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ABSTRACT

In this paper, we propose Label-Aware Noise Elimination (LANE), a new ap-
proach to learning with noisy labels. Atits core, LANE introduces a new metric—
label-aware margin—aimed at quantifying the degree of noise of each training ex-
ample (or quality thereof). LANE leverages the semantic relations between classes
and monitors the training dynamics of the model on each training example to dy-
namically lower the weight of training examples that are perceived to have noisy
labels. We test the effectiveness of LANE on multiple text classification tasks
and benchmark our approach on a wide variety of datasets with various numbers
of classes and amounts of label noise. LANE considerably outperforms strong
baselines on all datasets and settings, obtaining significant improvements ranging
from an average improvement of 2.4% in F1 on manually annotated datasets to
a considerable average improvement of 4.5% F1 on datasets with higher level of
label noise. We carry out a comprehensive analysis of LANE and identify the key
components that lead to its success.

1 INTRODUCTION

Supervised deep learning models are ubiquitous in many applications, but their success depends on
the quality of the training data. Many existing datasets are annotated by humans on crowdsourcing
platforms (Demszky et al., 2020) or by automatic approaches such as distant (or weak) supervision
(Mintz et al.,2009; Wang et al., 2012} |/Abdul-Mageed & Ungar,2017), and, while weak supervision
inherently introduces unwanted mislabeled examples, humans—no matter how careful, are also
prone to making labeling errors, especially on tasks that involve distinguishing between a large
number of closely confusable or overlapping classes, e.g., emotion detection (Mohammad, 2012
Islam et al.l 2019; |Strapparava et al., 2012} [Liu et al., [2019) or topic classification (Lewis et al.,
2004). The mislabeled training examples are particularly harmful when learning large overparam-
eterized neural networks, since these networks can achieve zero training error on any dataset, and
have very poor generalization capabilities (Zhang et al., 2016).

The Area Under the Margin (AUM) |Pleiss et al.|(2020) was recently proposed as a metric to identify
mislabeled samples from a training set. The AUM for a sample measures the difference between the
logit corresponding to its assigned label and the largest logit among all non-assigned labels averaged
across the training epochs. The assigned label is that assigned by either humans, weak supervision,
or even Large Language Models. The AUM for a mislabeled sample is expected to be low (likely
negative) since the model—through generalization—tends to predict the sample in its (hidden) true
class, and hence, the largest logit (among all logits) does not correspond to the assigned (wrong)
label (Pleiss et al.,[2020), but to the (hidden) true label. Samples with low AUM are subsequently re-
moved from the training set using a fixed AUM threshold. Similarly, the small-loss trick approaches
Han et al.[(2018a)); Li et al.|(2020) that use the loss value in the convergence to identify mislabeled
examples remove the large-loss examples from the training set. However, through either the fixed
AUM threshold or large loss elimination, hard but valuable clean samples are unnecessarily removed
from the training set. [Zhang et al.| (2024) instead proposed to use all training samples, each with
a different weight estimated using a sample weighting mechanism called Hyperspherical Margin
Weighting (HMW). That is, HMW weights each sample according to the Integrated Area Margin
(IAM), which is an extension of the AUM metric that contrasts the logit of the assigned label with
the two largest other logits. However, neither AUM nor IAM captures any semantic similarities that
inherently exist between labels. For example, in emotion detection, “anger” is semantically more
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similar to “fear” than it is to “joy”, and hence, a sample with the true (hidden) label “anger” but with
assigned label “fear” should be penalized less than the same sample having the assigned label “joy”.

To this end, we introduce Label-Aware Noise Elimination (LANE), a new approach to learning with
noisy labels that specifically captures semantic relations between labels. In our approach, we retain
all training samples, but we weight them differently based on the model’s behavior on each sample.
Thus, similar to [Zhang et al.| (2024)), our model has access to a much larger diversity of samples
during training, including the hard but clean ones. In weighting the samples, we estimate the degree
of “noisiness” of the assigned labels by introducing label-aware margins averaged across training
iterations that capture inter-class semantic similarities. Our label-aware margins extend the concept
of margins (Pleiss et al) [2020) by adaptively weighting samples when the assigned label does not
consistently match the model’s predicted label (over the training iterations). Note that the model’s
predicted label likely corresponds to the true (hidden) label if that label is consistently predicted by
the model over the training iterations because of the ability of the model to generalize from other
training samples that belong to the same label. Thus, LANE leverages Area Under the Margin
and jointly trains two networks to identify mislabeled samples and assign a per sample weight that
accounts for the semantic relation between labels so that an assigned mislabel receives a lower
weight when it is more distant from the true (hidden) label and a higher weight when they are close to
each other. We learn the inter-class semantic similarities using a label-aware supervised contrastive
loss, trained jointly with a cross-entropy loss, to better distinguish between easily confusable labels.

We evaluate the effectiveness of LANE on ten datasets: Empathetic Dialogues (Rashkin et al.;|2019)),
GoEmotions (Demszky et al., [2020), ISEAR (Scherer & Wallbott, [1994), CancerEMO (Sosea &
Caragea, 2020), RCV1 (Lewis et al.}2004), SciHTC (Sadat & Carageal, 2022), SST-5 (Socher et al.}
2013a), Amazon Review (McAuley & Leskovec| 2013), Yelp Review (Asghar, 2016), and Yahoo
Answer (Chang et al.l 2008). Using these datasets, we show that LANE works well on a wide
range of tasks and domains (emotion and general text classification; social networks, dialogues, and
personal experiences). In all our experiments, automatically scaling down the weight of identified
noisy samples from the training set shows great potential, improving the average performance on
our original datasets by 2.4% F1 over AUM and by 3.2% over HMW. On noisy datasets, our method
boosts the performance by an average 2.5% F1 over AUM and 3.4% over HMW.

