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Abstract

Despite the remarkable success of Transformer-001
based large language models (LLMs) across002
various domains, understanding and enhanc-003
ing their mathematical capabilities remains a004
significant challenge. In this paper, we con-005
duct a rigorous theoretical analysis of LLMs’006
mathematical abilities, with a specific focus007
on their arithmetic performances. We identify008
numerical precision as a key factor that influ-009
ences their effectiveness in arithmetical tasks.010
Our results show that Transformers operating011
with low numerical precision fail to address012
arithmetic tasks, such as iterated addition and013
integer multiplication, unless the model size014
grows super-polynomially with respect to the015
input length. In contrast, Transformers with016
standard numerical precision can efficiently017
handle these tasks with significantly smaller018
model sizes. We further support our theoretical019
findings through empirical experiments that ex-020
plore the impact of varying numerical precision021
on arithmetic tasks, providing valuable insights022
for improving the mathematical reasoning ca-023
pabilities of LLMs.024

1 Introduction025

Transformer-based LLMs, such as GPT (OpenAI,026

2023), Claude (Anthropic, 2024), and LLAMA027

(Dubey et al., 2024), have achieved impressive028

performance across a broad range of natural lan-029

guage tasks (Basyal and Sanghvi, 2023; Shao et al.,030

2023; Zhu et al., 2024). Despite the great suc-031

cess, significant challenges remain when applying032

LLMs to mathematical problem-solving. Unlike033

many typical NLP tasks, which often depend on034

pattern recognition and statistical correlations (Blei035

et al., 2003), mathematical reasoning requires rig-036

orous logical deduction in a specific order (Bubeck037

et al., 2023; Frieder et al., 2024). To address these038

challenges, various strategies have been proposed,039

including carefully designed prompting strategies040

(Wei et al., 2022b; Yamauchi et al., 2023; Imani041

et al., 2023) and inference-based searching method 042

(Kang et al., 2024; Wu et al., 2024a; Snell et al., 043

2024; Brown et al., 2024). However, a comprehen- 044

sive understanding of the intrinsic limitations that 045

restrict the mathematical reasoning capabilities of 046

LLMs remains elusive. 047

In principle, mathematical reasoning, built on ba- 048

sic arithmetical operations, requires accurate com- 049

putation of intermediate results throughout the rea- 050

soning process (Bubeck et al., 2023; Lee et al., 051

2024). There exist works (Feng et al., 2023; Yang 052

et al., 2024) exploring the arithmetic capabilities 053

of LLMs with Chain of Thought (CoT) prompting 054

(Wei et al., 2022b). However, these investigations 055

often deviate from the tokenization strategies em- 056

ployed by modern LLMs (OpenAI, 2023; Dubey 057

et al., 2024), where numbers are typically seg- 058

mented into tokens of at most three digits. Under 059

the assumption of Feng et al. (2023) and Yang et al. 060

(2024), each distinct number occupies a unique 061

position in the vocabulary, leading to an essential 062

mismatch with practical implementations. More- 063

over, recent studies have demonstrated that LLMs 064

operating with reduced numerical precision (e.g., 065

int4) exhibit a significant decline in performance 066

on mathematical tasks (Jin et al., 2024; Marchisio 067

et al., 2024). 068

In this paper, we provide a rigorous theoretical 069

investigation of the arithmetical abilities of LLMs 070

under the autoregressive paradigm. Specifically, 071

we adopt the tokenization approach used in modern 072

LLMs, where numbers are processed and gener- 073

ated token by token, with each token representing 074

only a small number of digits. Under these assump- 075

tions, we identify numerical precision as a key 076

factor influencing their performance in arithmetical 077

tasks. Our analysis focuses on three elementary 078

arithmetic tasks: integer addition, iterated addition, 079

and integer multiplication, which serve as elemen- 080

tary building blocks in solving complex real-world 081

math problems. 082
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Arithmetic Tasks Standard Precision Low Precision

Integer Addition ADDp(n) Constant O(n2)

Iterated Addition IterADDp(n, k) Constant Super-polynomial

Integer Multiplication Mulp(n, l) O(n2) Super-polynomial

Table 1: The model size w.r.t. the input size required for various arithmetic tasks on bounded-depth Transformers,
under both standard and low numerical precision. Blue denotes the acceptable model size, and red represents the
unaffordable model size.

