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Abstract

Federated Learning trains machine learning models on distributed devices by ag-
gregating local model updates instead of local data. However, privacy concerns
arise as the aggregated local models on the server may reveal sensitive personal in-
formation by inversion attacks. Privacy-preserving methods, such as homomorphic
encryption (HE), then become necessary for FL training. Despite HE’s privacy
advantages, its applications suffer from impractical overheads, especially for foun-
dation models. In this paper, we present FedML-HE, the first practical federated
learning system with efficient HE-based secure model aggregation. FedML-HE
proposes to selectively encrypt sensitive parameters, significantly reducing both
computation and communication overheads during training while providing cus-
tomizable privacy preservation. Our optimized system demonstrates considerable
overhead reduction, particularly for large foundation models (e.g., ~10x reduction
for ResNet-50, and up to ~40x reduction for BERT), demonstrating the potential
for scalable HE-based FL deployment.

1 Introduction

Federated learning (FL) is increasingly popular in contemporary machine learning practices due to
its ability to allow distributed clients to collectively train a global model without directly sharing
data. Privacy preservation in standard federated learning systems depends on the distributed training
process and the model aggregation function, such as FedAvgMcMahan et al.| (2017), FedSGD |Shokri
& Shmatikov| (2015)), and FedGAN [Rasouli et al.|(2020). In FL, instead of uploading raw data to a
central server for training, clients train models locally and share their models with the server, where
the local models are aggregated based on the aggregation functions. While FL ensures that local raw
data do not leave their original locations, it remains vulnerable to eavesdroppers and malicious FL
servers that might exploit plaintext local models (or model updates) to reconstruct sensitive training
data, i.e., data reconstruction attacks or gradient inversion attacks in literature |Zhu et al.| (2019);
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Figure 1: Data Reconstruction Attacks: an adversarial server can recover local training data from
local model updates.

Criswell et al.| (2014); Bhowmick et al.| (2018)); (2017); [Han et al.| (2023)); Hatamizadeh|
et al.| (2022); |[Fowl et al.[(2022), as shown in Figure[l| This poses a privacy vulnerability especially

when local models are trained on small local datasets, a common scenario in real-world applications
such as smartphone text data for LLMs. Local models derived from these small datasets inherently
contain fine-grained information, making it easier for adversaries to extract sensitive information
from small model updates.

Existing defense methods that prevent privacy leakage from plaintext local models include differential
privacy (DP)[Truex et al.| (2019a); Byrd & Polychroniadoul (2020) and secure aggregation Bonawitz|
let al.[(2017);|So et al.| (2022). DP adds noise to original models but may result in model performance
degradation due to the privacy noises introduced. On the other hand, secure aggregation employs
zero-sum masks to shield local model updates, ensuring that the details of each update remain private.
However, secure aggregation demands additional interactive synchronization steps and is sensitive to
client dropout, making it less practical in real-world FL applications, where the unstable environments
of clients face challenges such as unreliable internet connections, and software crashes.

Model . Interactive | Model Visible
Degradation Overheads | Client Dropout Sync To Server
Differential Privacy With noise Light Robust No Yes
Secure Aggregation Exact Medium Susceptible Yes Yes
Homomorphic Encryption | Exact Large Robust No No

Table 1: Comparison of Differential Privacy, Secure Aggregation, and Homomorphic Encryption

As shown in Table[T} compared to the non-HE FL solutions above, homomorphic encryption (HE) Pail
[lier| (1999); Gentry| (2009); [Fan & Vercauteren| (2012)); Brakerski et al.| (2014);|Cheon et al.| (2017)
offers a robust post-quantum secure solution that protects local models against attacks and provides
stronger privacy guarantee while keeping the model aggregation with exact gradients. HE-based
federated learning (HE-FL) encrypts local models on clients and performs model aggregation over ci-
phertexts on the server. This approach enables secure federated learning deployments with exactly the
same model performance as vanilla FL and has been adopted by several FL systems (2022);

IBM]| (2022)); Zhang et al.| (2020); Du et al.| (2023) and a few domain-specific applications |Stripelis|
et al.|(2021);|Yao et al.[(2023).

Despite the advantages of homomorphic encryption, HE remains a powerful but complex crypto-
graphic foundation with impractical overheads (as shown in Figure[Z) for most real-world applications.
Prior FL-HE solutions mainly employ existing generic HE methods without sufficient optimization

for large-scale FL deployment [Roth et al.| (2022)); IBM| (2022)); Zhang et al.| (2020); Du et al.| (2023).

The scalability of encrypted computation and communication during federated training then becomes
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Figure 2: Computational (left) and Computation (right) Overhead Comparison for Models of Different
Sizes: Naive FedML-HE vs. Nvidia FLARE vs. Plaintext Aggregation. Due to TenSeal’s larger file
sizes, FLARE did not finish the run on BERT on our 32GB memory machine.

a bottleneck, restricting its feasibility for real-world scenarios. This HE overhead limitation is
particularly noticeable (commonly ~15x increase in both computation and communication |(Gouert;
et al.| (2022)) when training large foundation models across resource-constrained devices, where
encrypted computing and communication of large models might take considerably longer than the
actual model training. It is widely known that HE inevitably introduces large overheads regarding
both computation and communication |Gouert et al.[(2022)). To verify this, we evaluate the vanilla HE
implementation to pinpoint the overhead bottlenecks.

Observation: As shown by the evaluation results in Figure 2] the computational and communication
(package size) overheads introduced by HE is O(n), both growing linearly with the input size n,
which in our case the sizes of the models for aggregation. Although the unoptimized system is
faster than Nvidia FLARE, the execution time and file size are still impractical, especially for large
models.

To address these challenges, we propose FedML-HE, an efficient Homomorphic Encryption-based
privacy-preserving FL system with Selective Parameter Encryption, designed for practical deployment
across distributed edge devices. Our system significantly reduces communication and computation
overheads, enabling HE-based federated learning to be more accessible and efficient in real-world
scenarios (comparison with other popular HE-based FL work can be found in Table 2)).