We summarize our contributions as follows: 1) We introduce LANE, a new approach that allows
models to learn under label noise from a large diversity of samples and, at the same time, leverages
inter-class semantic similarities to automatically identify and minimize the harmful effects of
noisy samples; 2) We evaluate the effectiveness of our approach on ten text classification datasets
from different tasks and domains and show improvements in performance compared with strong
baselines and prior works; 3) We carry out a comprehensive analysis and ablation study of LANE
to validate the effectiveness of our proposed method.

2 RELATED WORK

Learning with label noise has received substantial attention over the recent years due to the high risk
of deep learning models to overfit (Liu & Taol [2015} (Goldberger & Ben-Reuven, 2016} |[Ren et al.}
2018;Saxena et al.L[2019;Wang et al.,|2019; |Liu & Guo, [2020; Englesson & Azizpour, [2021}Zhang
& Plankl 2021} Jiang et al.l [2021; [Margatina et al., 2021} L1 et al., 2021} [Plank, 2022} |Gao et al.,
2022; |Karim et al.| 2022; [Garg et al., [2023; /Wei et al., 2023c;bga; |Li et al., 2023} Zou et al.| 2024;
Cheng et al., 2021} |L1 et al., 2022; |Han et al., 2018a; Jiang et al.l 2018a; [Bai et al., 2022} [Zhang
et al.l 2024} |Pan et all 2025} [Liu et al., 2025). For example, |Goldberger & Ben-Reuven| (2016)
propose to add a noise layer in the neural network architecture, whose parameters can be learned
for an accurate label estimation. [Saxena et al.|(2019) introduce a curriculum-learning approach that
uses learnable data parameters to rank the importance of examples in the learning process. These
parameters are then leveraged to decide the data to use at different training stages. Wang et al.
(2019) introduce Symmetric cross entropy Learning (SL), a method that addresses the issue of both
under-learning of “hard” classes and overfitting of “easy” classes. Focal loss (Lin et al.l [2017)
incorporates a soft weighting scheme that puts emphasis on harder samples. |Liu & Guo| (2020)
on the other hand propose to alter the loss function to make it more robust under label noise and
introduce Peer Loss Functions, which evaluate predictions on both the samples at hand, as well as
carefully automatically constructed peer samples. In our work, we also alter the loss and introduce
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a weighted cross-entropy loss where a sample’s weight reflects its quality or level of noise that is
learned jointly using a label-aware supervised contrastive loss.

Supervised contrastive learning brings the latent representations of input samples closer together
if they belong to the same class (positives) and further apart if they belong to different classes
(negatives). |Gunel et al.|(2020) use a supervised contrastive loss to improve fine-tuning performance
of pre-trained language models in several few-shot learning scenarios. |Khosla et al.[(2020) introduce
a variation of the traditional contrastive loss which aims to produce more samples in the positive set.
Instead of only considering samples with the same class as belonging to the positive set, they propose
to use data augmentation to generate more positive samples. |Suresh & Ong| (2021)) build upon this
approach but argue that not all negative samples are equal. To this end, they propose Label-aware
Contrastive Loss (LCL) to infer the relations between classes and weight samples differently. In
contrast, we propose label-aware margins that extend the concept of margins (Pleiss et al., 2020;
Bartlett et al., |2017) to adaptively weigh samples according to their level of noise and inter-class
semantic similarities in order to minimize the harmful effects of noisy samples.

Pleiss et al.|(2020) and|Zhang et al.|(2024) use Area Under the Margin (AUM) and Integrated Area
Margin (IAM), respectively, to monitor the behavior of the model on each sample and identify low-
AUM/IAM samples as mislabeled samples. However, neither AUM nor IAM captures the semantic
relation between the assigned (wrong) label and the true (hidden) label. Swayamdipta et al.| (2020)
introduce data cartography that separates training data into three regions, easy-to-learn, ambigu-
ous, and hard-to-learn (many of which are mislabeled) to understand the benefits of each region
to learning and generalization. Unicon (Karim et al.| 2022)) leverages a semi-supervised learning
(SSL) framework that considers potentially noisy labeled data as unlabeled examples in an SSL al-
gorithm. DISC (Li et al.| 2023) utilizes an instance-specific dynamic thresholding mechanism that
blocks access to specific training examples based on the momentum of each instance’s memoriza-
tion strength. Co-teaching |Han et al.[(2018a) uses two networks to combate noisy labels, with each
network extracting samples with small loss and feeding them to its peer network for further training.
DivideMix |Li et al| (2020) divides the training data into a labeled set with clean samples and an
unlabeled set with noisy samples and trains the model in a semi-supervised fashion, maintaining
two diverged networks where each network uses the dataset division from the other network. We
compare the performance of LANE with that of many of the above works.

3 PROPOSED APPROACH

Here, we first provide background on Area Under the Margin (AUM) introduced by [Pleiss et al.
(2020) (43.1) and then present Label-Aware Noise Elimination (LANE), our new approach that
leverages AUM to improve model robustness from noisy labels (§3.2)).

3.1 BACKGROUND

The margin M (Pleiss et al., 2020; Bartlett et al., 2017; |[Elsayed et al.l 2018; Jiang et al., |2018b) of
an example x with assigned label y at a training epoch ¢ is defined as follows:

M®B(x,y) = zl(/t) (x) — maa:kgzyz,(f)(x) ()

where zg(,t) (x) is the logit corresponding to assigned label y, and maz 1=, z,(f) (x) is the largest other

logit corresponding to label k (from among all non-assigned labels). The margin measures how
different the assigned label is compared to a model’s belief in a label at some epoch. A negative
margin likely implies an incorrect prediction, whereas a positive margin implies a correct prediction.
The label quality (or noise) of an example x is measured by averaging the margins of x across all
training epochs T, i.e., the Area Under the Margin (AUM) (Pleiss et al.| 2020)), defined as follows:

1 T
AUM(x,y) = 7 > MY (x,y) )
t=1
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Algorithm 1 LANE: Label-Aware Noise Elimination

