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Abstract
Public models offer predictions to a variety of
downstream tasks and have played a crucial role
in various AI applications, showcasing their
proficiency in accurate predictions. However,
the exclusive emphasis on prediction accuracy
may not align with the diverse end objectives
of downstream agents. Recognizing the public
model’s predictions as a service, we advocate
for integrating the objectives of downstream
agents into the optimization process. Concretely,
to address performance disparities and foster
fairness among heterogeneous agents in train-
ing, we propose a novel Equitable Objective.
This objective, coupled with a policy gradient
algorithm, is crafted to train the public model to
produce a more equitable/uniform performance
distribution across downstream agents, each with
their unique concerns. Both theoretical analysis
and empirical case studies have proven the
effectiveness of our method in advancing perfor-
mance equity across diverse downstream agents
utilizing the public model for their decision-
making. Codes and datasets are released at
https://github.com/Ren-Research/
Socially-Equitable-Public-Models.

1. Introduction
Public models whose outputs are utilized by multiple agents
have become essential building blocks for multiple AI ap-
plications such as climate modeling and traffic prediction.
These models undergo training on extensive datasets and
are tailored for specific domains, making them highly effec-
tive in generating accurate predictions (Nguyen et al., 2023;
Bommasani et al., 2021; Shah et al., 2022). Their accessi-
bility and availability to the public enable the widespread
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utilization by diverse downstream agents for individual busi-
ness goals (Yang et al., 2023). However, it is important to
note that exclusive reliance on prediction accuracy may not
be ideal when serving a diverse range of downstream agents,
each with unique business objectives. Consider a scenario
where a public model predicts disease outbreaks across dif-
ferent regions. While accuracy is pivotal, optimizing the
allocation of healthcare resources—ensuring sufficient med-
ical supplies, personnel, and preventive measures—takes
precedence, based on the general prediction provided by the
public model.

We therefore suggest taking into account the impact of a
public model’s prediction on downstream agents, rather than
solely focusing on minimizing prediction errors during train-
ing. A closely related topic is decision-focused learning,
which involves incorporating domain-specific constraints
and/or objectives into the learning algorithm (Johnson-Yu
et al., 2023; Wilder et al., 2020). However, the majority
of existing decision-focused learning works only address a
single task or agent, rendering them barely applicable to the
challenge faced by public models, which deal with diverse
downstream agents with their varied decision-making ob-
jectives (Mandi et al., 2023). Additionally, in the current
decision-focused learning framework, performance dispari-
ties can arise, with certain agents consistently facing inferior
outcomes. For instance, this may happen when some agents
have limited training data availability, while others have
access to abundant and various datasets.

We view the prediction provided by a public model as a ser-
vice for diverse downstream agents. As a service provider,
prioritizing accuracy is crucial, but ensuring high-quality
service for all users, given their diverse concerns, is even
more vital. Unfairly benefiting or disadvantaging model
performance on specific agents is unjust. While machine
learning fairness studies primarily concentrate on achieving
accuracy balance among protected groups with sensitive
characteristics (Barocas et al., 2023; Pessach & Shmueli,
2022), we introduce a different fairness perspective centered
on ensuring performance equity/uniformity across down-
stream agents with different decision processes. Recent
works have proposed a related concept referred to as the
“good-intent” fairness, primarily focused on preventing over-
fitting to any specific device in federated learning (Mohri
et al., 2019; Li et al., 2020). However, its scope is limited
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Figure 1: The EQUITABLE PM leads to a fairer solution by fostering a more equitable/uniform performance distribution
across downstream agents. The embedded Equitable Objective Lq

EQ directly accounts for the decision costs across diverse
downstream agents that use the prediction ŷ from the public model f for making informed decisions via agent-specific
decision processes and actions (â1, ..., âM ).

to maximizing the performance of the worst-performing
devices without accounting for the decision processes and
objectives of diverse downstream agents.

In this work, we propose the Equitable Objective, inspired
by the α-fairness in resource allocation (Altman et al., 2008),
to tackle fairness concerns while considering decision-
makings of downstream agents in the development of a
public model. The objective minimizes an aggregated
reweighted loss, parameterized by q, prioritizing the opti-
mization of worse costs—assigning higher relative weights
to agents with higher downstream costs when leveraging
predictions from a public model. As shown in the motivat-
ing example illustrated in Figure 1, the proposed approach
leads to a more equitable performance among heterogeneous
agents compared to the baseline, which solely minimizes
prediction errors through MSE loss.

Contributions. We consider a novel setting and pro-
pose an Equitable Objective to ensure performance eq-
uity/uniformity across downstream agents leveraging a pub-
lic model for decision-making. We then present an algo-
rithm to optimize the proposed Equitable Objective, which
is applicable to both differentiable and non-differentiable
downstream cost functions. Additionally, we provide theo-
retical results guaranteeing performance equity/uniformity
of the proposed approach, along with insights into general-
ization bounds. Empirically, we demonstrate through case
studies using real-world datasets that our approach leads
to a more equitable/uniform cost distribution among down-
stream agents under various settings.

2. Problem Formulation
Consider a public model, denoted by f : X × Θ → Y
where X is an input space, Θ is a set of parameters, and Y
is an output space. The inputs x ∈ X are features shared
by multiple downstream tasks. For any x ∈ X and θ ∈

Θ, we write ŷ := f(x; θ) as a prediction from the public
model f . A significant emphasis in prevalent public model
training is on minimizing prediction errors and achieving
high accuracy (Bommasani et al., 2021). However, the loss
function used for model training can be easily misaligned
with the ultimate goal, which is to optimize decision-making
when utilized by diverse downstream agents. We therefore
suggest incorporating downstream agents’ costs into the
objective formulation.

Suppose that there are M heterogeneous downstream agents
employing the public model f for decision-making in a
stochastic environment. Each agent m possesses a context
variable ξm, which can either represent public shared fea-
tures like local weather conditions or encapsulate unique
features of downstream agents. By following a policy
πm, each agent generates an action w.r.t. the input, de-
noted as âm(θ) := πm(ŷ, ξm). The resulting action âm(θ)
taken by the agent m would incur a cost, represented as
costm(âm(θ), ξm, y).

To address the decision cost of downstream agents, a
straightforward approach is to formulate the objective as

min
θ

M∑
m=1

E [costm(âm(θ), ξm, y)− costm(am, ξm, y))] ,

where am = argmina∈A costm(a, ξm, y) and A represents
the action space. That is, the objective is to minimize the
total expected regret (i.e., the cost of decisions made based
on predicted ŷ minus the cost of decisions based on the
true y) for all the M downstream agents due to the public
model’s potential prediction errors.1

In an illustrative example where the public model f opti-
mizes traffic signal timings, the standard accuracy goal is to

1Our study can be easily generalized to incorporate an addi-
tional weight for the expected regret of each agent.
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minimize delays, minθ E[(y− ŷ)2], where y is actual traffic
conditions and ŷ is predicted traffic flow. In reality, the
transportation system involves diverse downstream stake-
holders with unique concerns: commuters prioritize travel
time and fuel consumption, public services focus on sched-
ule, and environmental regulators are concerned with carbon
emissions. Each party faces decision costs from the actions
it takes based on the model’s predictions ŷ. Thus, using
an objective encompassing diverse costs from downstream
agents can explicitly incorporate their concerns.

Nevertheless, due to the heterogeneity of agents such as
various data biases, solely minimizing the total cost objec-
tive can result in significant performance disparities among
downstream agents. Consequently, certain agents may con-
sistently experience the poorest performance when using
the prediction provided by the public model compared to
other agents. For example, the trained model may exhibit a
preference towards the agents with greater numbers of data
samples. This inequity in performance highlights concerns
regarding the fairness of the services these agents receive
when viewing the prediction from the public model as a
shared “resource” serving diverse downstream agents.

