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Abstract
Accurate and reliable probability predictions are
essential for multi-class supervised learning tasks,
where well-calibrated models enable rational
decision-making. While isotonic regression has
proven effective for binary calibration, its exten-
sion to multi-class problems via one-vs-rest cal-
ibration produced suboptimal results when com-
pared to parametric methods, limiting its practical
adoption. In this work, we propose novel iso-
tonic normalization-aware techniques for multi-
class calibration, grounded in natural and intuitive
assumptions expected by practitioners. Unlike
prior approaches, our methods inherently account
for probability normalization by either incorporat-
ing normalization directly into the optimization
process (NA-FIR) or modeling the problem as a
cumulative bivariate isotonic regression (SCIR).
Empirical evaluation on a variety of text and im-
age classification datasets across different model
architectures reveals that our approach consis-
tently improves negative log-likelihood (NLL)
and expected calibration error (ECE) metrics.

1. Introduction
The rapid progress of artificial intelligence (AI) has greatly
expanded both the trust in and the range of applications for
AI models in real-world settings. These advancements have
fundamentally reshaped fields requiring accurate predictions
and informed decision-making, including healthcare, agri-
culture, finance, and retail. However, decision-making in
these contexts often transcends simple notions of correct-
ness, requiring a nuanced understanding of the underlying
probabilities generated by the models. For practitioners,
this means engaging critically with model outputs, assessing
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their reliability and implications within the broader decision-
making framework. For instance, in healthcare, overesti-
mating the likelihood of a disease may lead to unnecessary
interventions, while underestimation risks delaying vital
treatments.

Calibration is a term frequently used to describe this con-
cept and serves a dual purpose in addressing these chal-
lenges. It is both a measure of the ”reliability” of model
outputs—evaluating the alignment between predicted prob-
abilities and observed outcomes—and as a method for re-
fining these outputs to enhance their practical utility. The
concept of calibration has a long history, with foundational
works (Murphy, 1973; Murphy & Winkler, 1977; DeG-
root & Fienberg, 1981) emphasizing the relationship be-
tween loss scores and calibration. Subsequent research
(Platt, 1999; Zadrozny & Elkan, 2001; Niculescu-Mizil &
Caruana, 2005) has examined the reliability of outputs from
various machine learning algorithms and the application
of post-hoc calibration methods, particularly focusing on
methods designed for binary classification tasks. To address
the challenges of multi-class calibration, it was suggested
(Zadrozny & Elkan, 2002) to decompose the problem into
multiple binary classification tasks learnt only with class
respective model output and binary label. To ensure that
the predictions sum to 1 and form valid probability vector,
the post-calibration predicted class values are normalized
by dividing each by their sum.

Recent advancements in computational power and neu-
ral network architectures have introduced new challenges
around over-confident models (Guo et al., 2017; Kull et al.,
2019), particularly in quantifying and defining calibration
in multi-class settings (Vaicenavicius et al., 2019). These
works have highlighted the effectiveness of “simple” para-
metric approaches, such as Temperature Scaling, which
naturally extend to multi-class scenarios without requiring
decomposition binary sub-problems or additional normal-
ization considerations, leaving traditional non-parametric
methods somewhat sidelined.

However, later studies (Gupta & Ramdas, 2022; Patel et al.,
2020) have underscored the untapped potential of traditional
techniques when applied with well suited assumptions that
have proven useful on empirical datasets evaluation. No-
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tably, these works focus on histogram binning (HB), despite
the historical prominence of isotonic regression (IR) in bi-
nary classification tasks. Interestingly, both report state-of-
the-art (SOTA) results for unnormalized predictions, mean-
ing the predictions don’t necessarily form a valid probability
vector. This appears to paradoxically conflict with the fun-
damental goal of calibration: fostering trust in the reported
probabilities.

In this work, we emphasize the importance of being
Normalization-Aware in non-parametric multi-class settings.
Sections 2 and 3 provide a concise overview of the subject
and prior literature. In Section 4 we introduce two IR based
approaches that incorporate normalization directly into the
problem formulation and are motivated by simply stated
assumptions. The first approach modifies the optimization
function explicitly (hence the term Normalization-Aware),
while the second redefines the problem by addressing cu-
mulative sub-problems instead of treating each class as an
independent binary task. As demonstrated in Section 5,
our proposed methods consistently improve both negative
log-likelihood (NLL) and calibration error across diverse
datasets, achieving SOTA results and reaffirming the ef-
fectiveness of IR for calibration. We believe this provides
practitioners with a powerful non-parametric alternative in
scenarios where parametric assumptions may be limiting.

2. Problem Definition
2.1. Introduction to the Calibration Challenge

We address supervised multi-class classification where a
classifier p̂ learns to map inputs X ∈ Rd to finite set of
classes {1, . . . , k} using a training set T = {(xi, yi)}
where each pair (xi, yi) represents a realization of i.i.d
random variables (X,Y ), with Y one-hot encoded vec-
tor. The classifier outputs predictions p̂(X) that lie
within the probability simplex ∆k−1 , defined as ∆k−1 ={
p ∈ Rk

∣∣∣ pi ≥ 0 ∀i,
∑k

i=1 pi = 1
}

. In essence, calibra-
tion implies that if a set of samples is classified with an 80%
probability of belonging to a certain class, we would expect
that, indeed, 80% of those samples accurately fall into that
class. This requirement is formalized as follows:

Definition 2.1. A classifier p̂ is called calibrated if for any
q ∈ ∆k−1 it holds that

E(Y | p̂(X) = q) = q

While this definition effectively captures the theoretical
essence of calibration, its measurement is often imprac-
tical in multi-class scenarios (k > 4) due to the extensive
number of test points required for estimating it effectively.
To address this complexity, a more attainable standard was
proposed:

Definition 2.2. A classifier p̂ is class-wise calibrated if

E
[
Yj | p̂(X)j

]
= p̂(X)j , ∀j ∈ {1, . . . , k}.

As demonstrated by Vaicenavicius et al. (2019) being class-
wise calibrated does not necessarily imply that the classifier
is indeed calibrated, making it a weaker concept of cali-
bration. Additionally, another weaker notion of calibration
proposed by Guo et al. (2017) has gained attention and
popularity due to its strong practical motivation for address-
ing the question: ”Can we trust the top predicted category
score?” It is defined as follows:
Definition 2.3. a classifier p̂ is confidence calibrated if

E
[
Yargmax p̂(X) | max p̂(X)

]
= max p̂(X)

Offering a practical and interpretable metric for trust in
classification outputs.

2.2. Error Measurement

A commonly used method for assessing the alignment of
probabilistic binary forecasts with actual outcome probabili-
ties is using a Reliability plot (see Murphy & Winkler 1977;
DeGroot & Fienberg 1983; Niculescu-Mizil & Caruana
2005) This approach involves dividing predictions within
[0, 1] range into equal-width bins and comparing the model’s
predicted probabilities against the actual outcome statistics
within each bin. While Reliability plot offers valuable vi-
sualization, single summary statistic is often preferred. In
the binary case Naeini et al. (2015) define estimated cali-
bration error (ECE) as the weighted sum of absolute differ-
ences in these bins. However, generalizing this measure is
not straightforward, thus several definitions were offered.
Nixon et al. (2019) suggested cw-ECE corresponding to
the class-wise calibrated notion in Definition 2.2 and is esti-
mated by averaging ECE computed independently for each
class binary subproblem. Since this approach can overem-
phasize observations in small bins, they also propose TECE,
which applies thresholded equal-mass binning to each class
before averaging the resulting estimates. For the confidence
calibrated notion in Definition 2.3, the conf-ECE estimator
(Guo et al., 2017; Kull et al., 2019) is computed by applying
binning and binary labeling based on the maximum pre-
dicted probability. The corresponding Reliability plot is
known as Confidence Reliability plot. Alternative methods
based on kernel density estimation (KDE) have been pro-
posed (Zhang et al., 2020; Widmann et al., 2019; Marx et al.,
2024) but are less frequently used in practice.

Proper Scoring Rules. Evaluation measures for proba-
bilistic forecasts can be attributed back to Brier (1950) and
Good (1952) where the main concern was creating a scoring
rule to encourage the forecaster to be honest (see Gneiting
& Raftery 2007 for full characterization of proper scoring
rules).
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Definition 2.4. A scoring rule S : ∆k−1 × {1, . . . , k} →
R ∪ {±∞} is called proper if

argmin
p

EY∼q

[
S(p, Y )] = q

It is easy to verify that both NLL and Brier score are proper
scoring rules. Interestingly, as shown by Bröcker (2009)
any proper scoring rule can be decomposed into two compo-
nents: The first, refinement, quantifies the variance within Y
given a model’s prediction, essentially capturing the model’s
precision. The second, calibration/reliability, assesses how
well the model’s predictions align with the actual outcomes.

3. Post-Hoc Calibration Methods
Post-hoc calibration is typically performed using either a
hold-out calibration set or the validation set. Let V =
{(xi, yi)}mi=1 represent an independent calibration set (i.i.d)
separate from the training set T . For clarity, let ĝ de-
note the fitted post-hoc model, trained on calibration set
Vp̂ = {(p̂(xi), yi) | (xi, yi) ∈ V}We will refer to ĝ as the
calibration map.

