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A B S T R A C T   

Precise recognition of emotion from speech signals aids in enhancing human–computer interaction (HCI). The 
performance of a speech emotion recognition (SER) system depends on the derived features from speech signals. 
However, selecting the optimal set of feature representations remains the most challenging task in SER because 
the effectiveness of features varies with emotions. Most studies extract hidden local speech features ignoring the 
global long-term contextual representations of speech signals. The existing SER system suffers from low recog
nition performance mainly due to the scarcity of available data and sub-optimal feature representations. Moti
vated by the efficient feature extraction of convolutional neural network (CNN), long short-term memory 
(LSTM), and gated recurrent unit (GRU), this article proposes an ensemble utilizing the combined predictive 
performance of three different architectures. The first architecture uses 1D CNN followed by Fully Connected 
Networks (FCN). In the other two architectures, LSTM-FCN and GRU-FCN layers follow the CNN layer respec
tively. All three individual models focus on extracting both local and long-term global contextual representations 
of speech signals. The ensemble uses a weighted average of the individual models. We evaluated the model’s 
performance on five benchmark datasets: TESS, EMO-DB, RAVDESS, SAVEE, and CREMA-D. We have augmented 
the data by injecting additive white gaussian noise, pitch shifting, and stretching the signal level to obtain better 
model generalization. Five categories of features were extracted from the speech samples: mel-frequency cepstral 
coefficients, log mel-scaled spectrogram, zero-crossing rate, chromagram, and root mean square value from each 
audio file in those datasets. All four models perform exceptionally well in the SER task; notably, the ensemble 
model accomplishes the state-of-the-art (SOTA) weighted average accuracy of 99.46% for TESS, 95.42% for 
EMO-DB, 95.62% for RAVDESS, 93.22% for SAVEE, and 90.47% for CREMA-D datasets and thus significantly 
outperformed the SOTA models using the same datasets.   

1. Introduction 

The interaction between humans and computers is progressing 
swiftly. The human–computer interaction (HCI) studies how humans 
interconnect with computers and to which extent computers are devel
oped to make those human interactions more productive. Interactions 
between these two entities should be as spontaneous as human-to- 
human conversations. Therefore, the effective design, proper imple
mentation, and evaluation of interfaces through which the interactions 

occur are some of the essential focuses of HCI. It aspires to comprehend, 
assess, and create a range of human experiences, including enjoyment, 
excitement, concentration, focus, productivity, knowledge, and 
behavior modification (O’Brien, Roll, Kampen, & Davoudi, 2022). 
Speech is the principal mode of communication among human beings. 
Through speech, we humans express one of our most fundamental 
components, emotions, and the emotion recognition of that speech is 
one of the active research zones of HCI as well as digital signal pro
cessing. The process of distinguishing emotions from speech signals is 
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known as speech emotion recognition (SER). SER is imperative for 
enhancing the domain of HCI and influential in setting up the direction 
in which modern-day electronic devices are rapidly moving (Chatterjee, 
Mukesh, Hsu, Vyas, & Liu, 2018). Various significant applications such 
as intelligent robots, audio surveillance, criminal investigations, auto
mated smart home appliances, movie or music recommendation sys
tems, dialogue systems, etc., which rely on the user’s emotional state 
could do with a system that automatically detects the user’s emotion 
from the speech. Researchers have developed various techniques in the 
last decade to provide a robust and lightweight SER system (Abbaschian, 
Sierra-Sosa, & Elmaghraby, 2021; Anvarjon, Mustaqeem, & Kwon, 
2020; Khalil et al., 2019). However, due to a lack of technologies and 
tools, ambiguous nature of emotions, diversity in language and accent 
across different cultures, frequency and amplitude variation in human 
utterance regarding gender and age, recognizing the human’s emotional 
states from speech has proven to be complicated and challenging. 

A generic high-level overview of the workflow of the proposed SER 
system is represented in Fig. 1. In the first stage (preprocessing), all the 
sample audio files are resized to the fixed length, and data augmentation 
is performed to increase the number of samples and address the data 
imbalance issues in the datasets by adding AWGN, shifting the pitch, and 
stretching the time. Next, in the 2nd stage, features from time and fre
quency domains, as well as commonly used spectral features are 
extracted from the speech signals. In literature, several studies have 
derived many features in the area of speech audio processing. Major 
features types include continuous speech features (e.g., pitch, timing, 
energy, articulation, and format), voice quality features (e.g., voice 
level, and phrase), spectral based features such as Mel Frequency 
Magnitude Coefficient (Ancilin & Milton, 2021), Log-Frequency Power 
Coefficients (LFPC), Linear-Prediction Coefficients (LPC) (Yusnita, 
Hafiz, Fadzilah, Zulhanip, & Idris, 2018), and Teager-Energy-Operator 
(TEO) based features amongst many others (Akçay & Oğuz, 2020). 
Since these features change over time, speech audio is divided into 
frames of fitting sizes and low-level descriptor (LLD) features such as 
MFCC, LMS, ZCR, energy, pitch, Chromagram, tonal centroid features, 
RMS, RMSE, spectral contrast, centroid, and roll-off are extensively used 
in the SER task (Anvarjon et al., 2020; Mustaqeem & Kwon, 2020a; 
Nantasri, Phaisangittisagul, Karnjana, & Boonkla, 2020; Rajamani, 
Rajamani, Mallol-Ragolta, Liu, & Schuller, 2021). However, the problem 
of a lower emotion detection accuracy in SER still exists. The features 
mentioned earlier are presumed to remain constant throughout a frame. 
As a result, the audio of the speech can be divided into frames, each of 
which is represented by a feature vector (Ghai, Lal, Duggal, & Manik, 
2017). These frames can then be used as a data set for training the 
proposed models. For this study, ZCR, RMS, Chromagram, LMS, and 
MFCC features are extracted from the speech audio samples. 

Previously, the third stage involved classifying features of those 
speech signals by combining them into feature vectors based on some 

linear and non-linear classifiers. Frequently used linear classifiers for 
SER tasks are Support Vector Machine (SVM) (Bhavan, Chauhan, Hitkul, 
& Shah, 2019), Bayesian Networks (BN) (Ververidis & Kotropoulos, 
2008), Linear Discriminant Analysis (LDA) (Liu, Xie, et al., 2018), and K- 
Nearest Neighbors (KNN) (Ezz-Eldin, Khalaf, Hamed, & Hussein, 2021). 
Due to the non-stationary interpretation of speech signals, it is consid
ered that various non-linear classifiers such as Hidden Markov Model 
(HMM), and Gaussian Mixture Model (GMM) work resourcefully for the 
SER task (Venkataramanan & Rajamohan, 2019). However, the recent 
advancement of deep learning makes it a suitable choice for finding 
hidden patterns from the extracted feature vectors and performing the 
classification task. 

Deep learning (DL) is a subset of Machine Learning (ML) that has 
received substantial interest from the research community in recent 
years. DL has automated the feature extraction process to address the 
shortcomings of conventional handcrafted feature-based approaches 
using traditional ML-based methods and enhances the SER task’s per
formance by effectively finding hidden patterns even in the handcrafted 
extracted features. However, handcrafted features have had much suc
cess in SER tasks. Several studies have been carried out in SER utilizing 
1D CNN as the classification model (Mustaqeem & Kwon, 2021a, 2021c; 
Yadav & Vishwakarma, 2020; Zhao, Mao, & Chen, 2019). 1D CNN 
model is effectively used in time-series data and have shown great 
promise regarding audio classification task. To study the long-term 
contextual correlations and understand the cues of emotions from 
speech, researchers have used Recurrent Neural Network (RNN) (Li, Liu, 
Yang, Sun, & Wang, 2021), Long Short Term Memory (LSTM) (Zhao 
et al., 2019), Gated Recurrent Unit (GRU) (Rajamani et al., 2021), and 
Bidirectional Gated Recurrent Unit (Bi-GRU) (Features, Maji, & Swain, 
2022), Bidirectional Long Short Term Memory (Bi-LSTM) (Li et al., 
2021; Mustaqeem, Sajjad, & Kwon, 2020) along with 1D CNN and Fully 
Connected Networks (FCNs) (Zhang, Du, Wang, Zhang, & Tu, 2019). 
Ensemble learning (EL) is a method that refers to the practice of merging 
several learning models in order to create a more effective and accurate 
learner. EL has been proven to outperform single estimators. Each esti
mator in EL is combined in some way, typically by a voting method such 
as majority voting or weighted voting, to obtain a final result. Numerous 
studies have proposed using ensemble techniques by combining multi
ple ML and DL-based models in SER tasks (Chalapathi, Kumar, Sharma, & 
Shitharth, 2022; Zehra, Javed, Jalil, Khan, & Gadekallu, 2021; Zheng, 
Wang, & Jia, 2020). However, the existing EL-based studies adopt 
various traditional ML-based methods such as SVM (Bhavan et al., 
2019), and Random Forest (RF) (Zhang, 2021; Zvarevashe & Olugbara, 
2020), or suffers from lower SER rates. 

Motivated by the vast success and effectiveness of deep neural net
works (DNN) in various classification tasks and higher predictive per
formance of ensemble learning (EL), in this paper, we propose four DL- 
based frameworks: first, a baseline dilated 1D CNNs-FCNs based 

Fig. 1. A graphical illustration of the generic workflow of the SER systems.  
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framework; second, a 1D CNNs-LSTM-FCNs based framework; third, 1D 
CNNs-GRU-FCNs based framework; and fourth an ensemble of those 
three frameworks through a weighted average mechanism. We have 
used five publicly available benchmark datasets that are extensively 
used in the literature: Toronto Emotional Speech Set (TESS) (Pichora- 
Fuller, 2020), Ryerson Audio-Visual Database of Emotional Speech and 
Song (RAVDESS) (Livingstone & Russo, 2018), Surrey Audio-Visual 
Expressed Emotion (SAVEE) (Haq & Jackson, 2014), Crowd-Sourced 
Emotional Multimodal Actors Dataset (CREMA-D) (Cao et al., 2014), 
and Berlin Database of Emotional Speech (EMO-DB) (Burkhardt, 
Paeschke, Rolfes, Sendlmeier, & Weiss, 2005). The number of samples in 
each of these datasets is relatively low for a DL-based model to train 
properly without any overfitting issues. Besides some of these datasets, 
have class imbalance issues. To address these challenges, we performed 
audio data augmentation by injecting additive white gaussian noise 
(AWGN), changing the pitch of the signal, and stretching the signal 
level. Additionally, to deal with overfitting we apply kernel and bias 
regularization (L2 = 0.01) that reduces the weights squared magnitude, 
and add dropout layers that arbitrarily eliminate the neurons during the 
training of the models. The model was trained with augmented data 
along with the original dataset, yielding a higher accuracy rate with 
improved generalization ability. Initially, MFCC, LMS, Chromagram, 
ZCR, and RMS value features are extracted from the audio samples, as 
previous studies have suggested their efficacy in the SER task (Hajar
olasvadi & Demirel, 2019; Lee, Roh, Kim, Kim, & Hong, 2008; Nantasri 
et al., 2020). The mean value of these features is calculated and is used 
to train the model to detect human emotions such as “happiness,” 
“sadness,” “fearful”, “surprise,” “anger,” “surprise,” “boredom,” 
“neutral” etc., from audio signals with improved recognition perfor
mance. Combined with data augmentation, each proposed model pro
duces exceptional SOTA results for the SER task. The noteworthy 
contribution of this work is as follows:  

• We propose four DNN-based models built using CNN-based local 
feature-acquiring blocks (LFABs) and LSTM-GRU-based global 
feature-acquiring block (GFAB). This work first extracts the LLD 
features from the speech audio signals. 