3. Fair Public Model for Downstream Agents
To achieve fairness for the downstream agents with different
decision processes, we propose EQUITABLE PM, which
seeks to optimize a novel Equitable Objective.

3.1. Defining Fairness: An Equitable Objective

We now introduce the Equitable Objective to address fair-
ness concerns in the context of diverse downstream costs
across different agents. By drawing inspiration from the
α-fairness resource allocation (Altman et al., 2008; Jang
& Yang, 2022; Li et al., 2020), we propose an objective
to promote performance equity/uniformity parameterized
by q ≥ 0. Both theoretical proofs (Section 4) and empir-
ical case studies (Section 5) have shown that the use of
the Equitable Objective leads to a more equitable/uniform
performance distribution across downstream agents.

The Equitable Objective aims to minimize the aggregated
cost incurred by downstream agents, parameterized by q,
when utilizing the prediction from the public model f , as
shown in Eq. (1),

min
θ
J q
EQ(θ) :=

M∑
m=1

Eq+1 [costm(âm(θ), ξm, y)

−costm(am, ξm, y)] ,

(1)

where the hyperparameter q ≥ 0 promotes performance
equity among different agents. Specifically, when q is set
larger, the minimization process will take into account the
agent of worst performance to a greater extent.

To train a public model, we need to empirically ap-
proximate (1) with training data samples. Let Dm =
{xm,i, ym,i, ξm,i|i ∈ [Nm]} be the dataset of the agent
m, where Nm is the number of data examples in the agent
m. Note that the public model’s input features may still
vary among different agents (e.g., a public carbon-intensity
prediction model uses location-specific features to predict
the local grid’s carbon intensity). Thus, for two different
agents m1 and m2, the public variables {xm1,i, ym1,i} and
{xm2,i, ym2,i} can be identical or different depending on
factors such as whether they are collected at the same time
and/or location. Given the datasets D1, · · · ,DM , we can
approximate the expectation J q

EQ(θ) in Eq. (1) with the
empirical loss Lq

EQ(θ) defined in Eq. (2),

min
θ
Lq
EQ(θ):=

M∑
m=1

[( 1

Nm

Nm∑
i=1

Cm,i

)q+1
]
, (2)

where we denote Cm,i = costm(âm,i(θ), ξm,i, ym,i) −
costm(am,i, ξm,i, ym,i) as the regret regarding the ith sam-
ple of agent m.

In practice, the public model developer may not always
have direct access to the costs of all the downstream agents
for training. In such cases, it can generate synthetic down-
stream agents by modeling their decision processes based
on, e.g., utility maximization or cost minimization, for the
target application. Additionally, annotation-sample efficient
methods like task programming (Sun et al., 2021) can also
help model the downstream decision processes.

It is worth noting that we have also proposed a more general
objective in Appendix A.5, which combines Lq

EQ(θ) with
the public model’s prediction loss Lf via a balancing hyper-
parameter β ∈ [0, 1], allowing for a more nuanced control
over the fairness-accuracy trade-off in optimization. In the
subsequent text, we denote Lq

EQ(θ) as Lq(θ) for simplicity.

Our proposed Lq(θ) ensures that the public model’s predic-
tions consider the diverse concerns of downstream agents.
The trade-offs introduced by adjusting q contribute to a
fairer distribution of performance across agents, fostering
an equitable decision-making environment. In the subse-
quent sections, we provide details and algorithms to train a
public model with the Equitable Objective.

3.2. Training Public Model: EQUITABLE PM

The difficulties in training a public model vary depending
on the cost functions. When the cost functions are differen-
tiable, it is feasible to calculate the gradient based on the
chain rule. By back propagation, we can get the gradient as

∇θLq(θ)=

M∑
m=1

Nm∑
i=1

∇Cm,i
Lq∇âm,i

Cm,i∇ŷm,i
âm,i∇θŷm,i,
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Algorithm 1 EQUITABLE PM

Input: Training dataset, learning rate α
Initialize the parameters θ
for each batch k ∈ [K] do

Obtain ŷm,k,i by the public model f(·; θ)
Compute the cost regret Cm,k,i for the example (xm,k,i,
ym,k,i, ξm,k,i) in batch k for m ∈ [1, ...,M ]
Compute the gradient∇θLq

k(θ) for batch k by Eq. (4).
Update the parameter θ ← θ − α∇θLq

k(θ)
end for

where we denote the regret of the ith sample of agent m as
Cm,i = costm(âm,i, ξm,i, ym,i)− costm(am,i, ξm,i, ym,i).

Nonetheless, the training becomes significantly more chal-
lenging when the cost function is non-differentiable w.r.t.
the ŷ. The non-differentiable cost function is prevalent
for many practical downstream tasks. For example, some
downstream tasks are combinatorial optimization problems
with discrete actions (Wilder et al., 2019). Thus, a training
method that does not rely on differentiable cost functions is
critically needed for public models.

One possible method is to learn a differentiable model to
approximate the cost function by observing the evolution
of the sequence of actions and costs (Moerland et al., 2023;
Yu et al., 2020). However, this method suffers from poten-
tially inaccurate modeling of dynamic environments (Agar-
wal et al., 2023; Malik et al., 2019). Therefore, we can
adopt a model-free approach, such as black-box optimiza-
tion, which requires fewer assumptions about the underlying
system (Agarwal et al., 2023). In our context, we choose
the policy gradient (PG) algorithm, falling into the category
of model-free approaches, in favor of its natural exploration-
exploitation trade-off (Bhandari & Russo, 2024; Peters &
Schaal, 2006). We next present the process of using PG to
optimize Lq(θ).

PG for training a public model differs notably from the
standard PG algorithm. Due to the non-separable Equi-
table Objective in Eq. (2), the supervision loss hinges on
the average regret of each agent m. Thus, we use a batch-
based training approach. At each training step, we employ
a probabilistic public model σθ(ŷ | x) to sample ŷm,i given
inputs xm,i, i ∈ [1, · · · , Bm] from a batch of Bm sam-
ples. By this way, we obtain an equitable loss expressed

as
∑M

m=1

(
1

Bm

∑Bm

i=1 Cm,i

)q+1

. To utilize the equitable
batch loss for supervising the training of the public model,
we reformulate the original objective as

E[Lq(θ)] = E(X,Y,Ŷ ,Ξ)∼pθ

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]
,

where pθ is the joint distribution of the random variables

X = [xm,i | m ∈ [1, · · · ,M ], i ∈ [1, · · · , Bm]], Y =

[ym,i | m ∈ [1, · · · ,M ], i ∈ [1, · · · , Bm]], Ŷ = [ŷm,i |
m ∈ [1, · · · ,M ], i ∈ [1, · · · , Bm]], and Ξ = [ξm,i | m ∈
[1, · · · ,M ], i ∈ [1, · · · , Bm]], which relies on the proba-
bilistic public model σθ(ŷ | x). The gradient of E[Lq(θ)]
with respect to θ is given by

∇θE[Lq(θ)]=E(X,Y,Ŷ ,Ξ)∼pθ

{[ M∑
m=1

Bm∑
i=1

∇θlog σθ(ŷm,i|xm,i)

]

·
[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]}

,

(3)

whose detailed derivation can be found in Appendix A.1.

Given a training dataset with K batches, we can get an
empirical approximation of the expected gradient in Eq. (3)
as follows

∇θLq(θ)=
1

K

K∑
k=1

∇θLq
k(θ), (4)

where∇θLq
k(θ) =

[∑M
m=1

∑Bm

i=1∇θlog σθ(ŷm,k,i|xm,k,i)

]
·
[∑M

m=1

(
1

Bm

∑Bm

i=1 Cm,k,i

)q+1
]

.

In summary, the training steps using PG to minimize Lq
θ in

can be outlined as in the Algorithm 1. During inference, the
public model is its deterministic counterpart expressed as
f(x; θ) := argmaxŷ σθ(ŷ|x). In subsequent texts, we refer
to our proposed method as the EQUITABLE PM.