To elucidate the role of numerical precision, we083

first examine the expressiveness of Transformers084

operating under low precision, such as int8 and085

int4. We establish foundational impossibility re-086

sults for low-precision Transformers, demonstrat-087

ing that such models require super-polynomial size088

with respect to input length to solve iterated ad-089

dition and integer multiplication (Theorems 4.2090

and 4.3). Our proofs, grounded in complexity091

theory (Razborov, 1987; Arora and Barak, 2009),092

show that this limitation arises from the inability093

of individual neurons to store intermediate results094

during arithmetic computations. As a result, a sig-095

nificantly larger number of neurons is required to096

distribute the computation and avoid overflow.097

We further demonstrate that increasing numeri-098

cal precision is essential to addressing this limita-099

tion. Specifically, as numerical precision improves,100

the model size required to solve arithmetic tasks101

decreases significantly. In particular, we prove that102

a bounded-depth Transformer operating with stan-103

dard precision (e.g., float32) can efficiently and104

reliably solve all three tasks under consideration.105

For both integer and iterated addition, the required106

model size remains constant and independent of the107

input length (Theorems 5.1 and 5.2), while for in-108

teger multiplication, the model size scales quadrat-109

ically w.r.t the input length (Theorem 5.3). These110

results highlight that standard numerical precision111

is sufficient for LLMs to effectively perform arith-112

metic tasks. Our findings emphasize the practical113

importance of numerical precision in mathemati-114

cal reasoning. While low-precision models may115

offer computational advantages, ensuring sufficient116

numerical precision is critical for tasks involving117

complex arithmetic. A summary of our main re-118

sults is provided in Table 1.119

In addition to theoretical analysis, we conduct120

extensive experiments to validate our conclusions.121

First, we evaluate the performance of Transformers122

trained from scratch on the aforementioned arith-123

metic tasks, systematically examining how problem124

size and numerical precision impact their capabil-125

ities. Furthermore, we also conduct experiments 126

on LLAMA-3.1-8B Instruct (Dubey et al., 2024) to 127

evaluate the performance of these arithmetic tasks 128

under different numerical precision. Our empir- 129

ical results demonstrate that both low-precision 130

and standard-precision Transformers perform ade- 131

quately on the integer addition task. However, as 132

task complexity increases—particularly in iterated 133

addition and integer multiplication—the decrease 134

in precision in Transformers results in significant 135

performance degradation. These findings align 136

with our theoretical predictions and offer practi- 137

cal guidance for enhancing LLM performance in 138

mathematical reasoning tasks. 139

2 Preliminary 140

An autoregressive Transformer, or decoder-only 141

Transformer (Radford et al., 2019; Dai et al., 2019), 142

is a neural network designed to model sequence- 143

to-sequence mappings. For an input sequence s 144

of length n, each input token si (for i ∈ [n]) is 145

transformed into a d-dimensional vector x(0)
i = 146

Embed(si) + pi ∈ Rd, where Embed(·) repre- 147

sents the token embedding function, and pi denotes 148

learnable positional embeddings. The model then 149

consists of L Transformer blocks, each following 150

the form: 151

h
(l)
i = x

(l−1)
i +Attn(l)

(
x
(l−1)
i ; {x(l−1)

j : j ≤ i}
)
, 152

x
(l)
i = h

(l)
i + FFN(l)(h

(l)
i ), 153

where l ∈ [L]. Here, Attn(l) and FFN(l) denote 154

the multi-head self-attention layer and the feed- 155

forward network of the l-th Transformer block: 156

Attn(l)(x,S) =
H∑

h=1

(
W

(l,h)
O

)⊤
·H(l,h)(x,S),

H(l,h)(x,S) =

softmaxz∈S

(
(W

(l,h)
K z)⊤(W

(l,h)
Q x)

)
W

(l,h)
V z,

FFN(l)(x) = W
(l)
2 σ(W

(l)
1 x),

157
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Integer Addition Iterated Addition Integer Multiplication