Features IBMFL | Nvidia FLARE Ours
(8c8abl1) (9a1b226)
Homomorphic Encryption v v v
Threshold Key Management X X v
Selective Parameter Encryption X O v
Encrypted Foundation Model Training O O v

Table 2: Comparison with Existing HE-Based FL Systems. () implies limited support: for Selective
Parameter Encryption, FLARE offers the (random) partial encryption option which does not have clear
indications on privacy impacts; for Encrypted Foundation Model Training, the other two platforms
require massive resources to train foundation models in encrypted federated learning.

Key contributions:

* We propose FedML-HE, the first practical Homomorphic Encryption-based privacy-
preserving FL system that supports encryption key management, encrypted FL platform
deployment, encryption optimizations to reduce overhead, and is designed to support effi-
cient foundation model federated training.

* We propose Selective Parameter Encryption that selectively encrypts the most privacy-
sensitive parameters to minimize the size of encrypted model updates while providing
customizable privacy preservation.



 Theoretical privacy analysis shows the HE system can ensure privacy under single-key
and threshold adversaries and encrypting most sensitivity parameters provides orders-of-
magnitude better privacy guarantees.

» Extensive experiments show that the optimized system achieves significant overhead reduc-
tion while preserving privacy against state-of-the-art ML privacy attacks, particularly for
large models (e.g., ~10x reduction for HE-federated training ResNet-50 and up to ~40x
reduction for BERT), demonstrating the potential for real-world HE-based FL deployments.

2 FedML-HE System Design

In this section, we first provide the overview of FedML-HE system in §2.1] define the threat model
in §2.2] describe the algorithmic design of FedML-HE in §2.3] propose our efficient optimization
method Selective Parameter Encryption after pinpointing the overhead bottleneck in §2.4] and
explain how we integrate homomorphic encryption in federated learning from a software framework

perspective in §2.3]

2.1 System Overview
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Figure 3: FedML-HE System Pipeline: in the Encryption Key Agreement stage, clients can either
use distributed threshold key agreement protocol or outsource a trusted key authority. We simplify
the illustration here by abstracting the key pair of the public key and secret key (partial secret keys
if using threshold protocol) as one key; in the Encryption Mask Calculation stage, clients use
local datasets to calculate local model sensitivity maps which are homomorphically aggregated at
the server to generate an encryption mask; in the Encrypted Federated Learning stage, clients
use homomorphic encryption with encryption mask to protect local model updates where the server
aggregates them but does not have access to sensitive local models.

As shown in Figure[3] our efficient HE-based federated training process at a high level goes through
three major stages: (/) Encryption key agreement: the clients either use threshold HE key agreement
protocol or trusted key authority to generate HE keys; (2) Encryption mask calculation: the clients
and the server apply Selective Parameter Encryption method using homomorphic encryption to
agree on a selective encryption mask; (3) Encrypted federated learning: the clients selectively encrypt
local model updates using the homomorphic encryption key and the encryption mask for efficient
privacy-preserving training.

2.2 Threat Model

We define a semi-honest adversary A that can corrupt the aggregation server or any subset of
local clients. A follows the protocol but tries to learn as much information as possible. Loosely
speaking, under such an adversary, the security definition requires that only the private information
in local models from the corrupted clients will be learned when A corrupts a subset of clients; no
private information from local models nor global models will be learned by .A when A corrupts the
aggregation server.

When A corrupts both the aggregation server and a number of clients, the default setup where the
private key is shared with all clients (also with corrupted clients) will allow A to decrypt local models
from benign clients (by combining encrypted local models received by the corrupted server and the
private key received by any corrupted client). This issue can be mitigated by adopting the threshold
or multi-key variant of HE where decryption must be collaboratively performed by a certain number



of clients|Aloufi et al.| (2021); Ma et al.[(2022); Du et al.|(2023)). Since the multi-party homomorphic
encryption issue is not the focus of this work, in the rest of the paper we default to a single-key
homomorphic encryption setup, but details on threshold homomorphic encryption federated learning
setup and microbenchmarks are provided in the appendix.

2.3 Algorithm for HE-Based Federated Aggregation

Privacy-preserving federated learning systems utilize homomorphic encryption to enable the aggrega-
tion server to combine local model parameters without viewing them in their unencrypted form by
designing homomorphic encrypted aggregation functions. We primarily focus on FedAvg |[McMahan
et al. (2017), which has been proved as still one of the most robust federated aggregation strategies
while maintaining computational simplicity Wang et al.| (2022).

Algorithm 1 HE-Based Federated Aggregation

* [W]: the fully encrypted model | [W]: the partially encrypted model;
* p: the ratio of parameters for selective encryption;
* b: (optional) differential privacy parameter.

// Key Authority Generate Key
(pk, sk) + HE.KeyGen()\);
// Local Sensitivity Map Calculation
for each client i € [N] do in parallel
W, « Init(W);
S; « Sensitivity(W,D;);
[S:] « Enc(pk,S;);
Send [S;] to server;
end
// Server Encryption Mask Aggregation
[M] + Select(zi]\il a;[S:], p);
// Training
fort=1,2,...,Tdo
for each client i € [N] do in parallel
ift =1 then
Receive [M] from server;
‘ M + HE.Dec(sk,[M]);
end
if t > 1 then
Receive [Wyop] from server;
W, <~ HE.Dec(sk, M ® [Wgiep)) + (1 — M) © [Wyiop];
end
W, « Train(W;,D;);
// Additional Differential Privacy
if Add DP then
| W, « W, + Noise(b);
end
(W] <~ HE.Enc(pk, M © W;) + (1 - M) ® W;;
Send [W,] to server S;

end
// Server Model Aggregation

(W) ¢ Sy ai[MO W] + 31 aa((1 — M) © Wy);

end

Our HE-based secure aggregation algorithm, as illustrated in Algorithm[I] can be summarized as:
given an aggregation server and N clients, each client 7 € [N] owns a local dataset D; and initializes a
local model W ; with the aggregation weighing factor «;; the key authority or the distributed threshold
key agreement protocol generates a key pair (pk, sk) and the crypto context, then distributes it to
clients and server (except the server only gets the crypto context which is public configuration). The



clients and the server then collectively calculate the encryption mask M for Selective Parameter
Encryption also using homomorphic encryption. At every communication round ¢ € [T, the server
performs the aggregation

Wogton] Z%M@W +Zaz (1-M)oW,),

where [W o] is the partially-encrypted global model, W is the i-th plaintext local model where []
indicates the portion of the model that is fully encrypted, «; is the aggregation weight for client ¢,
and M is the model encryption mask.