• The baseline model-A uses seven sequential LFABs to better under
stand the high-level hidden local features from those extracted LLD 
features during model training followed by Fully Connected Network 
(FCN) layers and a softmax layer for classification. The other two 
models, model-B and model-C, are proposed by adding a GFAB after 
the final LFAB. Model-B employs LSTM-FCNs, and model-C utilizes 
GRU-FCNs architecture to acquire long-term global contextual rep
resentations from the speech signals. A weighted ensemble frame
work (model-D) is also proposed which combines the three 
individual models by adjusting their weights and achieves better 
performance than the individual models (i.e., model-A, B, and C).  

• We have extensively experimented with the models on five widely 
used publicly available benchmark datasets for SER: TESS, RAV
DESS, SAVEE, CREMA-D, and EMO-DB, covering two languages: 
English and German.  

• Data augmentation is performed to increase the training samples, 
reduce the overfitting problem and make the models more general
ized. SER accuracy increased by 3 % to 32 % from the model trained 
with the original dataset only.  

• The performance of all the proposed models is compared with the 
previous SOTA models. Amongst all four models, the ensemble 
model-D achieves the SOTA weighted average accuracy of 99.46 % 
for TESS, 95.42 % for EMO-DB, 95.62 % for RAVDESS, 93.22 % for 
SAVEE, and 90.47 % for CREMA-D datasets. These are significantly 
improved results compared to the single models and the previous 
SOTA methods on each dataset. 

The remainder of this paper is assembled as follows. Section 2 pre
sents the existing literature review in the SER task to grasp the current 

trend, intuition getting, and find the scope for improving the task. Sec
tion 3 provides an overview of the architecture of the proposed models. 
Section 4 is covered by an in-depth discussion about utilized datasets, 
data augmentation techniques, the feature extraction process, and 
model training. We comprehensively analyze and compare the experi
mental results of the proposed individual model-A, B, C, and weighted 
ensemble model-D with SOTA SER benchmarks in Section 5. Finally, in 
Section 6, we conclude with a discussion about the existing challenges 
and possible future research directions in SER. 

2. Related works 

Digital signal processing (DSP) is a matter of great interest among the 
research community, and researchers have come up with several ap
proaches for a robust improvement by eliminating the existing issues in 
the SER task. For any SER task, feature selection is the most critical part 
because irrelevant features directly affect the next part, which is speech 
emotion classification. Currently, researchers worldwide are utilizing 
DL for SER-related tasks due to their vast triumphs in representing 
features and the ability to find hidden patterns from the extracted 
speech-based feature set. In time-domain representation, some of the 
commonly utilized SER features are amplitude envelope, ZCR, and RMS 
(Das et al., 2022). Notable frequency domain-represented speech fea
tures include band energy ratio, Mel-scaled spectrogram, Chromagram, 
and various spectral features such as centroid, flux, contrast, and roll-off 
(Alnuaim, Zakariah, & Alhadlaq, 2022). The most significant and widely 
used cepstral-based feature for the SER task is MFCC. Statistical features 
include entropy, skewness, kurtosis, etc. Recently gammatone cepstral 
coefficients (GTCC) are being heavily explored in the field of SER 
(Bandela & Kumar, 2021; Zhao, Yang, Cohen, & Zhang, 2021). Speech 
spectrogram is one of the significant features utilized by most re
searchers nowadays regarding SER tasks (Alnuaim et al., 2022; Musta
qeem & Kwon, 2021b; Sultana, 2022). It is a two-dimensional (2D) 
depiction of speech signals. It visually represents a signal’s power, where 
different frequencies over time are shown in the waveform. MFCC is the 
most widely used feature in terms of SER tasks. By converting the 
traditional frequency to mel-scale, MFCC accounts for human insight for 
sensitivity at acceptable frequencies, making it appropriate for SER 
tasks. When training models, 12 to 20 MFCCs are usually taken into 
account, containing information about the changes in rate in the 
different spectrum bands (Abdel-Hamid, 2020; Christy, Vaithyasu
bramanian, Jesudoss, & Praveena, 2020; Issa, Fatih Demirci, & Yazici, 
2020; Nantasri et al., 2020). The ZCR feature represents the positive and 
negative sign changes in a signal (Chatterjee et al., 2018). Chroma-based 
audio features have proven effective for investigating, evaluating, and 
extracting information from music audio and SER-related tasks (Issa 
et al., 2020). It is observed that methods such as traditional ML, DL, and 
their fusion are extensively used in recent literature for the SER task. The 
researchers are also exploring several attention mechanisms along with 
DL methods to focus more on the region of interest in the speech signal. 
Aside from these mentioned methods, ensemble learning and transfer 
learning-based methods are gaining momentum due to their increased 
performances in various classification tasks. 

2.1. Traditional machine learning-based models 

Numerous methods based on SVM, Multi-Layer perceptron (MLP), 
Gaussian Mixture Modelling (GMM), Naïve Bayes (NB), and Hidden 
Markov models (HMM) were utilized in earlier efforts for SER from the 
speech signal. (Ancilin & Milton, 2021) use the SVM classifier for the 
SER task on SAVEE, EMO-DB, RAVDESS, eNTERFACE, EMO-VO, and 
Urdu datasets. The magnitude spectrum was employed instead of energy 
spectrum to extract the Mel frequency magnitude coefficient features 
from the speech signals. In addition, traditional MFCC, log frequency 
power coefficient, and linear prediction cepstral coefficient were also 
extracted and utilized for model training. SER performance is enhanced 
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by using the magnitude spectrum instead of the power spectrum and 
using the log magnitude coefficients directly rather than the cosine 
transformed coefficients. (Liu, Wu, et al., 2018) propose an SER 
framework that selects features based on correlation analysis and Fisher 
criterion. This process reduces the number of irrelevant and redundant 
features. Then they used the extreme- ML decision tree scheme to clas
sify the emotions into different categories by utilizing the Chinese 
emotion corpus, Chinese Academy of Science Institute of Automation 
(CASIA). (Wang, An, Li, Zhang, & Li, 2015) suggest a new kind of speech 
feature, Fourier parameter functions along with the first and second- 
order differences of harmony-based features, estimated by Fourier 
analysis. They have extracted and combined two types of features: 
Fourier parameter and MFCC from the utilized EMO-DB, CASIA, and 
Chinese elderly emotion database (EESDB) datasets and employed the 
combined features as input to the SVM and a Bayesian classifier for the 
SER task. (Palo, Chandra, & Mohanty, 2017) recommend an SER tech
nique using MLP and GMM for the Oriya Language. They used various 
feature extraction techniques, including MFCC, Perceptual linear pre
diction, and linear predictive coding. MLP achieves the highest SER 
accuracy of 87 %. (Demircan & Kahramanli, 2018) utilize type-1 fuzzy 
C-means method to the extracted MFCC and linear prediction coefficient 
features and after that identified the cluster centers and fed them to 
different classifiers such as SVM, KNN, and NB for the classification task. 
The SVM classifier achieved the highest classification rate of 92.86 %. 
However, there exist some issues with methods like HMM and GMM, for 
example, finding the most likely sequence of hidden states, given a 
sequence of observations. Another significant disadvantage of these 
methods is that they underperform while modeling nonlinear data 
(Venkataramanan & Rajamohan, 2019). 

2.2. Deep learning-based models 

Deep learning (DL) methods such as ANN, DNN, CNN, RNN, GRU, 
LSTM, Bi-LSTM, and Bi-GRU have been leveraged as feature extractors 
to facilitate the learning of discriminative representations, with varying 
degrees of success (Anvarjon et al., 2020; Mustaqeem et al., 2020; Yadav 
& Vishwakarma, 2020; S. Zhang et al., 2020). (Nantasri et al., 2020) 
propose an SER model by collecting 20-MFCC, 20-delta, and 20-delta- 
delta features and computing their mean values. These mean values 
are used as the input for the artificial neural network (ANN) classifier. 
They have evaluated their model with RAVDESS and EMO-DB datasets 
and achieved 82.3 % and 87.8 % accuracy, respectively. To reduce the 
error rate of ANN and proper selection of optimal weights and biases for 
the model to train, (Moghanian, Saravi, Javidi, & Sheybani, 2020) 
propose a new technique named GOAMLP. (Lalitha, Tripathi, & Gupta, 
2019) propose a deep neural network (DNN) model for the SER task to 
investigate the effective predictive performance of perceptual-based 
speech features. (Anvarjon et al., 2020) propose an SER model based 
on extracting high-level features from the spectrograms of speech ut
terances. They have used plain rectangular kernels with a revised 
pooling strategy. The model’s performance was evaluated with two 
datasets. It achieved 77.01 % and 92.02 % accuracy for the Interactive 
Emotional Dyadic Motion Capture (IEMOCAP) and EMO-DB datasets, 
respectively. (Yoon, Byun, & Jung, 2018) implement a dual recurrent 
encoder model approach for SER tasks by utilizing text and audio data 
from the IEMOCAP dataset. The authors employ MFCC derivatives and 
prosodic features along with text tokens as the input features of the 
proposed framework. Their multimodal method led to an accuracy of 
71.8 % on the IEMOCAP dataset. (Tiwari, Soni, Chakraborty, Panda, & 
Kopparapu, 2020) propose an utterance-level parametric generative 
noise model to test the robustness of the SER model when exposed to the 
presence of additive noise. Their proposed architecture is advantageous 
for suppressing unseen noise because the manufactured noise can 
encompass the total noise space in the energy domain of the Mel-filter 
bank. However, even with the performed data augmentation (DA), the 
achieved DNN-based SER model’s performance is not very significant, 

with an accuracy of 76.77 % on the EMO-DB dataset and 53.35 % on the 
IEMOCAP dataset. (Neumann & Vu, 2019) integrates unsupervised auto- 
encoder strategy along with the CNN method to classy emotions from 
speech, however, this unsupervised approach achieves less satisfactory 
performances in terms of SER. Recently unsupervised DL-based algo
rithms are being explored for the SER task due to the shortage of suffi
cient data samples in each of the publicly available datasets. DA through 
unsupervised DL-based algorithms such as generative adversarial net
works (GAN) (Chatziagapi, Paraskevopoulos, Sgouropoulos, Pan
tazopoulos, Nikandrou, Giannakopoulos, & Narayanan, 2019), 
conditional GAN (Ma, Li, Ni, Huang, & Zhang, 2022), cycle consistent 
GAN (Bao, Neumann & Vu, 2019) is performed in many studies, how
ever, one noticeable thing is, the use of completely synthetic data in 
those studies achieve unsatisfactory performance regarding SER task. 
(Praseetha & Joby, 2021) employed a GRU-based DL model for the SER 
task and extracts the filter-bank energies of the speech signals to train 
the model. The model achieves an accuracy of 93 % in the augmented 
TESS dataset. In another work of SER, (Jothimani & Premalatha, 2022) 
utilize the CNN and LSTM-based models where the experimental anal
ysis was carried out using the SAVEE, CREMA, RAVDESS, and TESS 
datasets. The authors used the MFCC, ZCR, and RMS value as the fea
tures for model training. 