1: Input: Training data D = {(x,y:)}1, classifier network 6, auxiliary network I, total epochs 7.
2: Initialize: For each example (x;, y;), initialize ALM© (x4,9:) = 0.
3: forepocht =1,...,7 do

4: for each batch B C D do ®

S: For each x; € B, compute logits z, ' (x;) using 6 and class weights (probabilities) wx,,» using IT

for all labels k.
6: for all (x;, y;) in batch B do
7: MO (x4, y;) z?(fb) (xi) — maxgz2y, z,(;)(xi) (Equation 1)
8: LMD (xi,y:) + 2 - MO (xy,y:) if MO (x5,5) < 0 else LMY (x;,5:) <

X;,7
M® (x;,y;) where j = argmax,,_, . z,(:)(xi)
9: ALM® (xi, 1) = § 3072 LMT (x4, )
10: end for
11: Nt « {(xi,4:i) € B| ALMY (x;,y:) < 0}
12: Compute p; and o according to Equations 5 and 6.
13: for all (x;, y;) in batch B do
14: Ao (Xi, i) < 1
15: if (x;,7:) € N* and ALM“)(xi,yi) < it then
() (s i) —
16: Aep(Xi,yi) < exp (— (ALM ;xlz’yl) ””2)
9t
17: end if
18: end for
19: L _ Z\B\ H(H( ) ) +Z|B\ —1 Z 1 Wx;,yx; ~cxp(h,9(i'hf,)
: LSCL = ) _;—1 Xi), Yi i=1 TPyx,| 24pePx, ©8 S eeBiyartum, Uxivs -exp(hg k)

20: EwC’E — Z‘Lill AEE(Xia yl) : H(Q(Xz), yl)
21: Minimize £ < Lyce + LrscL
22: end for
23: end for

Pleiss et al.| (2020) first identify mislabeled samples by learning a threshold of separation between
the AUMs of clean and erroneous samples through a new artificial class that mimics the training
dynamics of mislabeled data and then remove all samples that fall under this threshold.

3.2 OUR PROPOSAL: LABEL-AWARE NOISE ELIMINATION

While the AUM metric is effective for identifying noisy data, it has two key weaknesses: 1) it treats
all label errors equally, ignoring the semantic relations between classes, and 2) it relies on a hard
threshold to completely remove samples, which can discard valuable but difficult clean samples. To
address these issues, we introduce Label-Aware Noise Elimination (LANE). Instead of removing
samples, LANE retains all training samples and assigns a per sample dynamic weight. This is
achieved by jointly training two networks to assess not only the likelihood of a mislabel but also
its semantic severity, ensuring that hard-but-clean samples are preserved while the impact of noisy
labels is minimized. The core of this mechanism is a redefinition of the traditional margin. We call
this new metric the Label-aware Margin (LM). Algorithm [I] presents the learning of LANE.

Label-aware Margin (LM) LM operates within LANE’s two-network architecture, where a main
classifier network 6 and an auxiliary network II are trained jointly. The LM rescales the standard
margin, M—calculated from the logits of the main classifier /—now using semantic similarity
weights produced by the auxiliary network II. This rescaling is applied specifically when the margin
is negative, which is a strong indicator of a mislabel. We adjust the margin dynamically as follows:

o MO (x,y) if MO (x,y) <0

W, j
LM(t)(x, y) = where j = argmaxk!:yz,(:) (x) 3)
M® (x,y) otherwise

where wy ; is the weight obtained using the auxiliary network II, which produces higher values if
the (potentially wrong) assigned label y of x is semantically close to the (hidden) likely true label j
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LOGITS

TEXT ‘ SDN JOY FER ANG SRP DSG TRS ANT ‘ M M
x;  The doctors do not have any options for him. ‘ 11 045 12 1.8 027 156 011 -0.7 ‘ —-0.6 —0.67
x3  I'have found so much info and support on this site, and yet they accept me for who I am. ‘ 1.1 156 1.2 045 027 011 18 -07 ‘ —-0.6 —1.15

Table 1: Comparison of Margin (M) and Label-aware Margin (LM) for two examples. The assigned label
(fear) is shown in red bold and the model predicted label for each example is shown in blue bold. For both
examples, we observe that M is —0.6 (i.e., 1.2 — 1.8). In the first example, LM is rescaled slightly since the
assigned emotion fear is semantically close to the emotion corresponding to the largest other logit (i.e., anger).
In contrast, we observe that in the second example, the assigned emotion fear is semantically distant from the
emotion corresponding to the largest other logit which is trust, and hence, LM becomes much smaller.

predicted by the model, and lower values otherwise (i.e., if the potentially wrong assigned label is
semantically distant from the model prediction). Note that we scale the margins only if the margins
are negative, since these are the potentially problematic examples that may be overly ambiguous
or mislabeled. To showcase the difference between our proposed label-aware margin LM and the
vanilla margin M, we present in Table [I|two examples from an emotion dataset alongside the logits
produced by the model as well as the margin M and label-aware margin LM. Both of these examples
have the assigned label the fear emotion—while x; can be viewed as ambiguous, X5 is clearly
mislabeled. However, although the margin of both examples is the same M = —0.6, we notice that
the assigned label fear is semantically close to the label corresponding to the largest other logit (i.e.,
anger)—the model prediction in the first example, whereas in the second example, it is semantically
distant from the label corresponding to the largest other logit (i.e., trust)}—the model prediction. We
emphasize that our LM captures this semantic difference between labels. Specifically, we observe
that the LM of the first example, where the prediction and the assigned label are semantically close,
i.e., anger and fear, is larger than the LM of the second example where the prediction and the
assigned label are semantically distant, i.e., trust and fear.

Average Label-aware Margin (ALM) At an arbitrary iteration ¢ we average the LMs across the
training iterations, from the beginning up until the current iteration ¢ and obtain the Average Label-
aware Margin (ALM) as follows: ALM® (x, y) = 3 S LMD (x, ).

