Fast and Accurate Transformer-based Translation
with Character-Level Encoding and Subword-Level Decoding

Anonymous ACL submission

Abstract

The Transformer translation model is fast to
train and achieves state-of-the-art results for
various translation tasks. However, unknown
input words at test time remain a challenge
for the Transformer, especially when unknown
words are segmented into inappropriate sub-
word sequences that break morpheme bound-
aries. This paper improves the Transformer
model to learn more accurate source repre-
sentations via character-level encoding. We
simply adopt character sequences instead of
subword sequences as input of the standard
Transformer encoder and propose contextual-
ized character embedding (CCEmb) to help
character-level encoding. Our CCEmb con-
tains information about the current character
and its context by adding the embeddings of
its contextual character n-grams. The CCEmb
causes little extra computational cost and we
show that our model with a character-level
encoder and a standard subword-level Trans-
former decoder can outperform the original
pure subword-level Transformer, especially
for translating source sentences that contain
unknown (or rare) words.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Vaswani et al., 2017) is capable of
open-vocabulary translation via automatic subword
segmentation (Sennrich et al., 2016; Wu et al.,
2016; Xu et al., 2021). However, automatic sub-
word segmentation algorithms frequently produce
inappropriate subword segmentation that breaks
morpheme boundaries and affects the performance
of subword-level NMT, especially for translating
unknown (or rare) input words (Ataman and Fed-
erico, 2018). For example, in Table 1, assume the
word “stumbled” is an unknown word (it never
occurred in the training data). Even if the subword-
level translation model has learned how to translate
a similar word “stumble", the model still does not

Word Subword Character
stumble stum@ @ ble stumble
stumbled st@@ umb@@led stumbled

Table 1: Subword sequences and character sequences
for the two words “stumble" and “stumbled". The two
subword sequences do not share any subword tokens
while the two character sequences share the same sub-
sequence “stumble".

know how to translate “stumbled" as the automati-
cally segmented subword sequences of these two
words do not share any subword tokens as shown
in Table 1. Compared to subword-level NMT,
character-level NMT (Lee et al., 2017; Cherry et al.,
2018; Gao et al., 2020), which trains translation
models with character sequences, naturally does
not suffer from inappropriate subword segmenta-
tion and has the potential to learn more accurate
word representations. Cherry et al. (2018) showed
that RNN-based character-level NMT models can
outperform identical models that are trained with
subword-level sequences.

Although RNN-based character-level NMT mod-
els (Cherry et al., 2018; Chung et al., 2016; Lee
et al., 2017; Ataman et al., 2019; Luong and Man-
ning, 2016; Costa-jussa and Fonollosa, 2016) have
shown promising results, the computational cost
of training such a model is high as long RNNs
are slow to train (Cherry et al., 2018). For effi-
ciency, Gao et al. (2020) trained Transformer-based
character-level NMT models with self-attention,
but found that using a standard Transformer model
to learn character-level translation achieved worse
translation quality than subword-level Transformer
models. Gao et al. (2020) improved the Trans-
former model to perform more accurate character-
level translation by adding extra convolutional lay-
ers into the Transformer encoder, but their model
(character-level ConvTransformer) still obtained
worse translation quality compared to the original
subword-level Transformer translation model.



In this paper, we improve the Transformer model
to perform more effective character-level encoding
with contextualized character embedding (CCEmb).
Our CCEmb captures information about the current
character and its context by adding the embeddings
of its contextual character n-grams. We show that,

1. our CCEmb effectively improves the Trans-
former model for character-level encoding and
requires significantly less computational cost
compared to Gao et al. (2020)’s method which
used extra convolutional layers.

2. while previous Transformer-based models
focused on pure subword-level translation
(Vaswani et al., 2017) or pure character-level
translation (Gao et al., 2020), our model com-
bining a character-level encoder with a stan-
dard subword-level Transformer decoder can
achieve higher translation quality.

3. our model with a character-level encoder is
particularly useful for translating infrequent
words compared to the pure subword-level
Transformer.

2  Our Approach

The Transformer translation model (Vaswani et al.,
2017) can be directly trained with character se-
quences instead of subword sequences to perform
character-level translation. We improve the Trans-
former encoder to perform more effective character-
level encoding by replacing the standard character
embedding with contextualized character embed-
ding (CCEmb).