2.3. Hybrid models 

Due to the success of these DL-based architectures, interest in fusing 
these network types into a single architecture to capture both local and 
long-term contextual dependencies of data has increased recently (Li 
et al., 2021; Kumaran, Rammohan, Nagarajan, & Prathik, 2021; Xu, 
Zhang, & Zhang, 2021), ensemble learning (Chalapathi et al., 2022; 
Zheng et al., 2020) make up most SER architectures that use neural 
networks. (Sultana, 2022) performs a cross-lingual SER study by utiliz
ing CNN and the Bi-LSTM network that tries to capture both temporal 
and sequential representations of emotions. (Mustaqeem & Kwon, 
2020b) extract spatiotemporal features for the SER task using a 
ConvLSTM model. Using four blocks of 1D CNN and LSTM, the authors 
have gathered the most significant distinctive emotional features. The 
extracted features are then fed into the GRU-based network, which is 
used to re-adjust the global weights. By utilizing the 1D CNN with LSTM 
network in one model and 2D CNN with LSTM network in another 
model, (Zhao et al., 2019) propose two SER models. The 2D CNN LSTM 
model achieves better emotion recognition results by focusing on 
capturing local correlations as well as global contextual information 
from LMS features. Researchers have experimented with traditional ML- 
based methods and DL-based methods in the same work and did a 
comparative analysis of these models’ SER performance. (Singh, Puri, 
Aggarwal, & Gupta, 2020) leverages the CREMA-D dataset to train two 
classifiers (SVM and RNN) with prosodic and spectral features, that 
account for variance in speech intensity. The classifiers were trained at 
three stages of intensity: low, medium, and high. The “Happy” and 
“Neutral” labeled emotions have the highest classification accuracy, 
while the “Disgust” labeled emotion has the lowest. (Kerkeni et al., 
2019) suggest an automatic SER system based on machine learning 
methods. The authors extract modulation spectral and MFCC features 
from speech signals in two corpora of EMO-DB and Spanish speech ut
terances and classifies them using SVM, Multivariate linear regression 
(MLR), and RNN classifiers. Feature selection was used to identify the 
most relevant feature subset. SER reported the highest recognition rate 
of 94 % using the RNN classifier without speaker normalization and 
feature selection on the Spanish dataset. 

2.4. Attention-based models 

Recently different attention mechanisms are being extensively inte
grated into the SER domain due to their ability to explore distinctive 
regions of data. (Guo, 2022) integrate phase information of a signal with 

Md. Rayhan Ahmed et al.                                                                                                                                                                                                                     



Expert Systems With Applications 218 (2023) 119633

5

the magnitude information for the SER task. To capitalize on the com
plementary nature of magnitude and phase information, this study 
employs a single-channel model along with a multi-channel model with 
attention based on magnitude spectrograms, modified group delay 
cepstral coefficients, and dynamic relative phase. Incorporating phase 
information makes it possible to capture more comprehensive acoustic 
features. (Zhao et al., 2021) propose a hybrid deep CNN architecture 
that leverages parallel convolutional layers combined with a squeeze- 
and-excitation network incorporated with a self-attention-based 
dilated residual network. The architecture is trained with con
nectionist temporal classification loss for discrete SER tasks and effec
tively captures long-term contextual dependencies. To investigate the 
autocorrelation of phonemes in speech, (Li et al., 2021) combine the 
self-attention mechanism with the Bi-LSTM network. The self-attention 
mechanism can provide different weights to frames of varying emotional 
intensity, but it can also determine the autocorrelation between frames. 
(Li et al., 2021) propose a composite model that combines a spatio
temporal attention network, with a frequency-based attention network. 
The proposed network narrows down the emotional frequency regions 
from a spectrogram image to focus on the desired emotional regions. 
They have also developed a large-margin learning technique to deal with 
the problem of feature aliasing. It improves intra-class compactness 
while increasing inter-class distances among features. (Liu, 2018) 
demonstrates that a feature set consisting of gammatone frequency 
cepstral coefficients improves the SER accuracy by 3.6 % over MFCCs by 
investigating three frameworks: Fully Connected Networks (FCN), 
LSTM, and Attention-LSTM networks. (Yoon et al., 2019) present a 
multi-hop attention framework for the SER task by extracting hidden 
contextual information from speech data using two streams Bi-LSTMs 
and then applying the multi-hop attention strategy to generate the 
final weights for emotion recognition. (Meng, Yan, Yuan, & Wei, 2019) 
propose a 3D LMS-based residual dilated CNN and memory attention 
mechanisms. They utilize a composite of static LMS feature, delta, and 
deltas-deltas feature to build the feature vector from the raw speech 
signal as input for the model. The dilated CNN assists the model to 
obtain more receptive fields than using the conventional pooling layer. 
In the IEMOCAP (speaker-dependent) dataset the model achieved 74.96 
% accuracy, and in the IEMOCAP (speaker-independent) dataset it 
achieved 69.32 % accuracy. The model achieved the best accuracy of 
90.37 % on the EMO-DB (speaker-dependent) dataset. (Mustaqeem & 
Kwon, 2021b) designed a self-attention module based on DL for the SER 
system. It receives the transitional feature maps and uses it to build the 
channel and spatial attention map with minimal overhead. The authors 
employ a dilated CNN architecture in spatial attention to extract spatial 
information and a multi-layer perceptron in channel attention to extract 
global cues from the input tensor. The proposed model archives 78.01 
%, 80.00 %, and 93.00 % accuracy on IEMOCAP, RAVDESS, and EMO- 
DB datasets, respectively. (Xie et al., 2019) propose an SER system based 
on modified attention-LSTM architecture. They have extracted frame- 
level speech features from the waveform to replace traditional statisti
cal features, preserving the timing relations in the original speech 

through the sequence of frames. The forget gate of the LSTM was 
replaced with an attention gate in order to reduce complexity. Addi
tionally, they increased the system’s efficiency by applying the attention 
mechanism on both time and feature dimensions rather than simply 
forwarding the previous iteration’s output in LSTM. Although attention 
modules have become an integral component of modern SER systems, 
they are not indispensable for achieving high SER performances or even 
SOTA results. 

2.5. Transfer learning-based models 

Methods based on the use of pre-trained neural networks frequently 
produce superior performances to more traditional procedures. Transfer 
learning (TL) has the potential to overcome SER’s cross-domain barrier. 
(Zhang, Zhang, Huang, & Gao, 2018) employed pre-trained AlexNet 
architecture (Krizhevsky, Sutskever, & Hinton, 2012) for learning high- 
level feature representations from the extracted three channels of the 
LMS feature. Additionally, the authors suggest an approach for pooling 
named discriminant temporal pyramid matching (DTPM) features to 
discriminative utterance-level representations. AlexNet fine-tuned for 
emotional speech outperformed the simpler Depp CNN model in four 
distinct datasets, while DTPM-based pooling outperformed the tradi
tional average pooling method. A 2D CNN-based model that uses spec
trograms generated from the EMO-DB dataset, (Badshah, Ahmad, 
Rahim, & Baik, 2017) propose an SER architecture. They have also 
explored the field of transfer learning and utilized pre-trained AlexNet 
architecture but got unsatisfactory results. The initial proposed model 
achieved 84.3 % accuracy on the test set. (Xi, Li, Song, Jiang, & Dai, 
2019) used a residual adapter to minimize domain-specific parameters 
while increasing domain-agnostic parameters sharing. (Aggarwal, Sri
vastava, Agarwal, & Chahal, 2022) propose a two-way feature extrac
tion method for the SER task. In the first approach, they extract the 
MFCC, spectrogram, spectral centroid, and roll-off features. Then in the 
second approach, they extract 2-dimensional LMS images from the 
speech signals. They utilize the pre-trained VGG-16 network for the SER 
task. 

2.6. Ensemble learning-based models 

Ensemble Learning (EL)-based methods have higher predictive ac
curacy compared to individual estimators. It combines the predictions 
from two or more ML or DL models to produce a more stable, accurate, 
and robust prediction. (Chalapathi et al., 2022) utilize the adaptive 
boosting ensemble method along with the fuzzy c-means approach to 
deal with the high-dimensional acoustic features. (Zvarevashe & Olug
bara, 2020) employ bagging classifiers such as random decision forest, 
bagging with SVM, MLP, and boosting classifiers such as gradient 
boosting machine, and AdaBoost with CART for the SER task. In another 
study, (Zhang, 2021) used the RF classifier along with the weighted 
binary cuckoo search method to select the optimal feature subset. 
Though time required to train multiple ML and DL-based architectures to 

Fig. 2. A graphical representation of the framework of the proposed ensemble architecture.  
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perform the ensemble mechanism for the classification task is still a 
matter of concern. However, emotion is a sensitive topic, and recogni
tion of emotion from the speech is a challenging task. A combination of 
multiple individual estimators and utilizing each of their feature 
learning strengths in the SER domain using an ensemble mechanism 
even at the cost of larger training time should be considered because of 
the need for more accurate and stable recognition performance of speech 
emotions. Inspired by the efficient and stable predictive performance of 
EL-based architecture, we adopt the EL mechanism for the final model- 
D, which combines the predictive results of three proposed individual 
models–A, B, and C in a weighted average method. 

In Tables 4–9, we provide an extensive comparative evaluation be
tween our proposed work and the notable works discussed above in the 
literature review section. In the comparison, we highlight the method
ology, extracted features, utilized datasets, feature dimension, data 
augmentation methods, achieved results, and year of publications. 

3. Proposed methods 

The main objective of this work is to investigate the efficiency of an 
ensemble architecture combining multiple novel DL-based models for a 
multi-lingual SER system. Factors such as utilized datasets, number of 
samples in those datasets, class imbalance, data augmentation (DA), 
feature extraction from speech signals, and selection of proper ML or DL- 
based classifiers play a significant role in the SER performance of an 
ensemble architecture. Fig. 2. summarizes our approach to an ensemble 
architecture for the SER task. This study utilizes five benchmark SER 
datasets (TESS, EMO-DB, RAVDESS, SAVEE, and CREMA-D) covering 
English and German languages. Since there is a shortage of sufficient 
sample audio files in those datasets, and to deal with the adverse impact 
of this data shortage issue on the performance of DL-based architecture, 
we performed three types of DA techniques (AWGN addition, pitch 

shifting, and time stretching) to increase the samples of those datasets to 
obtain proper convergence and generalizability of the proposed DL-based 
models. The proposed approach involves extracting a combination of 
time-domain, frequency-domain, and cepstral-based features from raw 
audio recordings to provide the DL-based models as input. The pre
dictions from the individual DL-based models are then weighted, and a 
weighted average ensemble prediction is performed with SOTA SER 
performance. We present further details about the utilized datasets, 
adopted DA techniques, and extracted speech features in section 4. The 
details of the proposed individual DL model-A, B, C, and ensemble 
model-D are presented below. 