4. Theoretical Analysis
4.1. Performance Equity/Uniformity

In this section, we provide the theoretical justification
that the proposed Equitable Objective can promote greater
equity/uniformity in the performance distribution across
downstream tasks with proofs in Appendix A.2. We use
Cm = 1

Nm

∑Nm

i=1 Cm,i to denote the performance of the m-
th downstream agent. We here adopt variance and entropy
to measure the uniformity of the performance distribution
across downstream tasks.

Definition 4.1. (Equity by Variance) The performance
distribution of M downstream agents {C1(θ), ..., CM (θ)}
is more equitable/uniform under solution θ than θ′ if

Var
(
C1(θ), ..., CM (θ)

)
< Var

(
C1(θ

′), ..., CM (θ′)
)
, (5)

where Var represents the variance of performance.

Definition 4.2. (Equity by Entropy) The performance dis-
tribution of M downstream agents {C1(θ), ..., CM (θ)} is
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more equitable/uniform under solution θ than θ′ if the en-
tropy of the normalized performance distribution satisfies

Hnorm
(
C(θ)

)
≥ Hnorm

(
C(θ′)

)
, (6)

where Hnorm
(
C(θ)

)
is expressed as

−
M∑

m=1

Cm(θ)∑M
m=1 Cm(θ)

log

(
Cm(θ)∑M

m=1 Cm(θ)

)
. (7)

Definition 4.1 and 4.2 are also considered in in (Li et al.,
2020) and offer metric definitions for evaluating perfor-
mance equity among agents. Specifically, higher variance or
a lower Hnorm

(
C(θ)

)
indicates larger variability (i.e., less

equity) in the performance across agents.

We next provide theorems showing that the Equitable Objec-
tive Eq. (1) can encourage a more fair solution according to
Definition 4.1 and 4.2. We initiate the analysis with the spe-
cial case of q = 1, and prove that q = 1 can lead to a more
equitable performance distribution than q = 0. The notation
θ∗q denotes the global optimal solution of minθ Lq(θ).

Theorem 4.3. When q = 1, the optimum of Equi-
table Objective is more equitable compared to q =
0, indicated by smaller variance of the model perfor-
mance distribution, i.e. Var(C1(θ

∗
q=1), ..., CM (θ∗q=1)) <

Var(C1(θ
∗
q=0), ..., CM (θ∗q=0)).

Moving forward to the general case, we show that for any
q > 0, the proposed Equitable Objective can achieve bet-
ter uniformity in performance distribution given a small
increase of q.

Theorem 4.4. Let C(θ) be twice differentiable in θ with
∇2C(θ) > 0 (positive definite), for any M ∈ N, the deriva-
tive of Hnorm

(
Cq+1(θ∗p)

)
w.r.t. the evaluation point p is

non-negative, i.e.,

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

|p=q ≥ 0. (8)

Theorem 4.4 establishes that a positive partial derivative
of Hnorm

(
Cq+1(θ∗p)

)
signifies that a small increase in p is

associated with a greater degree of performance uniformity
in the learning outcome (Beirami et al., 2019).

4.2. Generalization Bounds

Denote h as the hypothesis function of the public model,
i.e. h(x) = f(x, θ). In this work, we prove that the pro-
posed Equitable Objective in Eq. (2) enables the public
model to generalize well on the equitable loss described in
Eq. (9) (Mohri et al., 2019).

Jκ(h) =
M∑

m=1

κmE(x,y)∼Dm
Cm(h(x), y), (9)

where κ = [κ1, · · · , κM ] lies in a probability simplex ∆.

To show the generalization bound, we first give an equiv-
alence of the Equitable Objective in Eq. (2). Given the
definition of dual norm, we have

L̃q(h) = (Lq(h))
1

q+1

= max
v,||v||p≤1

M∑
m=1

( vj
Nm

Nm∑
i=1

Cm(h(xm,i), ym,i)
)
,

(10)

where 1
p + 1

q+1 = 1 (p ≥ 1, q ≥ 0). Thus, the proposed
Equitable Objective in Eq. (2) is equivalent to minimizing
the empirical loss L̃q(h) in Eq. (10). We present the gen-
eralization bound for Jκ(h) which depends on L̃q(h) as
below.

Proposition 4.5. Assume that the cost functions costm are
bounded by B. Then for any δ > 0, with probability at least
1− δ, the following holds for any κ in a probability simplex
∆, and any h ∈ H:

Jκ(h) ≤max
κ∈∆

(||κ||p)L̃q(h) + max
κ∈∆

(
E[max

h∈H
Jκ(h)

− Lκ(h)]
)
+B(

√∑
m

κ2
m

2Nm
log

1

δ
)
)
,

(11)

where 1
p + 1

q+1 = 1, L̃q(h) is the equivalent
Equitable Objective in Eq. (10), and Lκ(h) =∑M

m=1
κm

Nm

∑Nm

i=1 Cm(h(xm,i), ym,i) is the empirical loss
of Jκ(h).

5. Empirical Case Studies
We evaluate the effectiveness of EQUITABLE PM in foster-
ing a more equitable solution for downstream heterogeneous
agents, each with their own business objective, while uti-
lizing the prediction from an upstream public model. Our
empirical study encompasses the applications of data centers
and Electric Vehicles (EV) charging.

Evaluation Metrics Instead of solely prioritizing the pre-
diction accuracy, we emphasize the outcome, e.g., decision
cost (or rewards), of downstream agents from using the
prediction of the upstream public model. Moreover, for
diverse agents, we believe the algorithm should promote an
equitable/uniform distribution of performance rather than
disproportionately affecting specific agents. Our evalua-
tion therefore incorporates three key metrics to assess the
uniformity of performance distribution across agents: 1)
Variance of the cost regret; 2) Mean of the cost regret; and
3) C95 − C5 percentile, the discrepancy between the 95%
and 5% percentiles of the cost regret across agents.
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5.1. Application I: Carbon Efficiency in Data Centers

Setup Data centers are responsible for a significant
amount of energy consumption and carbon emissions. In
order to reduce their carbon footprint, it is crucial to manage
energy consumption and optimize the allocation of work-
loads (Radovanović et al., 2022; Patterson et al., 2022).

In empirical studies, we denote the workload demand of
data center j at time step t as wj,t, represent the allocated
computational resource as pj,t, and indicate the predicted
carbon emission rate at time t by ct, where ct is estimated
by a public model. The processing delay can be calculated
as wj,t

pj,t−wj,t
. Our objective is to minimize the combined

impact of carbon emissions, pj,tct, and processing latency,
wj,t

pj,t−wj,t
, by determining the optimal allocation of compu-

tational resource pt, as shown in Eq. (12),

min
pj,t

pj,tct + λj
wj,t

pj,t − wj,t
, (12)

where λj adjusts the relative significance of carbon emis-
sions and processing latency for different data centers.

Datasets Our experiments mainly use the publicly avail-
able state-level energy fuel mix dataset (U.S. Energy In-
formation Administration) and the Azure cloud workload
dataset (Shahrad et al., 2020). The fuel mix dataset provides
information on various energy sources utilized in electric-
ity generation (e.g. coal, natural gas, and oil) while the
Azure cloud workload dataset captures the energy consump-
tion/demand patterns of the cloud center across different
time periods. Besides, we utilize the carbon conversion
rates provided in (Gao et al., 2012) to calculate the carbon
emissions associated with different types of fuel used for
energy generation. More details are in Appendix A.3.2.