Mitigating the harmful effect of mislabed examples = We propose a weighted cross entropy loss
during training and assign higher weights for high-ALM examples and lower weights otherwise as
described below. Let N = {x; | ALM®) (x;, ;) < 0} be the set of examples at iteration ¢ that have
negative ALMs and ALM (N t) be the distribution of their ALMs. At t, we scale down the loss on ex-
amples from N whose ALM is below the mean of the ALM distribution. We assume that examples
with ALM above the mean are hard but clean examples and do not reduce their importance. Specif-
ically, we dynamically fit a truncated Gaussian distribution of mean p; and variance o at iteration ¢
on all samples with ALM under the mean and assign a weight for each sample x; as follows:

®
exp ( (ALM (ié’yi)“tf) ifx; € Nt

2
t N ¢
Aok (Xi y:) = and ALM (x;, ;) < pu @
1 otherwise

During training, we estimate the mean y; and variance o, using the historical predictions of the
model:

1

B = T > AMO(x;, ) (5)
(xi,yi)GNt
1
o = I3 > (ALMD(xi, ) — pu)? (6)
(%4,y:)EN?

Intuitively, a low weight for an example indicates that the example produced an ALM that is con-
sistently below the mean of the negative ALM distribution. As we have shown, such examples are
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potentially mislabeled and may hurt generalization. Thus, at each training iteration ¢ we simply
rescale the cross entropy loss, assigning lower weight to potentially mislabeled examples:

|Bl
Luce =Y Nop(xiyi) - H(0(x:),:) (7
i=1
where 6(x;) is the class distribution of model 6 on example x;, |B| is the batch size, and H is the

cross-entropy. To better distinguish between easily confusable classes, we extend the supervised
contrastive loss by |Gunel et al.|(2020) and propose a label-aware supervised contrastive loss:

W, gy, * XP(R, - hp)

. 0 . ho
SEBYs#Yx; Wx;,ys exp(hxi hs)

®)

|Bl |B|
-1
X

Lrscr =Y H(x:),4:)+ Y P > log 5
i=1 i=1 pEPx,

where B is the current batch, Pk, is the set of positives p for example x; (i.e., in the context of
supervised contrastive learning the positives are all examples that belong to the same class as x;
and its augmentation (Khosla et al., 2020)). hii is the embedding of x; produced by our classifier
model 0. wx,,y, and wy, ., represent the soft-assignment of example x; to its assigned label yx,
and to the non-assigned label y, where y; # yx,. To obtain these soft-assignments we simply
utilize a projection layer on top of II followed by softmax, which produces the weights wy, . .

The final loss in LANE is the sum of the weighted cross entropy losses and the contrastive loss:
L=Lyce+ LLscL )

4 EXPERIMENTS

4.1 DATASETS

We use the following datasets in our experiments: 1. Empathetic Dialogues (Rashkin et al., 2019)),
2. GoEmotions (Demszky et al., [2020), 3. ISEAR (Scherer & Wallbott, |1994), 4. CancerEMO
(Sosea & Caragea, 2020), 5. RCV1 (Lewis et al., 2004), 6. SciHTC (Sadat & Caragea, [2022), 7.
SSTS5 (Socher et al.,2013b), 8. Amazon Review (McAuley & Leskovec| [2013), 9. Yelp Review
(Asghar,2016), 10. Yahoo Answer (Chang et al.|[2008). We provide dataset details in Appendix@

4.2 EXPERIMENTAL SETUP

We evaluate the effectiveness of LANE on the above datasets under two label noise setups: 1)
Original datasets, where the label noise comes from annotation errors in the dataset collection
process; and 2) 20% noise, where we randomly shuffle the labels of 20% of the training data
(an additional setup of 40% random noise is shown in Appendix . We use the HuggingFace
Transformers (Wolf et al.,[2020) library for our BERT implementation. Both 6 and IT are BERT base
uncased models. The datasets we consider make their train/validation/test splits available, hence, we
use the provided splits in our experiments. Similar to|Khosla et al.[(2020), to expand the positive set
of examples in the contrastive loss, we augment our data using synonym replacement (Kolomiyets
et al., 2011), SwitchOut (Wang et al., 2018)), and backtranslation (Tiedemann & Thottingal, [2020).
In backtranslation we translate from English to German and back to English. For all datasets we
follow the evaluation metrics used in the works introducing the datasets. The initial batch size is set
to 32, hence the total batch size (i.e., including augmentations) is 256. In our training setup, we only
scale down the importance of examples during training if their ALM is below a threshold that we set
as the ALM mean of examples with negative ALMs (Eq. [5). We also experimented with different
ALM thresholds such as 0, but observed worse performance than using the mean (see Appendix [E).