3.1. Proposed baseline model-A (1D CNNs-FCNs) 

This study uses 1D CNN followed by FCNs to build the first baseline 
model for SER. 1D CNN performs well with structured data. In terms of 
audio data, 1D CNN extracts the temporal information within the speech 
signal. The extracted ZCR, Chromagram, MFCC, RMS, and LMS features 
from the speech signals are stored in an array creating a vector of fea
tures. This vector of features is fed to the proposed baseline model as 
input. Using seven sequential LFABs containing convolutional, max- 
pooling, batch normalization (BN), and dropout layers, the model ex
tracts hidden local patterns from the speech audio signals, as shown in 
Fig. 3. The 1D-convolution layer, max-pooling layer, and BN layers are 
the essential layers of the LFABs. Two FCNs collect the ultimate global 
features from the speech signals. 

The proposed 1D CNNs-FCNs Model-A takes 155x1feature vector 
arrays as the input. The first LFAB block has 256 filters, with a kernel 
size of eight, padding = ’same’, dilation rate = (1x1), and a stride of one. 
The dilation rate reduces the input vector feature map. The Rectified 
Linear Unit (ReLU) then triggers its output after BN is added. By solving 
the vanishing gradient problem, the BN layer aids all layers of the neural 

Fig. 3. The architecture of the proposed baseline model-A (1D CNNs-FCNs).  

Fig. 4. The architecture of the proposed model-B (1D CNNs-LSTM-FCNs).  
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network in learning at a normalized rate. It speeds up the training 
process by normalizing the hidden layer activation. In addition, to cope 
with the model overfitting issue, we used the dropout layer and kernel 
regularization (L1 and L2) methods with a rate of 0.01. The output of a 
preceding input layer is received by the second layer in this stack, which 
consists of identical 256 filters with the corresponding kernel size, 
dilation rate, and stride. ReLU also enables the output of this layer, and 
then dropout at a rate of 0.25 is added. Following that, BN is performed, 
with the output being fed to a 1D max-pooling layer with a window size 
of two. The following six LFABs with filters of 256, 128, 128, 128, 256, 
and 64 filters use the kernel size, dilation rate, and stride configuration 
as previous blocks. The flattening layer and 50 % dropout follow the 
ultimate LFAB. This flattening layer output is received by two FCNs of 
128, and 64 units with a dropout of 50 %, and finally, the output layer 
with softmax activation function which is utilized to distinguish the 
emotion according to the hidden features learned through LFABs. 
Depending on the task, the LFABs can be customized differently. The 
changes in LFAB configuration are primarily reflected in the convolu
tion, dilation, pooling, and batch normalization settings. 

3.2. Proposed model-B (1D CNNs-LSTM-FCNs) and model-C (1D CNNs- 
GRU-FCNs) 

Proposed model-B and model-C, as shown in Figs. 4 and 5 respec
tively, are built on top of model-A. Here, we see that after the final LFAB 
in baseline model-A, one additional global feature acquiring block 
(GFAB) comprising of LSTM layer (model-B), and GRU layer (model-C) 
of 512 units is added to learn the global contextual correlations from the 
features engineered through the LFABs, as well as adjusting the global 
weights. GFAB is followed by a dropout layer of 50 %. The FCNs 
configuration remains the same as model-A. We adopt GRU and LSTM 
architecture to obtain global long-term contextual representations in 
speech utterances. In an LSTM cell as shown in Fig. 4, there are three 
gates: forget, input, and output gate. The three gates control the transfer 
of information into and out of the cell, and the cell retains values over 
different periods. Gates are a way to allow information to pass through 
selectively. 

The forget gate (ft) determines what essential information is to retain 
from the preceding cell state (Ct) and can be calculated using Eq. (1). 
The input gate (It) defines what pertinent information can be incorpo
rated from the current time step, while the output gate (Ot) defines the 
current hidden state that will be sent to the subsequent LSTM unit. The It 
and Ot calculation formula is shown in Eq. (3) and (4) respectively. First, 
a sigmoid layer determines which value to update. After that, to regulate 
the network, a hyper tangent (tanh) layer generates a feature vector C′

t , 
with possible values between − 1 and 1. The following step updates the 

information from the previous cell state to the new cell state through Eq. 
(5). Usually, the length of the feature of frame-level speech changes with 
the number of speech frames. The LSTM learns deep global contextual 
features with fixed length by choosing the output of the last timestep 
from the variable-length frame-level speech features (Xie et al., 2019). 
Finally, the output is calculated using Eq. (6) and (7) (Zhao et al., 2019). 

ft = σ(Wf *[ht− 1, xt] + bf ) (1)  

where ht− 1 is the hidden later output at the previous timestep, xt is the 
current timestep input, Wf is the weight matrix between It and Ot , and bf 

represents the connection bias at timestep t. σ is the logistic sigmoid 
function which is calculated using Eq. (2). 

σ(x) = 1
1 + ex (2)  

It = σ(Wi*[ht− 1, xt] + bi) (3)  

C′

t = tanh(WC*[ht− 1, xt] + bC) (4)  

Ct = ft*Ct− 1 + It*C′

t (5)  

Ot = σ(Wo*[ht− 1, xt] + bo) (6)  

ht = Ot*tanh(Ct) (7)  

where Wi, WC are the weight matrices between Ot,It, and σ respectively. 
bC represents the bias vector for WC, Ct , Ct− 1, ft, It represents the in
formation of cell state, previous timestep, forget gate, and input gate at 
timestep t respectively. The value generated by tanh is C′

t , whereas, Wo 

and bo represents the weights and bias of the Ot at timestep t. 
The GRU is similar to the LSTM. It only has one hidden state 

compared to LSTM’s two states: cell and hidden (Chung, Gulcehre, Cho, 
& Bengio, 2014). Due to the gating mechanisms, this hidden state can 
hold both long-term and short-term dependencies simultaneously. As 
shown in Fig. 5, the GRU cell is a combination of two gates: update, and 
reset gates, but the internal structure is different from LSTM. While 
training, the gates learn what information is essential to retain or 
overlook. The update gate in the GRU replaces the forget and input gates 
of the LSTM. Reset gate aid in the capture of the sequence’s momentary 
representations. The reset gate, update gate, candidate hidden state, and 
the final hidden state of the GRU can be calculated through the following 
Eqs. (8)–(11) (Ravanelli, Brakel, Omologo, & Bengio, 2018). 

The output of the reset gate is obtained by multiplying the preceding 
hidden state ht− 1 and current timestep input xt by their respective 
weights, adding them, and then applying a sigmoid function to the sum. 

Fig. 5. The architecture of the proposed model-C (1D CNNs-GRU-FCNs).  
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The update gate updatet differs from the reset gate only in terms of the 
weight metrics. The candidate hidden state or current memory function 
h′

t is then calculated by multiplying the input vector xt with ht− 1 and 
then performing an element-wise multiplication with the reset gate, 
resett . This h′

t is then used to calculate the final hidden state ht. 

resett = σ(Wreset*[ht− 1, xt] + breset) (8)  

updatet = σ(Wupdate*[ht− 1, xt] + bupdate) (9)  

h′

t = tanh(Wh*[resett ⊙ ht− 1, xt] + bh) (10)  

ht = (1 − updatet) ⊙ ht− 1 + updatet ⊙ h′

t (11) 

Since GRU has fewer gates than LSTM, it is less complicated and 
faster to train. GRU should be used if the dataset is relatively small; 
otherwise, LSTM should be applied for large-volume datasets. 

3.3. Proposed weighted ensemble model-D 

Ensemble learning (EL) combines the learning procedures of several 
models to achieve a more stable and comprehensive prediction with a 
maximum accuracy that is superior to the individual DL models’ accu
racy. Specific models are good at modeling one part of the data, and 
others are good at modeling another. EL succeeds because several 
models will not make identical errors in the same test dataset. It assures 
that the most accurate and reliable prediction is generated. Many fea
tures in the field of SER can reflect the emotion of speech. When the 
distinct advantages and accuracy of various SER-related models are 
merged and the features are combined, the recognition efficiency can be 
significantly enhanced. A weighted average ensemble was performed in 
this study by combining model-A, B, and C (see Fig. 6). At first, we select 
the optimal weights for each of the individual models through the Grid- 
Search technique. Then using the tensordot function of NumPy, we 
multiply the selected optimal weights with the prediction results of each 
model, calculate the sum of this product of elements over the specified 
axis to calculate the weighted prediction result, and then find the class 
with the largest predicted probability. Then from this weighted pre
diction result, the class with the largest predicted probability is chosen 
for the final prediction. The weighted average ensemble model-D, tested 
with the original dataset and augmented data, achieved higher weighted 
average accuracy (WAA) than the individual models- A, B, and C. 

4. Experimental analysis 

Primarily, an SER framework is comprised of two components. The 
first one is the preprocessing component that obtains appropriate fea
tures from the speech utterances of the utilized datasets, and the second 
one is a classifier that uses those obtained features to execute the SER 

task. This section provides details about the datasets utilized in this 
study, data augmentation techniques, extracted features, and model 
training. 

4.1. Datasets 

To perform a meticulous evaluation of the proposed models, five 
datasets were explored covering two languages: English and German. 
We performed data augmentation in all the datasets since the number of 
samples in each of them is not significant for a DL-based model to train 
appropriately. A summary of each of them is provided below. 

4.1.1. Toronto Emotional Speech Set (TESS) 
TESS (Pichora-Fuller, 2020) is the first dataset that this study 

explored. It contains 200 target words. Those words were spoken by two 
English actresses, ages 26 & 64 years, respectively. The dataset is well 
balanced and contains 2800 audio files and depicts seven emotions: 
“angry,” “neutral,” “happy,” “disgust,” “surprise,” “fear,” and “sad”. 
Note that this dataset has not been extensively used in SER studies 
previously. After performing data augmentation, the samples increased 
to 8400 samples. The average sample duration for all datasets is 2.8 s, 
with TESS being the outcast with an avg. period of 2.1 s. 

4.1.2. Ryerson Audio-Visual Database of Emotional Speech and Song 
(RAVDESS) 

RAVDESS (Livingstone & Russo, 2018) is one of the most explored 
datasets in the SER tasks. It includes both audio and video recordings of 
twelve male and twelve female actors reciting English sentences while 
exhibiting eight distinct emotional expressions. For this study, only the 
speech audio samples were utilized. The total number of audio files is 
1440 with a sampling rate of 48 kHz, with 60 trials per actor. Only the 
speech audio sample from the dataset of the following eight categories 
are covered in this study: “sad,” “happy,” “angry,” “calm,” “fearful,” 
“surprised,” “disgust,” and “neutral”. It is a balanced dataset though the 
“neutral” class has a smaller number of records compared to other 
classes. After performing data augmentation, the samples increased to 
7200. 

