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Abstract

The Transformer translation model is fast to001
train and achieves state-of-the-art results for002
various translation tasks. However, unknown003
input words at test time remain a challenge004
for the Transformer, especially when unknown005
words are segmented into inappropriate sub-006
word sequences that break morpheme bound-007
aries. This paper improves the Transformer008
model to learn more accurate source repre-009
sentations via character-level encoding. We010
simply adopt character sequences instead of011
subword sequences as input of the standard012
Transformer encoder and propose contextual-013
ized character embedding (CCEmb) to help014
character-level encoding. Our CCEmb con-015
tains information about the current character016
and its context by adding the embeddings of017
its contextual character n-grams. The CCEmb018
causes little extra computational cost and we019
show that our model with a character-level020
encoder and a standard subword-level Trans-021
former decoder can outperform the original022
pure subword-level Transformer, especially023
for translating source sentences that contain024
unknown (or rare) words.025

1 Introduction026

Neural machine translation (NMT) (Bahdanau027

et al., 2014; Vaswani et al., 2017) is capable of028

open-vocabulary translation via automatic subword029

segmentation (Sennrich et al., 2016; Wu et al.,030

2016; Xu et al., 2021). However, automatic sub-031

word segmentation algorithms frequently produce032

inappropriate subword segmentation that breaks033

morpheme boundaries and affects the performance034

of subword-level NMT, especially for translating035

unknown (or rare) input words (Ataman and Fed-036

erico, 2018). For example, in Table 1, assume the037

word “stumbled" is an unknown word (it never038

occurred in the training data). Even if the subword-039

level translation model has learned how to translate040

a similar word “stumble", the model still does not041

Word Subword Character
stumble stum@@ ble s t u m b l e
stumbled st@@ umb@@ led s t u m b l e d

Table 1: Subword sequences and character sequences
for the two words “stumble" and “stumbled". The two
subword sequences do not share any subword tokens
while the two character sequences share the same sub-
sequence “s t u m b l e".

know how to translate “stumbled" as the automati- 042

cally segmented subword sequences of these two 043

words do not share any subword tokens as shown 044

in Table 1. Compared to subword-level NMT, 045

character-level NMT (Lee et al., 2017; Cherry et al., 046

2018; Gao et al., 2020), which trains translation 047

models with character sequences, naturally does 048

not suffer from inappropriate subword segmenta- 049

tion and has the potential to learn more accurate 050

word representations. Cherry et al. (2018) showed 051

that RNN-based character-level NMT models can 052

outperform identical models that are trained with 053

subword-level sequences. 054

Although RNN-based character-level NMT mod- 055

els (Cherry et al., 2018; Chung et al., 2016; Lee 056

et al., 2017; Ataman et al., 2019; Luong and Man- 057

ning, 2016; Costa-jussà and Fonollosa, 2016) have 058

shown promising results, the computational cost 059

of training such a model is high as long RNNs 060

are slow to train (Cherry et al., 2018). For effi- 061

ciency, Gao et al. (2020) trained Transformer-based 062

character-level NMT models with self-attention, 063

but found that using a standard Transformer model 064

to learn character-level translation achieved worse 065

translation quality than subword-level Transformer 066

models. Gao et al. (2020) improved the Trans- 067

former model to perform more accurate character- 068

level translation by adding extra convolutional lay- 069

ers into the Transformer encoder, but their model 070

(character-level ConvTransformer) still obtained 071

worse translation quality compared to the original 072

subword-level Transformer translation model. 073
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In this paper, we improve the Transformer model074

