methods has revolutionized the audio-denoising field with a stronger ability to learn
data and characteristics with fewer samples. Time-frequency (TF) domain deep-learning-based audio
denoising methods (Sonning et al., 2020; Wang et al., 2021), waveform domain audio denoising
methods (Kong et al., 2022), and CNN/RNN-based audio denoising methods (Abouzid et al., 2019;
Alamdari et al., 2021) are explored and demonstrated better performance in denoising tasks.

However, these models also encounter challenges. One common challenge is that audio signals
that come with different natural noises are difficult to be separated to extract clean audio signals.
Diffusion probabilistic models (Lu et al., 2021) try to counter this challenge by adding Gaussian
noise to clean signals and using a reverse process to sample the distribution of the original audio
and reconstruct clean signals. However, this approach starts with clean audio signals, while in a
real-world application, noisy audio signals are usually only provided. In addition, adding noise to
clean audio signals is an unnecessary process, given noisy audio exists.

To alleviate the aforementioned challenges, our contributions are three-fold:

• We convert the audio denoising into an image generation task. Experimental results demon-
strate that better-generated complex images achieve higher audio-denoising performance.
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• We remove the forward process in the diffusion model and develop an image generation pro-
cess in which we generate high-quality complex images to estimate the posterior distribution
of clean complex images conditioned on noisy complex images.

• We also propose image quality check and audio reconstruction modules. We enforce complex
L2 loss and complex absolute structural similarity loss for the image quality check and
employ an SDR loss to optimize the audio reconstruction module.

2 RELATED WORK

Time-frequency Models. Deep learning methods in the audio denoising field demonstrate a stronger
ability to learn data features. In recent years, time-frequency (TF) domain approaches that work
on the spectrogram become mainstream. Hu et al. (2020) proposed a deep complex convolution
recurrent network (DCCRN) model that combined deep complex U-net and convolution recurrent
network, using long short-term memory (LSTM) to model temporal context with reduced trainable
parameters and computational cost. Lv et al. (2022) extended the previous DCCRN model to a
super wide band version and employed a complex feature encoder (CFE) after short-time Fourier
transform (STFT), and a complex feature decoder (CFD) before inverse short-time Fourier transform
(ISTFT). Sonning et al. (2020) investigated the performance of a time-domain network. The model
was developed to deal with the original inability of STFT/ISTFT-based time-frequency approaches to
capture short-time changes and was proved to be useful in a real-time setting.

Recurrent Neural Networks & Waveform Domain. The aforementioned methods have a similar
feature of using clean audio signals as training targets, meaning that their performance will be limited
in low signal-to-noise ratio (SNR) scenarios (Zhou et al., 2023). To deal with this problem, enhanced
deep learning approaches are proposed to better classify audio signals. Zhang et al. (2016) built a
novel deep recurrent convolutional network for acoustic modeling and applied deep residual learning
for audio recognition with faster convergence speed. Chen & Wang (2017) proposed an RNN-based
audio separation model with four hidden LSTM layers to deal with unseen speakers and unseen noises
regarding objective speech intelligibility. Tan & Wang (2018) proposed a recurrent convolutional
network that incorporated a convolutional encoder-decoder and LSTM into the convolutional recurrent
neural network (CRN) architecture to address real-time audio enhancement. Li et al. (2020) combined
the progressive learning framework with a causal CRN to further mitigate the trainable parameters
and improve audio quality and intelligibility. Audio denoising in the waveform domain has also been
explored. Defossez et al. (2020) presented a causal speech enhancement model based on an encoder-
decoder architecture with skip connections. It optimized both time and frequency domains and was
capable of removing both stationary and non-stationary noises. Kong et al. (2021) proposed an audio
enhancement method with pre-trained audio neural networks (PANNs) and applied a convolutional
U-Net to predict the waveform of individual anchor segments selected by PANNs. Kong et al.
(2022) proposed a causal speech denoising model, CleanUNet, on the raw waveform based on an
encoder-decoder architecture combined with self-attention blocks. The model was optimized through
a set of losses defined over both waveform and multi-resolution spectrograms.

Diffusion Models. The diffusion probabilistic model (Sohl-Dickstein et al., 2015), is also introduced
to deal with audio denoising. The model has demonstrated great capacity in generating high-quality
images (Ho et al., 2020; Nichol & Dhariwal, 2021) and raw audio waveform (Kong et al., 2020; Liu
et al., 2021). The diffusion probabilistic model includes a forward diffusion and a reverse process. The
forward process converts clean input data to an isotropic Gaussian distribution by adding Gaussian
noise to the original signal at each step. In the reverse process, the model subtracts the predicted
noise signal from the noisy input to retrieve the clean signal. Lu et al. (2021) proposed a diffusion
probabilistic model-based speech enhancement (DiffuSE) model based on the DiffWave model (Kong
et al., 2020). Lu et al. (2022) proposed an enhanced conditional diffusion probabilistic model that
can adapt to non-Gaussian real noises in the estimated speech signal in its reverse process. Chen et al.
(2023) designed an actor-critic-based framework to guide the reverse process to the metric-increasing
direction. However, these diffusion-based models add noise to clean images in the forward process
and then denoise newly made noisy images in the reverse process, which violates the rule of audio
denoising. In real-world scenarios, only noisy audio signals are provided. In this paper, we directly
denoise noisy audio signals using an image generation process.