4.1.3. Surrey audio-visual expressed emotion (SAVEE) 
SAVEE (Haq & Jackson, 2014) consists of 480 speech utterances 

spoken by four English actors aged 27 to 31 years in seven diverse 
emotions: “angry,” “happy,” “neutral,” “disgust,” “sad,” “fear,” and 
“surprise” in a phonetically stable manner. The utterances are sampled 
at a rate of 44.1 kHz with a resolution of 16 bits However, this dataset 
has a class imbalance issue, with the “neutral” class being almost double 
compared to all the other classes. For this study, only the speech audio 
samples were utilized. Data augmentation increased the samples to 
1920. 

Fig. 6. Visual representation of the proposed weighted ensemble model-D.  

Md. Rayhan Ahmed et al.                                                                                                                                                                                                                     



Expert Systems With Applications 218 (2023) 119633

9

4.1.4. Berlin Database of Emotional Speech (EMO-DB) 
EMO-DB (Burkhardt et al., 2005) is the most well-known and 

extensively used dataset in the SER research field. The utterances are 
sampled at a rate of 16 kHz with a resolution of 16 bits. It comprises 535 
audio recordings in the German language categorized into seven 
emotional kinds: “anger,” “fear,” “sadness,” “happiness,” “disgust,” 
“boredom,” and “neutral”. However, this dataset has a class imbalance 
issue, with the “anger,” class utterance number being large compared to 
other classes. With data augmentation, the samples increased to 2140. 

4.1.5. Crowd-sourced emotional multimodal actors dataset (CREMA-D) 
CREMA-D (Cao et al., 2014) is the least explored dataset in the SER 

research field. It uses 7442 recordings from ninety-one actors/actresses 
(48 male actors and 43 female actresses) from diverse races and customs, 
making it the most complicated to use. Actors spoke from a group of 
twelve sentences of six different emotional categories: “angry,” “happy,” 

“neutral,” “disgust,” “fear,” and “sad”. Though the original number of 
samples is quite large compared to the other four datasets, it is still 
considered one of the most challenging datasets to work with because of 
its diverse number of male and female speakers. Data augmentation was 
also performed in this dataset with increased samples of 44652. Fig. 7 
shows the number of the class-wise utterance of each of the datasets. 

4.2. Data augmentation 

Frequently observed issues in the SER task include the insufficient 
size and class imbalance of datasets. As the complexity and scale of 
DNNs expand, a substantial dataset is required for their optimal per
formance. One solution is to increase the dataset using diverse data 
augmentation (DA) techniques. DA is the method of applying minor 
modifications to our original training dataset to produce new artificial 
training samples. Since the number of speech utterance records in each 

Fig. 7. Class-wise utterance distribution in all five datasets, (a) CREMA-D, (b) RAVDESS, (c) SAVEE, (d) EMO-DB, (e) TESS, and (f) Combined.  

Fig. 8. A pictorial illustration of how various data augmentation techniques impacts speech utterances. Here, (a) is the original sound waveform, (b) is the AWGN 
injected waveform, (c) is the time-stretched waveform, and (d) is the waveform with shifted pitch. 
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class is relatively low, this study performs three types of audio DA, ad
ditive white gaussian noise (AWGN) injection, time-stretching, and pitch 
shifting in the audio files. The impact is more data for proper training of 
the models. The impact of these techniques is visually presented in 
Fig. 8. The obtained signal with AWGN is equal to the transmitted signal 
with some added noise, which is statistically independent of the signal. 
AWGNs are random samples dispersed at consistent intervals with a 
mean value of zero and a standard deviation of one. We added AWGN to 
the samples by using NumPy’s normal and uniform method with a rate 
of 0.020, and 0.025. We can adjust the speed or duration of a sound 
sample without changing the pitch by stretching time. We performed 
this task by using the time_stretch method of python’s librosa library, 

with a factor of 0.7 and 0.8. We also changed the sound’s pitch without 
affecting the speed. Pitch shifting was done by using the pitch_shift 
method of librosa, with a factor of 0.6 and 0.7. Several other studies 
have performed DA for the SER task using GAN-based methods (Bao, 
Neumann, & Vu, 2019; Shilandari, Marvi, Khosravi, & Wang, 2022; 
Tiwari et al., 2020). However, those augmentation methods did not 
yield higher SER performances. We present a comparative analysis of the 
SER performance utilizing the augmentation methods of this study with 
the existing augmentation methods in Table 8. We augmented the 
datasets without degrading the SER system performance. After DA, the 
updated data samples are 8400, 7200, 1920, 2140, and 44,652 for TESS, 
RAVDESS, SAVEE, EMO-DB, and CREMA-D datasets, respectively. 

Fig. 9. A graphical illustration of the MFCC feature extraction process.  

Fig. 10. Speech audio waveforms, and graphical representations of the spectrogram, MFCC, and Chromagram features of a few of the randomly selected categories of 
emotions from the experimented datasets. 
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4.3. Feature extraction 

Extracting salient features from speech audio signals is one of the 
most important measures in SER-related activities. Precise extraction of 
crucial features improves the performance in terms of the SER accuracy 
of the model. Traditionally it is observed that low-level handcrafted 
features contain significant emotional cues about speech utterances and 
with proper feature engineering, work well with 1D CNN architecture 
(Zhang, Tao, Chuang, & Zhao, 2021). Properly configured 1D CNN ar
chitecture with a combination of LSTM, Bi-LSTM, GRU, and Bi-GRU 
architectures can perform effective feature engineering to acquire both 
local and global contextual cues from handcrafted speech features, and 
achieve excellent SER performance (Zhao et al., 2019). Specifically, this 
study uses five different spectral features: MFCC, LMS, ZCR, 

Chromagram, and RMS values of the speech audio files as the input for 
the proposed dilated 1D CNNs-FCNs, 1D CNNs-LSTM-FCNs, 1D CNNs- 
GRU-FCNs, and an ensemble of those three models. The brief details 
of the extracted features are given below. 

4.3.1. Mel-frequency cepstral coefficients (MFCC) 
Human-generated sounds are filtered through the vocal tract shape 

that includes tongue and teeth elements, which also is unique for each 
individual. The structure of these elements determines the voice of an 
individual. A precise measurement of the shape represents the phoneme 
being created. This shape is exhibited in the short-time power spectrum 
envelope, which is represented by MFCCs, and this feature is commonly 
used in SER research (Abdel-Hamid, 2020; Hajarolasvadi & Demirel, 
2019; Liu, Xie, et al., 2018; Nantasri et al., 2020). The MFCC feature 
extraction process is depicted in Fig. 9. It starts with the speech signal 
being converted into a short frame of 20–30 ms window, and every 10 
ms, it is advanced, allowing the temporal features of individual speech 
signals to be traced. Then Discrete Fourier Transform (DFT) is performed 
on every windowed frame, and they are converted into magnitude 
spectrum using Eq. (12). 

xi(k) =
∑N− 1

n=0
xi(n)h(n)e

− j2πkn
N 0⩽k⩽N − 1 (12) 

Here, h(n) is the hamming window, k which defines the DFT length, 
x(n) represents the time-domain signal, i defines the frame number, and 
N defines the number of points used to calculate the DFT. After that, 
applying 26 filters in the previous signal the Mel-Scaled Filter-bank 
(MSFB) is calculated. MSFB is a measurement unit that is dependent on 
the frequency perception of the human ear. As a result, we have 26 
numbers that describe the energy of each frame. The log energies are 
then calculated to obtain log filter-bank energies. The estimation of Mel 
from the physical frequency can be quantified through Eq. (13). 

fMel = 2590log10(1 +
f

700
) (13) 

Here, f denotes the physical frequency (Hz) and fMel denotes the 
frequency perception of the human ear. Finally, Discrete Cosine Trans
form (DCT) is performed to get the MFCCs from the log filter-bank en
ergies. For this study, 13-lower dimensions MFCCs were extracted from 
each audio file. Envelopes are sufficient to reflect the differences be
tween phonemes, allowing us to recognize phonemes using MFCC. The 
sampling rate was set at 44.1 kHz, with DCT-2. 

4.3.2. Chromagram and Pitch 
The Chromagram is a time–frequency transformation of an acoustic 

signal into a briefly changing predecessor of the pitch and is used 
extensively in the SER task (Birajdar & Patil, 2020; Issa et al., 2020). It is 
related to the twelve diverse classes of the pitch. Applying Short-Time 

Table 1 
Comparison of all four proposed models based on the SER performance on TESS, 
EMO-DB, RAVDESS, SAVEE, and CREMA-D datasets.  

Datasets Model Name Mean Accuracy (Model-A, B, C)/Weighted 
Average Accuracy (WAA) (Ensemble Model-D) 

Without data 
augmentation (%) 

With data 
augmentation (%) 

TESS Model-A  96.78  99.05 
Model-B  96.00  98.49 
Model-C  95.68  98.10 
Weighted 
Ensemble model-D  

98.00  99.46  

EMO-DB Model-A  65.88  92.00 
Model-B  64.32  92.21 
Model-C  65.18  91.53 
Weighted 
Ensemble model-D  

67.74  95.42  

RAVDESS Model-A  86.11  94.38 
Model-B  88.54  93.61 
Model-C  86.77  94.00 
Weighted 
Ensemble model-D  

89.19  95.62  

SAVEE Model-A  68.00  92.00 
Model-B  65.87  93.00 
Model-C  68.14  88.28 
Weighted 
Ensemble model-D  

71.00  93.22  

CREMA- 
D 

Model-A  66.60  90.22 
Model-B  66.00  84.27 
Model-C  65.88  84.39 
Weighted 
Ensemble model-D  

68.14  90.47  

Fig. 11. Performance evaluation (after performing DA) of the proposed models in the TESS dataset. (a), (b), and (c) show the training vs validation accuracy curve 
for model-A, model-B, and model-C, respectively, trained for 1000 epochs. 
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Fourier Transforms (STFT) to the waveform created from dataset audio 
files Chromagram features are collected. For this study, 12 
Chromagram-bins were extracted from each audio file. The sound 
wave’s frequencies determine the pitch feature in the SER task (Noroozi, 
Sapiński, Kamińska, & Anbarjafari, 2017). While the frequency is high, 
the pitch is considered high, and when the frequency is low, the pitch is 
considered as low too. In this study, the pitch factor was set at 0.6 and 
0.7 during DA to create more samples for the training. 

4.3.3. Log-Mel Spectrogram (LMS) 
The spectrogram portrays a signal’s intensity in terms of the time

–frequency domain. A spectrogram is generated by dividing a time- 
domain signal into equal-length segments. After that, each segment is 
subjected to the fast Fourier transform (FFT). The spectrogram is a plot 
of each segment’s spectrum. It is a significant feature for any speech- 
related classification task and performs exceptionally with CNN 
(Hajarolasvadi & Demirel, 2019; Meng et al., 2019). For this study, 128 
LMS features were extracted from each audio file. The use of multiple 

Fig. 12. Performance evaluation (after performing DA) of the proposed models in the EMO-DB dataset. (a), (b), and (c) show the training vs validation accuracy 
curve for model-A, model-B, and model-C, respectively, trained for 1000 epochs. 