4.3 BASELINE MODELS

We use BERT (Devlin et al.l 2019) base uncased model in all experiments (denoted by BASE).
We compare LANE against methods that use training dynamics to assess the data quality, as well
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Dataset \ Empathetic Dialogues (WwF1)  GoEmotions (wF1) ISEAR (wF1) CancerEmo (wF1) RCV1 (wF1)
BASE 58.5+1.2 63.6 + 1.2 71.5+£0.6 75.8+£0.8 56.8£0.8
E2L 57.6+£0.8 63.24+1.2 71.3+£0.7 75.9+£0.9 54.3+1.1
H2L 58.9+1.4 64.240.7 72.0£0.6 76.3+1.3 55.8 £ 1.4
AMG 59.0£0.6 64.84+0.6 73.4+0.5 76.1+£0.8 523+1.1
NSE 58.1+£1.9 63.8+1.1 722+08 76.2+£0.7 55.7+1.3
PLF 58.4+1.1 63.4+0.8 71.9+1.2 75.9+0.6 56.7+£2.2
AUM 58.4+0.6 63.1+1.3 71.8+£0.8 76.0£0.9 56.3+£0.6
LCL 59.1+1.0 64.84+0.7 724+0.5 76.5+0.9 57.9+0.6
scL 58.9+0.7 62.8+1.1 71.5+£09 76.2+£0.6 56.9+ 1.7
DISC 59.4+09 63.24 1.4 723+1.3 76.4+1.1 56.5+ 1.4
UNICON 58.4+0.7 63.14+0.9 725+1.1 76.6 £1.3 56.9+1.1
HMW 57.6+1.1 62.8 +£1.6 704+1.4 7r1+£1.3 56.7+1.5
LANE (Ours) 60.8+0.9 66.5 + 0.5 74.3+04 782+0.7 59.3+0.9
DATASET ‘ SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)
BASE 325+ 1.75 56.3 £ 0.6 67.5+0.6 65.9 £ 0.6 75.4+0.6
E2L 31.6+£1.5 55.7+1.1 62.9+0.9 62.8 +£2.3 704+1.5
H2L 322+1.1 56.6 +1.4 67.9+0.8 623+ 1.7 741+1.8
AMG 30.6+1.1 55.1+1.3 67.4+1.1 65.1+1.5 723+1.7
NSE 328+1.5 541+1.1 65.8+ 1.7 65.1+1.3 74.6+1.1
PLF 322+14 55.7+1.1 67.4+2.1 65.8 1.8 74.8+1.6
AUM 31.2+2.63 56.4 £ 0.9 66.4+ 0.6 68.1 + 0.6 72.9+0.6
LCL 33.1+1.42 57.6+£0.9 68.2+ 0.6 66.8 + 0.6 76.8 £ 0.6
scL 32.7+1.1 56.8 £ 1.5 67.8+1.3 66.1+1.7 75.3+1.1
DISC 328+1.5 56.7+ 1.3 67.8+2.4 66.4 + 2.2 751+ 1.7
UNICON 32.7+1.1 56.5 + 1.6 67.5+1.4 67.9+1.3 TT1+1.5
HMW 31.6+1.4 57.2+1.1 67.4+2.2 68.1+1.7 773+1.8
LANE (Ours) 34.1 +0.87 58.9+0.4 69.7+0.6 69.2+0.6 78.4+ 0.6

Table 2: Results of LANE on the fine-grained text classification datasets. The reported results are
averaged across five runs and standard deviations are provided. Best results are shown in bold blue
and second best are underlined.

as approaches focused on exploiting the relationships between classes and approaches aimed at
learning under label noise: Data Cartography (E2L, H2L, AMG) (Swayamdipta et al., |2020),
Noise Layer (NSE) (Goldberger & Ben-Reuven, 2016), Peer Loss Function (PLF) (Liu & Guo)
2020), Area Under the Margin (AUM) (Pleiss et al., |2020), Supervised Contrastive Learning
(SCL)|Gunel et al.| (2020), Label-aware Contrastive Learning (LCL) Suresh & Ong|(2021)), DISC
(L1 et al.l [2023), UNICON (Karim et al., 2022), and Hyperspherical Margin Weighting (HMW)
(Zhang et al.,|[2024). We provide more details into these baselines in Appendix

5 RESULTS

Results on Original Datasets We show the results on the original datasets in Table [2| We make
the following observations. LANE outperforms the baselines in all setups. We observe improve-
ments of 1.1% weighted F1 on CancerEmo, 1.4% weighted F1 on RCV 1, 1.5% accuracy on Amazon
Review and 1.1% accuracy on Yahoo over the best performing baseline. Notably, over the base
BERT model, we see a 2.9% weighted F1 improvement on GoEmotions and 3.0% improvement on
Yahoo. We note that LCL, which leverages inter-class relations through the label-aware contrastive
learning loss is the best performing baseline in 5 out of the 10 datasets. Since LANE utilizes similar
inter-class relations during training, we postulate improvements over LCL arise from correctly
identifying mislabeled or ambiguous examples and eliminating their harmful effect during training.

Results on 20 % Noise Datasets The results obtained on the 20% noise (20N) datasets where 20% of
the labels are intentionally flipped are shown in Table 3] We observe that this setup is significantly
more challenging for the model. For instance, on Empathetic Dialogues the weighted F1 of the
BASE model drops from 58.5% on the original dataset to 11.6% on the 20N dataset, with a similar
trend on all the other datasets. However, even in this more challenging setup, LANE still outperforms
the majority of baselines in all setups. For example, on SST5, LANE outperforms AUM in accuracy
by 2.7%, DISC by 1.4%, UNICON by 2.3%, and SCL by 1.6%. The improvements over the base
model are larger, with an average performance increase of 7.11%.

6 ANALYSIS

Ablation Study For our ablation, we design a version of LANE that uses averaged margins instead
of ALMs so that the semantic relations are not incorporated into the model. We achieve this by
replacing the ALM term with AUM in Equations 4, 5, and 6 and denote this method by LANE™**".
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Dataset | Empathetic Dialogues (wF1) ~ GoEmotions (wF1) ISEAR (wF1) CancerEmo (wF1) RCV1 (wF1)
BASE 11.6 £3.4 21.5+2.8 37.6£3.0 46.7+1.9 444438
E2L 10.3+£0.8 22.6+1.2 37.1+£0.7 47.5+0.9 443+1.5
H2L 10.6 £ 1.4 21.8+0.7 37.3+£0.6 479+1.3 458 +£2.4
AMG 114+1.2 22.1+£0.6 36.9+0.5 48.4+0.8 459+ 2.7
NSE 10.2+1.9 15.6 £1.1 36.4+0.8 44.2+0.7 449+1.8
AUM 14.54+0.6 23.5+1.3 38.6+£0.8 49.8+0.9 47.6 £2.7
SCL 104+1.4 21.4+1.3 37.34+0.9 46.44+1.1 452+ 1.5
LCL 10.8 +£3.24 22.1+5.1 383+1.5 46.6 +£1.2 472422
DISC 11.3+£1.0 22.54+0.7 40.5+0.5 50.3+0.9 471+£22
UNICON 104+1.4 21.9+1.2 39.54+0.9 42.3+0.9 49.24+2.3
HMW 124+1.9 22.0+1.5 38.1+2.1 50.7+£2.2 482+1.8
LANE 159+1.3 243+1.2 40.4+0.8 52.5+0.9 49.4+2.1
DATASET \ SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)
BASE 24.5+4.6 48.9+ 3.7 61.5+1.5 60.7+1.3 64.8 £ 1.7
E2L 241+24 482 +£2.7 60.7 + 2.4 62.3+29 64.9+3.1
H2L 26.7+£2.3 48.7+ 1.9 60.9 +2.3 62.6 + 2.1 65.7+ 1.8
AMG 26.9+1.4 494+1.5 61.3+24 62.9+2.3 66.5+1.8
NSE 26.7+4.3 50.4+4.1 61.7+3.5 63.5+3.3 67.2+25
AUM 27.4+4.2 50.4 £ 2.5 62.4+1.7 63.3+1.4 65.9+2.4
LCL 24.2+3.9 48.5£5.7 61.7+24 63.1+3.1 65.9 £ 3.0
SCL 241434 51.54+ 3.2 62.3+3.5 63.7+3.9 66.8 +£2.5
DISC 27.5+21 51.7£2.6 62.1+2.7 63.2+2.5 67.3+2.1
UNICON 289434 50.8+3.1 61.5+3.7 62.3+£3.9 64.2 £3.7
HMW 28.7+1.5 51.3+1.8 61.2+1.1 62.5+1.9 66.3 £ 2.2
LANE 30.5 +2.97 53.1+ 1.6 63.1+2.3 65.2 4+ 3.1 68.9+ 2.5