2



Under review as a conference paper at ICLR 2024

3 METHOD

3.1 MOTIVATION

Although audio denoising in the TF domain has been well explored, the image generation quality of
the frequency domain is not addressed. In addition, existing diffusion models first added noises to
clean audio. Then, they performed an audio denoising task, which violates the original datasets given
noisy audios already existed, and the newly generated noisy audios are different from the original
noisy audios. We aim to remove the unnecessary forward process of diffusion models and develop
a novel image generation process to pursue high-quality generated images, which is equivalent to
obtaining high-quality denoised audio signals.

3.2 PROBLEM

In time domain audio denoising, a noisy audio signal x can be typically expressed as:

x = y + noise (1)

where y and noise denote clean audio and additive noise signal, respectively. Given noisy audio
signals X = {xi}ni=1, we aim to extract clean audio signals Y = {yi}ni=1 by learning a mapping f ,
and leverage f(X) ≈ Y . In the Fourier frequency domain, we convert the audio denoising to an
image generation task. Given the noisy audio complex spectrogram images (refer to images for the
remaining paper) IN = {INi}ni=1 using STFT(X) and clean audio complex images I = {Ii}ni=1
using STFT(Y ), we also aim to find a function F such that F (IN ) ≈ I, where F (IN ) are the
generated complex images.

3.3 PRELIMINARY

Our model is inspired by the denoising diffusion probabilistic model (DDPM) (Ho et al., 2020),
which first adds noise to the image through the forward diffusion process, then removes noise using
the reverse process. The diffusion model consists of T steps. The forward process has the steps
t ∈ {0, 1, ..., T}, and the reverse process has steps t ∈ {T, T − 1, ..., 0}. The diffusion model
iteratively adds noises to clean images and recovers clean images through the Markov chain. We first
review the basic formulas of the diffusion model.

3.3.1 FORWARD DIFFUSION PROCESS

In the forward process q, given a clean image I0 = I , it can be formulated as follows:

q(I1:T |I0) =
T∏

t=1

q(It|It−1), (2)

where T is the number of steps and I1, · · · IT are latent variables. At each step of the forward process,
Gaussian noise is added to the data according to the variance:

q(It|It−1) = N (It;
√
1− βtI

t−1, βtI), q(It|I0) = N (It,
√
αtI

0, (1− αt)I), (3)

where I is the identity matrix, βt is a hyperparameter sequence that describes how much noise is
added to each time step. αt := 1− βt and αt :=

∏t
s=1 αs. With the reparametrization trick, we can

write It as a function of I0:

It =
√
αtI

0 +
√
1− αtϵ, with ϵ ∼ N (0, I). (4)

3.3.2 REVERSE PROCESS

The reverse process p is parameterized by θ and defined by

pθ(I
0:T−1|IT ) =

T∏
t=1

pθ(I
t−1|It). (5)

Starting from pθ(I
T ) = N (IT ; 0, I), the reverse process converts the latent variable pθ(I

T ) to
pθ(I

0). At each step, it takes small Gaussian steps as follows:

pθ(I
t−1|It) = N (It−1;µθ(I

t, t),Σθ(I
t, t)). (6)
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Figure 1: The schematic diagram of our AIGD model. We first apply STFT to convert audio signal
x into complex images (real image IrealN and imaginary image Iimag

N ). Then, we feed them into
our AIGD model (F , a complex U-Net architecture) and get generated real F (IrealN ) and imaginary
F (Iimag

N ) images by optimizing a complex L2 loss CL2. Finally, we minimize the image quality
check loss Ltotal

im = Limag
im + Lreal

im , and audio reconstruction loss LR.

We can predict It−1 from It with

It−1 =
1

√
αt

(It − 1− αt√
1− αt

ϵθ(I
t, t)) + σtz, with z ∼ N (0, I). (7)

The evidence lower bound (ELBO) in DDPM is defined as:

DKL(q(I
T |I0)||p(IT )) +

T∑
t=2

DKL(q(I
t−1|It, I0)||pθ(It−1|It))− log pθ(I

0|I1). (8)

3.4 AUDIO IMAGE GENERATION

Our method modifies the diffusion model by removing the unnecessary forward process and proposes
an image generation process.

3.4.1 AUDIOS AND IMAGES CONVERSION

Given an input batch of tensor T = [N,C,H,W ] using STFT(b(X)), where b is the batch size(e.g.,
take b = 32 samples of X), N is the number of samples in the batch; C is the channel size (C = 1
if the audio is a single track, and C = 2 if the audio is dual tracks, we chose C = 1 to avoid some
audios only have a single channel.); H and W are the height and width of the image (note that the
tensor T = A+ jB ∈ CN×C×H×W is a complex matrix, A is the real part, and B is the imaginary
part), we define the basic deep learning operations O as:

O(T ) = O(A) + jO(B), (9)

where j is the square root of −1 and O can be common deep learning layers. Therefore, we treat
the real part and the imaginary part as separate images. Given any deep-learning image generation
models M, we could estimate the denoised images as:

M(T ) = M(A) + jM(B). (10)

Therefore, we convert audio denoising into an image generation task. Our AIGD model is a complex
U-Net architecture. The U-Net part is the same as the DDPM model, while our AIGD model supports
the complex tensors as inputs and outputs using Eq. (10). AIGD model F ∈ M, and we can retrieve
the denoised audio Ŷ = ISTFT(F (T )), where ISTFT is the inverse STFT.

