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ABSTRACT

Text-to-video generative models have made significant strides in recent years, pro-
ducing high-quality videos that excel in both aesthetic appeal and accurate instruc-
tion following, and have become central to digital art creation and user engage-
ment online. Yet, despite these advancements, their ability to respect fundamental
physical laws remains largely untested: many outputs still violate basic constraints
such as rigid-body collisions, energy conservation, and gravitational dynamics,
resulting in unrealistic or even misleading content. Existing physical-evaluation
benchmarks typically rely on automatic, pixel-level metrics applied to simplistic,
life-scenario prompts, and thus overlook both human judgment and first-principles
physics. To fill this gap, we introduce T2VPhysBench, a first-principled bench-
mark that systematically evaluates whether state-of-the-art text-to-video systems,
both open-source and commercial, obey twelve core physical laws including New-
tonian mechanics, conservation principles, and phenomenological effects. Our
benchmark employs a rigorous human evaluation protocol and includes three tar-
geted studies: (1) an overall compliance assessment showing that all models score
below 0.60 on average in each law category; (2) a prompt-hint ablation revealing
that even detailed, law-specific hints fail to remedy physics violations; and (3)
a counterfactual robustness test demonstrating that models often generate videos
that explicitly break physical rules when so instructed. The results expose per-
sistent limitations in current architectures and offer concrete insights for guiding
future research toward truly physics-aware video generation.

1 INTRODUCTION

Text-to-video generative models (Singer et al., 2023; Wu et al., 2023; Hong et al., 2023; Yang et al.,
2024b) have achieved remarkable success in recent years, driven by advances in the Transformer
architecture (Arnab et al., 2021; Liu et al., 2022) and diffusion model techniques (Ho et al., 2022b;
Esser et al., 2023). By leveraging large-scale, cross-modal video–text data from the Internet, these
models now produce videos with high fidelity and appealing aesthetics, transforming both digi-
tal art creation and user engagement on the Web. Modern systems such as Sora (OpenAI, 2024),
WanX (Alibaba, 2025) and Kling (Kling, 2024) have demonstrated the ability to follow complex hu-
man instructions with impressive accuracy, positioning text-to-video generation as a central feature
of today’s web experiences.

Despite these gains, fundamental concerns remain about whether text-to-video models respect basic
physical laws (Lv et al., 2024; Lin et al., 2025; Motamed et al., 2025; Wang et al., 2025). Generated
videos often violate constraints such as rigid-body collisions, fluid dynamics, or simple gravity,
which can lead to unrealistic or even misleading content. Such errors become critical in applications
like robotics (Yang et al., 2024a; Du et al., 2023) and autonomous driving (Santana & Hotz, 2016;
Zhou et al., 2024; Wen et al., 2024), where adherence to real-world physics is essential for safety
and system reliability. It is therefore crucial to evaluate how well current models capture these core
principles.

Recent years have seen a growing suite of benchmarks for text-to-video models, covering composi-
tional property combinations (Sun et al., 2024; Li et al., 2024), temporal dynamics (Ji et al., 2024;
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Liao et al., 2024), object counting (Guo et al., 2025) and storytelling (Bugliarello et al., 2023).
However, systematic evaluation of physical constraint adherence remains underexplored. Early, pi-
oneering benchmarking efforts on this topic have introduced physics-inspired prompts and provided
valuable insights, but they typically rely on pixel-level or visual-matching metrics that do not fully
align with human judgments (Lin et al., 2025). In addition, most existing tests use scenario-based
designs rather than grounding tasks in first-principles laws (e.g., Newton’s laws or Bernoulli’s prin-
ciple) (Wang et al., 2025; Meng et al., 2024a; Motamed et al., 2025). To bridge these gaps, a
human-centered, law-driven benchmark is needed to more faithfully reflect real-world physical un-
derstanding and to guide future improvements.

Newton Principles

Qingying

Dreamina

Pika 

Sora

Newton’s First Law
Prompt: A person quickly pull out the paper 

pressed under the water bottle.

Newton’s Second Law
Prompt: A ball rolls by, a person kicks it.

Conservation of Momentum
Prompt: A white pool ball hits the 

stationary ball, the white pool ball stops 
and the stationary ball flies out.

Newton’s Third Law
Prompt: A man in a boat, paddling 

hard backward with an oar.

Law of Universal Gravitation
Prompt: A man throws a ball upward.

Conservation of Energy
Prompt: A roller coaster descends from a tall 

peak, speed gradually increases.

Conservation of Mass
Prompt: Pouring water from one cup into an 

empty cup, the total amount remains the same.

Conservation of Angular Momentum
Prompt: A figure skater spins with arms 

extended, then pulls them in to spin faster. 

Hooke's Law
Prompt: Pressing a spring hard, the spring 

shortens a lot.

Snell's Law
Prompt: A pencil in the water looks bent.

Law of Reflection
Prompt: The light from the car's headlights 
shone on the wet, flat, straight road in front 

of it, spreading the light upwards.

Bernoulli’s Principle
Prompt: A hairdryer holds up ping pong ball.

Hailuo

Kling

Wan

LTX 
Video

Hailuo

Pika

SD
Video

Mochi-1

Conservation  Principle Phenomenon Principles

Figure 1: All 12 physical laws evaluated in this benchmark, illustrated with video examples
from various text-to-video models.