Input 1 (base 𝑝 = 2):
10 + 11 =

Output 1:
101

Input 2 (base 𝑝 = 10):
19 + 987 =

Output 2:
1006

Input 1 (base 𝑝 = 2):
10 + 1010 + 1110 =

Output 1:
11010

Input 2 (base 𝑝 = 10):
44055 + 18754 + 905 =

Output 2:
63714

Input 1 (base 𝑝 = 2):
11 × 11111 =

Output 1:
1011101

Input 2 (base 𝑝 = 10):
382 × 3672 =

Output 2:
1402704

Figure 1: Examples for three elementary arithmetic tasks we consider in this paper: integer addition, iterated
addition, and integer multiplication.

where W
(l,h)
Q ,W (l,h)

K ,W (l,h)
V ,W (l,h)

O ∈ R⌈ d
H
⌉×d158

are the query, key, value, and output matrices of159

the h-th head in the l-th layer. The weight ma-160

trices in the feed-forward network are denoted as161

W
(l)
1 ,W

(l)
2 ∈ Rd×d. The activation function σ is162

chosen to be GeLU (Hendrycks and Gimpel, 2016),163

following the work of (Radford et al., 2019).164

The computed embedding x
(M)
n is then used to165

predict the next token sn+1, which is concatenated166

to the input to continue the sequence generation167

process. This process terminates when an <EOS>168

token is generated. Further discussions on related169

work are listed in Appendix A.170

3 Problem Setup171

This paper explores the arithmetic reasoning capa-172

bilities of LLMs by focusing on three elementary173

arithmetic tasks: integer addition, iterated addition,174

and integer multiplication under the autoregressive175

paradigm. Below, we define the integer representa-176

tions used throughout the study and provide formal177

descriptions for each task.178

Integer Representation and Tokenization.179

We consider all integers to be non-negative and180

represented in base-p notation, where p ≥ 2 is a181

fixed base. Specifically, an integer with n digits is182

expressed as (xn−1 · · ·x0)p. To tokenize this se-183

quence, we employ a tokenizer, denoted by Tc, that184

partitions x into tokens, each containing at most185

c contiguous digits. Formally, let the sequence186

t = [tk−1, . . . , t0] = Tc([xn−1, . . . , x0]), where187

k = ⌈nc ⌉ we have188

ti =

{
[xic, xic+1, · · · , xic+c−1], i < k − 1;

[xic, xic+1, · · · , xn−1], i = k − 1.
(1)189

During sequence generation, the Transformer190

model outputs the target tokens sequentially,191

strictly following the tokenization scheme of to-192

kenizer Tc. Unlike prior works (Feng et al., 2023; 193

Yang et al., 2024), which represent entire integers 194

as single tokens, this approach aligns with prevalent 195

tokenization strategies employed by modern LLMs 196

(OpenAI, 2023; Dubey et al., 2024) and enables 197

Transformers to process and generate numbers to- 198

ken by token. Further discussion and illustrative 199

examples of the tokenization scheme are provided 200

in Appendix B.4. 201

Integer Addition. Let a = (an1−1 · · · a0)p 202

and b = (bn2−1 · · · b0)p denote two integers rep- 203

resented in base-p. Their sum is expressed as 204

s = (sn · · · s0)p = a + b. Let Tc represent the 205

tokenizer. The input sequence is constructed by 206

concatenating the tokenized representations of a 207

and b, i.e., Tc(a) and Tc(b), with the addition oper- 208

ator token ‘+’ placed between them, and the equal- 209

ity operator token ‘=’ appended at the end. The 210

task is to generate the tokenized representation of 211

the result, Tc(s), sequentially, one token at a time. 212

Iterated Addition. Now consider k integers 213

in base-p: a1 = (a1,n1−1 · · · a1,0)p, . . . , ak = 214

(ak,nk−1 · · · ak,0)p, where n = max{n1, . . . , nk}. 215

Their sum is denoted as s = (sn−1 · · · s0)p = 216∑
i∈[k] ai, where n = maxi∈[k]{nk} + ⌈log k⌉. 217