In contrast to standard character embedding
which only contains information about a single
character, our CCEmb captures information about
the current character and its context by adding the
embeddings of its contextual character n-grams.
Given a sequence! of L characters x1, ..., 2, ..., 1,
as the input of the Transformer encoder, we com-
pute the CCEmb for the ith character as,

5 5
C; = concat (Z E(xl_1), Z E(a:é‘m_l))
n=1 n=1
| )
where E(2;_,, 1) is the embedding of the n-gram
T;_ 1 Which represents the left-side context of
z;; E(xT 1) is the embedding of the n-gram

'In character sequences, we use a special space token to
indicate word boundaries.

he_cleaned_the_window_

contextualized character embedding

Figure 1: An example of CCEmb.

x§+"_1 which represents the right-side context of
xi. We learn an embedding vector for each char-
acter n-gram in the same way as learning an em-
bedding vector for a character or a subword token.
The longest n-grams used in our experiments are 5-
grams. We only use n-grams that do not cross word
boundaries as shown in Figure 1. And we only use
embeddings of the most frequent 32k n-grams?
contained in the source-side of the parallel NMT
training data. Because the CCEmb is obtained by
concatenating left-side contextual n-gram embed-
ding and right-side contextual n-gram embedding,
the size of n-gram embedding is set to be half of
the Transformer model size.

Unlike Vaswani et al. (2017)’s subword-level
Transformer encoder, our character-level encoder
does not suffer from inappropriate subword seg-
mentation and can learn more accurate source rep-
resentations, especially for unknown/rare words
as showcased in Table 1. Compared to the
subword-level Transformer encoder, the subword-
level Transformer decoder is less influenced by in-
appropriate subword segmentation, because at test
time, we only need to apply automatic subword seg-
mentation algorithms to segment the source words,
not the target words (i.e., at test time, the target-side
subword tokens are generated by the translation
model, not by automatic subword segmentation al-
gorithms). In our experiments, a subword-level
Transformer decoder obtained significantly higher
translation quality compared to a character-level
Transformer decoder and therefore we train our
model to perform character-to-subword translation
with our character-level encoder and a standard
subword-level Transformer decoder.

*To obtain the most frequent 32k character n-grams, we
apply moses scripts tokenizer.perl and truecase.perl to the
source-side of the parallel training data, then compute the
frequency of character n-grams that occur in the source sen-
tences and are not longer than 5-grams, and finally use the
most frequent 32k n-grams.



DeEn FiEn
BLEU chrF BLEU chrF Parameters | Speed

B2B (Vaswani et al., 2017)  Transformer 31.78 57.29 20.90 49.51 97M 1248
C2C (Gao et al., 2020) ConvTransformer | 31.01 56.85 20.63 49.42 82M 139
Transformer 31.44 57.12 20.13 48.80 TOM 312
C2B (Ours) +CCEmb 32.20f  57.661 | 20.93 50.037 | 87M 292
ConvTransformer | 32.207 57.651 | 21.861 50.571 | 117M 201
+CCEmb 32,511 57.94% | 21.927 50.837 | 125M 191

Table 2: Translation results. B2B: BPE-to-BPE; C2C: Character-to-Character; C2B: Character-to-BPE. Speed:
numbers of sentence pairs being processed per second during training. T represents significantly better (Koehn,
2004) at the p < 0.01 level compared to the B2B Transformer.

3 Experiments

We conducted experiments on German-to-English
(DeEn) and Finnish-to-English (FiEn) translation
tasks. We used training data of WMT 2015 NEWS
translation task for both language pairs (4.5M and
2.1M sentence pairs for DeEn and FiEn, respec-
tively). For the DeEn task, we combined WMT
NEWS test sets, newstest2010 to newstest2020, as
test data (28K sentence pairs); for the FiEn task,
we combined newstest2015 to newstest2019 as test
data (12K sentence pairs).

We train Transformer models with CCEmb
to perform character-to-subword translation for
each language pair. We compare our model with
the original Transformer model (Vaswani et al.,
2017) and the ConvTransformer model (Gao et al.,
2020) which employs extra convolutional layers in
the Transformer encoder for character-to-character
translation. As the Transformer model (Vaswani
et al.,, 2017) was proposed to learn subword-
to-subword translation and the ConvTransformer
model (Gao et al., 2020) was proposed to learn
character-to-character translation, we also train
Transformer and ConvTransformer models to learn
character-to-subword translation and investigate
the effectiveness of Transformer and ConvTrans-
former for character-to-subword translation.

We applied moses scripts tokenizer.perl and true-
case.perl as preprocessing for training all models.
For subword segmentation, we used byte pair en-
coding (BPE) (Sennrich et al., 2016) to learn a
joint source and target vocabulary of 32k for each
language pair. We used the base model setting
of Vaswani et al. (2017)’s work for all models in
our experiments. During training, we set the max
length of character sequences to be 500 and the
max length of subword sequences to be 100.

Translation results, BLEU? and chrF (Popovié,

SBLEU scores are case-sensitive and computed by moses
script multi-bleu-detok.perl.