3.1. Parametric Methods

Platt (1999) introduced a logistic-regression-based calibra-
tion for binary predictions, motivated by the empirical fit
of a sigmoid to SVM outputs. Later, Kull et al. (2017)
demonstrated that the logistic relation assumption holds in
the binary case when the distributions of model outputs
conditioned on the outcome are Gaussian. This insight led
to their suggested binary calibrator extension named Beta
calibration modeling conditional distribution using Beta dis-
tribution. For multi-class neural network settings, Guo et al.
(2017) proposed three natural extensions: Matrix Scaling
(MS), Vector Scaling (VS) and Temperature Scaling (TS).
MS essentially applies multinomial logistic regression to the
logits z(xi) input prior to the final softamx layer σSM while
VS is the specific case where the transformation matrix is
constrained to be diagonal. TS simplifies the calibration
approach further by enforcing a uniform scaling factor T
across all logits and is fitted by solving the following NLL
minimization optimization problem:

T̂ = argmin
T

m∑
i=1

k∑
l=1

−(yi)l · log(σSM (
z(xi)

T
)l) (1)

The corresponding calibration map is then given by
ĝ(z(xi)) = σSM ( z(xi)

T̂
). Despite its simplicity, TS has

consistently demonstrated strong performance on conf-ECE
and remains a preferred method for post-hoc calibration. It
has further inspired several variations, including Mozafari
et al. 2018; Ji et al. 2019; Ding et al. 2021. Kull et al. (2019)
proposed Dirichlet calibration as a natural extension to Beta
calibration, noting slight differences from MS.

3.2. Non-Parametric Methods

The two prevalent non-parametric methods are HB and IR.
HB introduced by Zadrozny (2001) for binary classification.
It divides Vp̂ into B pre-determined quantiles based on p̂(xi)
values, the estimate for each bin is computed as the observed
proportion in the calibration set. The method is considered
non-parametric since it makes no distributional assumptions.
Naeini et al. (2015) suggested a further improvement to
HB by employing a Bayesian approach to aggregate multi-
ple binning choices. IR, proposed by (Zadrozny & Elkan,
2002) fits a calibration map ĝ under the sole assumption of
monotonicity. Formally, IR is characterized as

ĝ = argmin
g

m∑
i=1

(
g(p̂(xi))− yi

)2
s. t g(p̂(xi)) ≤ g(p̂(xj)) when xi ⪯ xj

(2)

In the binary 1-D case, the problem is solved by first or-
dering the data and then applying PAVA (Pool Adjacent
Violators Algorithm Ayer et al. 1955) fitting a piecewise
constant function to the calibration map with no further as-
sumptions or parameters to specify. Moreover, it can be
shown that the fitted ĝ is the solution for any proper scoring
rule, proof and further details are supplied in Appendix D.

3.3. Non-Parametric Multi-Class Extensions and
Assumptions

OvR. Both HB and IR can be extended to multi-class set-
tings by decomposing the problem into k one-vs-rest binary
subproblems and normalizing the prediction scores by divid-
ing them by their sum, we refer to these methods as IR-OvR
and HB-OvR respectively. This induction is justified when
one assumes Category Independence, formally expressed
as P (Yi | p̂(X)) = P (Yi | p̂(X)i).

sCW. To address inefficiencies arising from small class
priors or datasets, Patel et al. (2020) introduce Shared Class-
Wise (sCW) training, which merges binary sub-problems
for classes with similar priors. When all sub-problems are
trained jointly we name the underlying assumption Per-
mutation Invariance formally assuming P (Yi | p̂(X)) =
P (Yσ(i) | σ(p̂(X))) where σ is a permutation defined such
that σ(p̂(X))j = p̂(X)σ−1(j). Applying Permutation Invari-
ance to a calibration set in our settings involves flattening all
the predictions, thus, we term Flattened Isotonic Regression
(FIR) to be the result of applying sCW training to all classes
together:

g̃FIR = argmin
g
−

m∑
i=1

k∑
l=1

(yi)l · log
(
g(p̂(xi)l

)
+
(
1− (yi)l) · log(1− g(p̂(xi)l)

) (3)

for monotonic function g. Patel et al. (2020) previously
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Figure 1. Confidence Reliability plots for NG20 BERT-Large-Uncased classifier, p-value is calcluated as suggested by Vaicenavicius et al.
(2019) under the null of perfectly calibrated procedure. As can be seen the uncalibrated model is highly over-confident and both our
suggested methods are the only ones where we get positive p-value.

reported FIR without normalization, whereas Zhang et al.
(2020) has applied the straightforward correction for Cate-
gory Independence assumption:

ĝFIR(p) =

(
g̃FIR(p1)∑k
l=1 g̃FIR(pl)

, . . . ,
g̃FIR(pk)∑k
l=1 g̃FIR(pl)

)
Notably, FIR is Order Preserving, meaning pi ≥ pj →
ĝ(p)i ≥ ĝ(p)j for all p ∈ ∆k−1. These types of structural
assumptions have also been outlined in the context of para-
metric models (Rahimi et al., 2020).

Alternatively Gupta & Ramdas (2022) proposed a M2B
framework, essentially suggesting to align calibration
method with calibration error objection. For example, when
confidence calibrated (Definition 2.3) is of interest, HB
should be trained using a calibration set containing only the
top predicted probability and a {0, 1} encoding to indicate
whether the top predicted class matches the actual class. No-
tably, they report SOTA performance without normalizing
the output predictions.

3.4. Other Related Work

It is worth noting that various calibration approaches have
been proposed, including post hoc methods (see Silva Filho
et al. 2023 for a more comprehensive discussion), regu-
larization techniques, implicit calibration strategies, and
uncertainty estimation methods. For a comprehensive re-
view of these methods in the context of deep learning, see
Abdar et al. (2021); Gawlikowski et al. (2023).

4. Normalization Aware IR Methods
Motivation. Examining the previously proposed non-
parametric multi-class extensions and their respective as-

Table 1. Multi-Class extensions and their underlying assumptions

CALIBRATION METHOD
COMPARED METHODS OUR METHODS

MS VS TS IR OVR FIR SCIR NA-FIR

ORDER PRESERVING × ×
√

×
√

×
√

PERMUTATION INVARIANT × ×
√

×
√ √ √

RELAXING CATEGORY INDE-
PENDENCE

√ √ √
× ×

√ √

sumptions reveals the key weakness we want to address -
they all are trained without taking into consideration their
actual normalized outcomes.

We believe that providing valid probability predictions is
essential for building trust among practitioners, especially
in decision-making frameworks. However, most existing
non-parametric calibration methods for multi-class settings
operate under the assumption of category independence,
where each class is calibrated separately and if predictions
are normalized it is only done post calibration.

This modeling choice introduces a key limitation as it is
known that such marginal (classwise) calibration is strictly
weaker than full (canonical) calibration (Vaicenavicius et al.,
2019). For example both prediction vectors [0.8, 0.2,0] and
[0.8, 0.1, 0.1] share the same top-1 prediction but their
underlying uncertainty profiles can differ substantially.

While we aim to relax the Category Independence assump-
tion, we justify Order Preserving assumption as a desirable
property. As underlying models improve, it becomes in-
creasingly reasonable for a calibration method to preserve
the ranking of predicted probabilities from the original
model.

Furthermore, the traditional OvR approach suffers from high
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Table 2. Average ranking comparison between different calibration methods across different datasets and various metrics. Percentages
indicating how often a method achieved the lowest score for a given metric across the tested models. The best-performing calibrator is
highlighted in bold.

METRIC DATASET
AVERAGE RANKING

NA-FIR SCIR FIR IR OVR TS VS MS UNCALIBRATED

NLL

20NG 1.4 (70%) 6.0 (0%) 2.8 (10%) 7.3 (0%) 3.3 (10%) 3.2 (10%) 5.3 (0%) 6.7 (0%)
CIFAR10 1.2 (75%) 1.8 (25%) 4.0 (0%) 7.0 (0%) 5.8 (0%) 4.8 (0%) 3.5 (0%) 8.0 (0%)
CIFAR100 1.5 (62%) 4.4 (15%) 3.3 (0%) 7.6 (0%) 2.8 (8%) 3.8 (8%) 6.7 (8%) 5.9 (0%)
FOOD101 2.5 (0%) 5.8 (0%) 4.0 (0%) 7.9 (0%) 1.6 (62%) 2.9 (38%) 7.0 (0%) 4.4 (0%)
IMAGENET 1.0 (100%) 4.9 (0%) 2.0 (0%) 8.0 (0%) 3.4 (0%) 5.1 (0%) 5.9 (0%) 5.8 (0%)
R52 1.7 (50%) 5.1 (0%) 3.2 (10%) 8.0 (0%) 2.1 (30%) 5.1 (10%) 6.7 (0%) 4.1 (0%)
YR 3.2 (14%) 5.3 (5%) 5.2 (0%) 5.2 (0%) 4.9 (0%) 3.2 (5%) 1.5 (77%) 7.6 (0%)