Implementation Details We set the number of down-
stream agents as 50. We set up 3 different settings by vary-
ing data distribution and the values of λ among agents. The
50 agents have Wasserstein distance of wj ranges falling
within [0.03, 0.58] and they are labeled as “similar agents”.
At the same time, we randomly select 20 agents from the
set and introduce random noise, resulting the total 50 agents
with Wasserstein distance w.r.t. wj spanning [0.04, 57.97],
which are labeled as “different agents”. Additionally, regard-
ing the values of λ, “same λ” designates λ = 2, whereas
“different λ” spans λ = {2, 4, ..., 100} among agents. Given
the time-series nature of the datasets, we train and employ
an LSTM network as the shared public model. More details
are provided in Appendix A.3.1.

Results In Table 1, we present the performance compar-
ison between EQUITABLE PM and the traditional public
model that does not consider the decision-making process

of downstream agents, referred to as the Plain PM. From
the Table 1, we can observe that the values of cost regret
variance and C95 − C5 achieved by EQUITABLE PM are
smaller than the Plain PM. The variance and percentile mea-
sure values of EQUITABLE PM decrease as the value of
q increases, suggesting more uniform cost regret distribu-
tions, and therefore a fairer solution. Also, the EQUITABLE
PM has resulted in an improved cost regret mean compared
to the Plain PM. Although the EQUITABLE PM does not
achieve the minimum MSE on predicting carbon emissions
ct, it delivers more equitable and accurate cost outcomes for
heterogeneous downstream agents under various settings.

Figure 2 shows the distribution of cost regret with various
q values under different setups. When the data distribution
among agents remains similar but with varying λ values, an
increase in the value of q leads to a distribution with lower
variance, as observed in Figure 2 (a). In Figure 2 (b), (c)
and (d), we observe that the cost regret distributions become
less dispersed when q increases, indicating a more equitable
solution for different agents.

5.2. Application II: Scheduled EV Charging for
Environmental Sustainability

Setup The increasing popularity of EV raises concerns
about their environmental impact. To address this, schedul-
ing EV charging can play a pivotal role in enhancing both
environmental sustainability and the stability of the power
system (Filote et al., 2020). Here, we evaluate the potential
of EQUITABLE PM for a more equitable solution, in the
context of optimizing the EV charging schedule aiming at
minimizing the financial cost, together with carbon emission
and water consumption.

Consider an EV j with an initial electrical charge state,
denoted as Ij , which requires attaining an electric charge
level represented as Dj . This charging process occurs within
a defined time window that begins at sj and concludes at ej .
For optimization purpose, we discretize the time window
[sj , ej ] into time slots τ = {1, ..., T} and utilize a binary
charging schedule defined as Xj . In the schedule, each
element xj,t is either 1, indicating that we charge the vehicle
at the time t, or 0 if we don’t (e.g., Xj = [1, 0, ...1], with a
total of |τ | elements in Xj). And the amount of electricity
charged at each time step t of the j-th EV is ζj,t.

At each time step t within [sj , ej ], an upstream public model
predicts the combined carbon, water efficiency and electric-
ity price, expressed as Et = EC

t +γEW
t +ηEP

t , where EC
t

and EW
t denote the carbon and water efficiency at time t, re-

spectively, while EP
t represents the electricity price at time t

for downstream agent EV. The term γ and η represents their
relative weight of these factors. Here, the efficiency refers
to the amount of carbon emission or water consumption per

6
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Table 1: Statistics of the test results under different setups. As q increases, the variance and C95 − C5 percentile of cost
regret distribution across agents decrease, suggesting a more uniform distribution of costs across groups. The EQUITABLE
PM also achieves lower means in costs regrets across agents compared to the Plain PM in general.

Setting Method q + 1 Variance Mean C95 −C5 MSE

Similar Agents,
Different λ

EQUITABLE PM
1 0.0029 0.1591 0.1687 4.6308
1.1 0.0003 0.0544 0.0576 4.2465
1.5 0.0002 0.0465 0.0493 4.2194

Plain PM - 0.0085 0.2732 0.2897 4.2054

Different Agents,
Same λ

EQUITABLE PM
1 0.0008 0.0909 0.0809 5.0991
3 0.0001 0.0345 0.0306 4.4338
20 1.71e-5 0.0136 0.0121 4.2028

Plain PM - 0.0009 0.0988 0.0879 4.2013

Different Agents,
Different λ

EQUITABLE PM
1 0.0181 0.2619 0.4229 4.6607
3 0.0068 0.1603 0.2588 4.4182
10 0.0055 0.1444 0.2331 4.3819

Plain PM - 0.0602 0.4779 0.7717 4.2013

q+1 = 20
q+1 = 3 

q+1 = 10
q+1 = 3 

q+1 = 1.5
q+1 = 1 

Figure 2: (a) Comparison of cost regret distributions between Plain PM vs. EQUITABLE PM on “similar agents” with
different λ. The EQUITABLE PM shows lower variability in cost distribution compared to the Plain PM. With varied
q + 1, we show cost regret distributions when using EQUITABLE PM in (b) “similar agents” with different λ; (c) “different
agents” with same λ; (d) “different agents” with different λ. As the value of q increases, the cost regret distribution across
downstream agents achieves greater uniformity, implying a more equitable solution.

unit of electricity generated.

The objective is to reduce the total cost, which includes
carbon emissions, water consumption, and the financial cost
of electricity incurred throughout the charging process, by
determining the optimal charging schedule for the j-th EV.
We formulate the objective in Eq. (13).

min
Xj

∑
t

ζj,txj,t · Et

s.t. Ij +
∑
t

ζj,txj,t = Dj

Et = EC
t + γEW

t + ηEP
t ,

(13)

where Xj = [xj,1, · · · , xj,T ].

Datasets Our main sources of datasets include the pub-
licly available ACN-Data, collected from the Caltech ACN
and similar websites (Lee et al., 2019), as well as the Cal-
ifornia Electricity Market (CAISO) (CAISO). The ACN-
Data records the real time charging details, including EV
arrival/departure times and actual energy delivered in each
charging session. Simultaneously, the CAISO provides data
on electricity prices in California. We use the ACN-Data to

estimate power demand and charging rates for EV in residen-
tial areas, considering that EV models are similar between
residential and other charging stations (Wang & Paranjape,
2015). Additionally, we use the state-level energy fuel mix
data (U.S. Energy Information Administration) for carbon
and water efficiency calculation. Regarding the available
charging time window, from sj to ej , in residential sectors,
we use the data from The National Household Travel Survey
(NHTS) to approximate (U.S. Department of Transporta-
tion, 2017; Wang & Paranjape, 2015). Further details can
be founded in Appendix A.3.2.

Implementation Details In the experiments, we follow
the calculation of carbon and water efficiency outlined in (Li
et al., 2023a). We recognize that different EV exhibit dis-
tinct charging patterns (Sun et al., 2020). Given our central
objective of ensuring fairness across a diverse range of EV,
we here however opt for a simplifying assumption of a uni-
form charging rate, implying that ζj,t remain constant w.r.t.
t for the j-th EV (Sun et al., 2020). More specifically, this
rate is calculated by the charged electricity divided by the
difference between the ending charging and starting times
of the j-th EV, as provided in the ACN-Data. Additionally,

7



Building Socially-Equitable Public Models

q+1 = 40
Plain

q+1 = 30
q+1 = 40

(a) 

(b) 

Figure 3: Statistics and cost regret distributions of test re-
sult between Plain PM and EQUITABLE PM with varied
q + 1 for (a) “similar”; and (b) “different” agents. The EQ-
UITABLE PM demonstrates improved uniformity in agent
distributions compared to the Plain PM. As q increases, the
uniformity of cost distribution across agents improves.

we use the energy demands of each EV provided in the
ACN-Data as Dj . To ensure flexibility in charging schedul-
ing, we set the time frame |τ | = 12. For instance, if we
use an hourly unit, this corresponds to scheduling charging
for half of the day. We set the number of downstream EV
agents as 70 and γ and η are set at 1. In the experiments,
we explore the effectiveness of EQUITABLE PM across
agents exhibiting varied data distributions. The Wasserstein
distance range of (Dj − Ij) for agents labeled as “similar
agents” spans [0.80, 9.00] , while for “different agents”, it
ranges [1.33, 60.36]. The Transformer architecture, with
a linear layer as the task head, is employed as the shared
public model to predict Et for scheduling downstream EV
charging. More details are provided in Appendix A.3.1.