In this paper, we introduced a human-evaluated, first-principles benchmark, namely
T2VPhysBench, designed to assess whether text-to-video models can follow 12 fundamental physi-
cal laws (see Figure 1). We include both leading open-source models and state-of-the-art commercial
systems, reflecting the latest advances in 2025. Our study exposes persistent challenges in modeling
physical behavior and offers insights into why models fail.

Our contributions can be summarized as follows:

• We introduce a first first-principled benchmark that systematically evaluates whether mod-
ern text-to-video generation models respect twelve fundamental physical laws, covering
Newtonian mechanics, conservation principles, and phenomenological effects.

• Through a rigorous human evaluation protocol, we demonstrate that all state-of-the-art text-
to-video models consistently fail to satisfy even basic physical constraints, with average
compliance scores below 0.60 across every law category.

• By incorporating progressively more concrete hints, naming the law and adding detailed
mechanistic descriptions, we show that prompt refinement alone cannot overcome the mod-
els’ inability to generate physically coherent videos.

• We challenge models with counterfactual prompts that explicitly request physically im-
possible scenarios and find that they often comply, producing rule-violating videos and
revealing a reliance on surface patterns rather than true physical reasoning.

Roadmap. In Section 2, we review some prior works. In Section 3, we show the details of our
proposed benchmark. In Section 4, we present the main evaluation results with our benchmark. In
Section 5, we provide some insights to understand the failure of text-to-video models in following
physical constraints. In Section 6, we draw a conclusion for this paper.

2 RELATED WORKS

Benchmarks on Text-to-Video Generation. As text-to-video models have been a fundamental
game changer in users’ online experiences, particularly in creative art creation, their evaluation
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has become a crucial area of focus. Existing benchmarks on text-to-video models have covered a
wide range of aspects, including basic video fidelity (Liu et al., 2023), the compositional ability of
different keywords (Sun et al., 2024; Feng et al., 2024), temporal dynamics (Ji et al., 2024; Liao et al.,
2024), and complex storytelling capabilities (Bugliarello et al., 2023). Benchmarking how text-to-
video generation models adhere to basic physical laws is another key area of evaluation (Meng
et al., 2024a; Motamed et al., 2025; Bansal et al., 2025; Meng et al., 2024b; Wang et al., 2025). For
example, VideoPhy (Bansal et al., 2025) proposes a human-evaluated benchmark that systematically
examines collisions between different materials, such as solid-solid, solid-fluid, and fluid-fluid cases.
The Physics-IQ benchmark (Motamed et al., 2025) evaluates models based on their ability to extend
given video frames, assessing the extended frames using automated evaluation metrics like MSE or
IoU. While these works provide valuable early insights into evaluating the physical behavior of text-
to-video models, they do not approach the problem from a first-principles physical law perspective,
nor do they incorporate careful human evaluation, which highlights the need for our work.

Text-to-Video Generative Models. Text-to-video has long been a central topic in generative AI.
Early approaches to text-to-video can be traced back to VAEs (Kingma & Welling, 2022; Li et al.,
2018) and GANs (Pan et al., 2017; Goodfellow et al., 2020; Balaji et al., 2019) conditioned on
text, which were limited by the weak generative abilities of early models and the weak connection
between video and text. Empowered by large-scale visual-text pretraining (Radford et al., 2021;
Xu et al., 2021; Li et al., 2022) with vast amounts of data from the Internet, and the development
of modern video diffusion models (Ho et al., 2022b; Harvey et al., 2022; Blattmann et al., 2023b),
recent text-to-video generative models (Ho et al., 2022a; Wang et al., 2023; Singer et al., 2023;
Yang et al., 2024b; Zhang et al., 2024) have significantly improved the quality of generated videos
and their ability to follow complex textual prompts. For instance, Imagen Video (Ho et al., 2022a)
builds on prior work in diffusion-based image generation, extending it to video through a cascade of
spatial and temporal super-resolution models, progressive distillation, and classifier-free guidance
for improved fidelity and control. Similarly, Make-A-Video extends text-to-image generation to text-
to-video (Singer et al., 2023) by integrating spatial-temporal modules, a decomposed temporal U-
Net, and a multi-stage pipeline with super-resolution models, enabling high-quality video synthesis
without paired text-video data. Despite the strong video fidelity and instruction-following abilities
of these text-to-video diffusion models, their fundamental capability to adhere to simple physical
laws still exhibits significant gaps (Lv et al., 2024; Meng et al., 2024a; Lin et al., 2025), which is
one of the key motivations for this benchmark.

3 THE T2VPHYSBENCH BENCHMARK

In this section, we first present the baseline video generation models in Section 3.1, then introduce
our benchmark prompts in Section 3.2, and finally describe the evaluation protocol in Section 3.3.

3.1 BASELINE MODELS

Table 1: Key information of the 10 text-to-video models in this benchmark.