3.4.2 IMAGE GENERATION PROCESS

Unlike the previous DDPM model, the noise audio images (IN = STFT(X)) already contain noises
given X are noisy audio signals. Hence, we remove the forward diffusion process and focus on the
reverse process, naming it an image generation process. Given unknown clean audio image data
distribution pdata(I), the image generation process aims to remove the noise from noisy images IN
through generating high-quality denoised images F (IN ), where I and IN are both complex tensors.
Given a clean image I and a noisy image IN , there exists a noisy model N that is denoted as follows:

IN = N(I; ϵN , θN ), (11)
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where I ∈ I, IN ∈ IN , ϵN is the noise and θN represents learned parameters of model N. Typically,
the supervised denoising model is trained by the following loss function:

L(θ) = EI,IN [e(I, F (IN ; θ))], (12)

where e is the error and F (·; θ) represents a model. Given noisy images are conditioned on clean
images with unknown noisy model N, we aim to estimate the posterior distribution of p(I|IN ).
Supposing our model F is represented by pθ(I

0|IT ), we define the generation process as a Markov
chain as follows,

pθ(I
t|It+1, · · · , IT ) = pθ(I

t|It+1, IT ), (13)
where I0 = I is the clean image, IT = IN is the noisy image, and t = 0, · · · , T − 1. We have the
following property:

pθ(I|IN ) = pθ(I
0|IT ) =

∫
I1:T−1

pθ(I
0, I1, · · · , IT−1|IT )dI1 · · · dIT−1 =

∫
I1:T−1

t=T−1∏
t=0

pθ(I
t|It+1, · · · , IT )dI1 · · · dIT−1 =

∫
I1:T−1

t=T−1∏
t=0

p(It|It+1, IT )dI1 · · · dIT−1,

(14)

where I1:T−1 is the abbreviation for I1, · · · , IT−1. From Eq. (14), we can iteratively sample
pθ(I

t|It+1, IT ) to estimate the posterior distribution p(I|IN ). In Eq. (11), we assume that N is an
arbitrary noise function, that we could use finite Gaussian mixture models to approximate it.
We have

IT = I0 +

T−1∑
t=0

(σ2
t+1 − σ2

t )zt, zt ∼ N (µrt, σrt), (15)

where N (µrt, σrt) is a standard Gaussian distribution, with random generated µr and σr in each step
t and (σ2

t+1 − σ2
t ) is the coefficient of each zt. Although there is no forward diffusion process, we

assume that the noise is continuously added through a Markov chain. Let 0 = σ0 < σ1 < · · ·σT−1 <
σT = σ, then {σt} is monotonically increased. We can get each image It+1 by

It+1 = It + (σ2
t+1 − σ2

t )zt, zt ∼ N (µrt, σrt), (16)

where t = 0, 1, · · · , T − 1, and we have

It = I0 +

T−1∑
t=0

(σ2
t+1 − σ2

t )zt, zt ∼ N (µrt, σrt), (17)

where t = 0, 1, · · · , T . From Eq. (16), we can get

p(It|I0:t−1) = p(It|It−1). (18)

Therefore, It, where t = 0, 1, · · · , T are a Markov chain. Eventually, when t = T , the Gaussian
noise is continuously added as in Eq. (15). We can further derive

p(I1:T−1|I0, IT ) =
T−1∏
t=1

p(It|I0, It+1), p(It|It+1:T = p(It|It+1)). (19)

Similar to Sec. 3.3, we derive the evidence lower bound objective (ELBO) as follows:

L = EI0,IT

{
− log pθ(I

0|IN )
}
≤ Ep0:T

{
− log

∏t=T−1
t=0 pθ(I

t|It+1, IT )

p(I1:T−1|I0, IT )

}
=

T−1∑
t=1

Ep0,t+1,T [DKL(p(I
t|I0, It+1)||pθ(It|It+1, IT ))] + Ep0,1,T [−log pθ(I

0|I1, IT )].
(20)

From Eq. (19), given It+1, It is not dependent on IT when t < T − 1, we further assume
pθ(I

t|It+1, IT ) = pθ(I
t|It+1). Eq. (20) can be denoted as:

L ≤
T−1∑
t=1

Ep0,t+1,T [DKL(p(I
t|I0, It+1)||pθ(It|It+1))] + Ep0,1,T [−log pθ(I

0|I1)]. (21)
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For the first term, we consider the analysis of p(It|I0, It+1), we have
p(It|I0, It+1) ∼ N (µ̃t, σ̃tI), t = 0, · · · , T − 1, (22)

where µ̃t =
σ2
t

σ2
t+1

It+1 +
σ2
t+1 − σ2

t

σ2
t+1

I0, σ̃t =
σt

σt+1

√
σ2
t+1 − σ2

t . (23)

We can also assume that:
pθ(I

t|It+1) ∼ N (µθ,t+1(I
t+1), σ̃tI), where

µθ,t+1(I
t+1) =

σ2
t

σ2
t+1

It+1 +
σ2
t+1 − σ2

t

σ2
t+1

F (It+1, t+ 1; θ).
(24)