to perform more effective character-level encoding075

with contextualized character embedding (CCEmb).076

Our CCEmb captures information about the current077

character and its context by adding the embeddings078

of its contextual character n-grams. We show that,079

1. our CCEmb effectively improves the Trans-080

former model for character-level encoding and081

requires significantly less computational cost082

compared to Gao et al. (2020)’s method which083

used extra convolutional layers.084

2. while previous Transformer-based models085

focused on pure subword-level translation086

(Vaswani et al., 2017) or pure character-level087

translation (Gao et al., 2020), our model com-088

bining a character-level encoder with a stan-089

dard subword-level Transformer decoder can090

achieve higher translation quality.091

3. our model with a character-level encoder is092

particularly useful for translating infrequent093

words compared to the pure subword-level094

Transformer.095

2 Our Approach096

The Transformer translation model (Vaswani et al.,097

2017) can be directly trained with character se-098

quences instead of subword sequences to perform099

character-level translation. We improve the Trans-100

former encoder to perform more effective character-101

level encoding by replacing the standard character102

embedding with contextualized character embed-103

ding (CCEmb).104

In contrast to standard character embedding105

which only contains information about a single106

character, our CCEmb captures information about107

the current character and its context by adding the108

embeddings of its contextual character n-grams.109

Given a sequence1 of L characters x1, ..., xi, ..., xL110

as the input of the Transformer encoder, we com-111

pute the CCEmb for the ith character as,112

Ci = concat

(
5∑

n=1

E(xii−n+1),
5∑

n=1

E(xi+n−1
i )

)
(1)113

where E(xii−n+1) is the embedding of the n-gram114

xii−n+1 which represents the left-side context of115

xi; E(xi+n−1
i ) is the embedding of the n-gram116

1In character sequences, we use a special space token to
indicate word boundaries.

h   e   _   c   l   e   a   n   e   d   _   t   h   e   _   w   i n   d   o   w   _   .
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Figure 1: An example of CCEmb.

xi+n−1
i which represents the right-side context of 117

xi. We learn an embedding vector for each char- 118

acter n-gram in the same way as learning an em- 119

bedding vector for a character or a subword token. 120

The longest n-grams used in our experiments are 5- 121

grams. We only use n-grams that do not cross word 122

boundaries as shown in Figure 1. And we only use 123

embeddings of the most frequent 32k n-grams2 124

contained in the source-side of the parallel NMT 125

training data. Because the CCEmb is obtained by 126

concatenating left-side contextual n-gram embed- 127

ding and right-side contextual n-gram embedding, 128

the size of n-gram embedding is set to be half of 129

the Transformer model size. 130

Unlike Vaswani et al. (2017)’s subword-level 131

Transformer encoder, our character-level encoder 132

does not suffer from inappropriate subword seg- 133

mentation and can learn more accurate source rep- 134

resentations, especially for unknown/rare words 135

as showcased in Table 1. Compared to the 136

subword-level Transformer encoder, the subword- 137

level Transformer decoder is less influenced by in- 138

appropriate subword segmentation, because at test 139

time, we only need to apply automatic subword seg- 140

mentation algorithms to segment the source words, 141

not the target words (i.e., at test time, the target-side 142

subword tokens are generated by the translation 143

model, not by automatic subword segmentation al- 144

gorithms). In our experiments, a subword-level 145

Transformer decoder obtained significantly higher 146

translation quality compared to a character-level 147

Transformer decoder and therefore we train our 148

model to perform character-to-subword translation 149

with our character-level encoder and a standard 150

subword-level Transformer decoder. 151

2To obtain the most frequent 32k character n-grams, we
apply moses scripts tokenizer.perl and truecase.perl to the
source-side of the parallel training data, then compute the
frequency of character n-grams that occur in the source sen-
tences and are not longer than 5-grams, and finally use the
most frequent 32k n-grams.
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DeEn FiEn
BLEU chrF BLEU chrF Parameters Speed

B2B (Vaswani et al., 2017) Transformer 31.78 57.29 20.90 49.51 97M 1248
C2C (Gao et al., 2020) ConvTransformer 31.01 56.85 20.63 49.42 82M 139

C2B (Ours)

Transformer 31.44 57.12 20.13 48.80 79M 312
+CCEmb 32.20† 57.66† 20.93 50.03† 87M 292

ConvTransformer 32.20† 57.65† 21.86† 50.57† 117M 201
+CCEmb 32.51† 57.94† 21.92† 50.83† 125M 191

Table 2: Translation results. B2B: BPE-to-BPE; C2C: Character-to-Character; C2B: Character-to-BPE. Speed:
numbers of sentence pairs being processed per second during training. † represents significantly better (Koehn,
2004) at the p < 0.01 level compared to the B2B Transformer.