Model Name Year # Params Organization Open
Kling (Kling, 2024) 2024 N/A Kuai No

Wan 2.1 (Alibaba, 2025) 2025 14B Alibaba Yes
Sora (OpenAI, 2024) 2024 N/A OpenAI No

Mochi-1 (Genmo, 2024) 2024 10B Genmo Yes
LTX Video (HaCohen et al., 2024) 2024 2B Lightricks Yes

Pika 2.2 (Pika, 2024) 2025 N/A Pika Labs No
Dreamina (ByteDance, 2024) 2024 N/A ByteDance No

Qingying (Zhipu, 2024) 2024 5B Zhipu Yes
SD Video (Blattmann et al., 2023a) 2023 1.4B Stability AI Yes

Hailuo (MiniMax, 2025) 2025 N/A MiniMax No

We selected a diverse set of state-of-the-art video generation models released between 2023 and
2025 to ensure our evaluation reflects the latest advances and uncovers their limitations in following
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physical constraints. Our benchmark includes ten models, spanning both closed-source and open-
source systems. Detailed model specifications are listed in Table 1.

For generation, we use the lowest available resolution (typically 720p) to balance visual fidelity with
physical accuracy. We fix a 16:9 aspect ratio and choose a short video duration (usually 4 seconds)
to concentrate the evaluation on fundamental physical behaviors. Further implementation details are
provided in Appendix A.

3.2 BENCHMARK PROMPTS

In this benchmark, we address the problem of enforcing physical constraints using a first-principles
approach. Rather than relying on intuition or everyday contexts, our prompts are derived directly
from fundamental laws of physics. We organize these laws into three categories: Newton’s laws,
conservation laws, and phenomenological principles. In each category we select four specific laws
(for a total of twelve), and for each law we design seven prompts based on realistic scenarios.
Consequently, each model is evaluated on 84 distinct prompts. Example prompts and their video
outputs are presented in Figure 1.

Newton’s Principles. This category comprises Newton’s three laws of motion and the law of
universal gravitation. For the first law (inertia), we consider objects in free space or under no
net external force, which should remain at rest or move at constant velocity. For the second law
(force–acceleration relation), we apply a known external force to a specified object (e.g., a person
pushing a box) and verify that the resulting acceleration matches the prediction. For the third law
(action–reaction), we examine interactions in a fluid or gas medium, for example, pushing an ob-
ject backward or downward and observing the equal and opposite response. Finally, for the law of
universal gravitation, prompts include tossing an object in Earth’s gravitational field or depicting
planets orbiting under mutual attraction.

Conservation Principles. This category includes four fundamental conservation laws: conserva-
tion of energy, mass, linear momentum, and angular momentum. For the conservation of energy,
we design prompts that involve conversions between potential and kinetic energy, such as a roller
coaster descending, two colliding balls exchanging motion, or a compressed spring releasing its
stored energy. For conservation of mass, we consider scenarios where matter changes form but not
quantity, including melting ice in a sealed container or transferring liquids between containers while
keeping the total mass unchanged. Conservation of linear momentum is explored through interac-
tions like elastic collisions between carts, or a person throwing a heavy object and recoiling on a
skateboard, demonstrating momentum transfer in closed systems. Finally, conservation of angular
momentum is illustrated using rotating systems such as figure skaters pulling in their arms to spin
faster, or individuals shifting their position on a spinning platform to change the rotation rate.

Phenomenon Principles. This category consists of physical laws that describe specific observ-
able effects, such as Hooke’s Law, Snell’s Law, the Law of Reflection, and Bernoulli’s Principle.
For Hooke’s Law, we present prompts involving springs under varying forces to assess whether de-
formation is proportional to the applied force. Snell’s Law is evaluated through optical distortions
caused by refraction, such as the bending appearance of a pencil in water or the mirage-like effect
of heat waves on a road. The Law of Reflection is tested by examples involving predictable angu-
lar deflections, including laser light hitting a metal surface or a ball rebounding off a wall. Finally,
Bernoulli’s Principle is represented through aerodynamic and fluid dynamic effects, such as air flow-
ing around an airplane wing generating lift, or a hairdryer levitating a ping pong ball due to pressure
differences.

3.3 EVALUATION PROTOCOL

To align with human judgment and address the fidelity-only limitations of prior physical bench-
marks, we adopt a fully manual evaluation protocol, following VideoPhy (Bansal et al., 2025). Three
annotators (undergraduate or graduate students) independently review every generated video and as-
sign it one of four quality levels based on its adherence to the target physical law. Each level is then
mapped to a real-valued score in [0, 1]:
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• Level 1 (score 0.0): the video fails to demonstrate the intended physical behavior.
• Level 2 (score 0.25): the video exhibits a clear violation of the law.
• Level 3 (score 0.5): the video is largely correct but contains minor inaccuracies.
• Level 4 (score 1.0): the video fully and accurately conforms to the law.

This scoring scheme rewards fully correct generations while still allowing partial credit for near-
correct cases. For each model, we average the scores across all prompts and annotators to produce a
single physical-consistency score, which is then used to rank the models.

4 EXPERIMENTS

In this section, we show the main experiment results of our proposed benchmark. In Section 4.1, we
present the observations from the overall result. In Section 4.2, we show the impact of different hint
levels on the physical constraint following ability. In Section 4.3, we show how the text-to-video
models perform under counterfactual prompts.

4.1 OVERALL PHYSICAL CONSTRAINT RESULTS

Table 2: Score Across Different Principles.