Note that the aggregation weights can be either encrypted or in plaintext depending on whether
the aggregation server is trustworthy enough to obtain that information. In our system, we set
the aggregation weights to be plaintext by default. We only need one multiplicative depth of
HE multiplication in our algorithm for weighting, which is preferred to reduce HE multiplication
operations. Our system can also be easily extended to support more FL aggregation functions with
HE by encrypting and computing the new parameters in these algorithms (e.g. FedProx |L1 et al.
(2020)). Additionally, in Algorithm[I] optional local differential privacy noise can be easily added
after local models are trained if there is an extra desire for differential privacy.

We will explain in detail how the encryption mask M is formalized in §2.4]

2.4 Efficient Optimization by Selective Parameter Encryption
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Figure 4: Selective Parameter Encryption: in the initialization stage, clients first calculate privacy
sensitivities on the model using its own dataset and local sensitivities will be securely aggregated to a
global model privacy map. The encryption mask will be then determined by the privacy map and a
set selection value p per overhead requirements and privacy guarantee. Only the masked parameters
will be aggregated in the encrypted form.

Fully encrypted models can guarantee no access to plaintext local models from the adversary with high
overheads. However, previous work on privacy leakage analysis shows that “partial transparency”, e.g.
hiding parts of the models (Hatamizadeh et al., 2022} Mo et al.,[2020), can limit an adversary’s ability
to successfully perform attacks like gradient inversion attacks (Lu et al.l 2022). We therefore propose
Selective Parameter Encryption to selectively encrypt the most privacy-sensitive parameters in
order to reduce impractical overhead while providing customizable privacy preservation; see Figure[d]

Step 1: Privacy Leakage Analysis on Clients. Directly performing a gradient inversion attack |Wei
et al.| (2020) and evaluating the success rate of the attack can take much more time than the model
training. We then adopt sensitivity [Novak et al.|(2018)); |Sokolic¢ et al.|(2017); Mo et al.| (2020) for
measuring the general privacy risk on gradients w.r.t. input. Given model W and K data samples with
input matrix X and ground truth label vector y, we compute the sensitivity for each parameter w,,

by % Zé{:l | Jm (yi)|| ; where Jo, (yi) = 8§k (M%(#) € R, £(-) is the loss function given X,

y and W, and ||-|| calculates the absolute value. The intuition is to calculate how large the gradient
of the parameter will change with the true output y;, for each data point k. Each client ¢ then sends
the encrypted parameters sensitivity matrix [S;] to the server.
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Figure 5: Model Privacy Map Calculated by Sensitivity on LeNet: darker color indicates higher
sensitivity. Each subfigure shows the sensitivity of parameters of the current layer. The sensitivity of
parameters is imbalanced and many parameters have very little sensitivity (its gradient is hard to be
affected by tuning the data input for attack).

As shown in Figure[3] different parts of a model contribute to attacks by revealing uneven amounts of
information. Using this insight, we propose to only select and encrypt parts of the model that are
more important and susceptible to attacks to reduce HE overheads while preserving adequate privacy.

Step 2: Encryption Mask Agreement across Clients. The sensitivity map is dependent on the
data it is processed on. With potentially heterogeneous data distributions, the server aggregates
local sensitivity maps to a global privacy map vazl «;[S;]. The global encryption mask M is then
configured using a privacy-overhead ratio p € [0, 1] which is the ratio of selecting the most sensitive
parameters for encryption. The global encryption mask is then shared among clients as part of the
federated learning configuration.

2.5 Software Framework: Homomorphic Encryption In Federated Learning

In this part, we will illustrate how we design our HE-based aggregation from a software framework
perspective.

I
1
| Homomorphic Encryption Key Agreement FL Orchestration i
: r—————————————————l
1 . 1
! Server Manager ’ ‘ Client Manager ! ML Bridge
1 1
I | e e e e e e ————————— N
| server Aggregator ’ ‘ Client Trainer : ML Processing
I I

‘ Model Flattening J

‘ Model Reshape J

Crypto Foundation

{ Enc/Dec } [ HE Agg Functions }

Figure 6: Framework Structure: our framework consists of a three-layer structure including Crypto
Foundation to support basic HE building blocks, ML Bridge to connect crypto tools with ML
functions, and FL Orchestration to coordinate different parties during a task.

Figure [6 provides a high-level design of our framework, which consists of three major layers:

* Crypto Foundation. The foundation layer is where Python wrappers are built to realize
HE functions including key generation, encryption/decryption, secure aggregation, and
ciphertext serialization using open-sourced HE libraries;



* ML Bridge. The bridging layer connects the FL system orchestration and cryptographic
functions. Specifically, we have ML processing APIs to process inputs to HE functions from
local training processes and outputs vice versa. Additionally, we realize the optimization
module here to mitigate the HE overheads;

* FL Orchestration. The FL system layer is where the key authority server manages the key
distribution and the (server/client) managers and task executors orchestrate participants.

Our layered design makes the HE crypto foundation and the optimization module semi-independent,
allowing different HE libraries to be easily switched into FedML-HE and further FL optimization
techniques to be easily added to the system.

3 Privacy By Selective Parameter Encryption

In this section, we first provide proof to analyze the privacy of fully encrypted federated learning and
then analyze the privacy guarantee of Selective Parameter Encryption.

3.1 Proof of Base Protocol

In this subsection, we prove the privacy of base protocol where homomorphic-encryption-based
federated learning utilizes the full model parameter encryption (i.e., the selective parameter encryption
rate is set to be 7). We define the adversary in Definition [3.1]and privacy in Definition

Definition 3.1 (Single-Key Adversary). A semi-honest adversary A can corrupt (at the same time)
any subset of n learners and the aggregation server, but not at the same time.

Note that the ref of the proof assumes the single-key setup and the privacy of the threshold variant
of HE-FL (as shown in Definition [3.2) can be easily proved by extending the proofs of threshold
homomorphic encryption |Boneh et al.|(2006); |Laud & Ngo| (2008); |Asharov et al.| (2012).

Definition 3.2 (Threshold Adversary). A semi-honest adversary Ay ( can corrupt (at the same time)
any subset of n — k learners and the aggregation server.