Fig. 13. Performance evaluation (after performing DA) of the proposed models in the RAVDESS dataset. (a), (b), and (c) show the training vs validation accuracy 
curve for model-A, model-B, and model-C, respectively, trained for 1000 epochs. 

Fig. 14. Performance evaluation (after performing DA) of the proposed models in the SAVEE dataset. (a), (b), and (c) show the training vs validation accuracy curve 
for model-A, model-B, and model-C, respectively, trained for 1000 epochs. 
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audio features rather than just one integrates several sound character
istics such as pitch, tone, harmony, etc., into a single training speech. 
This gives the SER models a more detailed interpretation of a speech 
sound sample, which improves their performance. A few of the 
randomly selected waveforms of the dataset’s recordings and their 
corresponding spectrogram, MFCC, and Chromagram features are 
graphically represented in Fig. 10. 

4.3.4. Zero crossing rate (ZCR) 
ZCR is widely used for SER as well as music information collection- 

related tasks (Widiyanti & Endah, 2018). ZCR measures the number of 
times the amplitude of speech signals passes through zero value in a 
given period. ZCR is the best way to tell the difference between voiced 
and unvoiced expressions. There is no authoritative low-frequency 
fluctuation where there are frequent zero crosses. Mathematically, 
ZCR can be defined through Eq. (14), where s denotes the signal of 
length T and 1R<0 is an indicator function. 

zcr =
1

T − 1
∑T− 1

t=1
1R<0 (stst− 1) (14)  

4.3.5. Root mean square (RMS) value 
It computes the RMS value for each frame from the speech audio 

samples. It performs an analysis of the overall amplitude of the signal, 
describing the average signal amplitude. RMS uses the magnitude of a 
signal as a measurement of signal strength, irrespective of the ampli
tude’s positive or negative level. RMS and root mean square energy 
(RMSE) techniques are used by researchers (Mustaqeem & Kwon, 
2020b; Yi, Mak, & Member, 2020) for speech audio that uses a signal’s 
magnitude as a metric for signal power. For a given signal, x = {x1,x2,

x3........xn}, the RMS value, xRMS is calculated through Eq. (15). 

xRMS =

̅̅̅̅̅
x2

n

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
(x2

1 + x2
2 + x2

3 + .......+ x2
n)

√

(15) 

This study’s total number of extracted features is 13 MFCC, 12 
Chromagram, 128 LMS, and two ZCR and RMS features, creating a 
feature vector of dimension 155 (128 + 13 + 12 + 1 + 1 = 155). 

4.4. Model training 

After getting the feature vector, the study performs data normaliza
tion by calculating the mean and standard deviation of the features. Data 
is divided into training data and testing parts with an 80:20 proportion. 
Those data are then turned into arrays and fed to the DL model as input. 
Since we deal with categorical data, each label is given a specific number 
dependent on alphabetical order. 20 % of the data is used for model 
validation, and the remaining 80 % of the data is used to train the 

models. Every individual model-A, B, and C is trained on both original 
datasets and augmented datasets. The whole process was carried out 
using the Keras framework for DL (Chollet, 2018). Grid-Search was 
applied to tune the hyper-parameter such as optimizer, batch size, 
learning rate, and weights to define the optimal values for all four 
models. According to Grid-Search’s output, the batch size is set at 32, 
and weights were calculated to produce the highest WAA in the 
ensemble model-D. ’Adam’ was selected as the optimizer, and we have 
chosen ’categorical cross entropy’ as the loss function. Each individual 
model-A, B, and C was trained for 1000 epochs on Tesla P100-PCIE GPU. 
The prediction results of model-A, B, and C are then weighted and the 
ensemble model-D performs the final prediction based on those 
weighted models’ predictive results. Assigning optimal weights to each 
individual model-A, B, and C provides the best results for the ensemble 
model-D. 

5. Results analysis 

The number of correctly classified speech emotion labels (True Pos
itives-TP), correctly classified instances that do not belong to the speech 
emotion label (True Negatives-TN), and instances that were either 
incorrectly classified to the speech emotion label (False Positives-FP) or 
were not classified as the speech emotion label (False Negatives-FN) will 
all be used to evaluate the correctness of a speech emotion classification 
task. A confusion matrix is made up of these four measurements 
(Sokolova & Lapalme, 2009). In this section, we present a detailed 
analysis of our experimental results. We show the training vs validation 
accuracy curve and confusion matrix of every experiment performed in 
all five datasets for all three individual model-A, B, C, and ensemble 
model-D. Since the ensemble model-D performed best, we present the 
confusion matrix for this model both before and after performing DA. 
The confusion matrix for model-A, B, and C represents the model’s 
performance after DA only. 

5.1. Evaluation metrics 

We analyze the performance of individual model-A, B, and C in terms 
of a weighted average (WA) score, since the datasets have an imbalanced 
distribution of classes. We also provide the precision, recall, and F1 
score of the individual models in each dataset because of the class 
imbalance issues in those datasets. For the ensemble Model-D, we have 
utilized the WAA metric, which calculates accuracy by adjusting the 
weights of each model. For a distinct emotion label Li, we define the 
evaluation by TPi; TNi; FNi; FPi; and Accuracy, Precision, and Recall are 
computed from the counts for Li. 

The accuracy metric presents the overall efficacy of the SER classifier 
(Sokolova & Lapalme, 2009). 

Fig. 15. Performance evaluation (after performing DA) of the proposed models in the CREMA-D dataset. (a), (b), and (c) shows the training vs validation accuracy 
curve for model-A, model-B, and model-C, respectively, trained for 1000 epochs. 
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Fig. 16. Performance evaluation of the proposed ensemble 
model-D both before and after performing data augmentation 
(DA) in the utilized datasets. Here, (a) and (b) present the 
confusion matrix for the TESS dataset before and after per
forming DA, respectively. (c) and (d) present the confusion 
matrix for the EMO-DB dataset before and after performing 
DA, respectively. (e) and (f) present the confusion matrix for 
the RAVDESS dataset before and after performing DA, 
respectively. (g) and (h) present the confusion matrix for the 
SAVEE dataset before and after performing DA, respectively. 
(i) and (j) present the confusion matrix for the CREMA-D 
dataset before and after performing DA, respectively.   
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Accuracy =
TP + TN

TP + FN + TN + FP
(16) 

The WAA metric computes the average accuracy by assigning 
weights to each individual model of the ensemble Model-D classifier 
(Zhao et al., 2021). 

WAA =

∑K
i=1(

TPi+TNi
TPi+FNi+TNi+FPi

)

K
(17) 

The precision metric calculates the number of TPi recognition that 
fall into the positive speech emotion labels (TPi + FPi) in a multiclass 
SER task. 

Precision =

∑K
i=1TPi

∑K
i=1TPi +

∑K
i=1FPi

(18) 

The recall represents the proportion of correctly recognized positive 
speech emotion labels across all labels. 

Recall =

∑K
i=1TPi

∑K
i=1TPi +

∑K
i=1FNi

(19) 

F1-score combines precision and recalls into a single metric that 
captures properties of both in a multiclass SER task. 

Table 2 
Class-wise SER performance of individual model-A, B, and C on the utilized datasets. The best results per dataset are highlighted in bold font.  

TESS dataset 

Category Model-A Model-B Model-C 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Mean 
Accuracy (%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Mean 
Accuracy (%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Mean 
Accuracy (%) 

Angry 100 100 100 99 100 100 100 99.40 100 100 100 99.10 
Disgust 97 99 98 98 100 99 96 99 98 
Fear 100 98 100 98 100 94 94 100 100 
Happy 98 100 99 99 100 99 99 100 99 
Neutral 100 98 100 100 100 100 100 100 100 
Sad 100 100 100 96 100 99 97 100 100 
Surprise 100 95 97 100 97 98 99 95 97 
Macro 

Average 
99 98 98  98 99 98  97 99 99   

EMO-DB dataset 
Angry 92 97 94 92.26 96 95 95 92.38 95 94 95 91.66 
Boredom 96 86 91 92 90 90 95 76 84 
Disgust 100 85 92 86 88 88 89 85 87 
Fear 95 88 92 95 95 95 86 98 91 
Happy 86 84 85 83 92 87 94 86 90 
Neutral 81 96 88 89 91 90 86 93 90 
Sadness 97 97 97 97 92 95 89 100 94 
Macro 

Average 
93 90 91  91 92 91  91 90 90   

RAVDESS dataset 
Angry 97 96 96 94.38 96 94 94 94 96 97 96 93.86 
Calm 98 94 96 96 96 96 96 96 96 
Disgust 92 97 94 98 89 93 90 90 90 
Fear 96 90 93 98 92 95 97 92 94 
Happy 92 95 94 89 99 93 97 94 95 
Neutral 88 90 90 83 93 86 83 92 87 
Sad 93 93 93 92 92 92 93 93 93 
Surprise 95 97 97 93 99 96 93 95 94 
Macro 

Average 
93 94 94  93 95 93  93 94 93   

SAVEE dataset 
Angry 96 93 95 92 98 96 97 92.70 96 95 95 88.28 
Disgust 100 85 92 91 88 89 92 69 79 
Fear 91 82 86 90 88 89 78 78 78 
Happy 91 100 100 95 97 96 92 87 89 
Neutral 92 97 97 92 96 94 84 98 90 
Sad 81 89 89 93 89 91 89 91 90 
Surprise 92 94 94 90 92 91 94 90 92 
Macro 

Average 
92 91 92  93 92 93  89 87 88   

CREMA-D dataset 
Angry 99 97 98 90.22 98 95 96 84.27 97 95 96 84.39 
Disgust 93 85 88 83 78 81 84 81 82 
Fear 89 87 88 86 77 81 86 76 81 
Happy 95 91 93 93 87 90 92 85 89 
Neutral 88 91 89 84 79 81 75 86 81 
Sad 83 90 86 68 90 77 72 87 78 
Macro 

Average 
91 90 90  85 84 84  84 85 84   
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F1 − score =
2*
∑K

i=1Precisioni*
∑K

i=1Recalli
∑K

i=1Precisioni +
∑K

i=1Recalli
(20) 

Macro-F1 calculates the F1-score for each class in the dataset and 
returns the average value without considering the percentage for each 
label without using any weights. All class is treated equally (Prasanth, 
Roshni Thanka, Bijolin Edwin, & Nagaraj, 2021). 

Macro − F1 =

2*
∑K

i=1
Precisioni*

∑K

i=1
Recalli

∑K

i=1
Precisioni+

∑K

i=1
Recalli

K
(21) 

Similarly, we can obtain the macro-recall and macro-precision scores 

by calculating the within-category values (Tan, 2005). 