2015), are given in Table 2. Table 2 shows that (i)
the original C2C ConvTransformer model obtained
worse translation quality compared to the original
B2B Transformer model (ii) our C2B Transformer
model with CCEmb can achieve higher transla-
tion quality compared to the B2B Transformer (iii)
combining the ConvTransformer character-level
encoder and a subword-level decoder can outper-
form the original C2C ConvTransformer, and our
CCEmb can further improve the ConvTransformer
character-level encoder. Table 2 also shows that
our CCEmb caused little increase in computational
cost while ConvTransformer added extra convo-
lutional layers into the Transformer encoder and
led to significantly more computational cost and
parameters.

Character-level Encoding for Infrequent words
Compared to subword-level encoding, character-
level encoding can obtain better translation for un-
known/rare input words that are inappropriately
segmented. Table 3 gives an example: the in-
put German word “Baufehler” is segmented into
“B@@ auf@@ eh@ @ ler" by BPE which clearly
broke the morpheme boundaries as a semanti-
cally meaningful subword segmentation should
be “Bau@ @ (construction) fehler (defect)". If
the word “Baufehler" occurred frequently in the
parallel training data, the BPE2BPE Transformer
would have learned how to translate this word even
though it is segmented into semantically meaning-
less subword tokens. However, “Baufehler” is a
rare word (only occurred twice in the training data)
and therefore the BPE2BPE Transformer failed to
translate it correctly. To quantify the advantage of
our character-level encoding over subword-level
encoding for translating infrequent words, we use
the frequency of a source word occurring in the
source-side of the parallel training data and then
divide the DeEn test data into two parts T'f;equent
and T3y, frequent by ranking all source test sentences



SRC  Ermittler entdecken gefihrlichen Baufehler in
A380-Triebwerken

REF  Investigators uncover dangerous defect in A380
engines

BPE Ermitt@@ ler entdecken gefiahrlichen B@ @
auf@@ eh@@ ler in A3@@ 8@@ 0-@@
Trieb@ @ werken

B2B  Investigators discover dangerous A380 engines

C2B  Detectors Discover Dangerous Failures in A380

Engines

Table 3: Translation examples. SRC: source; REF: ref-
erence; BPE: subword-level input sequence segmented
by BPE; B2B: translation produced by the BPE2BPE
Transformer; C2B: translation produced by the charac-
ter2BPE Transformer with CCEmb.

according to the frequency of the least frequent
word contained in the sentence. As shown in
Figure 2, compared to subword-level encoding,
character-level encoding is generally more benefi-
cial for translating T, frequent than for translating
T'trequent- Figure 2 also shows that our CCEmb
effectively improved both Transformer and Con-
vTransformer for translating T3, frequent-

Character-level vs. Subword-level Decoding
Table 2 shows that using a subword-level Trans-
former decoder obtained higher translation quality
than a character-level Transformer decoder in our
experiments. There are two main reasons: 1. char-
acter sequences are much longer than subword se-
quences and a character token contains significantly
less information than a subword token, which in-
crease the difficulty of character-level decoding
compared to subword-level decoding; 2. the de-
coding process is less influenced by inappropriate
automatic subword segmentation compared to the
encoding process, because at test time, only source
words need to be segmented by BPE and target-side
subword tokens are generated by the translation
model (not segmented by BPE). Although subword-
level decoding achieved higher translation quality
than character-level decoding in our experiments,
for future research, character-level decoding has
the potential to outperform subword-level decod-
ing as target words in the parallel NMT training
data can still be inappropriately segmented by auto-
matic subword segmentation algorithms and affect
the training process of subword-level decoders.

4 Related Work

For improving character-level NMT, Libovicky
and Fraser (2020) showed that, initially training
a subword-level translation model and then finetun-
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Figure 2: Translation results (BLEU) for T}y, frequent
and Tf’requent‘

ing it on characters can achieve higher translation
quality compared to training character-level trans-
lation models from random initialization, but their
method still obtained worse overall translation qual-
ity compared to subword-level NMT models.

Other than character-level NMT, there are a
number of methods (Kudo, 2018; Xiao et al.,
2019; Provilkov et al., 2020) that were proposed
to address the inappropriate subword segmenta-
tion problem of subword-level NMT by exploit-
ing multiple possible subword segmentation can-
didates in subword-level NMT systems. However,
a source/target word can have a large number of
possible subword segmentation candidates, which
leads to high computational cost for their methods
to make use of all possible subword segmentation.
Therefore, for efficiency, Kudo (2018); Xiao et al.
(2019)’s methods can only use n-best subword seg-
mentation candidates at NMT training/inference
time; Provilkov et al. (2020) only used multiple
subword segmentation at training time, not infer-
ence time.

5 Conclusion

This paper improves Transformer translation mod-
els to perform more effective character-level encod-
ing with CCEmb. Our CCEmb captures not only
information about the current character but also its
context information by adding embeddings of its
contextual character n-grams. The CCEmb causes
little increase in computational cost and we show
that our approach with a character-level encoder
and a standard subword-level Transformer decoder
can outperform previous pure subword-level (and
pure character-level) Transformer-based models.
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