Definition 3.3 (Privacy). A homomorphic-encryption federated learning protocol m is simulation
secure in the presence of a semi-honest adversary A, there exists a simulator S in the ideal world
that also corrupts the same set of parties and produces an output identically distributed to A’s output
in the real world.

Ideal World. Our ideal world functionality F interacts with learners and the aggregation server as
follows:

» Each learner sends a registration message to F for a federated training model task Wop. F
determines a subset N’ C N of learners whose data can be used to compute the global model
Wiob-

glo

* Both honest and corrupted learners upload their local models to F.

« If local models W of learners in N’ are enough to compute Wjoh, F sends Wion vazll oa; W,
to all learners in N/, otherwise F sends empty message L.

Real World. In real world, F is replaced by our protocol described in Algorithm [I] with full model
parameter encryption.

We describe a simulator S that simulates the view of the A in the real-world execution of our protocol.
Our privacy definition[3.3]and the simulator S prove both confidentiality and correctness. We omit
the simulation of the view of A that corrupts the aggregation server here since the learners will not
receive the ciphertexts of other learners’ local models in the execution of 7 thus such a simulation is
immediate and trivial.

Simulator. In the ideal world, S receives A and 1" from F and executes the following steps:

1. S chooses a uniformly distributed random tape 7.

2. S runs the key generation function to sample pk: (pk, sk) < HE.KeyGen(\).

3. For a chosen ith learner, S runs the encryption function to sample: (¢;) <
HE.Enc(pk,rWil).



4. S repeats Step 3 for all other learners to obtain ¢, and runs the federated aggregation function
f to sample: (cgop) <~ HE.Eval(C, f).

The execution of S implies that:

{(¢is caon) } = {(HE.Enc(pk:,Wi), HE.E’UUJ(W7 f))}

Thus, we conclude that S’s output in the ideal world is computationally indistinguishable from the
view of A in a real world execution:

{S (1", ()} = {view™ (\)}

)

where view is the view of A in the real execution of 7.

3.2 Proof of Encrypted Learning by DP Theory

Definition 3.4 (Adjacent Datasets). Two datasets D; and Dy are said to be adjacent if they differ in
the data of exactly one individual. Formally, they are adjacent if:

|D1ADy| =1

Definition 3.5 (e-Differential Privacy). A randomized algorithm M satisfies e-differential privacy if
for any two adjacent datasets Dy and Do, and for any possible output O C Range(F), the following
inequality holds:
Pr [M (Dl) S O]
Pr(M(D2) € O] —

Smaller values of the privacy parameter ¢ imply stronger privacy guarantees.
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Definition 3.6 (Laplace mechanism). Given a function f : D — R,

where D is the domain of the dataset and d is the dimension of the output, the Laplace mechanism
adds Laplace noise to the output of f.

Let b be the scale parameter of the Laplace distribution, which is given by:

Lap(z | b) = 2%6_%

Given a dataset D, the Laplace mechanism F is defined as:
M(D) = f(D) + Lap(0 | b)*

Definition 3.7 (Sensitivity). To ensure e-differential privacy, we need to determine the appropriate
scale parameter b. This is where the sensitivity of the function f comes into play. The sensitivity
Af of a function f is the maximum difference in the output of f when applied to any two adjacent

datasets:
= D) — f(D
f T 1 S 1f (D1) = f(D2)ll,

Based on Definition[3.4] [3.3] [3.6]and [3.7] we have

Lemma 3.8 (Achieving e-Differential Privacy by Laplace Mechanism [Dwork! (2008)); |Abadi et al.
(2016)). To achieve e-differential privacy, we choose the scale parameter b as:

_Af

€

b

With this choice of b, the Laplace mechanism F satisfies e-differential privacy.

By adding noise Lap(0 | b)¢ on one parameter in the model gradient where b = %, we can achieve
e-differential privacy. We then show homomorphic encryption provides a much stronger differential
privacy guarantee.



Theorem 3.9 (Achieving 0-Differential Privacy by Homomorphic Encryption). For any two adjacent
datasets D1 and Ds, since M(D) is computationally indistinguishable, we have

Pr[M (D;) € O]
Pr[M (D) € O]

We then have ¢ = 0 if O is encrypted.

< e

In other words, A cannot retrieve sensitive information from encrypted parameters.

3.3 Proof of Selective Parameter Selection

Lemma 3.10 (Sequential Composition Dwork! (2008)),). If M (z) satisfies €1-differential privacy
and M (x) satisfies ea-differential privacy, then the mechanism G(x) = (M (x), Ma(x)) which
releases both results satisfies (1 + €3)-differential privacy

Based on Lemma[3.§] and Theorem [3.9] we can now analyze the privacy of Selective Parameter
Encryption

Theorem 3.11 (Achieving ) . c[N]/S %-Differential Privacy by Partial Encryption). If we apply

Homomorphic Encryption on partial model parameters S and Laplace Mechanism on remaining
model parameters [N]/S with fixed noise scale b. For each parameter i € [N|/S, we have ¢; = Abf

Such partial encryption satisfies Zie[ N|/S %-dlﬁ‘erential privacy.

Let J = Zfil Abf £ and assume A f ~ U(0, 1) where U represents the uniform distribution, we can
then show the privacy cost of adding Laplace noise on all parameters, random parameter encryption,
and selective parameter encryption.

Remark 3.12 (Achieving J-Differential Privacy by Laplace Mechanism on All Model Parameters). If
we add Laplace noise on all parameters with fixed noise scale b, it satisfies J-differential privacy.
Remark 3.13 (Achieving (1 — p)J-Differential Privacy by Random Selection). If we randomly select
model parameters with probability p and homomorphically encrypt the remaining parameters, it
satisfies (1 — p)J-differential privacy.

Remark 3.14 (Achieving (1—p)?2.J-Differential Privacy by Sensitive Parameter Selection). If we select
the most sensitive parameters with ratio p and homomorphically encrypt the remaining parameters, it
satisfies (1 — p)2.J-differential privacy.

Key Observation: Selective Parameter Encryption requires (1 — p)? times less privacy budget than
random selection and complete differential privacy with the same privacy preservation.

4 Evaluation

In this section, we focus on the evaluation results to show how our proposed universal optimization
scheme largely mitigates these overheads for real-world deployment but still guarantees adequate
defense against privacy attacks. Note that additional experimental results regarding other FL system
aspects are included in in the appendix.