CONF-ECE

20NG 2.4 (10%) 2.6 (60%) 3.1 (30%) 3.9 (0%) 6.9 (0%) 4.4 (0%) 4.9 (0%) 7.8 (0%)
CIFAR10 4.8 (0%) 1.0 (100%) 5.8 (0%) 5.8 (0%) 2.8 (0%) 4.0 (0%) 4.0 (0%) 8.0 (0%)
CIFAR100 2.5 (8%) 1.2 (85%) 4.7 (0%) 5.8 (0%) 3.1 (0%) 4.0 (8%) 7.4 (0%) 7.3 (0%)
FOOD101 2.6 (25%) 3.2 (25%) 4.4 (0%) 4.9 (12%) 2.8 (38%) 3.4 (0%) 7.6 (0%) 7.1 (0%)
IMAGENET 1.4 (75%) 2.0 (25%) 3.0 (0%) 5.5 (0%) 4.0 (0%) 6.1 (0%) 7.4 (0%) 6.6 (0%)
R52 2.6 (20%) 2.9 (50%) 3.6 (10%) 6.3 (0%) 4.8 (0%) 3.8 (10%) 5.1 (10%) 6.9 (0%)
YR 3.0 (18%) 3.2 (41%) 4.1 (9%) 3.4 (14%) 6.0 (0%) 4.8 (5%) 3.7 (14%) 7.9 (0%)

BS

20NG 2.1 (40%) 4.3 (0%) 2.8 (20%) 2.7 (30%) 4.9 (0%) 4.9 (10%) 7.0 (0%) 7.3 (0%)
CIFAR10 2.2 (0%) 1.0 (100%) 3.2 (0%) 3.5 (0%) 6.2 (0%) 5.5 (0%) 6.2 (0%) 8.0 (0%)
CIFAR100 2.1 (31%) 2.5 (46%) 3.6 (0%) 5.3 (0%) 3.8 (8%) 4.6 (8%) 7.4 (8%) 6.7 (0%)
FOOD101 3.1 (12%) 4.6 (0%) 3.0 (0%) 5.6 (12%) 2.4 (38%) 3.6 (38%) 7.8 (0%) 5.9 (0%)
IMAGENET 1.2 (75%) 3.4 (0%) 2.4 (0%) 6.5 (0%) 4.1 (12%) 5.8 (12%) 6.6 (0%) 6.0 (0%)
R52 2.4 (50%) 4.9 (10%) 2.9 (0%) 5.7 (0%) 3.9 (20%) 3.9 (20%) 6.8 (0%) 5.5 (0%)
YR 3.8 (9%) 6.0 (5%) 4.8 (0%) 3.0 (5%) 5.7 (0%) 3.1 (5%) 1.8 (77%) 7.8 (0%)

CW-ECE

20NG 4.0 (0%) 3.8 (10%) 3.7 (10%) 1.6 (60%) 7.0 (0%) 5.0 (0%) 3.1 (20%) 7.8 (0%)
CIFAR10 4.2 (0%) 2.0 (50%) 5.5 (0%) 2.5 (25%) 7.0 (0%) 4.2 (0%) 2.5 (25%) 8.0 (0%)
CIFAR100 2.6 (23%) 2.4 (46%) 4.0 (8%) 4.2 (8%) 3.7 (0%) 4.7 (15%) 7.3 (0%) 7.1 (0%)
FOOD101 3.0 (0%) 3.2 (38%) 3.9 (0%) 5.6 (0%) 2.5 (25%) 3.8 (38%) 7.4 (0%) 6.6 (0%)
IMAGENET 3.6 (0%) 6.1 (0%) 3.1 (12%) 4.4 (0%) 2.0 (50%) 4.1 (25%) 5.4 (12%) 7.2 (0%)
R52 3.8 (0%) 5.0 (0%) 2.7 (40%) 4.5 (10%) 4.7 (10%) 2.8 (40%) 7.2 (0%) 5.3 (0%)
YR 4.0 (18%) 4.7 (0%) 4.7 (0%) 2.3 (14%) 6.4 (0%) 4.1 (0%) 2.1 (68%) 7.7 (0%)

TECE

20NG 3.4 (20%) 3.1 (10%) 4.5 (10%) 2.9 (30%) 5.6 (0%) 5.0 (20%) 3.7 (10%) 7.8 (0%)
CIFAR10 2.8 (25%) 1.8 (50%) 4.5 (0%) 2.5 (25%) 6.8 (0%) 4.8 (0%) 5.0 (0%) 8.0 (0%)
CIFAR100 2.2 (23%) 1.7 (62%) 4.3 (0%) 4.5 (0%) 4.5 (0%) 4.6 (8%) 7.6 (0%) 6.6 (8%)
FOOD101 2.5 (12%) 2.6 (25%) 3.0 (25%) 5.8 (12%) 4.0 (12%) 4.8 (12%) 7.6 (0%) 5.8 (0%)
IMAGENET 2.9 (12%) 2.1 (50%) 2.5 (0%) 8.0 (0%) 5.1 (0%) 6.4 (0%) 6.1 (0%) 2.9 (38%)
R52 6.1 (0%) 2.7 (30%) 5.3 (10%) 3.6 (10%) 5.1 (0%) 3.6 (10%) 3.2 (40%) 6.4 (0%)
YR 3.9 (18%) 5.3 (0%) 4.7 (5%) 2.7 (14%) 6.0 (0%) 3.5 (9%) 2.0 (55%) 7.7 (0%)

variance as data is sparse in critical areas, particularly for
overconfident models in scenarios with limited calibration
data and many classes. We find it reasonable to assume
that a model’s overconfidence or under-confidence exhibits
similar characteristics across different classes effectively
assuming Permutation Invariance.

Thus, we suggest two alternatives that aim to leverage the
empirical observations from sCW and M2B frameworks,
yet are designed to incorporate normalization within the
problem formulation.

4.1. Normalized Aware Flattened Isotonic Regression

NA-FIR is what we believe to be the most appropriate non-
parametric analogue to TS. Since NLL is a proper scoring
rule, minimization incentivize calibration improvement (see
stated decomposition in Section 2.2). Thus we formulate

the problem in a straightforward manner:

Formulation. Denote the isotonic function class as G =
{g : [0, 1] → R+ | g(u) ≤ g(v) if u ≤ v} we define
NA-FIR NLL minimization problem as follows:

g̃NA-FIR = argmin
g∈G

m∑
i=1

k∑
l=1

−(yi)l · log

(
g(p̂(xi)l)∑k
j=1 g(p̂(xi)j)

)
(4)

and, accordingly:

ĝNA-FIR(p) =

(
g̃NA-FIR(p1)∑k
l=1 g̃NA-FIR(pl)

, . . . ,
g̃NA-FIR(pk)∑k
l=1 g̃NA-FIR(pl)

)
(5)

Note that while TS is applied to the softmax function (Equa-
tion (1)), the only difference in our normalized aware iso-
tonic formulation lies in the use of derived probabilities
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instead of direct logits, which is not a fundamental change
as the exponent is a monotonic function.

Both FIR and NA-FIR assume Permutation Invariance and
ensure Order Preservation for every prediction point. But
while FIR optimization (Equation (3)) doesn’t account for
the collateral effects of the fitted isotonic values, NA-FIR
optimization (Equation (4)) incorporates the normalization
term, thereby relaxing the limitations of the Category Inde-
pendence assumption.

Fitting Process. It is important to highlight that this prob-
lem is no longer convex, which means that PAVA cannot be
directly applied as a solution. Consequently, we explored
alternative methods for searching constrained local minima.
Given that PAVA when applied to the non-normalized iso-
tonic problem, identifies the optimal bin boundaries for min-
imizing the NLL in the flattened binary case, it provides both
a reasonable initialization point and an opportunity to reduce
the effective search space. Leveraging the isotonic block
structure identified by PAVA allowed us to include more
thorough search techniques, as outlined in our proposed
algorithm Algorithm 1. The algorithm employs Markov
Chain Monte Carlo (MCMC) optimization, also known as
simulated annealing, achieving stable convergence while
still allowing the practitioner to specify both the minimal
number of bins and the granularity of fitted values. Further
details can be found in Appendix A.2.

Algorithm 1 MCMC Blockwise Normalized Aware Flat-
tened Isotonic Optimization
1: Input: Data X,Y ,

hyperparameters ϵchange, β, num iterations,
min blocks, split size threshold

2: Flatten X and y: xflatten = X.flatten(), yflatten = Y.flatten()
3: Initialize block structure and fits:

[blocks, block fits]← PAVA(xflatten, yflatten)
4: Refine block structure: [blocks, block fits]←

split blocks(blocks,min blocks, split size threshold)
5: for i = 1 to num iterations do
6: Select a random block: block ∼ U(1, len(blocks))
7: Perturb block fit: δ ∼ U({−1, 1}), change← ϵchange · δ
8: Update suggested fit:

suggested block fit← block fits[block] + change
9: Validate isotonicity of suggested block fit

10: if likelihood > current likelihood then
11: Update: best likelihood← likelihood,

best fit← suggested block fits
12: end if
13: if likelihood > current likelihood or

rand() < exp(β · (likelihood− current likelihood)) then
14: Accept: block fits← suggested block fits,

current likelihood← likelihood
15: end if
16: end for
17: Return: best block fits

4.2. Sorted Cumulative Isotonic Regression

Motivated to develop a calibration method that aligns with
the practitioner’s decision-making process, particularly mod-
eling binary problems that correspond directly to the ECE
evaluated metric (e.g conf-ECE), we propose SCIR, which
integrates ranking into the problem formulation.

Formulation. Let (p, y) ∈ Vp̂ be a calibration point, and
let σ be the order permutation such that pσ−1(1) ≥ · · · ≥
pσ−1(k) , we define the sorted cumulative corresponding set
for each prediction point as

cusorted(p, y) :=


(

∑
σ(j)≤r

pj , r),
∑

σ(j)≤r

yj

 ∣∣∣∣∣∣ 1 ≤ r ≤ k − 1


and for a set of points we define the aggregated set CU agg :=⋃

(p,y)∈Vp̂
cusorted(p, y). This set contains tuples of cu-

mulative top-r scores and their associated cumulative la-
bel counts such that each

(
(q, r), ỹ) ∈ CU agg belongs to

[0, 1]× {1, . . . , k} × {0, 1}.