Results Figure 3 reports the evaluation results between the
Plain PM and EQUITABLE PM with different q for agents ex-
hibiting both similar and different distributions. The results
demonstrate that the EQUITABLE PM consistently achieves
lower variance and C95 −C5 percentile values compared to
utilizing the Plain PM in both settings. Examining Figure 3,
it becomes evident that as the value of q increases, both
the variance and the range C95 − C5 percentile of cost re-
gret distributions among agents decrease, indicating a trend
towards a more uniformly distributed performance.

6. Related Works
Fairness in Machine Learning Fairness is a prevalent
topic within the realm of machine learning, often focusing
on the protection of certain groups or attributes. The prob-
lem stems partly from inherent biases within datasets and

could be further magnified by models (Wan et al., 2023; Li
et al., 2023b). Various approaches have been developed to
mitigate this form of unfairness, spanning different stages
of model development. These approaches encompass pre-
processing methods, such as excluding sensitive attributes
from the datasets to prevent model reliance on these fac-
tors (Biswas & Rajan, 2021; Madras et al., 2018a). Post-
processing techniques calibrate prediction outcomes after
training (Pessach & Shmueli, 2022; Noriega-Campero et al.,
2018), and in-processing methodologies directly integrates
fairness considerations during model training (Wan et al.,
2023; Kearns et al., 2018).

Our work enforces fairness during training but takes a dis-
tinct perspective. We emphasize the equity/uniformity of
performance distribution across heterogeneous agents, as we
view the upstream public model as a shared resource serving
diverse downstream agents. While certain studies advocate
for equivalent error rates as a fairness criterion (Cotter et al.,
2019), our goal does not prioritize optimizing equal model
accuracy across all agents. Drawing an analogy between
the shared public model and a resource, we are inspired by
a unified resource allocation framework called α-fairness,
where the service provider can adjust fairness emphasis via
a single hyperparameter (Mo & Walrand, 2000; Lan et al.,
2009). However, the aspect of equity, specifically concern-
ing the impact of predictions from a shared public model on
diverse downstream agents’ business decisions, a focal point
in our work, remains unexplored in previous literatures.

Decision-focused Learning Decision-focused learning is
an emerging area in machine learning that trains a model to
optimize decisions by integrating prediction and optimiza-
tion within an end-to-end system (Mandi et al., 2023). It
diverges from the predict-then-optimize framework (Bal-
ghiti et al., 2022; Elmachtoub & Grigas, 2020), where a ML
model is trained initially to map observed features to rele-
vant parameters of a combinatorial optimization problem,
followed by using a specialized optimization algorithm to
solve the decision problem based on predicted parameters.
The predict-then-optimize methodology assumes accurate
predictions generate precise models, enabling optimal de-
cisions. However, ML models often lack perfect accuracy,
prediction errors thus can lead to suboptimal decisions.

In comparison, decision-focused learning directly trains the
ML model to make predictions that lead to good decisions,
where the optimization is embedded as a component of the
ML model, creating an end-to-end approach. Recent stud-
ies have utilized supervised or reinforcement learning to
optimize ultimate decisions with end-to-end machine learn-
ing (Wilder et al., 2020; Johnson-Yu et al., 2023; Bello
et al., 2017; Donti et al., 2019). This holistic approach has
enhanced the model’s capability to drive informed and ef-
fective downstream decisions. However, few existing works
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have considered the issue of performance disparity across
diverse business agents, each with their distinct concerns,
specifically in the context of using a publicly shared model
to optimize their decisions (Yang et al., 2023; Madras et al.,
2018b; Wilder et al., 2021).

7. Conclusion
In this paper, we introduce the novel Equitable Objective
and its corresponding solver, the EQUITABLE PM with
either differentiable or non-differentiable cost functions,
to promote the performance equity/uniformity among di-
verse downstream agents that depend on the predictions of
a shared public model for their decision-making. Alongside
theoretical proofs demonstrating the performance unifor-
mity improvement achieved by our proposed approach, the
empirical case studies using real-world datasets further vali-
dates that EQUITABLE PM can attain a more equitable solu-
tion compared to methods that solely focuses on minimizing
the prediction error without considering the objectives of
downstream agents in different settings.

Limitation & Future Works Our current method relies
on accessing the decision costs from downstream groups to
construct a socially-responsible public model, potentially
raising privacy and security concerns. In future research,
we aim to investigate ways that uphold privacy and increase
robustness against adversarial attacks (e.g., maliciously re-
porting decision costs) when extending our approach. Fur-
thermore, while the models used in the current case studies
are appropriate for the present context, their scale is rel-
atively modest, also due to a constraint imposed by our
limited computing resources. We would like to explore the
efficacy of our proposed method in more extensive archi-
tectures and other domains such as healthcare. Addition-
ally, the exploration of alternative methods, such as using
fine-tuning to align public foundation models for making
business-informed decisions and addressing fairness con-
cerns accordingly, continues to be a key focus for upcoming
research endeavors.
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A. Appendix
In the appendix, we offer additional details to complement the main text. The content is organized as follows:

• Section A.1. Detailed calculations to derive the gradient in Eq. (3) of Section 3.2.

• Section A.2. Providing proofs for the theorems and propositions in Section 4.

• Section A.3. Additional empirical details of implementation, datasets, and results for case studies in Section 5.

• Section A.4. Additional experiments where downstream agents have different objective cost functions.

• Section A.5. Proposal of a combined objective that explicitly incorporates the loss of the public model, Lf , via a
balancing hyperparameter β, providing a more nuanced control over the tradeoff between fairness and accuracy. We
also provide the empirical results associated with this objective.

A.1. Details of Computing the Gradient

Completing Section 3.2, we present a detailed derivation of∇θE[Lq(θ)]. By the definition of Lq(θ) in the main context, the
expected cost is defined as

E[Lq(θ)] = E(X,Y,Ŷ ,Ξ)∼pθ

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]

=

∫
pθ(X,Y, Ŷ ,Ξ)

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]
d(X,Y, Ŷ ,Ξ).

(14)

Subsequently, we obtain

∇θE[Lq(θ)] =

∫
∇θpθ(X,Y, Ŷ ,Ξ)

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]
d(X,Y, Ŷ ,Ξ)

=

∫
pθ(X,Y, Ŷ ,Ξ)∇θ log pθ(X,Y, Ŷ ,Ξ)

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]
d(X,Y, Ŷ ,Ξ).

By decomposing the joint distribution pθ(X,Y, Ŷ ,Ξ) based on the chain rule as

pθ(X,Y, Ŷ ,Ξ) = P (Ξ) · P (Y | X) · σθ(Ŷ | X) · P (X),

we have

∇θE[Lq(θ)] =

∫
pθ(X,Y, Ŷ ,Ξ)∇θ log[P (Ξ) · P (Y | X) · σθ(Ŷ | X) · P (X)]

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]
d(X,Y, Ŷ ,Ξ)

=

∫
pθ(X,Y, Ŷ ,Ξ)∇θ log σθ(Ŷ |X)

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]
d(X,Y, Ŷ ,Ξ)

=E(X,Y,Ŷ ,Ξ)∼pθ

{
∇θ log σθ(Ŷ |X)

[ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]}

(15)

=E(X,Y,Ŷ ,Ξ)∼pθ

{[ M∑
m=1

Bm∑
i=1

∇θ log σθ(ŷm,i|xm,i)

][ M∑
m=1

( 1

Bm

Bm∑
i=1

Cm,i

)q+1
]}

.