4.1 Experiment Setup
Models. We test our framework on models in different ML domains with different sizes including
Llama-2 (7 billion) (more details in in the appendix).

HE Libraries. We implement our HE core using both PALISADE and TenSEAL. Unless otherwise
specified, our results show the evaluation of the PALISADE version.

Default Crypto Parameters. Unless otherwise specified, we choose the multiplicative depth of 1,
the scaling factor bit digit of 52, an HE packing batch size of 4096, and a security level of 128 as our
default HE cryptographic parameters during the evaluation.

Microbenchmark. For microbenchmarking HE overheads, we use an Intel 8-core 3.60GHz i7-7700
CPU with 32 GB memory and an NVIDIA Tesla T4 GPU on Ubuntu 18.04.6.

10



4.2 Optimizations

To mitigate the HE overhead surge, our optimization scheme Selective Parameter Encryption works
by selecting sensitive portions of parameters for encrypted computation while leaving the rest in
plaintext per desired overhead expectations and privacy promise. In this section, we first evaluate
the overhead optimization from Selective Parameter Encryption and then use the state-of-the-art
privacy attacks to evaluate the effectiveness of our selection defense during FL training.

Note that other parameter efficiency techniques|Tang et al.| (2019); [Hu et al.| (2021) for both training-
from-scratch and fine-tuning scenarios can also be applied in our system before Selective Parameter
Encryption and efficiently reducing the sizes of shared models directly helps with HE computation
and communication efficiency (we also include preliminary results on this part in the appendix.

4.2.1 Optimized Overheads

We first examine the overhead optimization gains from Selective Parameter Encryption. We
examine the overhead change when parameters with high privacy importance are selected and
encrypted. Figure [7]shows the overhead reduction from only encrypting certain parts of models,
where both overheads are nearly proportional to the size of encrypted model parameters, which is
coherent with the general relationship between HE overheads and input sizes. Note that after 10%
encryption per our Selective Parameter Encryption, the overheads are close to the ones of plaintext
aggregation.
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Figure 7: Computational (up) and Computation (down) Overhead Comparison For Models of
Different Sizes (logarithmic scale): 10% Encryption is based on our selection strategy and 50%
encryption is based on random selection.
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Figure 8: Time Distribution of A Training Cycle on ResNet-50: with a single AWS region bandwidth
of 200 MB/s for plaintext FL (left), HE w/o optimization (middle), and HE w/ optimization (right).
Optimization setup uses DoubleSqueeze with & = 1,000, 000 and encryption mask
with an encrypted ratio s = 30%.

Figure 8] provides a perspective of overhead distribution to dissect the training cycle composition for
the HE framework (both with and without optimizations) and the plaintext framework respectively
with a single AWS region bandwidth. For a medium-sized model, the overheads (both computation
and communication) from HE shift some portion of the local training procedure to aggregation-related
steps compared to Non-HE, but not with an infeasible margin relatively speaking. Though generally
smaller models require shorter training time, the overheads of the HE-based aggregation also drop
proportionally.
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4.2.2 Effectiveness of Selection Defense

To evaluate the defense effectiveness of Selective Parameter Encryption, we first use privacy
sensitivity to generate a privacy map (Figure [5) and then verify the effectiveness of selection by
performing gradient inversion (DLG [Zhu et al| (2019)). We also provide defense results with
Language Model Inversion Attacks[Fowl et al. on Bert.

Defense effectiveness on CV tasks. We use image samples from CIFAR-100 to calculate the parame-
ter sensitivities of the model. In the DLG attack experiments, we use Multi-scale Structural Similarity
Index (MSSSIM), Visual Information Fidelity (VIF), and Universal Quality Image Index (UQI) as
metrics to measure the similarity between recovered images and original training images to measure
the attack quality hence the privacy leakageﬂ In Figure compared to random encryption selection
where encrypting 42.5% of the parameters can start to protect against attacks, our top-10% encryption
selection according to the model privacy map only alone can defend against the attacks, meaning
lower overall overhead with the same amount of privacy protection.
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Figure 9: Selection Protection Against Gradient Inversion Attack|Zhu et al.[(2019) On LeNet with
the CIFAR-100 Dataset: attack results when protecting top-s sensitive parameters (left) vs protecting
random parameters (right). Each configuration is attacked 10 times and the best-recovered image is
selected.

Defense effectiveness on NLP tasks. We use language samples from wikitext dataset in our exper-
iment. As shown in Figure[I0] with our sensitivity map indicating the top 30% privacy-sensitive
parameters, our encryption mask can prevent inversion attacks that yields better defense results than
randomly encrypting 75% of the model parameters.
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Figure 10: Language Model Inversion Attacks (2022) on Bert with the wikitext Dataset:
- indicates falsely-inverted words and Yellow indicates correctly-inverted words.

Empirical Selection Recipe. Our selection strategy works by first encrypting more important
model parameters. Empirically, from our experimental investigation, encrypting top-30% most
sensitive parameters, as well as the first and last model layers, tends to be robust to avoid information
leakage [Hatamizadeh et al.|(2022) and attack defense (e.g. Figure[5), which can be used as a general
guideline on top of model privacy maps.

’The image similarity metric library used is at https://pypi.org/project/sewar/.
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5 Related Work

Existing Privacy Attacks On FL. Threats and attacks on privacy in the domain of Federated
Learning have been studied in recent years Mothukuri et al. (2021)). General FL privacy attacks can
be categorized into two types: inference attacks Nasr et al.| (2019); Wang et al.|(2019)); Truex et al.
(2019b)) and data leakage/reconstruction |Criswell et al.| (2014); [Bhowmick et al. (2018)); |[Hitaj et al.
(2017). Attacks are usually carried out on the models to retrieve certain properties of data providers
or even reconstruct the data in the training datasets. With direct access to more fine-grained local
models trained on a smaller dataset Wang et al.|(2019), the adversary can have a higher chance of a
successful attack. Moreover, further attacks can be performed using GAN-based attacks to even fully
recover the original data Hitaj et al.|(2017). The majority of the privacy attacks can be traced back to
the direct exposure of plaintext accesses to local models to other parties (usually the server).