Table 3: Performance of LANE on the ten fine-grained classification datasets in 20% noise setting. The
reported results are averaged across five runs and standard deviations are provided. Best results are shown in
bold blue and second best are underlined.

DATASET: \ Empathetic Dialogues (WF1)  SciHTC (MF1) Amazon Review (Acc) RCV1 (mF1)

Original Dataset
LANE™ '™ 58.7+1.1 32.4+0.8 66.8+0.8 57.3+0.8
LANE— @™ 59.1+£0.9 32.1+£1.2 68.2+1.2 579+1.4
AUM 5824 0.7 31.24+3.7 66.1+1.4 56.3 2.2
LANE 60.8+1.5 34.1+231 69.7+2.1 59.3+2.3
20% Noise
LANE™—*"™ 147+1.1 28.5+£0.8 61.24+0.8 45.2+0.8
LANE™®™ 13.8+0.9 29.34+1.2 61.3+1.2 46.2+1.4
AUM 14.5+0.6 27.4+£4.2 6244+1.7 476 £2.7
LANE 159+15 30.5 +2.41 63.1+2.1 49.4+1.8

Table 4: Ablation study: comparison between LANE, LANE™*"™ LANE~*™ and vanilla AUM on the
datasets using 20% noise. Best results are shown in bold blue and second best are underlined.

This approach utilizes all training samples with per-sample AUM weight. Second, we design a
version of LANE that does not use weighted cross entropy in Equation 7, i.e., AL, ; = 1. We denote
this method by LANE~*"™_ Third, we compare LANE against the vanilla AUM approach, which
removes examples from the training set that have low AUMs.

We show the results on both the original and 20% noise (20N) datasets in Table EI ‘We observe that
LANE consistently outperforms LANE™*™ LANE~*™ and AUM in all settings. The improve-
ments are particularly noticeable in the more challenging 20N setup. For instance, on the RCV1
dataset, which has a large number of classes, LANE improves the micro F1 score to 49.4%, a boost
of 4.2% over LANE—5"™_ 3.2% over LANE~*"™_and 1.8% over AUM. The trend also holds on the
original datasets. On SciHTC, LANE achieves an F1 score of 34.1%, outperforming AUM by 2.9%
and LANE~*"™ by 1.7%. These results show that our proposed Average Label-aware Margin and
the semantics-aware contrastive loss play an important role in the success of LANE.

Comparison to Other 2-network Approaches To further contextualize LANE’s performance,
we compare it against other popular two-network architectures designed to handle label noise: Co-
teaching |[Han et al.| (2018b) and DivideMix |Li et al.| (2020)), presented in detail in Appendix @
We evaluated these approaches against LANE on four benchmark datasets, with the results detailed
in Table 5] The analysis reveals that LANE consistently and significantly outperforms both Co-
teaching and DivideMix across all tested datasets. On the sentiment classification tasks, LANE
achieves an accuracy of 69.7% on Amazon Review and 69.2% on Yelp Review, surpassing the next-
best method, DivideMix, by substantial margins of over 9 and 4.5 percentage points, respectively.
This performance gap is even more pronounced on the Yahoo dataset, where LANE’s 78.4% accu-
racy represents a greater than 9-point improvement over DivideMix. Even on the AG News dataset,
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DATASET: ‘ Amazon Review  Yelp Review Yahoo
DIVIDEMIX 60.66 £ 3.1 64.66 £ 2.5 69.17£1.1
Co-TEACHING 60.62 + 3.7 63.65 £ 2.7 68.69 £ 3.7
LANE | 69.7+1.3 69.2+1.2 90.01+0.8 784+0.8

Table 5: Performance of LANE compared to Dual Network Approaches.
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Figure 1: Distribution of Correct and Incorrect Examples by Weight

where all models perform well, LANE still establishes a new state-of-the-art result with 90.01% ac-
curacy. These results strongly suggest that LANE’s use of label-aware margins for dynamic sample
weighting is a very effective strategy for mitigating label noise.

Understanding LANE’s Weight Distribution A core hypothesis behind LANE is its ability to
differentiate between clean and noisy labels by assigning lower weights to samples it perceives as
incorrectly labeled. To validate this, we analyze the distribution of weights assigned by LANE
to both correctly and incorrectly labeled examples. This experiment is conducted on the RCV1,
Amazon Review, and SciHTC datasets, each injected with 20% label noise. Figure [1] illustrates
these distributions. The results provide clear and compelling evidence supporting our hypothesis.