Model Newton Principles Conservation Principles Phenomenon Principles Avg. Score
SD Video 0.21 0.19 0.19 0.19

Hailuo 0.27 0.15 0.25 0.22
Dreamina 0.19 0.13 0.38 0.23

Sora 0.31 0.15 0.38 0.28
LTX Video 0.40 0.13 0.40 0.31

Pika 2.2 0.38 0.19 0.40 0.32
Mochi-1 0.40 0.23 0.40 0.34

Kling 0.52 0.17 0.38 0.35
Qingying 0.35 0.23 0.63 0.40
Wan 2.1 0.56 0.29 0.42 0.42

We compare all the models listed in Table 1 and present the overall result in Table 2. Across all ten
models, no system achieves even moderate accuracy on our proposed benchmark. First, the highest
average score on Newton’s principles is only 0.56 (Wan 2.1) and the lowest is 0.19 (Dreamina).
Similarly, the best performance on conservation laws peaks at 0.29 (Wan 2.1), while the worst is
just 0.13 (Dreamina and LTX Video). This indicates that current text-to-video models struggle to
capture even the simplest physical behaviors.
Observation 4.1. Despite advances in video generation, all evaluated models score below 0.60
on basic Newtonian and conservation laws, highlighting a consistent failure to model fundamental
physics.

Within each model, performance on conservation principles is consistently lower than on Newton’s
or phenomenon principles. For instance, LTX Video scores 0.13 on conservation but achieves 0.40
on Newton’s laws and 0.40 on phenomenon principles. Similarly, Pika 2.2 attains 0.19 on conser-
vation, yet scores 0.38 on Newton’s principles and 0.40 on phenomenon principles. This pattern
indicates that conservation laws pose a greater challenge, while models handle Newtonian dynamics
and observable phenomena more successfully.
Observation 4.2. The score variance between different types of laws is noticeable. Conservation
principles are substantially harder for current models, whereas Newton’s laws and phenomenon
principles yield consistently higher scores.

When comparing across models, the best overall performer (Wan 2.1) obtains an average score of
0.42, whereas the worst (SD Video) averages just 0.19, showing a gap of 0.23. Even among the
top three, Mochi-1 and Kling achieve only 0.34 and 0.35, respectively. This large variance between
different models strengthens the need for more robust physics grounding in future video-generation
architectures.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Observation 4.3. The difference between the highest and lowest average scores (0.42 vs. 0.19)
reveals a substantial performance gap, motivating targeted improvements in physical reasoning
capabilities.

4.2 IMPACT OF HINT LEVELS

Initial Prompt

Qingying

Dreamina

Pika 2.2

Wan 2.1

Newton’s Third Law
Prompt: A man in a swimming pool with his 

arms paddling backward. 

Law of Universal Gravitation
Prompt: A man throws a ball upward.

Conservation of Mass
Prompt: Pouring water from one cup into an empty 

cup. Please follow the Conservation of Mass.

Conservation of Mass
Prompt: Pouring water from one cup into an empty cup.

Snell's Law
Prompt: A pencil in the water looks bent.

Newton’s Third Law
Prompt: A man in a swimming pool with his 
arms paddling backward. Please follow the 

Newton’s Third Law.

Law of Universal Gravitation 
Prompt: A man throws a ball upward. Please 

follow the Law of Universal Gravitation.

Snell's Law
Prompt: A pencil in the water looks bent. 

Please follow the Snell's Law.

Newton’s Third Law
Prompt: A man in a swimming pool with his arms paddling 

backward. Please follow the Newton’s Third Law, where the man 
should move forward as the water exerts an equal and opposite 

reaction force on him.

Law of Universal Gravitation
Prompt: A man throws a ball upward. Please follow the Law 
of Universal Gravitation, where the ball must slow down as 

it goes up and then fall back down due to Earth's gravity.

Conservation of Mass
Prompt: Pouring water from one cup into an empty cup. 
Please follow the Conservation of Mass, where the total 
amount of water in two cups should remain the same. 

Snell's Law
Prompt: A pencil in the water looks bent. Please follow the Snell's 
Law, where the light rays from the underwater part of the pencil 

must change direction according to Snell's Law as they pass from 
water into air, causing the bent appearance.

First-Level Hint Prompt Second-Level Hint Prompt 

Figure 2: Prompt and Video Examples with Different Hint Levels.

Newton's First Law Newton's Second Law Newton's Third Law Law of Universal Gravitation
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e

0.12

0.44

0.25 0.25

0.12

0.56

0.38

0.25

0.88

0.50

Impact of Different Hint Level Prompt in Newton Principles
Initial Prompt
First-Level Hint Prompt
Second-Level Hint Prompt

Figure 3: Ablation Study of Different Hint Level Prompts in Newton Principles.

Based on our previous findings in Section 4.1, we have observed that most text-to-video models fail
to generate videos that comply with physical laws. To show that this inherent limitation is non-trivial
and cannot be resolved simply through prompt improvements, in this study we explore a simple but
critical problem: can text-to-video models follow physical constraints when provided with hints of
different levels of concreteness? Specifically, we consider three hint levels (see Figure 2 for prompt
and video examples), with details as follows:

• Initial Prompt: The original prompt without any additional hints. An example prompt
could be: “A spring is compressed and springs open when released.”

• First-Level Hint: The name of the relevant physical law is explicitly provided, simplifying
the problem. An example prompt could be: “A spring is compressed and springs open
when released. Please follow the Conservation of Energy.”