Let Tc denote the tokenizer. The input sequence 218

is formed by concatenating the tokenized rep- 219

resentations of these integers, separated by the 220

addition operator token ‘+’, followed by the 221

equality operator token ‘=’ appended at the end. 222

The objective is for the Transformer to generate 223

the tokenized representation of the sum, Tc(s), 224

sequentially, one token at a time. 225

Integer Multiplication. The integer multipli- 226

cation task involves computing the product of two 227

integers, truncated to a predefined length l. Let a = 228

(an1−1 · · · a0)p and b = (bn2−1 · · · b0)p represent 229

two integers in base-p, and let n = max{n1, n2}. 230
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Their product is given by s = (s2n−1 · · · s0)p =231

a × b. Let Tc denote the tokenizer. The input232

sequence is constructed by concatenating the tok-233

enized representations of a and b, separated by234

the multiplication operator token ‘×’, with the235

equality operator token ‘=’ appended at the end.236

The objective is to generate the tokenized repre-237

sentation of the product’s least significant l digits,238

Tc([sl−1, sl−2, . . . , s0]), where l ≤ 2n.239

Remark 3.1. We consider a generalized case of240

integer multiplication where overflow may occur241

if the result exceeds the given digit length. Stan-242

dard integer multiplication is a special case of this243

framework when l = n1 + n2.244

Figure 1 presents examples of these tasks. In-245

teger addition is the simplest of these tasks and can246

be viewed as a specific instance of iterated addition.247

Furthermore, integer multiplication inherently248

involves the summation of several intermediate249

products. Consequently, we present these tasks in250

increasing order of complexity. In the subsequent251

sections, we use the notations ADDp(n) to denote252

addition with at most n digits in base-p arithmetic,253

IterADDp(n, k) for the iterated addition of k254

integers with at most n digits each in base-p, and255

MULp(n, l) for the multiplication of two integers256

with at most n digits in base-p, truncated to l digits.257

4 Low-Precision Transformers Struggle258

with Basic Arithmetic Tasks259

Recent studies (Marchisio et al., 2024; Jin et al.,260

2024) have shown that LLMs operating under low-261

precision constraints encounter significant chal-262

lenges in performing basic mathematical tasks. In263

this section, we examine the expressive limitations264

of Transformers under such constraints and seek to265

explain the sharp decline in their arithmetical ca-266

pabilities. Specifically, we demonstrate that Trans-267

formers restricted to low-precision arithmetic ex-268

hibit substantial difficulty in solving even elemen-269

tary arithmetic problems.270

To formalize these limitations, we build on the271

framework introduced by Li et al. (2024) and utilize272

the setting of a constant-precision Transformer273

(See formal definition in Appendix B.2). In this set-274

ting, the internal states of the model’s neurons are275

constrained to represent real numbers using only c276

bits, where c is a small constant independent of the277

input sequence length. These numbers may be rep-278

resented by floating point in IEEE 754 formats (Ka-279

han, 1996) or fixed point formats. This configura-280

tion mirrors many practical deployment scenarios,281

in which LLMs often employ reduced-precision 282

formats such as float8, int8, or even int4, par- 283

ticularly during inference (Han et al., 2015). Given 284

that these models typically process input sequences 285

comprising thousands of tokens, it is reasonable 286

and realistic to assume that the numerical precision 287

remains fixed at a small constant, independent of 288

sequence length. Under the constant-precision set- 289

ting, we examine the expressiveness of the Trans- 290

former model in elementary arithmetic problems. 291

Theorem 4.1. Fix integers p ≥ 2 and c ∈ N∗. Con- 292

sider the tokenizer Tc defined in Eq. (1) for pro- 293

cessing the input and output sequences. There ex- 294

ist constant-precision Transformers with constant 295

depth (independent of n) and hidden dimension 296

d = O(n2) that can solve the ADDp(n) task. 297

Theorem 4.1 suggests that the bounded-depth 298

Transformers with reasonable hidden dimensions 299

are capable of solving the integer addition task. 300

However, as we will show in subsequent theo- 301

rems, constant-precision Transformers exhibit pro- 302

nounced limitations when considering more com- 303

plex arithmetic problems. For the page limitation, 304

we give the detailed proof of Theorem 4.1 in Ap- 305

pendix D.1. 306

Theorem 4.2. Fix integers p ≥ 2 and c, L ∈ N∗. 307

Consider the tokenizer Tc defined in Eq. (1) for 308

processing the input and output sequences. For 309

any polynomial f , there exist problem scales n 310

and k such that no constant-precision autore- 311

gressive Transformer with L layers and hidden 312

dimension d < f(n, k) can correctly solve the 313

IterADDp(n, k) task. 314

Theorem 4.3. Fix integers p ≥ 2 and c, L ∈ N∗. 315

Consider the tokenizer Tc defined in Eq. (1) for 316

processing the input and output sequences. For 317

any polynomial f , there exist problem scales n and 318

l such that no constant-precision autoregressive 319

Transformer with L layers and hidden dimension 320

d < f(n, l) can correctly solve the MULp(n, l) 321

task. 322

The detailed proof of Theorems 4.2 and 4.3 are 323

presented in Appendices D.2 and D.3. 324

What accounts for this limitation? As 325

presented in Appendix D, our proof is grounded 326

in circuit complexity theory. By modeling the 327

constant-precision Transformer as a computational 328

circuit, we rigorously analyze its expressive 329

limitations through the lens of circuit complexity 330

(Merrill et al., 2022; Merrill and Sabharwal, 2023; 331

Feng et al., 2023; Li et al., 2024). Specifically, 332
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Li et al. (2024) proves that the expressiveness of333