Finally g̃SCIR is defined as the solution to the following
minimization problem:

argmin
g
−
∑
CU agg

ỹ · log
(
g(q, r)

)
+(1− ỹ) · log

(
1− g(q, r)

)
s.t g(q, r) ≤ g(s, t) if q ≤ s ∧ r ≤ t

(6)

Thus imposing monotonicity both in prediction sum and
ranking index. To make predictions for a new input point
the probabilities are first sorted, ĝCSIR is applied, a difference
is taken and then the results are transformed back into the
original order. Formally the prediction is calculated as:

ĝSCIR(p̂(xi))l =g̃CSIR(
∑

σ(j)≤σ(l)

p̂(xi)j , σ(l)
)

−g̃CSIR(
∑

σ(j)≤σ(l)−1

p̂(xi)j , σ(l)− 1
)

where ĝCSIR(·, 0) = 0 , ĝCSIR(·, k) = 1 by definition.

Illustrative Example. Let k = 4 and consider a pair
(p, y) = ([0.2, 0.4, 0.3, 0.1], [0, 0, 1, 0]) The corresponding
sorted cumulative set is:

cusorted(p, y) = {
(
[0.4, 1], 0

)
,
(
[0.7, 2], 1

)
,
(
[0.9, 3], 1

)
}

To compute the calibrated probability for the first class
(which appears at the third rank in the sorted order), we
apply: ĝSCIR(p)1 = g̃SCIR(0.9, 3)− g̃SCIR(0.8, 2)

We note that this formulation assumes Permutation Invari-
ance and encodes mutual learning effectively allowing to

6
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(a) BERT-large-uncased SCIR fit (b) BERT-large-uncased NA-FIR fits v.s FIR fits on test data

Figure 2. Both plots are based on the NG20 dataset with trained BERT-large-uncased classifer. The left plot illustrates fitted calibration
curves for the first 5 ranks cumulative trained models, where the final prediction for each rank (cumulative class) is calculated as the
difference between its cumulative value and the previous one. The right plot provides insights into the effect on test predicted probabilities
comparing NA-FIR to FIR predictions as function of Uncalibrated predictions that were thresholded to lie within the [0.01, 1] range and
subsequently binned into 30 equal-width intervals. The lower chart depicts the corresponding bin sizes.

break Category Independence assumption, but does not guar-
antee Order Preservation. We justify the coordinate-wise
induced order which can expand the natural isotonic induced
order as we find it is reasonable to assume super-additivity
of the flattened isotonic calibration map and it ensures non-
negative predicted values for every cumulative class at any
prediction point. Finally, in practice, we add a small ϵ to
all output probabilities and divide by the sum in order to
prevent zero probabilities.

Fitting Process. In general, solving a multi-dimensional
isotonic regression is computationally demanding, with a
worst-case complexity of O(m4k4) as demonstrated by
Spouge et al. (2003) for the least square loss (Equation (2))
and by Luss & Rosset (2014) for the generalized convex
case. However, we show that by utilizing one of the algo-
rithms specified in Spouge et al. (2003) to suit this problem,
the following result holds:
Proposition 4.1. The cumulative sorted problem defined
in Equation (6) can be solved in O(m2k4) worst case time
using Algorithm 2.

This solution is obtained by recursively splitting CU agg using
the surprisingly simple dynamic programming algorithm
outlined in Algorithm 2. When the returned partition equals
the input assigned value is the input corresponding mean.
proof for Proposition 4.1 and further details are provided in
Appendix A.

5. Experiments
5.1. Experiment Design

We evaluate post-hoc calibration methods on seven bench-
mark datasets spanning both image and text domains:

Algorithm 2 2-D Grid Sorted Cumulative Isotonic Maximal
Upper Set Algorithm

1: Input: X = {(k, l)i | i ∈ [1, . . . , N ]}, y, w ∈ Rn

2: Initialize M(N+1)×k, RN×k as zero matrices, and b =
Avg(X )

3: for i = N to 1 do
4: for j = 1 to c do
5: if j ≤ l then
6: M [i, j] = M [i+ 1, j] + wi(yi − b);R[i, j] = j
7: else if j > l and (yi − b) < 0 then
8: M [i, j] = M [i+ 1, j];R[i, j] = j
9: else

10: M [i, j] = M [i+ 1, l] + wi(yi − b);R[i, j] = l
11: end if
12: end for
13: end for
14: Initialize S = {}; j = c
15: for i = 1 to N do
16: Set (k, l) = xi

17: if R(i, j) ≤ l then
18: Add i to S
19: end if
20: Update j = R(i, j)
21: end for
22: Return: S

CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Food-101
(Bossard et al., 2014) and ImageNet-1k (Russakovsky et al.,
2015) for image classification, and R52, NG20, and Yelp
Review (Zhang et al., 2015) for text classification. These
datasets include varying numbers of classes and valida-
tion/test set sizes, allowing us to test calibration methods
across diverse scenarios (see Table 3 for further specifica-
tion). Experiments were conducted using various modern
DNN architectures and a few classical machine learning
models. To assess the practical usefulness of calibration
functions, we compared several models with different archi-

7
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(a) conf-ECE (b) NLL

Figure 3. Comparison of conf-ECE and NLL between different calibration methods. Each cell in the heatmap represent the percentage of
times the calibration method on the row had achieved better score then the calibration method on the column.

tectures and training regimes so overall 75 baseline models
are being evaluated. For each dataset and model, we applied
seven of the calibration methods outlined in Section 3 and
Section 4, omitting other mentioned methods for simplic-
ity. Detailed information on experimental setup is provided
in Appendix B. The performance of these methods will
be evaluated using the metrics accuracy, NLL, Brier score,
conf-ECE, cw-ECE and TECE. To account for practical
considerations, we also report wall-clock time. TECE is
evaluated with a threshold of 1/k, and all calibration met-
rics are computed using 15 bins and their respective binning
schemes as defined.

5.2. Results

Normalization Aware Effect. As shown in Figure 2, while
normalization awareness, as defined in Section 4.1, might
appear to be a minor adjustment, it has a significant impact
on predicted probabilities. Lower FIR probabilities are often
inflated by NA-IR and vice versa. This phenomena effec-
tively demonstrate that awareness has resulted in increased
uncertainty in final predictions which was not accounted
when fitting FIR. Looking at cumulative fits of SCIR we
can notice that the first rank fit which corresponds to the
suggested M2B framework is relatively ”constrained” free
allowing to learn conf-ECE targeted calibration map, on
the other hand many overlaps and order violations seems to
occur which can be problematic.

Aggregated Comparative Results. Table 2 demonstrates
that both our proposed methods, SCIR and NA-FIR, achieve
state-of-the-art performance in terms of NLL loss and conf-
ECE across all datasets. In terms of conf-ECE, SCIR of-
ten achieves the best results (see Figure 3), while NA-FIR

demonstrates greater stability, consistently ranking among
the top calibration methods even when it is not the best
performer. It also shows that our approach for constrained
NLL optimization was indeed justified, as we can see that
NA-FIR not only improves NLL but also conf-ECE when
compared to FIR, see Figure 1 for example. Moreover, the
results clearly show that NA-FIR outperforms linear scal-
ing methods for most datasets except for the FOOD101
dataset where TS excels and Yelp Review where there is
an abundance of examples in each class. In contrast, SCIR
consistently produces lower scores for NLL - an unwanted
surprising property, especially when considering the well
performing ECE metrics. Interestingly, this holds even when
Brier score is comparable, thus we attribute this unwanted
behavior to near zero probabilities arising from overlaps in
the cumulative class probabilities.

A closer analysis into the gaps, as shown in Figure 7 pro-
vided in appendix C, reveals that dataset characteristics such
as number of classes and data set type correlate with some of
the calibration methods performance. TS performed better
on image classification datasets, while both MS and IR OvR
were greatly affected by the number of classes and samples
provided.

With respect to wall-clock time measurements, both TS and
VS are highly efficient, completing in a matter of seconds
across all datasets. In contrast, SCIR and NA-FIR exhibit
less favorable scaling behavior. For NA-FIR, each iteration
scales linearly with the number of samples (Appendix A.2).
In practice, the method required approximately 15 min-
utes to calibrate Yelp Review and ImageNet-1k. SCIR, by
contrast, is highly sensitive to the number of classes (Propo-
sition 4.1), taking 1 second on Yelp Review but approx-
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imately 120 minutes on ImageNet-1k. All timing results
were obtained on a standard single-machine setup without
GPU acceleration. Nevertheless, calibration sets are often
substantially smaller than training sets and the calibration
overhead remains minor relative to model training time.

Lastly, re-visiting our assumptions in this empirical evalua-
tion provides a more concrete justification for our approach.
First, the superior performance of both the cumulative ap-
proach and flattening methods compared to IR OvR indi-
cates that leveraging permutation invariance enhances the
model’s generalization capabilities. Second, the results high-
light that order preservation is a reasonable assumption, ef-
fectively acting as a classical ”variance reduction” technique,
as evidenced by the more stable results observed across and
within each dataset for the respective methods. Finally, the
rankings and performance differences once again empha-
size the effectiveness of post-hoc calibration methods in
improving model reliability and robustness.