Existing Non-HE Defense Mechanism. Local differential privacy has been adopted to protect
local model updates by adding differential noise on the client side before the server-side aggregation
Truex et al.|(2019a); |Byrd & Polychroniadou| (2020) where privacy guarantee requires large-scale
statistical noise on fine-grained local updates that generally degrades model performance by a large
margin. On the other hand, other work proposes to apply zero-sum masks (usually pair-wise) to mask
local model updates such that any individual local update is indistinguishable to the server Bonawitz
et al.[(2017); |So et al.| (2022). However, such a strategy introduces several challenges including
key/mask synchronization requirements and federated learner dropouts. Compared to these solutions
providing privacy protection in FL, HE is non-interactive and dropout-resilient (vs. general secure
aggregation protocols Bonawitz et al.| (2017);[So et al.[(2022)) and it introduces negligible model
performance degradation (vs. noise-based differential privacy solutions [Truex et al.|(2019a); Byrd &
Polychroniadoul (2020)).

Existing HE-based FL. Work. Existing HE-based FL work either apply restricted HE schemes
(e.g. additive scheme Paillier) Zhang et al.| (2020); Fang & Qian| (2021); Jiang et al.| (2021) without
extensibility to further FL aggregation functions as well as sufficient performance and security
guarantee (due to Paillier) or provide a generic HE implementation on FL aggregation |[Roth et al.
(2022); IBM| (2022)); Jiang et al.|(2021); |Du et al.| (2023)); Ma et al.| (2022). However, previous work
still leaves the HE overhead increase issue as an open question. In our work, we propose a universal
optimization scheme to largely reduce the overhead while providing promised privacy guarantees in a
both systematic and algorithmic fashion, which makes HE-based FL viable in practical deployments.

6 Conclusion

In this paper, we propose FedML-HE, the first practical Homomorphic Encryption-based privacy-
preserving FL system that supports encryption key management, encrypted FL platform deployment,
encryption optimizations to reduce overhead, and is designed to support efficient foundation model
federated training. We design Selective Parameter Encryption that selectively encrypts the most
privacy-sensitive parameters to minimize the size of encrypted model updates while providing
customizable privacy preservation. Future work includes quantitative and theoretical analysis of
the trade-offs among privacy guarantee, system overheads, and model performance compared to
other approaches (including difference privacy and secure aggregation approaches), and improving
threshold-HE’s performance in the FL setting as well as supporting decentralized primitives such as
Proxy Re-Encryption |Ateniese et al.| (2006).
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A Preliminaries

A.1 Federated Learning

Federated learning is first proposed in McMahan et al.| (2017), which builds distributed machine
learning models while keeping personal data on clients. Instead of uploading data to the server for
centralized training, clients process their local data and share updated local models with the server.
Model parameters from a large population of clients are aggregated by the server and combined to
create an improved global model.

The FedAvg McMahan et al.| (2017) is commonly used on the server to combine client updates
and produce a new global model. At each round, a global model W gy, is sent to N client devices.
Each client ¢ performs gradient descent on its local data with E local iterations to update the model
‘W;. The server then does a weighted aggregation of the local models to obtain a new global model,

Wiiop = Zf;l a; W, where «; is the weighting factor for client .

Typically, the aggregation runs using plaintext model parameters through a central server (in some
cases, via a decentralized protocol), giving the server visibility of each local client’s model in
plaintext.

A.2 Homomorphic Encryption

* HE.KeyGen()): given the security parameter )\, the key generation algorithm outputs a
key pair (pk, sk) and the related cryptographic context.

e HE.Enc(pk, m):the encryption algorithm takes in pk and a plaintext message m, then
outputs the ciphertext c.

e HE.Eval(c, f):the encrypted evaluation algorithm takes in a ciphertext message ¢ and a
function f, then outputs the computation result c’.

* HE.Dec(sk, ¢):the encryption algorithm takes in sk and a ciphertext message ¢, then
outputs the plaintext m/'.

Figure 11: General Scheme of Homomorphic Encryption

Homomorphic Encryption is a cryptographic primitive that allows computation to be performed
on encrypted data without revealing the underlying plaintext. It usually serves as a foundation for
privacy-preserving outsourcing computing models. HE has generally four algorithms (KeyGen, Enc,
Eval, Dec) as defined in Figure|l 1} The fundamental concept is to encrypt data prior to computation,
perform the computation on the encrypted data without decryption, and then decrypt the resulting
ciphertext to obtain the final plaintext.

Since FL model parameters are usually not integers, our method is built on the Cheon-Kim-Kim-Song
(CKKS) scheme |Cheon et al.|(2017), a (Ieveled) HE variant that can work with approximate numbers.

B Key Management And Threshold HE

Our general system structure assumes the existence of a potentially compromised aggregation server,
which performs the HE-based secure aggregation. Alongside this aggregation server, there also exists
a trusted key authority server that generates and distributes HE keys and related crypto context files
to authenticated parties (as described previously in Algorithm 1 in the main paper. We assume there
is no collusion between these two servers.

Moreover, secure computation protocols for more decentralized settings without an aggregation
server are also available using cryptographic primitives such as Threshold HE |Aloufi et al.| (2021)),
Multi-Key HE |Aloufi et al.|(2021)), and Proxy Re-Encryption |Ateniese et al.|(2006); Jin et al.| (2022).
In such settings, secure computation and decryption can be collaboratively performed across multiple
parties without the need for a centralized point. We plan to introduce a more decentralized version
of FedML-HE in the future. Due to the collaborative nature of such secure computation, the key
management will act more as a coordination point instead of a trusted source for key generation.
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Figure 12: Microbenchmark of Threshold-HE-Based FedAvg Implementation: we use a two-party
threshold setup. Both the single-key variant and the threshold variant are configured with an estimated
precision of 36 for a fair comparison.

The threshold variant of HE schemes is generally based on Shamir’s secret sharing Shamir| (1979)
(which is also implemented in PALISADE). Key generation/agreement and decryption processes are
in an interactive fashion where each party shares partial responsibility of the task. Threshold key
generation results in each party holding a share of the secret key and threshold decryption requires
each party to partially decrypt the final ciphertext result and merge to get the final plaintext result.
We provide benchmarkings of the threshold-HE-based FedAvg implementation in Figure [12}

C Framework APIs and Platform Deployment

C.1 Framework APIs

Table [3]shows the framework APIs in our system related to HE.