Macro − recall =

∑K

i=1
TPi

∑K

i=1
TPi+

∑K

i=1
FNi

K
(22)  

Macro − precision =

∑K

i=1
TPi

∑K

i=1
TPi+

∑K

i=1
FPi

K
(23)  

5.2. Performance analysis 

All four models performed exceptionally well in each of the evalu
ated metrics. Table 1 presents the proposed individual model-A, B, and 
C’s mean accuracy and ensemble model-D’s weighted average accuracy 
in terms of SER performance with and without performing DA in each of 
the utilized datasets. At first, each model’s performance is evaluated in 
the original dataset. All four models performed remarkably well in the 
original TESS dataset with over 96 % mean weighted average accuracy. 
After performing DA, the performance improved further and achieved a 
WAA of 99.46 % in the ensemble model-D. For the EMO-DB dataset, the 
SER performance of all four models was not up to the mark and drew the 
issue of overfitting, which is a common issue when deep models are 
trained on a relatively smaller size dataset. Another reason for this is the 
class distribution imbalance of the EMO-DB dataset and the low number 
of samples for the deep models to train efficiently. The same reason 
applies to the SAVEE dataset, with the WAA being poor for the original 
dataset with a very low number of samples for training the models. 
However, the performance of all the models significantly improved after 
performing DA and trained with an increased number of samples. The 
performance increased by around 32 % from the non-augmented EMO- 
DB dataset and 22 % from the non-augmented SAVEE dataset. In the 
EMO-DB dataset, the emotion “neutral” is often classified as “boredom,” 

Fig. 17. Graphical bar plot depictions of the individual models - A, B, and C in terms of (a) macro precision (b) macro recall (c) mean accuracy, and (d) macro F1- 
score. All the values are represented in terms of percentage. 

Table 3 
Performance comparison of this work with recent literature in the TESS dataset.  

Reference Methodology Features Accuracy 

(Mekruksavanich, 
Jitpattanakul, & 
Hnoohom, 2020) 

DCNN MFCC  55.71 % 

(Chatterjee et al., 2021) 1D-CNN MSFB-Cepstral 
Coefficients  

95.79 % 

(Praseetha & Vadivel, 
2018) 

DNN, RNN, 
GRU 

MFCC, LMS  95.82 % 

(Aggarwal et al., 2022) DNN, VGG-16 2D LMS  97.15 % 
(Venkataramanan & 

Rajamohan, 2019) 
2D CNN LMS  62.00 % 

This work 1D CNNs-FCNs MFCC, LMS, ZCR, 
Chromagram, and 
RMS value  

99.05 % 
1D CNNs- 
LSTM-FCNs  

98.40 % 

1D CNNs-GRU- 
FCNs  

98.10 % 

Ensemble 
Model-D  

99.46 %  
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after rechecking the audio files, we saw that the spectral entropy 
properties of these two categories are pretty similar; that is why all the 
models are misclassifying these two types. The same reasoning goes for 
the SAVEE dataset for the emotions “happy” and “surprise.” After 
rechecking, we found that some recordings with the “happy” labels are 
high pitched, almost the same as the emotion “surprise.” However, the 
highest WAA achieved by the ensemble model-D in the EMO-DB and 
SAVEE datasets is 95.42 % and 93.22 %, respectively. When tested 
against the RAVDESS dataset, the models performed well, with the 
highest WAA achieved in the original dataset, and the augmented 
dataset is 89.19 % and 95.62 %, respectively. CREMA-D is the least 
explored dataset in SER-related studies. It is challenging to work with 
because many actors and actresses from different races uttered different 
sentences in the dataset. The human accuracy of this dataset’s audio- 
only part is around 40.9 %. All four models exceeded that number, 
with the ensemble achieving around 68.14 % WAA in the original 
dataset and 90.47 % WAA in the augmented dataset. Tested against the 
original CREMA-D dataset, the “neutral” and “disgust” emotions are 
often misclassified as “sad” because both have a lower pitch and 
amplitude in the signal waveform; with similar spectral properties. 
When we trained all three individual models with the increased 
augmented data, all the discussed issues were resolved significantly. The 
accuracy curve for training versus validation after DA is also presented 
for all four models in Figs. 11–15. The confusion matrix for the ensemble 
model-D is achieved by adjusting the proper weights of model-A, B, and 
C after performing a grid-search technique. In Fig. 16, we provide the 
confusion matrix of the ensemble model-D to evaluate the performance 
before and after data augmentation in each of the utilized datasets. 

Table 2 presents the class-wise SER performance of each individual 
model-A, B, and C after performing DA in terms of precision, recall, F1- 
score, mean accuracy, average macro-precision, macro-recall, and 

macro-F1 for the TESS, EMO-DB, RAVDESS, SAVEE, and CREMA-D 
datasets. Fig. 17 illustrates the overall performance of model-A, B, and 
C in terms of their average macro precision, macro recall, mean accu
racy, and macro F1-score values. Macro precision and macro recall 
values are significantly high for the TESS and RAVDES datasets. One 
reason is that all the models converge well in those datasets because of 
their superior balanced class distribution compared to EMO-DB and 
SAVEE datasets. Baseline model-A achieves the highest macro precision 
score in all the utilized datasets. In terms of macro recall, model-B 
achieves the highest results apart from the CREMA-D dataset only. 
Model-C’s overall performance is lower than the other models, 

Table 4 
Performance comparison of this work with recent literature in the EMO-DB 
dataset.  

Reference Methodology Features Accuracy 

(Issa et al., 2020) 1D CNN MFCC, LMS, Chromagram, 
Spectral contrast, Tonnetz  

86.10 % 

(Tiwari et al., 
2020) 

DNN ZCR, RMS energy, MFCC, 
and statistical features  

82.73 % 

(Yadav & 
Vishwakarma, 
2020) 

1D CNN, Bi- 
LSTM 

Acoustic features  94.00 % 

(Zhao et al., 
2019) 

1D-2D DCNN, 
LSTM 

Spectral features  95.33 % 

(Anvarjon et al., 
2020) 

2D CNN LMS  92.02 % 

(Mustaqeem 
et al., 2020) 

Bi-LSTM LMS  85.57 % 

(Mustaqeem & 
Kwon, 2021b) 

CNN, Channel 
Attention 

LMS  93.00 % 

(Li et al., 2021) Bi-LSTM MFCC, Spectral centroid, 
roll-off, flux, and spread, 
ZCR, RMS, Chromagram, 
Pitch, entropy  

85.95 % 

(Ancilin & Milton, 
2021) 

SVM Mel Frequency Magnitude 
Coefficient  

81.50 % 

(Farooq et al., 
2020) 

DCNN, SVM, 
MLP 

LMS  95.10 % 

(Nantasri et al., 
2020) 

ANN MFCCs, Delta, Delta-Deltas  87.80 % 

(Yi et al., 2020) DNN, SVM, 
GAN, 
Autoencoder 

MFCC, ZCR, RMS  84.49 % 

This work 1D CNNs-FCNs MFCC, LMS, ZCR, 
Chromagram, and RMS value  

92.26 % 
1D CNNs-LSTM- 
FCNs  

92.38 % 

1D CNNs-GRU- 
FCNs  

91.66 % 

Ensemble 
Model-D  

95.42 %  

Table 5 
Performance comparison of this work with recent literature in the RAVDESS 
dataset (- Not mentioned).  

Reference Methodology Features Accuracy 

(Issa et al., 2020) 1D CNN MFCC, LMS, 
Chromagram, Spectral 
contrast, Tonnetz  

71.61 % 

(Yadav & 
Vishwakarma, 
2020) 

1D CNN, Bi- 
LSTM 

Acoustic features  73.00 % 

(Mekruksavanich 
et al., 2020) 

DCNN MFCC  75.83 % 

(Farooq et al., 2020) DCNN, SVM, 
MLP 

LMS  81.30 % 

(Padi et al., 2020) CNN MFCC, Chromagram, and 
Time-domain features  

88.00 % 

(Nantasri et al., 
2020) 

ANN MFCCs, Delta, Delta- 
Deltas  

82.30 % 

(Mustaqeem et al., 
2020) 

Bi-LSTM LMS  77.02 % 

(Mustaqeem & 
Kwon, 2020b) 

1D CNN –  80.00 % 

(Mustaqeem & 
Kwon, 2021b) 

CNN, Channel 
Attention 

LMS  80.00 % 

(Ancilin & Milton, 
2021) 

SVM Mel frequency magnitude 
coefficient  

64.31 % 

(Aggarwal et al., 
2022) 

DNN MFCC, Chromagram, 
LMS, Spectral centroid 
and roll-off  

73.95 % 

This Work 1D CNNs-FCNs MFCC, LMS, ZCR, 
Chromagram, and RMS 
value  

94.38 % 
1D CNNs-LSTM- 
FCNs  

94.00 % 

1D CNNs-GRU- 
FCNs  

93.86 % 

Ensemble 
Model-D  

95.62 %  

Table 6 
Performance comparison of this work with recent literature in the SAVEE 
dataset.  

Reference Methodology Features Accuracy 

(Hajarolasvadi & 
Demirel, 2019) 

3D CNN LMS  81.05 % 

(Farooq et al., 2020) DCNN, SVM, 
MLP 

LMS  82.10 % 

(Padi et al., 2020) CNN MFCC, Chromagram, and 
Time-domain features  

70.00 % 

(Ancilin & Milton, 
2021) 

SVM Mel frequency magnitude 
coefficient  

75.63 % 

(Mekruksavanich 
et al., 2020) 

DCNN MFCC  65.83 % 

(Liu, Xie, et al., 2018) GA, PCA, LLD MFCC  76.40 % 
This work 1D CNNs-FCNs MFCC, LMS, ZCR, 

Chromagram, and RMS 
value  

92.00 % 
1D CNNs- 
LSTM-FCNs  

92.70 % 

1D CNNs-GRU- 
FCNs  

88.28 % 

Ensemble 
Model-D  

93.22 %  
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especially in the EMO-DB and SAVEE datasets. Model-B achieves the 
highest mean accuracy and macro F1-score value in all the utilized 
datasets, except for the CREMA-D dataset. However, for the CREMA-D 
dataset, model-A performs significantly better than other individual 
models. It is observed that the performance of model-C is poor compared 
to the other two individual models in both mean accuracy and macro F1- 
score metrics. 

5.3. Comparative analysis with other methods 

There has already been extensive research in the field of SER. 
However, comparing performance was tough because only a few per
formed DA in those datasets for SER (Padi, Manocha, & Sriram, 2020; 
Tiwari et al., 2020; Yi et al., 2020) using GAN or multi-window method, 
and by adding generative noise. We have identified that augmenting 
data is necessary for the utilized datasets because the sizes of these 
datasets are significantly lesser for the proper training of a DL-based 
model. Besides that, only a few bits of literature utilized the TESS and 
CREMA-D datasets for this task. Some of the existing articles (Demircan 

Table 7 
Performance comparison of this work with recent literature in the CREMA-D 
dataset (- Not mentioned).  