F is our AIGD model and F (It+1, t + 1; θ) is the predicted denoised image given the input of
(It+1, t + 1). The proofs can be found in the supplementary material. Given p(It|I0, It+1) and
pθ(I

t|It+1) have the same covariance matrix, for the first term in Eq. (21), we have
DKL(p(I

t|I0, It+1)||pθ(It|It+1)) = ||µθ,t+1(I
t+1)− µ̃t||22, (25)

where || · ||22 is L2 norm. Combining Eq. (25) with Eq. (23), Eq. (24), and neglecting the constant
term, minimizing Eq. (25) is equivalent to minimizing the follows,

||F (It+1, t+ 1; θ)− I0||22. (26)
Next, for the second term Ep0,1,T [−log pθ(I

0|I1)] of Eq. (21), we train pθ using Ep0,1,T [F (I1, 1; θ)−
I0]. Considering the above analysis, our main loss function in the generation process is:

CL2 =

T−1∑
t=0

||F (It+1, t+ 1; θ)− I0||22

=

T−1∑
t=0

(||F (It+1, t+ 1; θ).real − I0.real||22 + ||F (It+1, t+ 1; θ).imag − I0.imag||22),

(27)

where CL2 is the complex L2 norm, I0 = I is the clean image. real and imag are the real and
imaginary parts of complex tensors, respectively. Through the generation process, given noisy input
image IN , our AIGD model can predict the denoised image F (IN ) that is similar to clean image I .

3.5 IMAGE QUALITY CHECK

Eq. (27) only enforces the predicted images to be close to clean images, while the quality of generated
images is not explored. To improve the generated images’ quality, we developed an image quality
check module. We impose a complex absolute structural similarity loss LS as follows:

LS = 1− abs(SSIM(F (IN ), I))

= {1− abs(SSIM(F (IN ).real, I.real)) + 1− abs(SSIM(F (IN ).imag, I.imag)}/2, (28)

where SSIM is the structural similarity index measure (Wang et al., 2004). The range of the LS is
from 0 to 1, where 0 indicates high similarity between images and 1 means they are not similar. As
shown in Fig. 1, we could get two different images given one audio: real image and imaginary image.
Eventually, the image quality check module loss consists of the above image minimizations and is
defined as:

Ltotal
im = Lreal

im + Limag
im , (29)

where Lreal
im =

∑T−1
t=0 ||F (It+1, t+1; θ).real− I0.real||22 +1− abs(SSIM(F (IN ).real, I.real)),

and Limag
im =

∑T−1
t=0 ||F (It+1, t+1; θ).imag−I0.imag||22+1−abs(SSIM(F (IN ).imag, I.imag)).

Hence, our AIGD model can improve the quality of generated denoised images.

3.6 AUDIO RECONSTRUCTION

After obtaining the output from the decoder layers from the AIGD model, we could apply ISTFT to
get the reconstructed audio as ŷ. We propose an SDR loss to evaluate the quality of ŷ. The SDR is
defined as: SDR(ŷ, y) = 10 log10

||y||2
||ŷ−y||2 . We defined the SDR loss as:

LSDR = constupper − SDR(ŷ, y), (30)
where constupper is the upper bound constant value, we set it as 30. A detailed ablation study is
shown in Sec. 4.2. Therefore, we could ensure that the SDR loss keeps decreasing during the training.
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3.7 OBJECTIVE FUNCTION

The architecture of our proposed AIGD model is shown in Fig. 1. Considering all loss functions in
Sec. 3.5 and Sec. 3.6, our model minimizes the following objective function

L = αLtotal
im + (1− α)LR, (31)

where α is the balance factor between all image loss and audio reconstruction loss. This objective
function enables us first to get high-quality generated images, then acquire a better reconstructed
denoised audio. Our training procedures are described in Alg.1.

Algorithm 1 The training process of AIGD model

1: Input: Noise audio signal x, clean audio signal y, and AIGD model F (·, ·, θ).
2: Output: Trained image generator F (·, ·, θ)
3: Generate noisy audio image IN and clean audio images I using STFT(x) and STFT(y)
4: while θ is not converged do
5: for t = T − 1, · · · , 1 do
6: Sample It using Eq. (24)
7: end for
8: Predict denoised image Î = F (I1, 1, θ)
9: Compute gradient using the objective function in Eq. (31)

10: Update θ by gradient
11: end while

4 EXPERIMENTS

Dataset: we first evaluate our AIGD model on the VoiceBank-DEMAND (Valentini-Botinhao et al.,
2017) dataset. It is a synthetic dataset created by mixing up clean speech and noise. The training
set contains 11,572 utterances (9.4h), and the test set contains 824 utterances (0.6h). The lengths
of utterances range from 1.1s to 15.1s, with an average of 2.9s. We report six metrics of our model,
including perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI),
prediction of the signal distortion (CSIG), prediction of the background intrusiveness (CBAK),
prediction of the overall speech quality (COVL), and structural similarity index measure (SSIM).
Evaluation of the DNS challenge (INTERSPEECH 2020) and BirdSoundsDenoising (Zhang & Li,
2023) datasets and computation time can be found in the supplementary material.