3 Experiments152

We conducted experiments on German-to-English153

(DeEn) and Finnish-to-English (FiEn) translation154

tasks. We used training data of WMT 2015 NEWS155

translation task for both language pairs (4.5M and156

2.1M sentence pairs for DeEn and FiEn, respec-157

tively). For the DeEn task, we combined WMT158

NEWS test sets, newstest2010 to newstest2020, as159

test data (28K sentence pairs); for the FiEn task,160

we combined newstest2015 to newstest2019 as test161

data (12K sentence pairs).162

We train Transformer models with CCEmb163

to perform character-to-subword translation for164

each language pair. We compare our model with165

the original Transformer model (Vaswani et al.,166

2017) and the ConvTransformer model (Gao et al.,167

2020) which employs extra convolutional layers in168

the Transformer encoder for character-to-character169

translation. As the Transformer model (Vaswani170

et al., 2017) was proposed to learn subword-171

to-subword translation and the ConvTransformer172

model (Gao et al., 2020) was proposed to learn173

character-to-character translation, we also train174

Transformer and ConvTransformer models to learn175

character-to-subword translation and investigate176

the effectiveness of Transformer and ConvTrans-177

former for character-to-subword translation.178

We applied moses scripts tokenizer.perl and true-179

case.perl as preprocessing for training all models.180

For subword segmentation, we used byte pair en-181

coding (BPE) (Sennrich et al., 2016) to learn a182

joint source and target vocabulary of 32k for each183

language pair. We used the base model setting184

of Vaswani et al. (2017)’s work for all models in185

our experiments. During training, we set the max186

length of character sequences to be 500 and the187

max length of subword sequences to be 100.188

Translation results, BLEU3 and chrF (Popović,189

3BLEU scores are case-sensitive and computed by moses
script multi-bleu-detok.perl.

2015), are given in Table 2. Table 2 shows that (i) 190

the original C2C ConvTransformer model obtained 191

worse translation quality compared to the original 192

B2B Transformer model (ii) our C2B Transformer 193

model with CCEmb can achieve higher transla- 194

tion quality compared to the B2B Transformer (iii) 195

combining the ConvTransformer character-level 196

encoder and a subword-level decoder can outper- 197

form the original C2C ConvTransformer, and our 198

CCEmb can further improve the ConvTransformer 199

character-level encoder. Table 2 also shows that 200

our CCEmb caused little increase in computational 201

cost while ConvTransformer added extra convo- 202

lutional layers into the Transformer encoder and 203

led to significantly more computational cost and 204

parameters. 205

Character-level Encoding for Infrequent words 206

Compared to subword-level encoding, character- 207

level encoding can obtain better translation for un- 208

known/rare input words that are inappropriately 209

segmented. Table 3 gives an example: the in- 210

put German word “Baufehler" is segmented into 211

“B@@ auf@@ eh@@ ler" by BPE which clearly 212

broke the morpheme boundaries as a semanti- 213

cally meaningful subword segmentation should 214

be “Bau@@ (construction) fehler (defect)". If 215

the word “Baufehler" occurred frequently in the 216

parallel training data, the BPE2BPE Transformer 217

would have learned how to translate this word even 218

though it is segmented into semantically meaning- 219

less subword tokens. However, “Baufehler" is a 220

rare word (only occurred twice in the training data) 221

and therefore the BPE2BPE Transformer failed to 222

translate it correctly. To quantify the advantage of 223

our character-level encoding over subword-level 224

encoding for translating infrequent words, we use 225

the frequency of a source word occurring in the 226

source-side of the parallel training data and then 227

divide the DeEn test data into two parts Tfrequent 228

and Tinfrequent by ranking all source test sentences 229
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SRC Ermittler entdecken gefährlichen Baufehler in
A380-Triebwerken