Reference Methodology Features Accuracy 

(Mekruksavanich et al., 
2020) 

DCNN MFCC  65.77 % 

(Singh et al., 2020) SVM MFCC, ZCR, RMSE  58.22 % 
(Scheidwasser-clow, 

Kegler, Beckmann, 
Cernak, & Epfl, 2022) 

Convolutional 
Transformer 

–  76.90 % 

(Mocanu & Tapu, 2021) CNN Acoustic features  64.85 % 
(Huang, Tao, Liu, & 

Lian, 2020) 
LSTM, Vector of 
Locally Aggregated 
Descriptors 

MFCC, Low level 
descriptors  

63.50 % 

This work 1D CNNs-FCNs MFCC, LMS, ZCR, 
Chromagram, and 
RMS value  

90.22 % 
1D CNNs-LSTM- 
FCNs  

84.27 % 

1D CNNs-GRU- 
FCNs  

84.39 % 

Ensemble Model-D  90.47 %  

Table 8 
Performance comparison of this work with recent literature adopting different data augmentation techniques in the utilized datasets (- Not mentioned).  

Reference Methodology Datasets Mean 
Accuracy/ 
WAA 

Features Feature 
dimension 

Data augmentation method 

(Tiwari et al., 2020) DNN EMO-DB  76.77 % ZCR, RMS energy, MFCC, and statistical 
features 

6552 Generative noise model 

(Yi et al., 2020) DNN, SVM, GAN, 
Auto encoder 

EMO-DB  84.49 % MFCC, ZCR, RMS 4368 Adversarial data augmentation 
network 

(Zhang et al., 2018) Deep CNN EMO-DB  87.31 % 2D LMS – Increased overlap length of speech 
signals 

(Feng, Hashemi, 
Annavaram, & 
Narayanan, 2022) 

CNN, Adversarial 
learning 

CREMA- 
D  

69.80 % 2D LMS – Addition of AWGN 

(Praseetha & Joby, 
2021) 

GRU TESS  93.00 % Filter-bank Energies – Tempo and speed perturbation 

(Padi et al., 2020) CNN SAVEE  70.00 % MFCC, Chromagram, and Time-domain 
features 

34 Multi-Window based method 
RAVDESS  88.00 % 

(Jothimani & 
Premalatha, 2022) 

CNN, LSTM RAVDESS  92.60 % MFCC, ZCR, RMS  Noise Removal, White Noise 
Injection, and Pitch Tuning CREMA- 

D  
89.90 % 

SAVEE  84.90 % 
TESS  99.60 % 

(Lalitha, Gupta, 
Zakariah, & Alotaibi, 
2020) 

MLP, RF EMO-DB  87.30 % MFCC, inverted MFCC, extended MFCC, 
extended IMFCC, LPC, Mel, and Bark 
filter bank-derived features 

– Synthetic Minority Over-sampling 
Technique (SMOTE) SAVEE  75.20 % 

This work 1D CNNs-FCNs EMO-DB   92.26 % MFCC, LMS, ZCR, Chromagram, and 
RMS value 

155 Injecting AWGN, stretching the 
speech audio files, and modification 
of the pitch of the sound 

1D CNNs-LSTM- 
FCNs  

92.38 % 

1D CNNs-GRU- 
FCNs  

91.66 % 

Ensemble Model- 
D  

95.42 % 

1D CNNs-FCNs SAVEE  92.00 % 
1D CNNs-LSTM- 
FCNs  

92.70 % 

1D CNNs-GRU- 
FCNs  

88.28 % 

Ensemble Model- 
D  

93.22 % 

1D CNNs-FCNs RAVDESS  94.38 % 
1D CNNs-LSTM- 
FCNs  

94.00 % 

1D CNNs-GRU- 
FCNs  

93.86 % 

Ensemble Model- 
D  

95.62 % 

1D CNNs-FCNs CREMA- 
D  

90.22 % 
1D CNNs-LSTM- 
FCNs  

84.27 % 

1D CNNs-GRU- 
FCNs  

84.39 % 

Ensemble Model- 
D  

90.47 %  

Md. Rayhan Ahmed et al.                                                                                                                                                                                                                     



Expert Systems With Applications 218 (2023) 119633

19

& Kahramanli, 2018; Hajarolasvadi & Demirel, 2019; Li et al., 2021) use 
only a subset of those datasets; some perform feature extraction from the 
audio, text, and video samples of those datasets (Ristea, Dutu, & Radoi, 
2019; Yoon et al., 2018). Our scope in this research is only audio sam
ples. Some (Chen, He, Yang, & Zhang, 2018; Kim, Englebienne, Truong, 
& Evers, 2017; Mustaqeem & Kwon, 2021c) evaluate their framework’s 
performance using a different metric from ours, like unweighted average 
accuracy, recall (Feng & Chaspari, 2020; Meng et al., 2019); Some 
choose a questionable training and testing split ratio of 90:10 (Bhavan 
et al., 2019); therefore, we only compare with those articles that match 
our criterion. 

In Tables 3–7, we present the performance comparison of our work 
with previous work for TESS, EMO-DB, RAVDESS, SAVEE, and CREMA- 
D datasets, respectively. Table 8 compares our work with those articles 
adopting different data augmentation methods to increase the SER ac
curacy using the utilized datasets of this study. The comparison shows 
that this study’s data augmentation approach uses a lesser feature 
dimension than other methods, providing improved results. 

In addition to the better SER performance achieved by the proposed 
DL-based model–A, B, C and weighted ensemble model-D in all the uti
lized datasets (see Tables 1–8), the training time complexity and size of 
our proposed models are relatively lightweight and occupy less memory 
compared to other reported SOTA SER architectures. The training time 
of model-A, B, and C are 3685 s, 3929 s, and 3798 s on the TESS dataset, 
23429 s, 25170 s, and 25475 s on the CREMA-D dataset, 972 s, 989 s, 
and 981 s on the EMO-DB dataset, 3038 s, 3241 s, and 3108 s on the 
RAVDESS dataset, and 919 s, 931 s, and 922 s on the SAVEE dataset, 
respectively. Though it should be noted that, training time varies based 
on the utilized GPU’s and allocated memory. In terms of model size, all 
three proposed models-A, B, and C are less memory consuming 
compared to reported SER benchmarks such as CB-SER (Mustaqeem 
et al., 2020), ADRNN (Meng et al., 2019), ATT-Net (Mustaqeem & Kwon, 
2021b), ACRNN (Chen et al., 2018), QCNN (Muppidi & Radfar, 2021), 
and DSCNN (Mustaqeem & Kwon, 2020a). Size of the models- A, B, and 
C are 23.5 MB, 38 MB, and 34.5 MB on the TESS dataset, 23.4 MB, 37.1 
MB, and 33.8 MB on the CREMA-D dataset, 20.5 MB, 22.1 MB, and 21.6 
MB on the RAVDESS dataset, 19.8 MB, 21.7 MB, and 21.1 MB on the 
EMO-DB dataset, and 18.5 MB, 20 MB, and 19.3 MB on the SAVEE 
dataset, respectively. Due to the increased model complexity used in the 
individual models, we trade off the ensemble model-D’s evaluation time 
for robust SER performance, which can only be completed after training 
all three separate model-A, B, and C. For all datasets, each of the pro
posed individual models exhibits better generalization during the 
experimental assessment, ensuring higher recognition accuracy with 
minimal computation cost. The lightweight property makes all the 
models suitable for real-time applications for human–computer inter
action. Among all four models, ensemble model-D performed best in 
terms of SER accuracy in all the datasets. The individual model’s 
excellent performance in detecting emotion from speech across all five 
datasets and adjusting the proper weights for each model for the 
ensemble prediction contributes mainly to the improved recognition 
rate of weighted ensemble model-D. 

6. Conclusion and future works 

Inadequate data could prohibit any DNN-based model from 
achieving its maximum ability, which is a significant challenge in the DL- 
based SER task. The lack of data samples often leads a deep and complex 
model to suffer from overfitting issue. This paper presents a compre
hensive study of different DL-based SER systems utilizing five different 
datasets, covering two languages: English and German. We have hand
crafted five types of LLD features from each audio file. We have designed 
multiple LFABs inside the baseline model-A to learn local hidden fea
tures of the speech signals. An additional GFAB is added to both model-B 
and model-C that extracts long-term global contextual dependencies and 
correlations from the learned features of LFABs. The effectiveness of a 

weighted ensemble setting of three new DL-based models is assessed on 
five standard benchmark SER datasets. With data augmentation, the 
result of the proposed weighted ensemble model-D is significant, 
achieving a SOTA WAA of 99.46 %, 95.42 %, 95.62 %, 93.22 %, and 
90.47 % for the TESS, EMO-DB, RAVDESS, SAVEE, and CREMA-D 
datasets respectively. 

Although there have been steady advancements in methods, features, 
and obtained accuracy in SER, many limitations are yet to be addressed 
for an effective and industry-grade SER scheme. The majority of the 
datasets are acted, scripted, and only cover a few discrete statements and 
expressions throughout the corpus. There can be major differences be
tween working with real and acted data. Moreover, in most cases, the 
sample size in those datasets is insufficient to adequately train a DL-based 
model. Experiments conducted to create those datasets are simulated 
and semi-natural. They are not noisy and are far away from the natural 
environment in a real-world scenario. This brings questions about the 
ability of a developed system which are built using those datasets to 
detect the correct emotion in a real-world noisy scenario. The detection 
of emotions in a dialogue between multiple actors from continuous 
speech audio is an area that needs further research. A possible extension 
of this research is to develop a multi-label problem where an utterance 
in any conversation often contains multiple emotion types. The fusion of 
information from multi-modal CNN architectures that capture different 
optimal acoustic features from speech signals needs more addressing 
and further investigation. Most of the utilized acoustic features contain 
information about magnitude and phase. However, the traditional SER 
system mostly focuses on the magnitude information only. The explo
ration of effective phase-based features is another point of research di
rection. Even though this study performs exceptionally well in SER 
across five datasets, we believe that further analysis on this subject is 
necessary. In the future, we hope to reduce the training time needed for 
the individual models to make an ensemble prediction by focusing more 
on the optimal feature selection method and integrating different 
attention mechanisms to get more optimal cues for the SER task. 

CRediT authorship contribution statement 

Md. Rayhan Ahmed: Conceptualization, Methodology, Formal 
analysis, Validation, Investigation, Resources, Data curation, Visuali
zation, Writing – original draft, Writing – review & editing. Salekul 
Islam: Formal analysis, Validation, Writing – original draft. A.K.M. 
Muzahidul Islam: Formal analysis, Validation, Writing – original draft. 
Swakkhar Shatabda: Formal analysis, Validation, Writing – original 
draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

References 

Abbaschian, B. J., Sierra-Sosa, D., & Elmaghraby, A. (2021). Deep learning techniques for 
speech emotion recognition, from databases to models. Sensors (Switzerland), 21(4), 
1–27. https://doi.org/10.3390/s21041249 

Abdel-Hamid, L. (2020). Egyptian Arabic speech emotion recognition using prosodic, 
spectral and wavelet features. Speech Communication, 122, 19–30. https://doi.org/ 
10.1016/j.specom.2020.04.005 

Aggarwal, A., Srivastava, A., Agarwal, A., & Chahal, N. (2022). Two-way feature 
extraction for speech emotion recognition using deep learning. Sensors, 22(6), 1–11. 
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