• Second-Level Hint: A fully concrete scenario with detailed physical interpretation is pro-
vided, alongside naming the law. An example prompt could be: “A spring is compressed

6
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Conservation of Energy Conservation of Mass Conservation of Momentum Conservation of Angular Momentum
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e

0.25 0.25

0.12

0.56

0.44
0.50

0.12

0.25
0.31

0.44

0.12

0.44

Impact of Different Hint Level Prompt in Conservation Principles
Initial Prompt
First-Level Hint Prompt
Second-Level Hint Prompt

Figure 4: Ablation Study of Different Hint Level Prompts in Conservation Principles.

Hooke's Law Snell's Law Law of Reflection Bernoulli's Principle
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e 0.50

0.38

0.19

0.31

0.44

0.31
0.25 0.25

0.38 0.38

0.25
0.31

Impact of Different Hint Level Prompt in Phenomenon Principles
Initial Prompt
First-Level Hint Prompt
Second-Level Hint Prompt

Figure 5: Ablation Study of Different Hint Level Prompts in Phenomenon Principles.

and springs open when released. Please follow the Conservation of Energy, where the po-
tential energy stored in the compressed spring must be converted into kinetic energy upon
release, ensuring the total energy remains constant.”

We present the experimental results on the impact of hint levels in Figure 3, Figure 4, and Figure 5,
where the three different types of laws are shown independently. From the figures, the first observa-
tion is that despite some rare counterexamples, such as the consistent improvement of the average
score from 0.25 to 0.88 on Newton’s third law, and the improvement from 0.25 to 0.50 on the law
of universal gravitation between two levels of hints, most physical laws do not exhibit significant
improvement with enhanced hint levels.

More interestingly, prompt refinement through providing hints can even produce negative impacts.
For instance, for Hooke’s law, the score decreased from 0.50 to 0.38, and for Newton’s first law, the
score dropped from 0.12 to 0.00 even at the first level of hint. Such reductions sometimes occur only
at the first hint level, as seen for Snell’s law, where the initial prompt and second-level hint achieve
a score of 0.38, but it reduces to 0.31 at the first level. In other scenarios, the score reduction occurs
at both hint levels, such as in Hooke’s law and Newton’s second law. This leads to the following
observation:
Observation 4.4. Despite consistent improvements on a small number of physical laws, for most
physical laws, increasing the hint level does not enhance the physical law-following scores, and in
many cases, even leads to a negative impact at both hint levels.

4.3 IMPACT OF COUNTERFACTUAL PROMPTS

To assess whether the models truly understand physical laws rather than rely on superficial pattern
matching, we design counterfactual prompts that explicitly describe impossible scenarios. From
a counterfactual perspective, a model with genuine physical reasoning should understand how to
generate videos that violate some specific physical laws. For instance, an apple in a full vacuum

7
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Newton Principles

Dreamina

Pika

Pika 

Mochi-1

Newton’s First Law
Prompt: A full glass of water is sitting on a table, the water
 is calm, the glass and the table are not moving at all, and

 the water suddenly squirts upward out of the glass by itself.

Newton’s Second Law
Prompt: A person kicks a soccer ball forward, 

but the soccer ball accelerates backward toward the kicker.

Conservation of Momentum
Prompt: An otherwise stationary bomb explodes 
into two fragments in the air, but both fragments 

go in the exact same direction.

Newton’s Third Law
Prompt: A man walks with his feet 

stomping backward, but he walks backward.

Law of Universal Gravitation
Prompt: An apple falls from a tree, but suddenly 

stops in mid-air and floats upwards 
back to the branches of the tree.

Conservation of Energy
Prompt: A stationary ice cube is placed on a table, 

and suddenly the ice cube starts to move at high speed 
while the ice cube starts to melt.

Conservation of Mass
Prompt: Half a bottle of water is poured out of a bottle 

full of water, but the rest of the water in the bottle 
automatically turns back into a full bottle.

Conservation of Angular Momentum
Prompt: A stationary gyroscope, without any 

external forces or moments, suddenly 
starts to rotate at high speed on its own.

Hooke's Law
Prompt: Hang a weight under a spring to make it 

elongate, and when the weight is removed, 
the spring becomes longer.

Snell's Law
Prompt: A laser beam traveling in a straight line through 

uniform air suddenly makes a turn on its own 
where there is no change in the medium.

Law of Reflection
Prompt: A man stands in front of a mirror, 

but the image in the mirror shows 
the scene behind him, not himself.

Bernoulli’s Principle
Prompt: Blowing rapidly on the top 

of a piece of paper, but the paper is instead 
pressed more tightly downwards.

Sora

Wan

Hailuo

Kling

Conservation  Principle Phenomenon Principles
LTX 

Video

Wan

SD
Video

Qingying

Figure 6: Examples of counterfactual prompts in this benchmark, along with generated exam-
ple videos from all ten text-to-video models.

Table 3: Impact of Counterfactual Prompts.