Per Model Comparison. We also examine how different
network architectures influence post-hoc calibration. For in-
stance, results (see Table 4 in Appendix C) for CIFAR-100,
show that highly overconfident architectures (DenseNet,
ResNet) benefit substantially from SCIR in comparison to
other methods, while ViT and Swin being less overconfident,
gain modestly yet consistently. Similarly, conf-ECE result
for textual models across architectures show the same trend.
Simpler models, such as FastText, Swem-Concat along with
classical ML algorithms (NB, SVC), exhibit greater cali-
bration improvements (see Figure 11 in Appendix C). In
contrast, more advanced models (e.g, BERT-based) tend
to show less variation across calibration methods. We can
see how better in advance calibrated models still gain from
post-hoc calibration but can be much less sensitive to the
underlying mechanism.

6. Conclusions
We have proposed two non-trivial extensions for non para-
metric learning in post-hoc calibration that achieve state-of-
the-art results. These extensions rely on simple yet effective
explicit assumptions and directly incorporate them within
the post-hoc optimization framework, rather than resorting
to traditional k-one-vs-rest decomposition. By addressing
the normalization problem, our approach demonstrates im-
proved performance and adaptability to diverse scenarios,
providing a more flexible approach for learning a calibration
map. While the empirical results are encouraging, several
avenues for discussion and further research remain. In par-
ticular, the relationship between calibration and refinement
when analyzed through user-specific metrics like conf-ECE,
warrants deeper investigation. Our results highlight a clear
trade-off, emphasizing yet again the complex nature of defin-
ing a ”well-calibrated” model.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Normalized Aware Methods Algorithmic Details
A.1. SCIR

A.1.1. PRELIMINARIES

We begin by quoting several definitions and theorems from Spouge, Wan, and Wilbur (Spouge et al., 2003), which will later
be utilized to prove the proposed algorithm:

Let X = {xi | i ∈ I} be a partially ordered set, meaning there exists a relation ⪯ that is reflexive, antisymmetric, and
transitive. Let g∗ denote the result of isotonic regression, as defined in Equation (2), for the corresponding weights wi ∈ R
and values yi ∈ R.

we denote (g|S)∗ as the result of isotonic regression for S ⊆ X with the respective wi, yi.

Definition A.1. A subset U ⊆ X is called an upper set if x ∈ U and x ⪯ z =⇒ z ∈ U . A lower set is defined in a dual
manner.

We note that upper sets are closed under arbitrary intersections and unions of upper sets. Similarly, lower sets satisfy this
property. Additionally, the empty set is both an upper set and a lower set.

Definition A.2. A pair (L,U), where U is an upper set and L = X − U is a lower set, is called a projection pair if and
only if there exists a real number d such that:

∀x ∈ L, z ∈ U : (g|L)∗(x) ≤ d ≤ (g|U )∗(z).

Theorem A.3. If (L,U) is a projection pair, then:

g∗(x) =

{
(g|L)∗(x) x ∈ L,

(g|U )∗(x) x ∈ U.

Proof. See Theorem 3.1 in (Spouge et al., 2003).

Using Theorem A.3, we observe that by finding a projection pair, we can split the isotonic problem into sub-problems that
are easier to compute. Fortunately, we have a systematic way to find such pairs.

Definition A.4. For S ⊆ X and SI = {i | xi ∈ S}, define:

1. Avg(S) =
∑

i∈SI
wi·yi∑

i∈SI
wi

,

2. HX(S) =
∑

i∈SI
wi · (yi − Avg(X)),

3. Let UX denote the set of all upper sets in X . A maximal upper set U is an upper set that satisfies U =
argmaxU ′∈UX

HX(U ′). A minimal lower set is defined dually.

Theorem A.5. Every non-empty pair (L,U), where U is a maximal upper set, is a projection pair. If the empty set is a
maximal upper set in X , then g∗ ≡ HX(X) for all xi ∈ X .

Proof. See Theorem 3.2, Corollary 3.1, and Corollary 3.2 in (Spouge et al., 2003).

The result above provides a powerful framework for solving the isotonic regression problem. Specifically, the isotonic
regression problem can be addressed iteratively by:

1. Identifying a maximal upper set.

2. Splitting X into projection pairs.

3. Repeating the process until the maximal upper set is empty.

4. Unifying the fitted results into an isotonic function on X .
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A.1.2. 2-D GRID DYNAMIC PROGRAMMING

We focus on X = {xi | (xi, yi) ∈ CU agg} and the coordinate-wise partial order relation (p, i) ⪯ (q, j) if p ≤ q and i ≤ j.
Each x ∈ [0, 1]× {1, . . . , k − 1}. Since we are working with isotonic functions, we can w.l.o.g stable sort X by:

• The first argument (cumulative probability),

• Then the second argument (cumulative class count).

This sorting allows us to treat X as a grid:

x ∈ {1, . . . , N} × {1, . . . , k − 1},

where all points have integer coordinates corresponding to their order index and the cumulative number of classes used.
Note that N = m · (k − 1), where m is the size of the calibration set and k is the number of classes.

Definitions and Recursive Setup
Definition A.6. For every grid point (i, j) ∈ N× N, we define an upper set function u : N× N→ X as:

u(i, j) = {(k, l) ∈ X | (i, j) ⪯ (k, l)}.

Note that u(i, j) is an upper set for any i, j.
Definition A.7. We also define a set of upper sets for a given point on the grid as:

ũ(i, j) = {U | u(i, j) ⊆ U,∀(k, l) ∈ U : k ≥ i, U is an upper set}.

Lemma A.8. Let UXi be the set of all upper sets in Xi = {xk | k ≥ i}. Then:

ũ(i, c) = UXi
, and in particular, ũ(1, c) = UX .

Proof. Let U ∈ UXi
. We will show that U ∈ ũ(i, c): First, note that for every i, u(i, c) = ∅, as the second coordinate c

is, by construction, not smaller than any point in X . Thus, u(i, c) ⊆ U trivially. Second, for all (k, l) ∈ Xi, k ≥ i by
construction. This also applies to U ⊆ Xi. Lastly, U is also an upper set in X . For any point x ∈ X −Xi, the first coordinate
is smaller than i, so U ∈ ũ(i, c), implying UXi ⊆ ũ(i, c).

Equality holds since U ∈ ũ(i, c) implies U is an upper set with U ⊆ Xi.

Lemma A.9. Let xi = (i, l) and m ∈ N. Then:

ũ(i, l +m) = ũ(i+ 1, l +m) ⊎ ũ(i, l).

Proof. Define:
ũ(i, l +m) = u−xi

⊎ uxi
,

where:

• u−xi
= {U | U ∈ ũ(i, l +m), xi /∈ U},

• uxi
= {U | U ∈ ũ(i, l +m), xi ∈ U}.

1. u−xi
= ũ(i, l + m): let U ∈ u−xi

, If xi /∈ U , then ∀(k, l) ∈ U : k > i, as there is only one point in X for each
coordinate, u(i, l+m) = u(i+1, l+m) thus U ∈ ũ(i+1, l+m), leading to u−xi

⊆ ũ(i+1, l+m). The reverse follows
by the same arguments, implying u−xi

= ũ(i+ 1, l +m).

2. uxi
= ũ(i, l): let U ∈ uxi

since xi ∈ U and U is an upper set, then u(i, l) ⊆ U , meaning U ∈ ũ(i, l). Hence,
uxi

= ũ(i, l). the opposite direction follows as if U ′ ∈ ũ(i, l) → xi ∈ U ′ and the two other conditions are identical for
ũ(i, l +m) leading to ũ(i, l) ⊆ uxi

Combining these results, we get:
ũ(i, l +m) = ũ(i+ 1, l +m) ⊎ ũ(i, l).

13



Isotonic Normalization-Aware Multi-Class Calibration 2025

Definition A.10. Define:
M(i, j) = max

U∈ũ(i,j)
HX (U),

where HX (U) evaluates the cumulative contribution of an upper set U .
Lemma A.11. M(i, j) can be computed recursively as:

M(i, j) =

{
M(i+ 1, j) + v if j ≤ l,

max(M(i+ 1, j),M(i, l)) otherwise,

where xi = (i, l) and v = wi(yi − Avg(X )).

Proof. If j ≤ l, then (i, j) ⪯ (i, l) =⇒ xi ∈ u(i, j). Since there is only one point in X for each coordinate, we have
u(i, j) = u(i, l), and:

u(i, l) = u(i+ 1, l) ∪ {(i, l)}.
Thus:

ũ(i, j) = {(i, l)} ∪ {U | u(i+ 1, l) ⊆ U,∀(k, l) ∈ U : k ≥ i, U is an upper set}.
Since there is only one point in X already included, this reduces to:

ũ(i, j) = {(i, l)} ∪ ũ(i+ 1, l).

Therefore:
M(i, j) = max

U∈ũ(i,j)
HX (U) = wi(yi − Avg(X )) +M(i+ 1, j).

If j > l, the result follows directly from Lemma 12:

M(i, j) = max(M(i+ 1, j),M(i, l)).

Complexity Analysis

The algorithm iterates over rows in decreasing order and columns in increasing order. For each cell (i, j), the computation
involves constant time operations. This leads to a complexity of O(N · k) ≈ O(n · k2) for building M and R. Since the
algorithm recursively splits X into two non-empty sets, the overall complexity is O(N2) ≈ O(n2k4) (see Lemma 4.1 in
(Spouge et al., 2003) for details).