4.1 IMPLEMENTATION DETAILS

AIGD model is a complex U-Net architecture that enables complex tensors as inputs and outputs
(U-Net is from DDPM Ho et al. (2020)). During the training, we set batch size = 2, training iteration
= 1, 000, learning rate = 0.001, time step T = 1,000, and α = 0.5 with an Adam optimizer on a 48G
RTX A6000 GPU using PyTorch. To represent more details of audio, we consider image size as
[512× 512]. In PyTorch’s STFT function, we utilized 1000-point Hamming as the window function,
the size of Fourier transform n fft = 1023, which will output fixed image height as 512. Since the
length of each audio can be different, we set the distance between neighboring sliding window frames
as hop length = int(length(yt)/512), where length(yt) is the length of each audio, which will
approach the width size of 512. We then resize the input image dimensions for the AIGD model as
gray-scale image [1× 512× 512]. During the ISTFT, the same parameters will be used to reconstruct
denoised audio signals. To show the effectiveness of our proposed AIGD model in image generation,
we also report the results of three frequently used image generation methods (CycleGAN (Zhu et al.,
2017), Pix2Pix (Isola et al., 2017) and DDPM (Ho et al., 2020)) and one image denoising method
(DnCNN (Zhang et al., 2017)). For these four methods, we use the same training algorithm in Alg. 1
except that the U-Net in our AIGD model is replaced with these four different models1.

4.2 RESULTS

Tab. 1 shows the comparison results of the VoiceBank-DEMAND dataset. For nine baseline models,
we also get the generated images following the same STFT parameters in Sec. 4.1. We reported the

1Source code will be made available upon acceptance.

7



Under review as a conference paper at ICLR 2024

Table 1: Comparison results on the VoiceBank-DEMAND dataset. “N/A”: not applicable.

Methods Domain PESQ STOI CSIG CBAK COVL SSIM
PGGAN (Li et al., 2022) T 2.81 0.944 3.99 3.59 3.36 0.56
DCCRGAN (Huang et al., 2022) TF 2.82 0.949 4.01 3.48 3.40 0.65
S-DCCRN (Lv et al., 2022) TF 2.84 0.940 4.03 2.97 3.43 0.62
DCU-Net (Choi et al., 2019) TF 2.93 0.930 4.10 3.77 3.52 0.67
MetricGAN+ (Fu et al., 2021) TF 3.15 0.927 4.14 3.12 3.52 0.78
TSTNN (Wang et al., 2021) T 2.96 0.950 4.33 3.53 3.67 0.76
MANNER (Park et al., 2022) T 3.21 0.950 4.53 3.65 3.91 0.80
DnCNN (Zhang et al., 2017) TF 2.76 0.943 3.96 3.41 3.30 0.59
CycleGAN (Zhu et al., 2017) TF 2.87 0.948 4.08 3.70 3.48 0.65
Pix2Pix (Isola et al., 2017) TF 2.96 0.950 4.34 3.55 3.69 0.79
DDPM (Ho et al., 2020) TF 3.03 0.951 4.17 3.51 3.72 0.79
AIGD TF 3.52 0.971 4.82 3.99 4.25 0.87

extra structure similarity (SSIM) between the generated image and the ground truth (mean SSIM
of real and imaginary images). Our proposed AIGD model achieves the highest performance in all
six metrics. Especially the SSIM metric is much higher than all other methods. Note that the key to
success here is that our AIGD model directly denoises the noisy images and removes the unnecessary
forward diffusion process of the original DDPM model, which is the reason that AIGD is better than
the re-implemented DDPM model. To check the quality of generated images, we compare generated
complex images with the five models using two samples in Fig. 2. We also list their mean SSIM and
PESQ scores. The generated real and imaginary images of the AIGD model are close to ground truth,
while the other five models contain many noise areas. Although the images of DDPM are similar to
those of our AIGD model, they contain more black areas. As for Pix2Pix and CycleGAN models,
they both contain many noisy areas that are not removed, which means that these two models cannot
generate clean images. DnCNN removes too many areas in the generated images. It is a surprise
that it has a better performance than the DDPM model in the first example, given the ground truth
contains more black areas. For MANNER, it is not an image generation method. Once we use STFT
to convert it to the frequency domain, it shows a different pattern of images. From these experiments,
we can conclude that a higher SSIM score (better-generated images) will output better reconstructed
audio signals and eventually achieve better audio-denoising performance.

Parameters analysis. In Eq. (31), α balances the image quality check loss and audio re-
construction loss. We first conduct the parameter analysis of α, which is selected from
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. “0” means that we only minimize the SDR loss, while
“1” means that we only minimize the image check model. As shown in Fig. 3a, we chose α = 0.5 as
our best hyperparameter since PESQ achieves the highest value. Next, we explore the relationship
among PESQ, SDR, and SSIM metrics. We defined complex absolute structural similarity loss
LS and SDR loss LR in Eqs. (28) and (30), the lower of these two loss functions, the better the
denoised results. While the higher SDR, SSIM, and PESQ, the better the results since they measure
the closeness between the predictions and ground truth. As shown in Fig. 3b, with the increasing
number of iterations, SSIM and PESQ converged fast and approached the highest value (1 and 4.5).
Although there are some oscillations at the end of the SDR value, it is still converged, and the highest
value is 25.39. Hence, we set the upper bound of SDR loss in Eq. (30) as 30.

Table 2: Ablation study of different loss functions

Methods 2 S R 2+S S+R 2 + R 2+S+R

PESQ 3.25 2.50 2.89 3.28 2.95 3.31 3.52

Ablation study. To demonstrate the effectiveness of the proposed three loss functions: complex
L2 norm (2), complex absolute structure similarity (S), and SDR (R), we conduct an ablation study
with respect to each loss in Tab. 2. “+” means combining loss functions together. We observe that
with the increasing number of loss functions, the robustness of our model keeps improving. The
usefulness of loss functions is ranked as 2 > R > S. Therefore, the proposed audio image generation
denoising approach is effective in improving performance, and different loss functions are helpful
and important in minimizing the error between predictions and ground truth.
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Figure 2: Comparison of generated images of our AIGD and five methods of real and imaginary
images in two samples (separated by a dashed line). Red squares show the different areas between
real and imaginary images. More results are shown in the supplementary material.