Across all three datasets, the weight distribution for incorrectly labeled examples (shown in red) is
heavily skewed towards the left, with a distinct peak around weight 0. For instance, in the RCV1
dataset, over 40% of all incorrect samples are assigned a weight in the [0, 0.1] interval. This demon-
strates that LANE is highly effective at identifying noisy samples and drastically reducing their
impact on the model’s training process by assigning them near-zero weights. Conversely, the weight
distribution for correctly labeled examples (shown in blue) is skewed towards the right, with the
majority of weights concentrated in the higher ranges (approximately 0.4 to 0.9). This indicates
that the model preserves the valuable signal from clean data by assigning these samples high impor-
tance. Therefore, the clear separation between the two distributions validates the core mechanism of
LANE. The label-aware margin effectively serves as a reliable proxy for label correctness, allowing
the model to dynamically filter out noise and prioritize learning from clean, high-quality examples.

Additional Analysis We compare LANE against LLMs in Appendix [D]in Table[7] As we can see
from the table, LANE outperforms LLMs and in the future it would be interested to correct LLM
pseudo-labels within the LANE framework.

7 CONCLUSION

In this work, we introduced LANE, a new approach that boosts the capabilities of deep learning
models when learning under increased label noise. LANE leverages the inter-class semantic sim-
ilarities and utilizes training dynamics to boost the performance in fine-grained text classification.
We tested LANE on ten fine-grained text classification datasets where it obtained improvements in
performance over strong baselines and prior works. In the future, we plan to extend our approach
to other domains and data types, e.g., image classification and the legal domain. We make our code
available to further research in this area.
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A DATASETS

We evaluate LANE on: 1. Empathetic Dialogues (Rashkin et al., 2019), a dataset composed of
conversations between a speaker and a listener annotated with 32 emotions. We consider solely
the first turn of the conversation in our experiments, resulting in 22, 000 total examples. 2. GoE-
motions (Demszky et al.l |2020), a sentence-level dataset created using Reddit comments that con-
tains more than 58,000 sentences annotated with 27 emotions. 3. ISEAR (International Survey
on Emotion Antecedents and Reactions) (Scherer & Wallbott, [1994), a dataset of 7, 700 personal
experiences annotated with 7 emotions. 4. CancerEMO (Sosea & Caragea, 2020), a dataset of
8,500 examples collected from a cancer forum annotated at sentence level with the 8 basic Plutchik-
8 (Plutchikl [1980) emotions. 5. RCV1 (Lewis et al.| 2004)), a large scale dataset composed of
news stories labeled with a total of 105 different topics. 6. SciHTC (Sadat & Carageal 2022), a
dataset from 186, 160 scientific papers, annotated with 80 possible topics, 7. SSTS (Socher et al.,
2013b), a dataset composed of 11, 855 sentences from movie reviews, annotated with five sentiment
labels: negative, somewhat negative, neutral, somewhat positive, and positive. 8. Amazon Review
(McAuley & Leskovec| [2013)), a sentiment classification dataset composed of 600, 000 training and
130, 000 test Amazon reviews annotated with 5 sentiment classes. 9. Yelp Review (Asghar, 2016)),
a sentiment classification dataset with 130, 000 training and 10, 000 test samples annotated with the
same 5 classes, and 10. Yahoo Answer (Chang et al.| |2008)), a topic classification dataset with 10
topic classes, composed of 140, 000 training and 6, 000 test samples.

B BASELINES

B.1 SINGLE NETWORK APPROACHES

Data Cartography Following (Swayamdipta et al., 2020), we identify three types of training
examples: easy-to-learn (E2L), hard-to-learn (H2L), and ambiguous (AMG) and analyze the
importance of each type to the training process by removing the other two types.

Noise Layer Following (Goldberger & Ben-Reuven, [2016), we introduce a noise layer to the BERT
model which we train for correct label estimation. We denote this model by NSE in our experiments.

Peer Loss Function We also compare our method against Peer Loss Function (PLF) (Liu & Guo,
2020), a method that alters the training loss function to account for label noise.

Area Under the Margin We consider the AUM method (Pleiss et al.,[2020) as one of our baselines.
This method computes Area Under the Margin metric for each training example and eliminates
low-AUM examples that are potentially noisy, using a fixed threshhold for elimination.

Contrastive Learning We compare LANE to the label-aware supervised contrastive learning
(LCL) method proposed by |Suresh & Ong|(2021) and the traditional supervised contrastive learning
(SCL) (Khosla et al., [2020).

DISC (Li et al., 2023) proposes an instance-specific dynamic thresholding mechanism that blocks
access to specific training examples based on the momentum of each instance’s memorization
strength. Additionally, DISC proposes to correct the labels of potentially noisy examples.

UNICON (Karim et al., [2022) leverages semi-supervised learning (SSL) to mitigate the harmful
effects of noisy labels by considering the potentially noisy labeled data as unlabeled examples in an
SSL algorithm. UNICON also proposes a new selection mechanism for these unlabeled examples
during training.

Hyperspherical Margin Weighting (HMW) (Zhang et al.l 2024) is a sample weighting strategy
that improves learning with noisy labels by using a novel metric called the Integrated Area Margin
(IAM). To better distinguish clean but hard-to-learn examples from mislabeled ones, the I[AM
metric is constructed by combining two distinct margin-based signals: the established AUM ranking
Pleiss et al.|(2020) and a newly proposed Top-K Under the Margin (TKUM) ranking.
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Dataset \ Empathetic Dialogues (WF1)  GoEmotions (WF1) ISEAR (wF1) CancerEmo (wF1) RCV1 (wFl)
BASE - - - - -
E2L — — — — —
H2L - - - - -
AMG - - - - -
NSE — - — — 314+1.7
AUM 10.4+£0.6 175+ 1.3 27.8+£0.8 41.84+0.9 32.5+1.3
LCL - - - - -
SCL - - - - -
DISC 14.14+1.7 19.6 +£0.7 314£0.5 47.64+0.9 33.7£1.5
UNICON 13.7+1.4 174+1.2 33.1+0.9 46.5+0.9 34.6+1.5
LANE 146 £1.2 20.5+0.9 35.1+0.7 50.1 +£0.6 38.2+1.7
DATASET \ SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)
BASE - - - - -
E2L - — - - -
H2L - - — — —
AMG - - - - -
NSE 14.8+1.5 41.6 £2.3 - 44.7+£2.6 -
AUM 17.2+1.4 426 £1.5 51.4+1.1 52.6 £1.8 42.7+1.9
LCL - - - - -
scL - - - - -
DISC 18.5+2.3 43.8+1.8 529+1.9 53.8+2.3 44.7+£2.1
UNICON 196+1.5 43.1+1.6 55.2+1.3 53.9+1.7 44.74+2.1
LANE 20.5+1.5 45.7+1.3 56.8 + 2.2 56.2 +2.3 46.3 + 2.5