Prediction on the Grid

After computing g∗ using the outlined method, we extend the framework to include fast predictions for new points. A
straightforward generalization from the univariate case is:

g∗(p, k) =

{
min{g∗(q, l) | (q, l) ∈ X} if (p, k) ⪯ (q, l) ∀(q, l) ∈ X ,
max{g∗(q, l) | (q, l) ∈ X , (q, l) ⪯ (p, k)} otherwise.

To ensure efficiency on the grid, we define a recursive function S that pre-computes the maximal prediction for any grid
point (i, j). Initialize:

S(0, ·) = min{g∗(q, l) | (q, l) ∈ CU agg},
and for S(i, j) with xi = (i, l), use the recursive formula:

S(i, j) =

{
S(i− 1, j) if j < l,

max(g∗(xi), S(i− 1, j)) if j ≥ l.

This computation requires O(N · k) time for pre-computing S(i, j) and O(log(N · k)) for a new prediction using binary
search.

14
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Algorithm 3 2-D Grid Sorted Cumulative Isotonic Maximal Upper Set Algorithm

1: Input: X = {(k, l)i | i ∈ [1, . . . , N ]}, y, w ∈ Rn

2: Initialize M(N+1)×c, RN×c as zero matrices, and b = Avg(X )
3: for i = N to 1 do
4: for j = 1 to c do
5: if j ≤ l then
6: M [i, j] = M [i+ 1, j] + wi(yi − b);R[i, j] = j
7: else if j > l and (yi − b) < 0 then
8: M [i, j] = M [i+ 1, j];R[i, j] = j
9: else

10: M [i, j] = M [i+ 1, l] + wi(yi − b);R[i, j] = l
11: end if
12: end for
13: end for
14: Initialize S = {}; j = c
15: for i = 1 to N do
16: Set (k, l) = xi

17: if R(i, j) ≤ l then
18: Add i to S
19: end if
20: Update j = R(i, j)
21: end for
22: Return: S

A.2. NA-FIR

We will note that the FIR as described cannot be solved using previous publications on isotonic solutions, we thus considered
alternatives for local minima searching:

1. MCMC optimization (also known as simulated annealing), that works by probabilistic search in the isotonic region.

2. Simple implementation of GD that works by calculating in each step ∂f
∂g |g(x) and after the update projects onto the

isotonic region by applying PAVA.

3. Quadratic programming based methods- SLQSP, trust-constr from scipy were considered.

4. Use a penalty approach-code violation into objective function.

where we implemented split blocks to be a partition of the current block structure to equal mass points within each block
such that they are not less then block size split threshold. since largest bins are for small probabilities, to complete the
bin partition smaller bins are used for the remainder. see illustrative example in Figure 4.

Scale. In order to compute Equation (4) we need to calculate the likelihood in each iteration which can result in complexity
of O(m · k · num iterations). This can lead to high number of operations for high dimensional datasets. given B blocks that
partition the [0, 1] domain to non-overlapping bins Bin1, . . . ,BinB define:

bj := |{(i, l) ∈ [m]× [k] | p̂(xi)l ∈ Binj ∧ (yi)l = 1}|

for j in [B] and let C ∈ Nm×B be a matrix where

ci,j := |{l ∈ [k] | p̂(xi)l ∈ Binj}|

Let gj denote the value assigned for Binj and define T = C

g1...
gB

 ∈ Rm We can rewrite the log-likelihood from Equation (4)

15
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Algorithm 4 MCMC Blockwise Normalized Aware Flattened Isotonic Optimization

1: Input: Data X,w, y, hyperparameters ϵchange, β, num iterations, min blocks, block split size threshold
2: Flatten X and y: xflatten = X.flatten(), yflatten = y.flatten()
3: Initialize block structure and fits: [block structure, block fits]← PAVA(X, y,w)
4: Refine block structure: [block structure, block fits]← split blocks(block structure,min blocks, block split size threshold)
5: for i = 1 to num iterations do
6: Select a random block: block ∼ U(1, len(block structure))
7: Perturb block fit: δ ∼ {−1, 1}, change← ϵchange · δ
8: Update suggested fit: suggested block fit← block fits[block] + change
9: Validate isotonicity on suggested block fit

10: if likelihood > current likelihood then
11: Update: best likelihood← likelihood, best fit← suggested block fits
12: end if
13: if likelihood > current likelihood or rand() < exp(β · (likelihood− current likelihood)) then
14: Accept: block fits← suggested block fits
15: end if
16: end for
17: Return: best block fits

Figure 4. A simple example for block split with values block size split threshold = 2, min blocks = 6 and original PAVA solution
of block-structure.

as follows:

L(g) =

m∑
i=1

k∑
l=1

(yi)l · log (g(p̂(xi)l))−
m∑
i=1

log(

k∑
j=1

g(p̂(xi)j))

=

B∑
i=1

bj log(gj)−
m∑
i=1

log (Ti)

Since each iteration in our optimization changes only one block value gj , we can exploit this sparsity to efficiently compute
the updated objective. We incrementally update the relevant entries via Tnew = T + Cj · ϵchange · δ, where Cj is the j’th
column and ϵchange, δ are defined in Algorithm 1. This allows us to calculate the likelihood in O(m) operations per iteration.

In our experiments, we ran the MCMC algorithm with beta = 200, a maximum of number of 105 iterations, and an early
stopping criterion triggered if the best likelihood did not improve for 104 iterations. This configuration consistently yielded
stable results and often outperformed alternatives, even when the number of bins matched the PAVA solution. For simplicity,
we report results based on this setting.
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B. Additional Experimental Details
B.1. Dataset Descriptions

1. CIFAR-10: Consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class.

2. CIFAR-100: A refinement of CIFAR-10 with 100 classes, each containing 600 images per class.

3. Food-101: Comprises 101 food categories with a total of 101,000 images. Each class contains 250 manually reviewed
test images and 750 training images.

4. ImageNet-1k: Contains 1.2 million training images and 50,000 validation images across 1,000 object categories.
Drawn from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

5. R52: Collected from the Reuters financial newswire service in 1987. Only label categories appearing in both train and
test datasets are retained.

6. NG20: Contains approximately 18,000 newsgroup posts on 20 topics.

7. Yelp Review: Comprises Yelp reviews and their respective star ratings. Extracted from the Yelp Dataset Challenge
2015 data.

Table 3. Comparison Study Dataset Descriptions
Dataset Type # Classes # Models Used Validation Set Size Test Set Size
CIFAR-10 Image Classification 10 4 5k 10k
CIFAR-100 Image Classification 100 13 5k / 2.5k 10k / 7.5k
Food-101 Image Classification 101 8 6.3k 18.6k
Imagenet-1k Image Classification 1000 8 12.5k 37.5k
R52 Text Classification 52 10 0.6k 1.9k
NG20 Text Classification 20 10 1.7k 5.3k
Yelp Review Text Classification 5 22 12.5k 37.5k

Text Classifiers

Since for text classification there were not enough datasets with many classes and pre-trained classifiers, we trained models
based on (Li et al., 2022) text classification review for all datasets.

R52 and NG20: A total of 10 models were trained. All BERT-based models were trained with an evaluation set comprising
10% of the data for 5 epochs, using a learning rate of 1.5e-05 and a batch size of 16. The best model was selected based on
evaluation set accuracy. For simpler neural network models (FastText, Kim-CNN, and SWEM-Concat), the best-performing
model was chosen from the following parameter grid:

• Batch size (bs): [16, 32]

• Learning rate (lr): [1e-3, 5e-3, 1e-2]

These models used GloVe 6B with 300-dimensional embeddings. For Naive Bayes (NB) and SVM linear models 5-fold
cross-validation was with Parameter grids of:

• Naive Bayes (alpha): [0.01, 0.05, 0.1, 1.0, 10.0]

• SVM (C): [0.1, 1, 3, 10, 100]

Model architecture trained:

• albert-base-v2 (link)
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• bert-base-uncased (link)

• bert-large-uncased (link)

• distilbert-base-uncased (link)

• fast-text

• kim-cnn

• nb (link)

• SVC(kernel=”linear”) (link)

• swem-concat

• xlnet-base-cased (link)

Yelp Review (YR): A total of 22 models were trained. The same models as above were trained on this dataset, with the
following adjustments:

• Evaluation set size reduced to 1% of the data.

• Introduced checkpointing every 500 steps.

• Added early stopping with a minimum 0.5% improvement in evaluation accuracy.