API Name Description
Generate a pair of HE keys
(public key and private key)
Flatten local trained model

tensors into a 1D local model

pk, sk = key_gen(params)

1d_local_model = flatten(local_model)

enc_local_model = enc(pk, 1d_model) Encrypt the 1D model
enc_global_model = he_aggregate( Homomorphically aggregate
enc_models[n], weight_factors[n]) a list of 1D local models
dec_global_model = dec(sk, enc_global_model) | Decrypt the 1D global model
global_model = reshape( Reshape the 1D global model
dec_global_model, model _shape) back to the original shape

Table 3: HE Framework APIs

C.2 Deploy Anywhere: A Deployment Platform MLOps For Edges/Cloud

We implement our deployment-friendly platform such that FedML-HE can be easily deployed across
cloud and edge devices.. Before the training starts, a user uploads the configured server package and
the local client package to the web platform. The server package defines the operations on the FL
server, such as the aggregation function and client sampling function; the local client package defines
the customized model architecture to be trained (model files will be distributed to edge devices in the
first round of the training). Both packages are written in Python. The platform then builds and runs
the docker image with the uploaded server package to operate as the server for the training with edge
devices configured using the client package.

As shown in Figure [T3] during the training, users can also keep tracking the learning procedure
including device status, training progress/model performance, and FedML-HE system overheads
(e.g., training time, communication time, CPU/GPU utilization, and memory utilization) via the web
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interface. Our platform keeps close track of overheads, which allows users to in real-time pinpoint
HE overhead bottlenecks if any.

B Run Overview ) Training Status =] Results ] system & Models B Logs

1s 6s 11s 165 21s
Figure 13: Deployment Interface Example of FedML-HE: Overhead distribution monitoring on each

edge device (e.g. Desktop (Ubuntu), Laptop (MacBook), and Raspberry Pi 4), which can be used to
pinpoint HE overhead bottlenecks and guide optimization.

D Additional Experiments

. HE Non-HE | Comp . . Comm
Model Model Size Time (s) Time (s) | Ratio Ciphertext Plaintext Ratio
Linear Model 101 0216 0.00 | 150.85 | 26600KB | LIOKB | 240.83
?mese“es 5,609 2792 0.233 12.00 | 532.00KB | 52.65KB | 10.10
ransformer
MLP (2 FC) 79,510 0.586 0010 | 6046 | 520MB | 311.98KB | 17.05
LeNet $8,648 0.619 0.011 5795 | 597MB | 34952KB | 17.50
RNT(IZFLCS’)TM 822,570 1.195 0.013 91.82 | 5247MB | 3.14MB | 16.70
CNFZ(%S)"“" 1,663,370 2.456 0.058 | 4223 | 103.15MB | 635MB | 16.66
MobileNet 3,315,428 9.481 1.031 920 | 21041MB | 12.79MB | 1645
ResNet-18 12,556,426 19.950 1.100 18.14 | 796.70MB | 47.98MB | 16.61
ResNet-34 21,797,672 37.555 2.925 1284 | 135GB | 8328MB | 16.60
ResNet-50 25,557,032 | 46.672 5379 8.68 158GB | 97.79MB | 1658
GroupViT 55,726,609 86.098 19.021 432 345GB | 21283 MB | 1661
Vision 86,389,248 | 112.504 17.739 6.34 535GB | 329.62MB | 16.62
Transformer
BERT 109,482,240 | 136914 19.674 | 696 6.78GB | 417.72MB | 16,62
Llama 2 6.74B 13067.154 | 2423976 | 539 | 417.43GB | 135GB | 30.92

Table 4: Vanilla Fully-Encrypted Models of Different Sizes: with 3 clients; Comp Ratio is calculated
by time costs of HE over time costs of Non-HE; Comm Ratio is calculated by file sizes of HE over
file sizes of Non-HE. CKKS is configured with default crypto parameters.

We evaluate the HE-based training overheads (without our optimization in place) across various FL
training scenarios and configurations. This analysis covers diverse model scales, HE cryptographic
parameter configurations, client quantities involved in the task, and communication bandwidths. This
helps us to identify bottlenecks in the HE process throughout the entire training cycle. We also
benchmark our framework against other open-source HE solutions to demonstrate its advantages.
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D.1 Parameter Efficiency Techniques in HE-Based FL

Table [5] shows the optimization gains by applying model parameter efficiency solutions in HE-Based
FL.

Models PT (MB) CT (ﬁth)
ResNet-18
(12 M) 47.98 796.70 MB | 19.03
Tang et al.{(2019)
B BERT
(110 M) 417.72 6.78 GB 16.66
Hu et al. (2021}

Table 5: Parameter Efficiency Overhead: PT means plaintext and CT means ciphertext. Communica-
tion reductions are 0.60 and 0.96.

D.2 Results on Different Scales of Models

‘We evaluate our framework on models with different size scales and different domains, from small
models like the linear model to large foundation models such as Vision Transformer |Dosovitskiy et al.
(2020) and BERT Devlin et al.|(2018)). As Table E] show, both computational and communicational
overheads are generally proportional to model sizes.

Table {4|illustrates more clearly the overhead increase from the plaintext federated aggregation. The
computation fold ratio is in general 5x ~ 20x while the communication overhead can jump to a
common 15x. Small models tend to have a higher computational overhead ratio increase. This
is mainly due to the standard HE initialization process, which plays a more significant role when
compared to the plaintext cost. The communication cost increase is significant for models with
sizes smaller than 4096 (the packing batch size) numbers. Recall that the way our HE core packs
encrypted numbers makes an array whose size is smaller than the packing batch size still requires a
full ciphertext.