Rewriting Eq. (15), we obtain the gradient stated in the Eq. (3).
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A.2. Theoretical Proofs

A.2.1. PROOF OF THEOREM 4.3

Proof. Let θ∗q=0 and θ∗q=1 denote optimal solutions of minθ Lq=0(θ) and minθ Lq=1(θ) respectively. It follows that

Var(C1(θ
∗
q=1), ..., CM (θ∗q=1)) =

1

M

M∑
m=1

C2
m(θ∗q=1)−

( 1

M

M∑
m=1

Cm(θ∗q=1)
)2

≤ 1

M

M∑
m=1

C2
m(θ∗q=0)−

( 1

M

M∑
m=1

Cm(θ∗q=1)
)2

≤ 1

M

M∑
m=1

C2
m(θ∗q=0)−

( 1

M

M∑
m=1

Cm(θ∗q=0)
)2

= Var(C1(θ
∗
q=0), ..., CM (θ∗q=0)),

(16)

where the first inequality holds since θ∗q=1 minimizes 1
M

∑M
m=1 C

2
m(θ∗q=1), and the second inequality holds because θ∗q=0

minimizes 1
M

∑M
m=1 Cm(θ∗q=0).

A.2.2. PROOF OF THEOREM 4.4

To prove Theorem 4.4, it suffices to show that for any q ∈ R+, M ∈ N, a small increase in q can result in a more equitable
solution for the Equitable Objective, based on Definition 4.2. Specifically, we prove the derivative of Hnorma

(
Cq+1(θ∗p)

)
w.r.t. the variable p at the point p = q is non-negative, i.e.,

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

|p=q ≥ 0. (17)

Proof of the statement above. For simplicity of notation, we denote the gradient of Cq+1(θ) with respect to θ as the vector
∇θC

q+1(θ), and the second order derivative of Cq+1(θ) with respect to θ as the Hessian matrix∇2
θC

q+1(θ). If C(θ) ̸= 0,
we can easily verify that the Hessian matrix∇2Cq+1(θ) is positive definite for all q ≥ 0. More specifically, we have

∇θ

(
∇θC

q+1(θ)
)
= (q + 1)∇θ (C

q(θ)∇θC(θ)) = (q + 1)Cq(θ)∇2
θC(θ) + (q + 1)qCq−1(θ)∇θC(θ)∇θC(θ)⊤. (18)

By definition, ∇2
θC(θ) is positive definite and C(θ)∇θC(θ)⊤ is semi-positive definite. Since all the coefficients are

non-negative, we conclude the Hessian matrix∇2
θC

q(θ) is positive definite when C(θ) ̸= 0.

If C(θ) = 0, both the vector∇θC
q+1(θ) and the matrix∇2

θC
q+1(θ) are equal to zero.

Subsequently, the proof of Eq. (17) proceeds as follows:

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

|p=q =− ∂

∂p

∑
m

Cq+1
m (θ∗p)∑

m Cq+1
m (θ∗p)

ln
( Cq+1

m (θ∗p)∑
m Cq+1

m (θ∗p)

)
|p=q

=− ∂

∂p

∑
m

Cq+1
m (θ∗p)∑

m Cq+1
m (θ∗p)

ln
(
Cq+1

m (θ∗p)
)
|p=q +

∂

∂p
ln
∑
m

Cq+1
m (θ∗p)|p=q.

(19)

For the second term in Eq. (19), we have

∂

∂p
ln
∑
m

Cq+1
m (θ∗p)|p=q =

∑
m∇θC

q+1
m (θ∗p)

⊤ · ∂θ
∗
p

∂p∑
m Cq+1

m (θ∗p)
|p=q

=
1∑

m Cq+1
m (θ∗p)

·
∂θ∗p
∂p

⊤

|p=q ·
∑
m

∇θC
q+1
m (θ∗p).

(20)

Since the θ∗p is an optimal solution for the Lp(θ) objective, then for q = p, by definition we have
∑

m∇θC
q+1
m (θ∗p) = 0.
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Therefore, the second term of Eq. (21) is zero. The derivative can then be rewritten as

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

|p=q =−
∑
m

( ∂
∂pθ

∗
p|p=q)

⊤∇θC
q+1
m (θ∗p)∑

m Cq+1
m (θ∗p)

ln(Cq+1
m (θ∗p))

−
∑
m

Cq+1
m (θ∗p)∑

m Cq+1
m (θ∗p)

( ∂
∂pθ

∗
p|p=q−1)

T∇θC
q+1
m (θ∗p)

Cq+1
m (θ∗p)

=−
∑
m

( ∂
∂pθ

∗
p|p=q)

⊤∇θC
q+1
m (θ∗p)∑

m Cq+1
m (θ∗p)

(ln(Cq+1
m (θ∗p)) + 1).

(21)

Here, if for all M ∈ N, the costs Cm(θ∗p) are all zero costs. Therefore, we see that
∂Hnorm

(
Cq+1(θ∗

p)
)

∂p |p=q = 0, leading to the
desirable result.

For the non-trivial case, there exists some M ∈ N such that Cm(θ∗p) > 0. Since θ∗p is an optimal solution of our objective
function, we have

∑
m∇θC

p+1
m (θ∗p) = 0 for all p ≥ 0. In other words, ∂

∂p

∑
m∇θC

p+1
m (θ∗p) = 0. Then we can calculate

the gradient as follows

∂

∂p

∑
m

∇θC
p+1
m (θ∗p)

=
∑
m

∇2
θC

p+1
m (θ∗p)

∂

∂p
θ∗p +

∑
m

(
Cp

m(θ∗p) + (p+ 1)Cp
m(θ∗p) ln(Cm(θ∗p))

)
∇θCm(θ∗p)

=
∑
m

∇2
θC

p+1
m (θ∗p)

∂

∂p
θ∗p +

1

p+ 1

∑
m

(
(p+ 1)Cp

m(θ∗p)∇θCm(θ∗p)
)
+
(
(p+ 1)Cp

m(θ∗p)∇θCm(θ∗p) ln(Cm(θ∗p))
)

=
∑
m

∇2
θC

p+1
m (θ∗p)

∂

∂p
θ∗p +

1

p+ 1

∑
m

(
ln(Cp+1

m (θ∗p)) + 1)∇θC
p+1
m (θ∗p)

)
.

(22)

To summarize, we have∑
m

∇2
θC

p+1
m (θ∗p)

∂

∂p
θ∗p +

1

p+ 1

∑
m

(ln(Cp+1
m (θ∗p)) + 1)∇θC

p+1
m (θ∗p) = 0. (23)

In our non-trivial case, there exists at least one m ∈ N, such that the Hessian matrix∇2
θC

p+1
m (θ∗p) is positive definite. Then

the matrix
(∑

m∇2
θC

p+1
m (θ∗p)

)
is also positive definite. Therefore, we can calculate the gradient ∂

∂p
θ∗p as below

∂

∂p
θ∗p = − 1

p+ 1

(∑
m

∇2
θC

p+1
m (θ∗p)

)−1∑
m

(ln(Cp+1
m (θ∗p)) + 1)∇θC

p+1
m (θ∗p). (24)

Plugging Eq. (24) into Eq. (21), we have

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

∣∣∣∣
p=q

=

∑
m(ln(Cq+1

m (θ∗p)) + 1)∇θC
q+1
m (θ∗p)

⊤

(p+ 1)
∑

m Cq+1
m (θ∗p)

(∑
m

∇2
θC

p+1
m (θ∗q )

)−1

·
∑
m

∇θC
p+1
m (θ∗p)(ln(C

p+1
m (θ∗p)) + 1)

∣∣∣∣
p=q

.

(25)

Since the matrix
(∑

m∇2
θC

q
m(θ∗p)

)
is positive definite and the coefficient q

∑
m Cq

m(θ∗p) is positive, we conclude that

∂Hnorm

(
Cq+1(θ∗

p)
)

∂p |p=q ≥ 0.