Additionally, 12 pre-trained models from HuggingFace were used:

• bert-base-uncased-hf (link)

• bert-base-cased-hf (link)

• bert-base-cased-hf-1 (link)

• bert-base-cased-hf-2 (link)

• bert-base-cased-hf-3 (link)

• bert-base-cased-hf-4 (link)

• distilbert-base-uncased-hf (link)

• distilbert-base-uncased-hf-1 (link)

• gpt2-hf (link)

• roberta-hf (link)

• ZS-deberta-base (link)

• ZS-deberta-small (link)

C.2 Image Classifiers

CIFAR-10: A total of 4 models were used, all provided by the Focal Calibration Library (link):

• Densenet121

• Resnet110

• Resnet50

• Wideresnet
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CIFAR-100: A total of 4 models were used from the Focal Calibration Library (link), and an additional 9 models from
HuggingFace:

• DenseNet121 (link)

• ResNet18 (link)

• ResNet34 (link)

• ResNet50 (link)

• Swin (link)

• Swin-1 (link)

• Vgg16 (link)

• ViT (link)

• ViT-1 (link)

Food-101: All 8 models were sourced from HuggingFace:

• Swin (link)

• Swin-1 (link)

• Swin-2 (link)

• Swin-3 (link)

• ViT (link)

• ViT-1 (link)

• ViT-2 (link)

• ViT-3 (link)

Imagenet-1k: All 8 models were sourced from HuggingFace (Wightman, 2019):

• Beit (link)

• ConvNeXT (link)

• Swin (link)

• ResNetRS-B (link)

• DenseNet-121 (link)

• Eva (link)

• MobileNetV3 (link)

• ViT (link)
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C. Extended Results
C.0.1. TRAINING OPTIMIZATION

SCIR Empirical run time estimations for NG20 dataset for both for min-cut graph partition (using Igraph package from
python) and dynamic grid partition:

we can note that our proposed dynamic grid partition runs not only much faster but gains seems to be linear. this phenomena
is also replicated using much bigger dataset (cifar-100 with 10K test samples) and a comparison to randomly generated data
yielding the below results:

Allowing us to scale efficiently for all the datasets included.

Figure 5. fit time in seconds for dynamic grid partition vs min cut partition

Figure 6. fit time in seconds both for Cifar-100 data - each time binning a few classes together to create less samples in the cumulative
induce problem set and randomly generated data to account for inter-dependencies due to the structure of the problem.
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C.0.2. COMPARISONS

Comparison of calibration methods for all metrics across datasets
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(b) NLL

Figure 7. Comparison of conf-ECE and NLL values across datasets. NLL values were normalized within each dataset by subtracting the
mean and dividing by the standard deviation.
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(b) Brier Score

Figure 8. Comparison of TECE and Brier score values across datasets. Brier score values were normalized within each dataset by
subtracting the mean and dividing by the standard deviation.
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(a) CECE non normalized
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(b) CECE normalized

Figure 9. Comparison of CECE across datasets. Both normalized and non normalized plots are presented as differences are small.
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Win Ratios for all metrics Each cell in the heatmap represent the percentage of times the calibration method on the row
had achieved better score then the calibration method on the column.

(a) Accuracy (b) TECE

(c) BS (d) CECE
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Model architectures results comparison A comparison between older and newer architectures across given relevant
datasets. Note that number of samples per model architecture is low.

text models

Figure 11. conf-ECE plotted for same model architecture and aggregated across datasets

Figure 12. conf-ECE rank mean plotted for same model architecture and aggregated across datasets
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Figure 13. NLL plotted for same model architecture and aggregated across datasets

Figure 14. NLL rank mean plotted for same model architecture and aggregated across datasets
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Per Model tables

Table 4. CIFAR 100 models comparison

MODEL ARCHETICTURE DENSENET121 RESNET110

CALIBRATION MODEL ACCURACY CONF-ECE NLL CW-ECE BS TECE ACCURACY CONF-ECE NLL CW-ECE BS TECE

UNCALIBRATED 75.48% 20.98% 2.056 0.450% 0.00446 17.08% 77.27% 19.05% 1.792 0.41% 0.004071 16.61%
NA-FIR 75.51% 4.91% 1.112 0.229% 0.00359 4.12% 77.35% 5.38% 0.977 0.21% 0.003297 4.48%
SCIR 75.20% 1.57% 1.204 0.221% 0.00353 3.62% 77.00% 1.27% 0.995 0.20% 0.003248 4.00%
FIR 75.51% 7.56% 1.194 0.238% 0.00370 7.06% 77.35% 7.08% 1.047 0.22% 0.003377 7.14%
IR OVR 75.28% 7.96% 1.718 0.218% 0.00370 5.27% 77.11% 7.36% 1.539 0.21% 0.003394 5.87%
TS 75.48% 5.06% 1.190 0.236% 0.00371 7.14% 77.27% 5.04% 1.045 0.21% 0.003383 7.17%
VS 75.84% 4.83% 1.169 0.219% 0.00361 6.07% 77.28% 5.36% 1.048 0.22% 0.003387 7.02%
MS 71.79% 13.87% 1.860 0.361% 0.00433 8.09% 73.88% 12.91% 1.843 0.34% 0.004118 7.95%

Both models were used in (Mukhoti et al., 2020)
MODEL ARCHETICTURE SWIN VIT

CALIBRATION MODEL ACCURACY CONF-ECE NLL CW-ECE BS TECE ACCURACY CONF-ECE NLL CW-ECE BS TECE

UNCALIBRATED 87.19% 3.28% 0.4208 0.15% 0.00185 5.67% 89.63% 6.36% 0.448 0.160% 0.001679 7.14%
NA-FIR 87.19% 0.84% 0.4116 0.14% 0.00183 4.61% 89.57% 1.68% 0.368 0.121% 0.001517 4.52%
SCIR 87.20% 0.88% 0.4698 0.13% 0.00185 4.91% 89.43% 1.09% 0.430 0.118% 0.001525 4.39%
FIR 87.19% 1.33% 0.4121 0.14% 0.00183 5.22% 89.56% 2.84% 0.379 0.119% 0.001538 4.80%
IR OVR 86.49% 3.30% 1.3629 0.16% 0.00197 6.54% 89.55% 3.86% 1.234 0.134% 0.001583 5.00%
TS 87.19% 1.08% 0.4112 0.14% 0.00183 4.71% 89.63% 2.96% 0.396 0.122% 0.001571 5.89%
VS 86.89% 1.75% 0.4347 0.16% 0.00190 5.59% 89.59% 3.67% 0.439 0.137% 0.001634 6.57%
MS 83.08% 7.10% 0.6514 0.22% 0.00252 7.86% 88.75% 5.36% 0.537 0.163% 0.001790 6.62%

Both models are publicly available on HuggingFace.

Table 5. BERT and XLNet calibration comparison
Model Architecture BERT-Base-Uncased XLNet-Base-Cased

Calibration model Accuracy conf-ECE NLL cw-ECE BS TECE Accuracy conf-ECE NLL cw-ECE BS TECE

Uncalibrated 95.90% 2.34% 0.1927 0.169% 0.001341 13.75% 94.40% 2.38% 0.2626 0.200% 0.001654 13.40%
NA-FIR 95.80% 1.46% 0.1873 0.163% 0.001272 14.54% 94.55% 1.77% 0.2513 0.206% 0.001627 15.88%
SCIR 95.90% 1.34% 0.1992 0.162% 0.001324 10.90% 94.29% 2.41% 0.3746 0.198% 0.001785 13.28%
FIR 95.90% 1.75% 0.1987 0.163% 0.001279 14.20% 94.55% 2.21% 0.2562 0.204% 0.001649 15.55%
IR OvR 94.61% 2.51% 1.2967 0.189% 0.001583 7.65% 94.29% 2.65% 1.2616 0.210% 0.001782 10.82%
TS 95.90% 2.00% 0.1909 0.175% 0.001339 13.62% 94.40% 2.34% 0.2551 0.206% 0.001644 12.51%
VS 95.95% 1.59% 0.1995 0.160% 0.001304 12.56% 94.81% 2.12% 0.2588 0.197% 0.001634 13.58%
MS 94.71% 1.47% 0.5322 0.194% 0.001537 7.92% 93.41% 1.52% 0.5712 0.232% 0.001887 8.05%

R52 models - BERT base and XLNet base cased , both models were trained for this thesis.
Model Archeticture BERT-Base-Uncased XLNet-Base-Cased

Calibration model Accuracy conf-ECE NLL cw-ECE BS TECE Accuracy conf-ECE NLL cw-ECE BS TECE

Uncalibrated 75.13% 12.01% 0.9437 1.309% 0.01886 11.00% 75.36% 12.80% 0.9561 1.386% 0.01881 10.83%
NA-FIR 75.17% 2.02% 0.8583 0.720% 0.01733 4.87% 75.25% 1.89% 0.8468 0.687% 0.01716 4.99%
SCIR 75.11% 4.01% 0.9158 0.805% 0.01756 4.93% 74.81% 2.15% 0.9400 0.652% 0.01748 4.96%
FIR 75.17% 1.76% 0.8743 0.712% 0.01731 4.88% 75.27% 3.47% 0.8914 0.680% 0.01731 5.56%
IR OvR 75.19% 1.86% 1.0050 0.695% 0.01751 5.46% 75.34% 4.19% 1.1708 0.692% 0.01745 5.59%
TS 75.13% 6.20% 0.8844 0.852% 0.01769 7.64% 75.36% 4.69% 0.8467 0.735% 0.01739 6.50%
VS 75.23% 2.43% 0.8847 0.814% 0.01775 6.80% 75.13% 3.35% 0.8536 0.731% 0.01751 6.20%
MS 74.98% 1.95% 0.9063 0.643% 0.01808 5.55% 74.45% 4.88% 0.9021 0.802% 0.01807 6.44%

NG20 models - BERT base and XLNet base cased , both models were trained for this thesis.
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D. Isotonic Regression Properties
Theorem D.1. Let S : [0, 1]× {0, 1} → (−∞,∞) be a proper scoring rule and D = {(z1, y1), ..., (zn, yn)}. The isotonic
optimization problem that is induced by this scoring rule and total order ≤:

min
g

n∑
i=1

S(g(zi), yi) · wi s.t. g(zi) ≤ g(zj) when zi ≤ zj

is solved by:

ŷi = min
l

max
u

∑l
j=u wjyj∑l
j=u wj

s.t. u ≤ i ≤ l

Before presenting the proof, it is worth noting that Barlow & Brunk (1972) had proved a functional relationship of the
isotonic squared error minimization result to any other convex functions even for partial , demonstrating that the same
solution holds for NLL and Brier score. In addition, the above stated theorem was previously established by Brummer and
Perez (Brummer & Preez, 2013), a result that we were unaware of during the writing process. Nevertheless, we provide a
much simpler and more accessible proof.