(a) Effect of different α with PESQ (b) PESQ, SDR and SSIM changes

Figure 3: (a): parameter analysis for α with PESQ. (b): PESQ, SDR, and SSIM change with the
increase of training iterations (10,000). The highest values are plotted for each line.

Reflection. From Tab. 1 and Fig. 2, we can conclude that our proposed AIGD model achieves
state-of-the-art performance, which also demonstrates the superiority of the proposed architecture
and novel loss functions. However, we can still observe some missing areas of generated real and
imaginary images in Fig. 2, which indicates that there is still space to further improve our model. A
more effective image check loss function can be developed in future work. One weakness of our
model is that it requires high GPU memory to train the model. Our AIGD model has 35M parameters,
and it took around 2.4 minutes to train per audio but less than 1.2 seconds (per audio) for inference.

5 CONCLUSION

In this paper, we convert the audio denoising task into an image generation problem. We first
develop an image generation progress to estimate the posterior distribution of clean complex images
conditioned on noisy complex images. We then impose complex L2 and complex absolute structure
similarity losses to generate high-quality images and develop an SDR loss to minimize the difference
between denoised audio and clean audio. Extensive experiments demonstrate our proposed AIGD
model outperforms state-of-the-art models.

9
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A APPENDIX

B PROOFS

B.1 PROOF OF THE FIRST PART OF EQ. (19) OF THE MAIN PAPER IN SEC. 3.4.2

p(I1:T−1|I0, IT ) =
T−1∏
t=1

p(II |I0, It+1)

Proof. According to Eq. (18) of the main paper, we have the following deviation:
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p(I1:T−1|I0, IT )

=

T−1∏
t=1

p(It|I0, It+1:T )

=

T−1∏
t=1

p(It, It+2:T |I0, It+1)

p(It+2:T |I0, It+1)

=

T−1∏
t=1

p(It+2:T |I0, It+1, It)p(It|I0, It+1)

p(It+2:T |I0, It+1)

=

T−1∏
t=1

p(It+2:T |It+1q(It|I0, It+1)

p(It+2:T |It+1)

=

T−1∏
t=1

p(It|I0, It+1)

Eq. (18) is applied in the fourth equation.

B.2 PROOF OF THE SECOND PART OF EQ. (19) OF THE MAIN PAPER IN SEC. 3.4.2

p(It|It+1:T ) = p(It|It+1)

Proof.

p(It|It+1:T )

=
p(It, It+2:T |It+1)

p(It+2:T |It+1)

=
p(It|It+1)p(It+2:T |It+1, It)

p(It+2:T |It+1)

=
p(It|It+1)p(It+2:T |It+1)

p(It+2:T |It+1)

= p(It|It+1)

Eq. (18) is applied in the third equation.

B.3 THE PROOF OF EQ. (20) OF THE MAIN PAPER IN SEC. 3.4.2

L ≤ Ep0:T

{
− log

∏t=T−1
t=0 pθ(I

t|It+1, IT )

p(I1:T−1|I0, IT )

}

Proof
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L = EI0,IT {−log pθ(I
0|IT )}

= EI0,IT

{
− log

∫
I1,··· ,IT−1

pθ(I
0, I1, · · · , IT−1|IT )dI1, · · · , dIT−1

}
= EI0,IT

{
− log

∫
I1,··· ,IT−1

pθ(I
0, I1, · · · , IT−1|IT )

p(I1, · · · , IT−1|I0, IT )
p(I1, · · · , IT−1|I0, IT )dI1, · · · , dIT−1

}
≤ EI0,IT

{
−
∫
I1,··· ,IT−1

p(I1, · · · , IT−1|I0, IT )log
pθ(I

0, I1, · · · , IT−1|IT )
p(I1, · · · , IT−1|I0, IT )

dI1, · · · , dIT−1
}

= EI0,IT

{
EI1,··· ,IT−1|I0,IT

{
− log

pθ(I
0, I1, · · · , IT−1|IT )

p(I1, · · · , IT−1|I0, IT )

}
= EI0,I1,··· ,IT−1,IT

{
− log

pθ(I
0, I1, · · · , IT−1|IT )

p(I1, · · · , IT−1|I0, IT )

}
= Ep0:T

{
− log

pθ(I
0:T−1|xT )

p(I1:T−1|I0, IT )

}
= Ep0:T

{
− log

∏t=T−1
t=0 pθ(I

t|It+1, IT )

p(I1:T−1|I0, IT )

}
= Ep0:T

{
− log

∏t=T−1
t=0 pθ(I

t|It+1, IT )∏T−1
t=1 p(I1:T−1|I0, IT )

}
= Ep0:T

{
−

T−1∑
t=1

log
pθ(I

t|It+1, IT )

p(It|I0, IT )
− log pθ(I

0|I1, IT )
}

=

T−1∑
t=1

Ep0,t+1,T [DKL(p(I
t|I0, It+1)||pθ(It|It+1, IT ))] + Ep0,1,T [−log pθ(I

0|I1, IT )]
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B.4 PROOF OF EQ. (22) AND EQ. (23) OF THE MAIN PAPER IN SEC. 3.4.2

p(It|I0, It+1) ∼ N (µ̃t, σ̃tI), t = 0, 1, · · · , T − 1,

where,

µ̃t =
σ2
t

σ2
t+1

It+1 +
σ2
t+1 − σ2

t

σ2
t+1

I0,

σ̃t =
σt

σt+1

√
σ2
t+1 − σ2

t

Proof. Firstly, we have the following equation according to the Bayesian rule.

p(It|I0, It+1) =
p(It, It+1|I0)
p(It+1|I0)

=
p(It|I0)p(It+1|It)

p(It+1|I0)
.