REF Investigators uncover dangerous defect in A380
engines

BPE Ermitt@@ ler entdecken gefährlichen B@@
auf@@ eh@@ ler in A3@@ 8@@ 0-@@
Trieb@@ werken

B2B Investigators discover dangerous A380 engines
C2B Detectors Discover Dangerous Failures in A380

Engines

Table 3: Translation examples. SRC: source; REF: ref-
erence; BPE: subword-level input sequence segmented
by BPE; B2B: translation produced by the BPE2BPE
Transformer; C2B: translation produced by the charac-
ter2BPE Transformer with CCEmb.

according to the frequency of the least frequent230

word contained in the sentence. As shown in231

Figure 2, compared to subword-level encoding,232

character-level encoding is generally more benefi-233

cial for translating Tinfrequent than for translating234

Tfrequent. Figure 2 also shows that our CCEmb235

effectively improved both Transformer and Con-236

vTransformer for translating Tinfrequent.237

Character-level vs. Subword-level Decoding238

Table 2 shows that using a subword-level Trans-239

former decoder obtained higher translation quality240

than a character-level Transformer decoder in our241

experiments. There are two main reasons: 1. char-242

acter sequences are much longer than subword se-243

quences and a character token contains significantly244

less information than a subword token, which in-245

crease the difficulty of character-level decoding246

compared to subword-level decoding; 2. the de-247

coding process is less influenced by inappropriate248

automatic subword segmentation compared to the249

encoding process, because at test time, only source250

words need to be segmented by BPE and target-side251

subword tokens are generated by the translation252

model (not segmented by BPE). Although subword-253

level decoding achieved higher translation quality254

than character-level decoding in our experiments,255

for future research, character-level decoding has256

the potential to outperform subword-level decod-257

ing as target words in the parallel NMT training258

data can still be inappropriately segmented by auto-259

matic subword segmentation algorithms and affect260

the training process of subword-level decoders.261

4 Related Work262

For improving character-level NMT, Libovický263

and Fraser (2020) showed that, initially training264

a subword-level translation model and then finetun-265

30

31

32

33

34

Infrequent Frequent
B2B Transformer C2C ConvTransformer

C2B Transformer C2B ConvTransformer

C2B Transformer+CCEmb C2B ConvTransformer+CCEmb

Figure 2: Translation results (BLEU) for Tinfrequent

and Tfrequent.

ing it on characters can achieve higher translation 266

quality compared to training character-level trans- 267

lation models from random initialization, but their 268

method still obtained worse overall translation qual- 269

ity compared to subword-level NMT models. 270

Other than character-level NMT, there are a 271

number of methods (Kudo, 2018; Xiao et al., 272

2019; Provilkov et al., 2020) that were proposed 273

to address the inappropriate subword segmenta- 274

tion problem of subword-level NMT by exploit- 275

ing multiple possible subword segmentation can- 276

didates in subword-level NMT systems. However, 277

a source/target word can have a large number of 278

possible subword segmentation candidates, which 279

leads to high computational cost for their methods 280

to make use of all possible subword segmentation. 281

Therefore, for efficiency, Kudo (2018); Xiao et al. 282

(2019)’s methods can only use n-best subword seg- 283

mentation candidates at NMT training/inference 284

time; Provilkov et al. (2020) only used multiple 285

subword segmentation at training time, not infer- 286

ence time. 287

5 Conclusion 288

This paper improves Transformer translation mod- 289

els to perform more effective character-level encod- 290

ing with CCEmb. Our CCEmb captures not only 291

information about the current character but also its 292

context information by adding embeddings of its 293

contextual character n-grams. The CCEmb causes 294

little increase in computational cost and we show 295

that our approach with a character-level encoder 296

and a standard subword-level Transformer decoder 297

can outperform previous pure subword-level (and 298

pure character-level) Transformer-based models. 299
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