As a result, Eq. (17) implies that for any p, the performance distribution of {Cp
1 (θ

∗
p+ϵ), ..., C

p
M (θ∗p+ϵ)} exhibits greater

uniformity compared to the distribution of {Cp
1 (θ

∗
p), ..., C

p
M (θ∗p)}, provided that the value of ϵ is sufficiently small.
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Corollary A.1. Let C(θ) be twice differentiable in θ with ∇2C(θ) > 0 (positive definite), for the special case M = 2, the
derivative of Hnorm

(
Cq+1(θ∗p)

)
w.r.t. the evaluation point p is non-negative for all p ≥ 0 and q ≥ 0, i.e.,

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

≥ 0. (26)

Proof. Let wq(θ) =
Cq+1

1 (θ)

Cq+1
1 (θ)+Cq+1

2 (θ)
. Without loss of generality, we assume wq(θ

∗
p) ∈ (0, 1

2 ). If wq(θ
∗
p) =

1
2 , the gradient

of norm Hnorm is defined as − ln(
wq(θ

∗
p)

1−wq(θ∗
p)
) · ∂wq(θ

∗
p)

∂p , which trivially equals to zero for any q and p. If wq(θ) ∈ ( 12 , 1), we

can flip the label of C1 and C2 to make sure wq(θ) ∈ (0, 1
2 )

Given M = 2, by applying the chain rule, the gradient of the norm can be rewritten as

∂Hnorm
(
Cq+1(θ∗p)

)
∂p

=− ln(
wq(θ

∗
p)

1− wq(θ∗p)
) ·

∂wq(θ
∗
p)

∂p

=− ln(
wq(θ

∗
p)

1− wq(θ∗p)
) ·

∂wq(θ
∗
p)

∂
(

C1(θ∗
p)

C2(θ∗
p)

)q+1 ·
∂

∂p

(
C1(θ

∗
p)

C2(θ∗p)

)q+1

=− ln(
wq(θ

∗
p)

1− wq(θ∗p)
) ·

(
Cq+1

2 (θ∗p)

Cq+1
1 (θ∗p) + Cq+1

2 (θ∗p)

)2
∂

∂p

(
C1(θ

∗
p)

C2(θ∗p)

)q+1

=− ln(
wq(θ

∗
p)

1− wq(θ∗p)
) ·

(
Cq+1

2 (θ∗p)

Cq+1
1 (θ∗p) + Cq+1

2 (θ∗p)

)2

(q + 1)

(
C1(θ

∗
p)

C2(θ∗p)

)q

· ∂
∂p

(
C1(θ

∗
p)

C2(θ∗p)

)
=− ln(

wq(θ
∗
p)

1− wq(θ∗p)
) ·
(
1− wq(θ

∗
p)
)2

(q + 1)

(
C1(θ

∗
p)

C2(θ∗p)

)q

· ∂
∂p

(
C1(θ

∗
p)

C2(θ∗p)

)
.

(27)

For any q ≥ 0, it’s obvious that

ln(
1− wq(θ

∗
p)

wq(θ∗p)
) ·
(
1− wq(θ

∗
p)
)2

(q + 1)

(
C1(θ

∗
p)

C2(θ∗p)

)q

· ∂
∂p
≥ 0. (28)

According to Eq. (17), in the point q = p, we have
∂Hnorm

(
Cq+1(θ∗

p)
)

∂p ≥ 0, which is equivalent to

∂

∂p

(
C1(θ

∗
p)

C2(θ∗p)

)
≥ 0. (29)

Since we assume wq(θ) ∈ (0, 1
2 ), then C1(θ) < C2(θ). For any q′ ≥ 0, we also have wq′(θ) ∈ (0, 1

2 ) and the following

ln

(
1− wq′(θ

∗
p)

wq′(θ∗p)

)
·
(
1− wq′(θ

∗
p)
)2 · (q′ + 1)

(
C1(θ

∗
p)

C2(θ∗p)

)q′

≥ 0. (30)

By multiplying Eq. (29) with Eq. (30), for M = 2, we conclude for any p ≥ 0 and q ≥ 0,

∂Hnorm
(
Cq(θ∗p)

)
∂p

≥ 0. (31)
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A.2.3. PROOF OF PROPOSITION 4.5

Proof. We start with a specific κ. Similar to the proof in Mohri et al. (2019), for any δ > 0, the following inequality holds
with probability at least 1− δ for h ∈ H:

Jκ(h) ≤ Lκ(h) + E
[
max
h∈H
Jκ(h)− Lκ(h)

]
+B

√∑
m

κ2
m

2Nm
log

1

δ
. (32)

Using the Hölder’s inequity, we have

Lκ(h) =
∑
m

κmCm ≤

(∑
m

κp
m

) 1
p
(∑

m

Cq+1
m

) 1
q+1

= ||κ||pL̃q(h),
1

p
+

1

q + 1
= 1. (33)

Plugging Lκ(h) ≤ ||κ||pL̃q(h) into Eq. (32), we obtain for h ∈ H ,

Jκ(h) ≤ ||κ||pL̃q(h) + E
[
max
h∈H
Jκ(h)− Lκ(h)

]
+B

√∑
m

κ2
m

2Nm
log

1

δ
, (34)

where 1
p + 1

q+1 = 1.

Therefore, Eq. (11) in Proposition 4.5 can be readily derived from Eq. (34) by considering the maximum value across all
potential κ values within ∆.

Discussions Deriving the optimal value of q that results in the tightest generalization bound from Proposition 4.5 is not
trivial. In practice, our proposed Equitable Objective allows us to fine-tune a range of q values to strike a balance between
performance equity/uniformity and accuracy.

A.3. Additional Experiments Details and Results

A.3.1. ADDITIONAL EMPIRICAL DETAILS

For the data centers application in Section 5.1, within each agent, the dataset is randomly partitioned, with 67% allocated as
the training set and the remaining portion as the testing set. As for the EV charging application in Section 5.2, the ratio
between training and testing in each agent is 70% vs. 30%. We set the learning rate as 0.05 for the data centers application
and 1e− 4 for the EV charging application. We employ the Adam optimizer with a scheduler featuring a step size of 50
and a decay factor of 0.5. In both applications, the batch size is set as 128. For predicting the next time step in the data
centers application, a sequence length of 12 is utilized, while in the EV charging application, the prediction involves the
next charging time window spanning 12 time steps, a sequence length of 12 is also employed. The LSTM model employed
in data centers application has a hidden size of 50. In the EV charging application, the Transformer model consists of a
single-layer encoder-decoder with positional encoding, utilizing a feature size of 250.

Figure 4: Depictions of (a) Azure workload demands (Shahrad et al., 2020); (b) EV charging demands in ACN-Data (Lee
et al., 2019).
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Figure 5: Depictions of home arrival, home departure and available charging time window for residential EV based on the
NHTS government data (U.S. Department of Transportation, 2017).

In the EV charging scheduling application of Section 5.2, we use the publicly available National Household Travel Survey
(NHTS) data (U.S. Department of Transportation, 2017) to approximate the available charging time window, i.e., from sj to
ej , for residential sectors (Wang & Paranjape, 2015). The NHTS contains the travel logs of 117, 222 American households’
vehicles, detailing the number of trips for each household and the start and end times for each trip per day. We assume
the distribution for the initial charging time sj and end time ej of EV are the same as the distribution of home arrival and
home departure times, respectively. We use the time when the last trip of a household concludes from NHTS as the daily
home arrival time. Similarly, we designate the time when the first daily trip begins from NHTS as the daily home departure
time (Wang & Paranjape, 2015).

A.3.2. ADDITIONAL DETAILS OF DATASETS

We depict the distribution of Azure workload demand (Shahrad et al., 2020) and EV charging electricity demands (Lee
et al., 2019) in Figure 4. Additionally, in Figure 5, we present the distributions of home arrival time, home departure time,
and the available EV charging time window, calculated as the difference between home departure time and home arrival
time, utilizing data from the NHTS government dataset (U.S. Department of Transportation, 2017). From Figure 5, it is
evident that a significant portion of residential households has an available charging time window exceeding 8 hours, thereby
supporting the feasibility of scheduling environmentally friendly and financially efficient charging.