Table 6: Performance of LANE on the the ten benchmark datasets under 40% label noise. The reported results
are averaged across five runs and standard deviations are provided. Best results are shown in bold blue and
second best are underlined. Results marked with — indicate that the model did not converge.

DATASET: \ Empathetic Dialogues (WwF1)  GoEmotions (mF1) ISEAR (ACC) CancerEMO (mF1) RCVI1 (mF1)
CHATGPT 12.8 + 3.1 21.4+£25 37.3+1.1 489+1.9 429+ 4.6
LLAMA-2 10.9+3.7 204 £2.7 35.4+1.6 50.2+1.7 39.7+£1.8
LANE 159+1.3 243+1.2 40.4+0.8 52.5+0.9 494 +21
DATASET: ‘ SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)
CHATGPT 28.3+5.0 49.6 £ 0.6 62.6 +0.9 64.5+0.9 64.9+0.9
LLAMA-2 15.1£5.2 54.2+04 61.3+£2.3 62.3+1.4 61.1 £2.3
LANE 30.5 +£2.97 53.1+1.6 63.1+23 65.2+3.1 689+25

Table 7: Performance of LANE compared with LLMs. Best results are shown in bold blue and second best
are underlined.

B.2 DUAL NETWORK APPROACHES

Co-teaching Han et al.| (2018b) takes a peer-teaching approach and simultaneously trains two deep
neural networks. In each mini-batch, each network identifies samples it believes have a small loss
(and are therefore likely to be correctly labeled) and feeds these “’clean” samples to its peer network
for subsequent training. This cross-training helps the models avoid overfitting to noisy labels that
one network might have memorized.

DivideMix [Li et al|(2020) reframes learning with noisy labels as a semi-supervised learning prob-
lem. It also maintains two diverged networks and at the start of each epoch, it uses a Gaussian
Mixture Model on the per-sample loss distributions to dynamically divide the training data into a
labeled set of likely clean samples and an unlabeled set of likely noisy samples. Each network then
trains on the dataset division provided by the other, enhancing robustness.

C DATASETS WITH 40% LABEL NOISE

‘We show in Table|§|results on the 40% noise (40N) datasets. Results marked with - indicate that the
model did not convege. We notice that LANE stays effective across the ten datasets, and we observe
that AUM yields poor results on this dataset with very high amounts of noise, indicating that it may
not work in high-noise setups. For example, AUM outperforms DISC by an average of 1.5% on
20N across the datasets whereas DISC outperforms AUM on 40N by a significant 2.9%. Critically,
LANE outperforms both DISC and AUM on 40N by an average of 2.8% and 7.75%, respectively.

D PERFORMANCE AGAINST LLMS

We test our approach against few-shot large language models: ChatGPT and Llama-2 13B (Touvron
et al., [2023) to compare the robustess to label noise of LANE with that of popular LLMs in 20%
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noise setup. For all datasets except SciHTC we fit a large number of examples in the prompt and
set the number of few-shot examples to 100. We use only 10 few-shot examples for SciHTC since
the examples (i.e., paper abstracts) are much longer and exceed the context window. Similar to the
original 20% noise setup, 20% of the few-shot examples are purposefully mislabeled. To account
for the variance produced by the particular few-shot examples selected, we run ChatGPT 10 times
with different few-shot examples in the prompt and report average values. Similarly, we run Llama-
2 20 times with different few-shot examples and show results in Table [/ We observe that LANE
outperforms the LLMs on all datasets except SST5. Notably, LANE improves upon Llama-2 by
15.4% on SciHTC and by 18.7% on RCV1 and improves the performance over ChatGPT by 3.1%
accuracy on ISEAR and 6.5% micro F1 on RCV1. Among the LLMs, ChatGPT obtains the best
results, outperforming Llama-2 especially in complex tasks such as RCV1 and SciHTC. Concretely,
ChatGPT obtains 28.3% macro F1 on SciHTC, a 13.2% improvement over Llama-2.

E ANALYSIS OF THE ALM THRESHOLD

In our main experiments, we automatically learned the Gaussian re-weighting parameters from the
data, as described in the main paper. Specifically, during training, we estimate the mean y, and
variance oy using the model’s historical predictions. We also experimented with using fixed, hard-
coded values for the threshold, setting x to 0 and -1, with o = 1. When a fixed threshold is used,
we re-weight a sample if its Average Label-aware Margin (ALM) is less than the threshold (e.g.,
ALM < 0); otherwise, the sample’s weight remains 1, per our weighting function (Equation (4)).

We present the results of these experiments on the Yelp and Yahoo datasets in Table[§] The results
show that the best performance is achieved when the parameters are inferred dynamically from the
data’s historical predictions, validating the approach used in our paper.

Table 8: Performance comparison (Accuracy) on the Yelp and Yahoo datasets using different ALM
thresholds (1). The “Inferred from Data” column uses the dynamic method from Equations (5) and
(6) in the main paper.

Approach =0 p=—1 Inferred from Data

Yelp 644  64.1 65.2
Yahoo 68.1  65.1 68.9
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