HE Scaling | Comp | Comm Model Test
Batch Bits s) (MB) Accuracy
Size A (%)
1024 14 8.834 | 407.47 -0.28
1024 20 7.524 | 407.47 -0.21
1024 33 7.536 | 407.47 0
1024 40 7.765 | 407.47 0
1024 52 7.827 | 407.47 0
2048 14 3.449 | 204.50 -0.06
2048 20 3414 | 204.50 -0.13
2048 33 3.499 | 204.50 0
2048 40 3.621 | 204.50 0
2048 52 3.676 | 204.50 0
4096 14 1.837 | 103.15 -1.85
4096 20 1.819 | 103.15 0.32
4096 33 1.886 | 103.15 0
4096 40 1.998 | 103.15 0
4096 52 1.926 | 103.15 0

Table 6: Computational & Communicational Overhead of Different Crypto Parameter Setups: tested
with CNN (2 Conv+ 2 FC) and on 3 clients; model test accuracy As is the difference between the
best plaintext global model and the best global encrypted global models.
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D.3 Results on Different Cryptographic Parameters

We evaluate the impacts of variously-configured cryptographic parameters. We primarily look into
the packing batch size and the scaling bits. The packing batch size determines the number of slots
packed in a single ciphertext while the scaling bit number affects the “accuracy” (i.e., how close
the decrypted ciphertext result is to the plaintext result) of approximate numbers represented from
integers.

From Table[6] the large packing batch sizes in general result in faster computation speeds and smaller
overall ciphertext files attributed to the packing mechanism for more efficiency. However, the scaling
factor number has an almost negligible impact on overheads.

Unsurprisingly, it aligns with the intuition that the higher bit scaling number results in higher
“accuracy” of the decrypted ciphertext value, which generally means the encrypted aggregated model
would have a close model test performance to the plaintext aggregated model. However, it is worth
mentioning that since CKKS is an approximate scheme with noises, the decrypted aggregated model
can yield either positive or negative model test accuracy As, but usually with a negative or nearly
zero A.

D.4 Impact from Number of Clients

As real-world systems often experience a dynamic amount of participants within the FL system, we
evaluate the overhead shift over the change in the number of clients. Figure[T4a]breaks down the
cost distribution as the number of clients increases. With a growing number of clients, it also means
proportionally-added ciphertexts as inputs to the secure aggregation function thus the major impact is
cast on the server. When the server is overloaded, our system also supports client selection to remove
certain clients without largely degrading model performance.
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Figure 14: Results on Different Number of Clients and Communication Setup

D.S5 Communication Cost on Different Bandwidths

FL parties can be allocated in different geo-locations which might result in communication bottlenecks.
Typically, there are two common scenarios: (inter) data centers and (intra) data centers. In this part,
we evaluate the impact of the bandwidths on communication costs and how it affects the FL training
cycle. We categorize communication bandwidths using 3 cases:
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* Infiniband (IB): communication between intra-center parties. 5 GB/s as the test bandwidth.

* Single AWS Region (SAR): communication between inter-center parties but within the same
geo-region (within US-WEST). 592 MB/s as the test bandwidth.

* Multiple AWS Region (MAR): communication between inter-center parties but across
the different geo-region (between US-WEST and EU-NORTH). 15.6 MB/s as the test
bandwidth.

As shown in Figure [I4b] we deploy FedML-HE on 3 different geo-distributed environments, which
are operated under different bandwidths. It is obvious that the secure HE functionality has an
enormous impact on low-bandwidth environments while medium-to-high-bandwidth environments
suffer limited impact from increased communication overhead during training cycles, compared to
Non-HE settings.

D.6 Different Encryption Selections

Table[/|shows the overhead reductions with different selective encryption rates.

Comp | Comm
Ratio Ratio

Enc w/ 0% 17.739 | 329.62MB | 1.00 1.00
Enc w/ 10% | 30.874 | 844.49MB | 1.74 2.56
Enc w/30% | 50.284 1.83 GB 2.83 5.69
Enc w/50% | 70.167 2.83 GB 3.96 8.81
Enc w/70% | 88.904 3.84 GB 5.01 11.93
Enc w/ All | 112.504 5.35GB 6.34 16.62
Table 7: Overheads With Different Parameter Selection Configs Tested on Vision Transformer: “Enc
w/ 10%” means performs encrypted computation only on 10% of the parameters; all computation and
communication results include overheads from plaintext aggregation for the rest of the parameters.

Selection C?Slp Comm

D.7 Comparison with Other FL-HE Frameworks

We compare our framework to the other open-sourced FL frameworks with HE capability, namely
NVIDIA FLARE (NVIDIA) and IBMFL.

Both NVIDIA and IBMFL utilize Microsoft SEAL as the underlying HE core, with NVIDIA using
OpenMinded’s python tensor wrapper over SEAL and TenSEAL; IBMFL using IBM’spython wrapper
over SEAL and HELayers (HELayers also has an HEIib version). Our HE core module can be replaced

Key Comm HE
Frameworks HE Core Management Comp (s) (MB) Mulltl-Par.ty
Functionalities
0 PALISADE v 2456 | 105.72 PRE,
urs . . ThHE
PRE.
Ours (w/ Opt) | PALISADE v 0874 | 1637 ThHE
SEAL
Ours (TenSEAL) v 3.980 | 129.75 _
Nvidia FLARE | SEAL
(9a1b226) | (TenSEAL) v 2826 | 129.75 —
IBMFL SEAL
(8c8abl1) | (HELayers) O 3.955 | 86.58 —
Plaintext — — 0.058 6.35 —

Table 8: Different Frameworks: tested with CNN (2 Conv + 2 FC) and on 3 clients; Github commit
IDs are specified. For key management, our work uses a key authority server; FLARE uses a security
content manager; IBMFL currently provides a local simulator.
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with different available HE cores, to give a more comprehensive comparison, we also implement a
TenSEAL version of our framework for evaluation.

Table[8|demonstrates the performance summary of different FedML-HE frameworks using an example
of a CNN model with 3 clients. Our PALISADE-powered framework has the smallest computational
overhead due to the performance of the PALISADE library. In terms of communication cost, FedML-
HE (PALISADE) comes second after IBMFL’s smallest file serialization results due to the efficient
packing of HELayers’ Tile tensors|Aharoni et al.| (2011).

Note that NVIDIA’s TenSEAL-based realization is faster than the TenSEAL variant of our system.
This is because NVIDIA scales each learner’s local model parameters locally rather than weighing
ciphertexts on the server. This approach reduces the need for the one multiplication operation usually
performed during secure aggregation (recall that HE multiplications are expensive). However, such
a setup would not suit the scenario where the central server does not want to reveal its weighing
mechanism per each individual local model to learners as it reveals partial (even full in some cases)
information about participants in the system.
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