In data preprocessing of the EV charging application, we focus on the state of California to ensure alignment between the
ACN-Data and CAISO. Besides null value, we also filter out the data points containing charging duration exceeding one day,
as most EV can complete full charging within 5 hours, as reported by the government survey (Smart & Salisbury, 2015).

A.3.3. ADDITIONAL RESULTS

Table 2: MSE loss of the Plain PM and the EQUITABLE PM with varied q + 1.

MSE loss
q + 1 Similar Agents Different Agents

EQUITABLE PM
20 6.63 6.52
30 6.57 6.47
40 6.55 6.48

Plain PM - 6.54 6.45

In completing the results of the scheduled EV charging application in Section 5.2, we report the MSE loss of each method
under conditions where the distributions w.r.t. (Dj − Ij) of downstream agents are “similar” and “different” in Table 2.

A.4. Experiments on Diverse Cost Objectives of Downstream Agents

We add an experiment where agents have different objective functions: Agent (A) for data center workload scheduling, Agent
(B) for EV charging, and Agent (C) for iPhone green charging. This setup creates a diverse pool of agents with varying
objectives, all utilizing carbon emission predictions from the upstream public model. The objectives for Agent (A) and
(B) are defined by Eq. (12) and Eq. (13) in the main text, respectively. Note that for the EV charging application in this
experiment, the public model only predicts carbon emissions EC

t rather than Et. For iPhone green charging, the objective
is to minimize carbon emissions by optimizing the charging schedule, formulated as minXo

∑
t µo,txo,t ·EC

t , where µo,t
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represents the electricity charged for the o-th iPhone at time t, xo,t is a binary variable (xo,t ∈ {0, 1}) indicating whether
charging occurs at time t, and Xo = [xo,1, · · · , xo,T ], denoting the charging schedule for the o-th iPhone.

In the implementation, we set λ to 2 for the objective of Agent (A) as indicated by Eq. (12). The dataset is split into training
and testing sets with a ratio of 67% to 33%. We set the initial learning rate to 0.05 for training the Plain Public Models, and
0.1 for training EQUITABLE PM, with a step size of 50 and a decay rate of 0.1. The batch size is set to 128 for training
both models. In this experiment, we use the transformer with the same architecture described in Section 5.2. For the three
downstream agents with diverse objectives, we set the sequence length to 12 when predicting the next time steps of carbon
emissions. In the cases of EV charging and iPhone green charging, the length of the available time frame is set to 12. For
the data center application in Agent (A), which only requires the immediate next time step of carbon emission prediction,
we average the predicted next 12 time steps of carbon emissions from the upstream public model. For Agent (B) and Agent
(C), which need predictions for the next 12 time steps of carbon emissions, we use the predicted values directly.

We present the results of using different objectives across downstream agents in Table 3. The results indicate that even
when downstream agents have distinct objective functions, our proposed EQUITABLE PM still reduces the variance in their
performance distribution. This leads to a fairer solution compared to the Plain PM, which only minimizes carbon prediction
error without considering the decision-making costs of diverse downstream agents.

Table 3: Statistics of the test results using different cost objectives for downstream agents.

Method q + 1 Variance Mean C95 −C5 MSE

EQUITABLE PM 1 18.14 7.06 9.28 9.66
1.1 15.72 6.14 8.39 9.67

Plain PM - 18.89 7.24 9.45 7.20

A.5. Combined Objective: Explicitly Incorporating Lf

We present a combined objective here to complement the Equitable Objective proposed in the main text to provide a more
nuanced control over equity/fairness versus model accuracy. The combined objective shown in Eq. (35) incorporates the loss
of public model Jf into the original Equitable Objective,

min
θ

(1− β)J q
EQ + βJf , with

J q
EQ =

M∑
m=1

Eq+1 [costm(âm, ξm, y)− costm(am, ξm, y)]

Jf = E[∥y − ŷ∥2],

(35)

where β controls the weighting of each component. We then approximate the expectation in Eq. (35) with the empirical loss
as shown in the Eq. (36).

min
θ

(1− β)Lq
EQ + βLf , with

Lq
EQ =

M∑
m=1

{[ 1

Nm

Nm∑
i=1

(
costm(âm,i, ξm,i, ym,i)− costm(am,i, ξm,i, ym,i)

)]q+1
}

Lf =

M∑
m=1

1

Nm

Nm∑
i=1

∥ym,i − ŷm,i∥2

(36)

Likewise, if the cost functions are differentiable, the gradient of the combined objective is calculated as

∇θ((1− β)Lq
EQ + βLf ) =(1− β)

M∑
m=1

Nm∑
i=1

∇Cm,i
Lq
EQ∇âm,i

Cm,i∇ŷi
âm,i∇θŷm,i

+ β

M∑
m=1

Nm∑
i=1

2

Nm
(ŷm,i − ym,i)∇θŷm,i,
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Figure 6: Statistics of test results when β = [0, 0.2, 0.8]. Note the EQUITABLE PM here refers to the combined objective,
Eq. (35). We can observe that the EQUITABLE PM has achieved more uniform distributions among agents compared to the
Plain PM, according to the variance and percentile difference measures.

where Cm,i = costm(âm,i, ξm,i, ym,i)− costm(am,i, ξm,i, ym,i).

If the cost functions are non-differentiable, similar as (4), given a training dataset with K batches and a batch size Bm, the
gradient can be calculated as

∇θLq(θ)=
1

K

K∑
k=1

{[Bm∑
i=1

M∑
m=1

∇θlog σθ(ŷm,k,i|xm,k,i)

]
·
[ M∑
m=1

[
(1− β)

( 1

Bm

Bm∑
i=1

Cm,k,i

)q+1

+ β

Bm∑
i=1

1

Bm
Lf,m,i

]]}
.

(37)

It is not straightforward to prove that a larger q would lead to a more uniform cost regret distribution by the combined
objective. The challenge arises because θ′ that minimizes Lq

EQ may not align with θ∗ that optimizes the combined loss
of Lq

EQ and Lf . Nevertheless, we highlight that the combined objective provides a way to allow us to balance between
fairness of downstream agents and upstream public model accuracy, achieved by adjusting the value of β.

Table 4: MSE loss of the Plain PM and the EQUITABLE PM with q + 1 as 40. Note the EQUITABLE PM here refers to the
combined objective, Eq. (35). As β increases, the MSE loss of EQUITABLE PM decreases.

MSE loss

EQUITABLE PM
β = 0 6.48
β = 0.2 6.48
β = 0.8 6.46

Plain - 6.45

A.5.1. EMPIRICAL RESULTS FOR THE COMBINED OBJECTIVE

We perform empirical investigations under the same setup outlined in Section 5.2 to examine whether the proposed combined
objective in Eq. (36) could lead to a more equitable performance distribution among agents in the EV Charging Scheduling
case study. Various β and q values are considered. Note the EQUITABLE PM mentioned in the following results refers to the
public model trained using the combined objective in Eq. (36).

Results Figure 6 reports the evaluation results between the Plain PM and EQUITABLE PM with different q and β values.
It can be observed the variance and C95 − C5 achieved by the EQUITABLE PM consistently remain lower than using the
Plain PM. From Figure 6, we observe both the variance and C95 − C5 of cost regret distributions across agents decreases as
the value of q increases, implying the performance distribution becomes more uniform. Notably, setting β = 0 makes the
EQUITABLE PM focus on optimizing the Equitable Objective Lq

EQ exclusively, resulting in the most uniform distribution
compared to β = 0.2 and β = 0.8. In contrast, the MSE loss, Lf , decreases as β increases, as shown in Table 4.
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