Since p(It|I0), p(It+1|It) and p(It+1|I0) all follow Gaussian distribution, we can derive the analyt-
ical form for p(It|I0, It+1), which also follows Gaussian distribution and the parameters are derived
as in Eq. (23.

C GENERATED IMAGES VISUALIZATION AND COMPARISON

To show the effectiveness of our proposed AIGD model, we also list more generated complex
images and compare them with three image generation methods: original DDPM (Ho et al., 2020),
Pix2Pix (Isola et al., 2017), and CycleGAN (Zhu et al., 2017). We did not show the images of
DnCNN (Zhang et al., 2017) and MANNER (Park et al., 2022) since their generated images have low
quality.

As shown in Figures 4 to 6, our proposed AIGD model has the highest SSIM and PESQ scores. We
can also find that the zoom-in red patch areas of our model are more similar to ground truth images
than the other three methods in both real and imaginary images. The denoised audio signals seem
slightly different from each other, and this is caused by the small changes in the audio signals that are
difficult to visualize for human eyes. However, compared with the input noisy audio signal of the
last row of each figure, we can find that denoised audios are much better than the noisy input audios.
Note that all baseline methods: DDPM, Pix2Pix, and CycleGAN utilized the same architecture as
our AIGD model, except that we replaced AIGD with the corresponding model. This indicates our
proposed flowchart and loss functions are effective in improving the performance of audio denoising.

In Figure 4, the zoom-in patch of DDPM is close to our AIGD model, while it has many missing areas
in both real and imaginary images. The Pix2Pix introduced some noises in the generated images,
while CycleGAN contained many noises. Therefore, the ranking of generated images is: AIGD >
DDPM > Pix2Pix > CycleGAN.
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Figure 4: Results comparison of example one. The first row is the generated real image. The second
is the generated imaginary image. The third row is the denoised audio signals of four methods. The
last row shows the input noisy real and imaginary images and the corresponding noisy audio signal.
The ground truth in the first column is the clean signal corresponding to the nosy audio signal in the
last row. The small red path in each image corresponds to the zoom-in view in each big red right
bottom area.
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In Figure 5, although the zoom-in patch of our AIGD model is slightly different from the ground
truth, it is much better than the other three methods. DDPM, Pix2Pix, and CycleGAN all contain
many noises in the generated images.

Figure 5: Results comparison of example two.
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In Figure 6, our AIGD model also achieves the highest PESQ value even if the input audio signal is
very noisy (the real and imaginary images contain many random noises). This further demonstrates
that our AIGD is suitable for audio denoising, especially for noisy audio.

Figure 6: Results comparison of example three.
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D EVALUATION ON DNS 2020 CHALLENGE DATASET

We also evaluate our AIGD model on the DNS challenge (INTERSPEECH 2020) dataset (Reddy
et al., 2020). The clean speech set has 500 hours of clips from 2150 speakers. The noise dataset
has 180 hours of clips from 150 classes. We follow the settings of (Hao et al., 2021), speech-noise
mixture with dynamic mixing are simulated during the training. The test dataset of DNS Challenge
includes two categories of synthetic clips, i.e., without and with reverberations. Each category has
150 noisy clips with SNR levels distributed between 0 dB and 20 dB. We use this test dataset for
evaluation. We report four metrics, including wide-band perceptual evaluation of speech quality
(WB-PESQ), narrow-band perceptual evaluation of speech quality (NB-PESQ), short-time objective
intelligibility (STOI) and scale invariant signal-to-distortion ratio (SI-SDR).

As shown in Tab. 3, our AIGD model outperforms all other state-of-the-art models in all four metrics.
Especially, the PESQ metrics are much higher than other models, which further reveals that our
AIGD model achieves state-of-the-art performance in audio-denoising tasks.

Table 3: Comparison results on DNS 2020 challenge test dataset. “−” means not applicable.