Notations. Assume w.l.o.g. that xi ≲ xj whenever i < j. Define:

• ũ(i) = {U | i ∈ U}: the set of possible upper sets for i.

• l̃(i) = {L | i ∈ L}: the set of possible lower sets for i.

• Avg(S) =
∑

k∈S wkyk∑
k∈S wk

, S ⊆ {1, . . . , n}: The weighted average of S.

• Sj
i = i→ j = {k | i ≤ k ≤ j}: The set of indices from i to j.

• U(S) = {U | U ⊆ S ∧ U is upper set in S}: The set of all upper sets within a subset S.

two key properties of the described solution:

1. The solution is isotonic: Since for i < j, l̃(j) ⊂ l̃(i) and ũ(i) ⊂ ũ(j), we have:

ĝ(xi) = min
l̃(i)

max
ũ(i)

Avg(ũ(i) ∩ l̃(i)) ≤ min
l̃(j)

max
ũ(j)

Avg(ũ(i) ∩ l̃(j)) ≤ min
l̃(j)

max
ũ(j)

Avg(ũ(j) ∩ l̃(j)) = ĝ(xj).

2. Fixed on Partition: The described solution creates a partition I of {1, 2, . . . , n} such that for every A ∈ I ⊂
{1, 2, . . . , n}, it holds that ĝ(xi) = ĝ(xj) for all i, j ∈ A. Let u∗

i and l∗i represent the respective maximizing upper
and lower sets for the min-max solution, with A = u∗

i ∩ l∗i . For any j ∈ A, if j < i, we have ũ(j) ⊂ ũ(i). Thus, since
j ∈ A, u∗

j = u∗
i , leading to ĝ(xi) = ĝ(xj). If i < j, we know that Avg(A) ≤ Avg(Sj

min(u∗
i )
) since we minimize over

l̃(i). Thus, Avg(Smax(u∗
i )

j ) ≤ Avg(A), leading to Avg(Sn
min(u∗

i )
) ≥ Avg(Sn

j ) for all j > i. Therefore, u∗
j = u∗

i , which
leads to ĝ(xi) = ĝ(xj).

Lemma D.2. Convexity lemma for binary proper scoring rules. For a binary proper scoring rule S∗, the minimizer over the
interval [p, p] is given by:

arg min
p≤q≤p

S∗(q, p) = max(p,min(p, p)).

Proof. By definition:
S∗(q, p) = pS(q, 1) + (1− p)S(q, 0),

and using the properties of proper scoring rules (see Schervish (1989)), we have:

S(q, 1) = e(q) + (1− q)e′(q), S(q, 0) = e(q)− qe′(q),
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where e is a concave function. Thus:
S∗(q, p) = e(q) + (p− q)e′(q),

and the derivative of S∗ with respect to q is:

∂S∗(q, p)

∂q
= e′(q) + (p− q)e′′(q)− e′(q) = (p− q)e′′(q).

Since e is concave, e′′ is non-positive. Therefore, S(q, p) is monotonic decreasing for q ≤ p and monotonic increasing for
q > p. Thus, the minimum will be obtained at:

max(p,min(p, p)).

Lemma D.3. Let y1, y2, . . . , yn be a series where yi ∈ {0, 1}, with respective weights w1, w2, . . . , wn. Suppose the
following property holds:

(∗) argmax
U

Avg(U) = {1, 2, . . . , n} = [n]

Then the bounded isotonic regression:

max
g

n∑
i=1

S(g(i), yi)wi s.t. g(i) ≤ g(j) for i ≤ j; p ≤ g ≤ p

is solved by:

ĝ = max(p,min(p,Avg([n]))).

Proof. By induction. For n = 1, the solution follows directly from the properties of the scoring rule S, as S(•, 1) is
monotonic increasing and S(•, 0) is monotonic decreasing. Assume the result holds for any series of length ≤ n, and prove
for n+ 1.

Let y1, y2, . . . , yn, yn+1 be a series holding (∗). We will assume yn+1 = 0, as otherwise the series is entirely composed of
1s, and the statement follows naturally. Let k be the index of the maximal appearing sequence which holds (∗), meaning:

k = max
i≤n

(
{i | arg max

U∈U(Si
1)

Avg(U) = [i]}
)
.

We will show that both A0 = {y1, y2, . . . , yk} and A1 = {yk+1, . . . , yn+1} hold (∗). The set A0 holds (∗) by its selection.
For A1, assume it does not hold. Then there exists k + 1 < l ≤ n+ 1 such that:

arg max
U∈U(Sn+1

k+1 )
Avg(U) = Sn+1

l ,

yielding the following inequalities:

1. Avg(Sn+1
l ) ≥ Avg(Sn+1

k+1 )

2. Avg(Sn+1
l ) ≥ Avg(Sl−1

k+1)

3. Avg(Sn+1
l ) ≤ Avg(Sn+1

1 )

4. Avg(Sn+1
l ) ≤ Avg(Sl−1

1 ).
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Inequalities (3) and (4) hold because {y1, . . . , yn+1} satisfies (∗). Now, since l− 1 > k, there exists an index 1 < l′ < l− 1
such that:

Sl−1
l′ = arg max

U∈U(Sl−1
1 )

Avg(U),

and in particular, this implies:

(5) Avg(Sl−1
1 ) ≤ Avg(Sl−1

l′ ).

If l′ > k, it would contradict the fact that Sn+1
l is the maximal upper set for A1. From (4) and (5), we have:

(6) Avg(Sn+1
l′ ) = λAvg(Sl−1

l′ ) + (1− λ)Avg(Sn+1
l ) ≥ λAvg(Sl−1

1 ) + (1− λ)Avg(Sn+1
l ) ≥ Avg(Sn+1

l ),

thus l′ ≤ k. This allows us to rewrite (5) as:

(1− w1)Avg(Sk
l′) + w1Avg(Sl−1

k+1) ≥ (1− w2)Avg(Sk
1 ) + w2Avg(Sl−1

k+1)

where:

w1 =

∑l−1
i=k+1 wi∑l−1
i=l′ wi

, w2 =

∑l−1
i=k+1 wi∑l−1
i=1 wi

.

Noting that w1 ≥ w2 and the fact that Sk
l′ ≥ Sl

k+1, we obtain from (6):

(1− w1)Avg(Sk
l′) + (w1 − w2)Avg(Sk

l′) ≥ (1− w2)Avg(Sk
1 ),

which implies Avg(Sk
l′) ≥ Avg(Sk

1 ), contradicting the assumption that A0 holds (∗). Therefore, both A0 and A1 hold (∗),
and we can apply our induction theorem to them.

marking q1, q2 for ĝ|Sk
1

and ĝ|Sn+1
k+1

, respectively, we have:

q2 =


Avg(Sn+1

k+1 ) if q1 ≤ Avg(Sn+1
k+1 ) ≤ p,

q1 if Avg(Sn+1
k+1 ) ≤ q1 ≤ p,

p if q1 ≤ p ≤ Avg(Sn+1
k+1 ).

Using the convexity lemma for proper scoring rules, and since Avg(Sn+1
k+1 ) ≤ Avg(Sk

1 ) as {y1, . . . , yn+1} holds (∗), we get
that if q2 > q1, we can further decrease our score by increasing q1, leading to the conclusion that in the optimal solution
q1 = q2 = q∗. Now:

max
q

n+1∑
i=1

S(q, yi)wi = max
q

n+1∑
i=1

S(q, yi)wi∑n+1
j=1 wj

= max
q

∑n+1
j=1 wj · yj∑n+1

j=1 wj

S(q, 1) +

∑n+1
j=1 wj · (1− yj)∑n+1

j=1 wj

S(q, 0).

Let p̃ =
∑n+1

j=1 wj ·yj∑n+1
j=1 wj

. Then:

max
q

p̃S(q, 1) + (1− p̃)S(q, 0) = sup
q

S∗(q, p̃) = max(p,min(p, p̃)),

leading to our desired claim.
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From the convexity lemma and induction base cases, and with our two earlier observations, Theorem D.1 proof becomes
straightforward.

Proof. Let I be a partition of {1, 2, . . . , n} achieved by the described solution. We notice that every A ∈ I holds the lemma
property, as for every group, the maximization set for the given lower set is the same, including the last element in the group.
Knowing that:

min
g

n∑
i=1

S(g(xi), yi)wi ≥
∑
A∈I

min
g

∑
i∈A

S(g(xi), yi)wi,

subject to:

g(xi) ≤ g(xj) when xi ≲ xj ,

and given the lemma, we know that the solution for the latter problem is:

∀A ∈ I, ∀i ∈ A : ĝ(xi) = Avg(A).

Given the isotonic nature of this solution, it is also feasible for the first minimization problem, proving our desired result.
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