Model Newton Principles Conservation Principles Phenomenon Principles Avg. Score
Kling 0.19 0.31 0.00 0.17

Dreamina 0.31 0.25 0.06 0.21
Mochi-1 0.25 0.31 0.31 0.29
Wan 2.1 0.31 0.50 0.13 0.31

SD Video 0.31 0.31 0.31 0.31
LTX Video 0.44 0.25 0.31 0.33
Qingying 0.50 0.38 0.31 0.40

Sora 0.38 0.56 0.44 0.46
Hailuo 0.31 0.63 0.44 0.46

Pika 2.2 0.63 0.56 0.25 0.48

without any force (e.g., gravity) on it would be static or have uniform linear motions due to Newton’s
first law, while a counterfactual example that violates newton’s first law should be an apple moving
with some acceleration that is not uniform velocity. Example prompts and videos are presented in
Figure 6.

Following a similar setting as the overall result in Table 4.1, we replace the original prompts with
their counterfactual version, and then compute the average score for each principle type. The real-
valued score has the same meaning as mentioned in Section 3.3. The results of this experiment is
presented in Table 3.

From the experiment results, we can find that the scores remain uniformly low under these counter-
factual conditions, since for all the scores, there are rare results that has better score than 0.50. For
instance, Kling achieves only 0.19 on Newton’s principles and even fail in all the prompts for the
phenomenon principles, while Dreamina records a mere 0.06 on phenomenon principles. Threre-
fore, we have the following observation.
Observation 4.5. Even when instructed to violate the laws, all models score poorly in all the phys-
ical law classes, demonstrating an inability to understand impossible physics.

Another noticeable finding is that high performance on the original prompts (see Table 4.1) does
not necessarily translate to strong performance on counterfactual prompts. For example, Wan 2.1,
originally the top performer with an average score of 0.42, falls to fourth-from-bottom (0.31) under
counterfactual conditions, while SD Video, originally the worst at 0.19, rises to 0.31, matching Wan
2.1’s counterfactual score. Even more revealing, Kling scored 0.38 on phenomenon principles in the
standard evaluation but dropped to 0.00 on the counterfactual phenomenon prompts. These reversals
indicate that apparent compliance under normal prompts arises from surface-level pattern matching
rather than a true understanding of physical constraints.
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Observation 4.6. Models that excel under standard prompts can be easily misled by counterfactu-
als, showing their compliance is rooted in memorized patterns rather than genuine physical reason-
ing.

5 DISCUSSION

In this section, we discuss several open directions and possible solutions to the inherent limitations
of text-to-video models in adhering to physical constraints.

Understanding and Prediction in World Foundation Models. World Foundation Models
(WFMs) refer to large neural networks that simulate physical environments and predict outcomes
based on given inputs (Ha & Schmidhuber, 2018; Okada & Taniguchi, 2022; Agarwal et al., 2025).
These models go beyond simple text and video matching, as seen in previous text-to-video mod-
els (Singer et al., 2023; Wu et al., 2023), by understanding the physical and spatial constraints of
the real world. They possess the capability to make predictions using sensory data where motion,
force, and spatial relationships are grounded in reality. When such a model is used as a backbone
for video generation, the output naturally obeys learned physical rules. For instance, objects move
consistently under acceleration, and interactions like pushing or stacking behave plausibly according
to cause-and-effect principles.

Rule-based Machine Learning. Another promising direction is the explicit integration of phys-
ical laws into the model training process via rules (Weiss & Indurkhya, 1995; Kliegr et al., 2021),
constraints (Raissi et al., 2017; Cai et al., 2021), or symbolic reasoning (Yu et al., 2023; Garcez
et al., 2008). This extends previous text-to-video model training frameworks that merely match
videos with text, without embedding the laws of mechanics into the model architecture or loss func-
tions. For instance, physics-informed loss functions can be introduced to penalize violations of
conservation laws. This is analogous to physics-informed neural networks (PINNs) in scientific
computing (Pang et al., 2019; Raissi et al., 2019; 2017; Cai et al., 2021), where differential equa-
tions (e.g., Navier–Stokes equations for fluid dynamics or simple Newtonian equations of motion)
are incorporated into the loss function via automatic differentiation. Additionally, hybrid neuro-
symbolic systems could offer a solution for injecting explicit physical-law reasoning into generative
models (Dang-Nhu, 2020; Choi et al., 2024). Specifically, one could imagine a system where a deep
generative model proposes a video sequence, and a symbolic physics engine (or differentiable sim-
ulator) evaluates and refines it. In such physics engines, if the text calls for two objects to collide,
a symbolic module could compute the collision outcome using established equations of motion and
enforce that outcome in the generated frames.

6 CONCLUSION

In this work, we have presented T2VPhysBench, a human-evaluated and first-principle-inspired
benchmark designed to explore whether modern text-to-video models obey fundamental physical
laws. Our comprehensive study reveals that, despite their impressive visual fidelity and instruction
following, current models uniformly struggle to satisfy even the most basic Newtonian and conser-
vation constraints, as well as the phenomenon principles. Moreover, performance varies markedly
across law categories: conservation principles prove especially challenging compared to Newton’s
laws or phenomenological effects, indicating uneven modeling of different aspects of physics. At-
tempts to improve compliance via progressively more detailed prompt hints yield little benefit and
can even degrade performance, showing that the core limitations lie beyond simple prompt design.
Finally, in counterfactual tests, where models are asked to generate physically impossible scenar-
ios, systems still produce rule-violating outputs, demonstrating reliance on pattern memorization
rather than true physical reasoning. These findings highlight persistent gaps in the physical under-
standing of text-to-video generators. We hope T2VPhysBench will guide future efforts toward truly
physics-aware video generation.
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Appendix
Roadmap. In Section A, we present the details of each evaluated model. In Section B, we show
detailed video examples.