Methods With Reverb Without Reverb

WB-PESQNB-PESQSTOISI-SDRWB-PESQNB-PESQSTOISI-SDR
Noisy 1.822 2.753 86.62 9.033 1.582 2.454 91.52 9.071
NSNet (Xia et al., 2020) 2.365 3.076 90.43 14.721 2.145 2.873 94.47 15.613
DTLN (Westhausen & Meyer, 2020) - 2.700 84.68 10.530 - 3.040 94.76 16.340
Conv-TasNet (Koyama et al., 2020) 2.750 - - - 2.730 - - -
DCCRN-E (Hu et al., 2020) - 3.077 - - - 3.266 - -
PoCoNet (Isik et al., 2020) 2.832 - - - 2.748 - - -
Sub-band Model (Li & Horaud, 2020) 2.650 3.274 90.53 14.673 2.369 3.052 94.24 16.153
FullSubNet (Hao et al., 2021) 2.969 3.473 92.62 15.750 2.777 3.305 96.11 17.290
FullSubNet+ (Chen et al., 2022b) 3.218 3.666 93.84 16.810 2.982 3.504 96.69 18.340
FS-CANet (Chen et al., 2022a) 3.218 3.665 93.93 16.820 3.017 3.513 96.74 18.080
AIGD 3.381 3.912 95.02 18.213 3.351 4.013 98.31 20.123

20



Under review as a conference paper at ICLR 2024

E EVALUATION ON BIRDSOUNDSDENOISING DATASET

To test the performance on the real-world noisy dataset, we evaluate our proposed model on the
BirdSoundsDenoising dataset (Zhang & Li, 2023). This dataset replaces the usual artificially added
noise with natural noises, including wind, waterfalls, rain, etc. In particular, the dataset contains
14,120 audios from one second to fifteen seconds and is a large-scale dataset of bird sounds collected,
containing 10,000/1,400/2,720 in training, validation, and testing datasets, respectively.

As shown in Tab. 4, we ignored the F1, IoU , and Dice scores, given the original paper treated it
as an image segmentation problem. Our AIGD model also achieves the highest SDR score than
other models. Therefore, the AIGD model also has a better performance in a real-world bird sound
denoising dataset.

Table 4: Results comparisons of different methods (F1, IoU , and Dice scores are multiplied by 100.
“−” means not applicable.

Networks

Validation Test

F1 IoU Dice SDR F1 IoU Dice SDR
U2-Net (Qin et al., 2020) 60.8 45.2 60.6 7.85 60.2 44.8 59.9 7.70
MTU-NeT (Wang et al., 2022) 69.1 56.5 69.0 8.17 68.3 55.7 68.3 7.96
Segmenter (Strudel et al., 2021) 72.6 59.6 72.5 9.24 70.8 57.7 70.7 8.52
SegNet (Badrinarayanan et al., 2017) 77.5 66.9 77.5 9.55 76.1 65.3 76.2 9.43
R-CED (Park & Lee, 2016) − − − 2.38 − − − 1.93
Noise2Noise (Kashyap et al., 2021) − − − 2.40 − − − 1.96
TS-U-Net (Moliner & Välimäki, 2022) − − − 2.48 − − − 1.98
DVAD (Zhang & Li, 2023) 82.6 73.5 82.6 10.3 81.6 72.3 81.6 9.96
PtDeepLab (Li et al., 2023) 83.4 75.9 83.4 10.5 83.1 75.4 83.0 10.4
AIGD − − − 11.5 − − − 10.8

F COMPUTATION TIME

We also list the computation time of our AIGD model across three datasets, as shown in Tab. 5. Given
our AIGD model has the T steps generation process, the computation time for each audio is increased
during the training. Across three datasets, the mean computing time of training per audio is around
2.4 minutes. The major reason is because of the diffusion process and the gradient computation. Our
mean inference time of the three datasets is 1.07 seconds per audio. However, compared with the best
baseline methods MANNER (Park et al., 2022), FS-CANet (Chen et al., 2022a) and PtDeepLab (Li
et al., 2023) of three benchmark datasets respectively, the computation cost of our AIGD model is
still in a reasonable range.

Table 5: Computation time of three benchmark datasets (M: minutes, S: seconds).

Time (per audio) VoiceBank-DEMAND DNS 2020 challenge BirdSoundsDenoising

Training Test Training Test Training Validation Test
MANNER (Park et al., 2022) 1.04 M 0.86 S - - - - -
FS-CANet (Chen et al., 2022a) - - 1.84 M 0.83 S - - -
PtDeepLab (Li et al., 2023) - - - - 0.99 M 0.79 S 0.82 S
AIGD 2.03 M 1.09 S 3.12 M 1.17 S 1.98 M 1.02 S 1.03 S

G EXAMPLE DENOISED AUDIOS

In our supplementary materials, we also attached six samples of denoised audios, including three
human and three bird sound denoising results. In each sample, the suffix with “ noise” is the
original audio, “ ground truth” means the ground truth clean audio, and “ AIGD denoised” means
the denoised results from our proposal AIGD model. From these six samples, we can hear that the
denoised audios from our AIGD model extremely approach the ground truth audios, which also
reveals that our AIGD model is suitable for audio denoising tasks.

21


	Introduction
	Related work
	Method
	Motivation
	Problem
	Preliminary
	Forward Diffusion Process
	Reverse Process

	Audio Image Generation
	Audios and Images Conversion
	Image Generation Process

	Image Quality Check
	Audio Reconstruction
	Objective Function

	Experiments
	Implementation Details
	Results

	Conclusion
	Appendix
	Proofs
	Proof of the first part of Eq. (19) of the main paper in Sec. 3.4.2
	Proof of the second part of Eq. (19) of the main paper in Sec. 3.4.2
	The proof of Eq. (20) of the main paper in Sec. 3.4.2 
	Proof of Eq. (22) and Eq. (23) of the main paper in Sec. 3.4.2 

	Generated images visualization and comparison
	Evaluation on DNS 2020 challenge dataset 
	Evaluation on BirdSoundsDenoising dataset 
	Computation time
	Example denoised audios