constant-precision Transformers with polynomial334

size and bounded depth is upper-bounded by the335

computation complexity class AC0. In contrast,336

we demonstrate that the complexity of tasks such337

as IterADD and MUL exceeds that of AC0, using338

reductions from Majority, a well-established339

problem that has been provably unsolvable by340

the circuits in AC0 (Razborov, 1987; Smolensky,341

1987). Consequently, these tasks are inherently342

hard for low-precision Transformers.343

Practical Implications. While low-precision344

Transformers can effectively handle some of the345

simplest arithmetic tasks, such as basic integer ad-346

dition, their capacity is severely limited when ad-347

dressing more complex tasks. As demonstrated,348

low numerical precision, such as int4 and float8,349

imposes fundamental constraints, preventing these350

models from solving problems that would require351

Transformers with super-polynomial size.352

5 Standard-Precision Transformers Are353

Sufficient for Arithmetic Tasks354

In Section 4, we demonstrated that low-precision355

Transformers struggle with arithmetic tasks due356

to their expressive limitations. In this section, we357

will show that increasing numerical precision is es-358

sential to overcoming this limitation. In particular,359

we focus on standard-precision Transformers and360

show that such models can overcome these limita-361

tions and solve arithmetic problems efficiently.362

To formalize the notion of standard precision363

(e.g., float32), we follow Feng et al. (2023) and364

adopt the setting of a logarithmic-precision Trans-365

former (See formal definition in Appendix B). In366

this setting, the Transformer’s internal neurons can367

represent real numbers with up to O(log n) bits,368

where n denotes the maximum input sequence369

length. Given that modern LLMs often limit their370

context length to hundreds of thousands of to-371

kens (OpenAI, 2023; Touvron et al., 2023; An-372

thropic, 2024), it is natural to treat 32 as the log-373

arithmic scale corresponding to 100, 000. Hence,374

the logarithmic-precision setting reflects practical375

deployment scenarios.376

We first establish that, under logarithmic pre-377

cision, a Transformer with constant depth and di-378

mension can solve both the integer addition and379

iterated addition tasks for arbitrarily large input380

lengths, as shown in Theorems 5.1 and 5.2. The381

detailed proof of Theorems 5.1 and 5.2 is presented382

in Appendices E.1 and E.2.383

Theorem 5.1. Fix integers p ≥ 2 and c ∈ N∗. 384

Consider the tokenizer Tc defined in Eq. (1) for 385

processing the input and output sequences. There 386

exists a logarithmic-precision Transformer with 387

constant depth and hidden dimension (independent 388

of n) that can generate the correct output for any 389

input on the ADDp(n) task. 390

Theorem 5.2. Fix integers p ≥ 2 and c ∈ N∗. 391

Consider the tokenizer Tc defined in Eq. (1) for 392

processing the input and output sequences. For 393

any integers n and k, there exists a logarithmic- 394

precision Transformer with constant depth and hid- 395

den dimension d (independent of n and k) that can 396

generate the correct output for any input on the 397

IterADDp(n, k) task. 398

We now turn to integer multiplication. As es- 399

tablished in Theorem 5.3, a logarithmic-precision 400

Transformer with constant depth and polynomial 401

hidden dimensions is capable of solving the integer 402

multiplication task. The detailed proof of Theo- 403

rem 5.3 is presented in Appendix E.3. 404

Theorem 5.3. Fix integers p ≥ 2 and c ∈ N∗. 405

Consider the tokenizer Tc defined in Eq. (1) for 406

processing the input and output sequences. For any 407

integers n and l ≤ 2n, there exists a logarithmic- 408

precision Transformer with constant depth (inde- 409

pendent of n and k) and hidden dimensions O(n2) 410