A IMPLEMENTATION DETAILS

We show some extra details of the selected generators in this subsection. Specifically, the imple-
mentation details for our listed models in Table 1 is presented as follows:

• Kling (Kling, 2024): Kling is a closed-source text-to-video model developed by Kuai and
released in 2024, with four different versions: Kling 1.0, Kling 1.5, kling 1.6, and the
latest, Kling 2.0. It provides both a standard and a member-only high-quality generation
mode. It accepts creative parameters: increasing these settings enhances the output rele-
vance, while reducing them fosters more creative results. It does not provide an option for
camera movement. Kling is capable of producing videos lasting either 5 or 10 seconds,
with flexible aspect ratios, including 16:9, 1:1, and 9:16. It also offers a prompt dictio-
nary, AI-generated prompt hints (powered by DeepSeek), and negative prompts as optional
settings. It can generate four videos in parallel from a single prompt and supports seed se-
lection. Video generation takes approximately four minutes per sample, with a batch limit
of five videos.

• Wan 2.1 (Alibaba, 2025): Wan 2.1 is an open-source text-to-video model (WanTeam, 2025)
developed by Alibaba, released in 2025. It is available in two variants: Wan 2.1 Fast and
Wan 2.1 Professional. It works with multiple aspect ratios, including 16:9, 9:16, 1:1, 4:3,
and 3:4. Wan 2.1 also enables extended prompt input, features an Inspiration Mode, and
generates videos with sound.

• Sora (OpenAI, 2024): Sora is a closed-source text-to-video generator developed by Ope-
nAI, released in 2024. It operates in a single mode and allows output in 480p, 720p, or
1080p, with aspect ratios of 16:9, 1:1, and 9:16. It supports generating 30 FPS videos
lasting 5, 10, 15, or 20 seconds. A monthly fee of $20 provides access to 480p and 720p
videos, each with a maximum length of 5 seconds. A $200 monthly subscription is needed
for 1080p videos exceeding 5 seconds. Since most models only support 720p, the $20 sub-
scription may be sufficient for many users. After reaching the daily limit, Sora switches to
”relaxed mode,” which still maintains fast video generation—around 30 seconds per video.
In addition, [Sora] offers style presets and can generate four videos in parallel from the
same prompt.

• Mochi-1 (Genmo, 2024): Mochi-1 is an open-source text-to-video generator developed
by Genmo and released to the public in 2024. It offers multiple modes, supporting 480p
resolution, a 16:9 aspect ratio, and 5-second videos at 24FPS. It also provides random
prompt suggestions and a seed function. Interestingly, when prompted to generate a video
with three people, Mochi-1 often ends up creating only two. It can generate two videos in
parallel, with each one taking about three minutes to process.

• LTX Video (HaCohen et al., 2024): LTX Video is an open-source text-to-video generator
developed by Lightricks and opened to the public in 2024. It offers various preset styles
and supports 768×512 (512p) resolution. It also supports aspect ratios of 16:9, 1:1, and
9:16, as well as 5-second clips at 24FPS. LTX Video allows you to specify shot type, scene
location, style presets, and references, and it supports voiceover scripts. To use it, you first
generate the initial scene, then generate motion for that scene.

• Pika 2.2 (Pika, 2024): Pika 2.2 is a closed-source text-to-video model developed by Pika
Labs and introduced in 2025. It offers various features, including Pikaframes, Pikaaffects,
Pikascenes, Pikaaddition, and Pikawaps. Videos can be generated in 720p or 1080p resolu-
tion, with multiple aspect ratio options such as 16:9, 9:16, 1:1, 4:5, 4:3, or 5:2. You can also
create clips lasting 5 or 10 seconds, with support for both negative prompts and seed inputs.
I’ve had a great experience with Pika 2.2—the UI is easy to understand, user-friendly, and
highly responsive. It generates four videos at once, each taking about 30 seconds, and lets
you copy and edit prompts with a single click.
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• Dreamina (ByteDance, 2024): Dreamina is a closed-source text-to-video model developed
by Bytedance, launched in 2024. It comes in four variants: Video S2.0, Video S2.0 Pro,
Video P2.0 Pro, and Video 1.2. It uses Deepseek-R1 for prompt enhancement, and provides
aspect ratio choices including 16:9, 21:9, 4:3, 1:1, 3:4, and 9:16. Video S2.0, Video S2.0
Pro, and Video P2.0 Pro are able to create 5-second videos, while Video P2.0 Pro also
allows for 10-second clips. Video 1.2 enables generation of videos lasting 3, 6, 9, or 12
seconds. All version operates at 24FPS.

• Qingying (Zhipu, 2024): Qingying serves as the commercial edition of the CogVideo fam-
ily models (Hong et al., 2023; Yang et al., 2024b), which are open-source text-to-video
models built by Zhipu, opened to the public in 2023 and 2024. It provides two modes
for generation: Fast and Quality. Five-second videos are supported at either 60FPS or
30FPS, with aspect ratios including 16:9, 9:16, 1:1, 3:4, and 4:3. Qingying also features
three advanced settings: video style, emotional atmosphere, and camera movement mode.
Additionally, it supports both AI-generated sound and effects.

• Hailuo (MiniMax, 2025): Hailuo is a closed-source text-to-video model developed by
MiniMax and introduced in 2025. It features T2V-01-Director and T2V-01 for generat-
ing videos from text. It supports 720p resolution, likely with a 16:9 aspect ratio, a 6-second
duration, and 24FPS.

• Stable Video Diffusion (Blattmann et al., 2023a): Stable Video Diffusion is an open-source
text-to-video generator developed by Stability AI, released in 2023. It provides aspect ratio
choices including 16:9, 3:2, 1:1, 4:5, and 9:16. The length of generated video is 4s.

B VIDEO EXAMPLES

In this section, we present a wide range of video samples generated using the prompts proposed in
this benchmark, as illustrated in Figures 7—30. Each figure includes results from five distinct text-
to-video models, with five key frames selected from the video samples to illustrate how they change
over time. These selected video instances align with all the experiments discussed in Section 4.
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Dreamina

Qingying

Kling

Wan

Newton’s First Law

Mochi-1

Prompt: A person quickly pull out the paper pressed under the water bottle.

Figure 7: Results of Generating Videos Following Newton’s First Law.
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Hailuo

Pika

Sora

LTX
Video

Newton’s First Law
Prompt: A person quickly pull out the paper pressed under the water bottle.

SD
Video

Figure 8: Results of Generating Videos Following Newton’s First Law.
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Dreamina

Qingying

Kling

Wan

Newton’s Second Law

Mochi-1

Prompt: A ball rolls by, a person kicks it.

Figure 9: Results of Generating Videos Following Newton’s Second Law.
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Newton’s Second Law
Prompt: A ball rolls by, a person kicks it.

LTX
Video

SD
Video

Figure 10: Results of Generating Videos Following Newton’s Second Law.
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Dreamina

Qingying

Kling

Wan

Newton’s Third Law

Mochi-1

Prompt: A man in a boat, paddling hard backward with an oar.

Figure 11: Results of Generating Videos Following Newton’s Third Law.
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Prompt: A man in a boat, paddling hard backward with an oar.
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Figure 12: Results of Generating Videos Following Newton’s Third Law.
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Dreamina

Qingying

Kling

Wan

Law of Universal Gravitation

Mochi-1

Prompt: A man throws a ball upward.

Figure 13: Results of Generating Videos Following Law of Universal Gravitation.
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Figure 14: Results of Generating Videos Following Law of Universal Gravitation.
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Dreamina

Qingying

Kling

Wan

Conservation of Energy

Mochi-1

Prompt: Two balls collide, one stops, the other moves.

Figure 15: Results of Generating Videos Following Conservation of Energy.
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Prompt: Two balls collide, one stops, the other moves.
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Figure 16: Results of Generating Videos Following Conservation of Energy.
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Dreamina

Qingying

Kling

Wan

Conservation of Mass

Mochi-1

Prompt: Pouring water from one cup into an empty cup, the 
total amount remains the same.

Figure 17: Results of Generating Videos Following Conservation of Mass.
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Conservation of Mass
Prompt: Pouring water from one cup into an empty cup, the 

total amount remains the same.

Hailuo

Pika

Sora

LTX
Video

SD
Video

Figure 18: Results of Generating Videos Following Conservation of Mass.
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Dreamina

Qingying

Kling

Wan

Conservation of Momentum

Mochi-1

Prompt: A white pool ball hits the stationary ball, the white pool ball stops and 
the stationary ball flies out.

Figure 19: Results of Generating Videos Following Conservation of Momentum.
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Figure 20: Results of Generating Videos Following Conservation of Momentum.
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Dreamina

Qingying

Kling

Wan

Conservation of Angular Momentum

Mochi-1

Prompt: A figure skater spins with arms extended, then pulls them in to spin 
faster. 

Figure 21: Results of Generating Videos Following Conservation of Angular Momentum.
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Conservation of Angular Momentum

Mochi-1

Prompt: A figure skater spins with arms extended, then pulls them in to spin 
faster. 

Figure 22: Results of Generating Videos Following Conservation of Angular Momentum.
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Dreamina

Qingying

Kling

Wan

Hooke's Law

Mochi-1

Prompt: Pressing a spring hard, the spring shortens a lot. 

Figure 23: Results of Generating Videos Following Hooke’s Law.
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Prompt: Pressing a spring hard, the spring shortens a lot. 
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Figure 24: Results of Generating Videos Following Hooke’s Law.
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Dreamina

Qingying

Kling

Wan

Snell's Law

Mochi-1

Prompt: A pencil in the water looks bent. 

Figure 25: Results of Generating Videos Following Snell’s Law.
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Figure 26: Results of Generating Videos Following Snell’s Law.
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Dreamina

Qingying

Kling

Wan

Law of Reflection

Mochi-1

Prompt: Throw a ball diagonally at a wall and it will bounce off diagonally. 

Figure 27: Results of Generating Videos Following Law of Reflection.
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Figure 28: Results of Generating Videos Following Law of Reflection.
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Dreamina

Qingying

Kling

Wan

Bernoulli’s Principle

Mochi-1

Prompt: A spinning ball bends in flight.

Figure 29: Results of Generating Videos Following Bernoulli’s Principle.
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Figure 30: Results of Generating Videos Following Bernoulli’s Principle.
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LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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