that can generate the correct output for any input 411

on the MULp(n, l) task. 412

Theorems 5.1 to 5.3 demonstrate that, under stan- 413

dard precision, a bounded-depth Transformer with 414

reasonable size can solve all elementary arithmetic 415

tasks. Compared to the theoretical results for low- 416

precision Transformers (Theorems 4.1 to 4.3), even 417

a modest increase in numerical precision leads to 418

a substantial improvement in expressiveness for 419

arithmetic tasks. 420

The Reason for Increased Expressiveness. 421

The transition from constant precision to logarith- 422

mic precision enables Transformers to process and 423

represent large numbers effectively, thereby ex- 424

panding their expressiveness beyond the capabil- 425

ities of low-precision models. In particular, the 426

expressiveness of a logarithmic-precision Trans- 427

former with polynomial size and bounded depth is 428

upper-bounded by the computational complexity 429

class TC0 (Merrill and Sabharwal, 2023). Lever- 430

aging this increased precision, we constructively 431

prove that logarithmic-precision Transformers are 432

sufficient for solving these arithmetic tasks. These 433

results underscore the critical role of numerical 434
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2 3 4 5 6 7 8 9 10 11
Maximum Length of the Addends

0.0

0.5

1.0

Ac
cu

ra
cy

Base-2 Iterated Addition (3 numbers)

float32, 3 layers
float32, 5 layers
bfloat16, 3 layers
bfloat16, 5 layers

2 3 4 5 6 7 8 9 10 11 12 13 14
Maximum Length of the Multiplicands

0.0

0.5

1.0

Ac
cu

ra
cy

Base-2 Integer Multiplication

float32, 3 layers
float32, 5 layers
bfloat16, 3 layers
bfloat16, 5 layers

Figure 2: Model performance on different tasks in base-2. Within each sub-figure, the x-axis represents the
maximum digits length and the y-axis represents the accuracy gained by each model. The figure indicates that, for
all tasks, Transformers utilizing float32 with 3 layers and 5 layers outperform their bfloat16 counterparts.

precision in enhancing the expressiveness of Trans-435

former architectures.436

Practical Implications. Our theoretical results437

underscore the critical importance of numerical438

precision when deploying Transformers for arith-439

metic tasks. Under low-precision settings, a Trans-440

former requires super-polynomial model size to441

solve even elementary arithmetic problems, which442

is impractical for real-world applications. While443

low-precision models may offer computational ef-444

ficiency, they are likely to fail in scenarios that de-445

mand accurate numerical reasoning, such as math-446

ematical problem-solving or scientific computing.447

However, a slight increase in precision—such as448

using float32—enables Transformers to handle449

more complex arithmetic operations while main-450

taining a reasonable hidden dimension. Thus, em-451

ploying sufficient numerical precision is crucial for452

ensuring both accuracy and robustness in arithmetic453

tasks, and should be a key consideration when de-454

signing or deploying LLMs for applications involv-455

ing complex arithmetic reasoning.456

6 Experiments457

In the preceding sections, we employ complexity458

theory to demonstrate that low-precision Trans-459

formers face significant challenges in performing460

elementary arithmetic tasks. To validate these theo-461

retical insights, we conduct a series of experiments462

to compare the performance of Transformers under463

different precisions. The results provide empir-464

ical evidence that the model’s ability to execute465

arithmetic operations drops as precision decreases,466

reinforcing our theoretical results.467

6.1 Experimental Setup 468

Tasks and datasets. We evaluate three elementary 469

arithmetic tasks: integer addition, iterated addition, 470

and integer multiplication, as presented in Figure 1. 471

Each task involves a series of experiments with 472

base p = 2, 10 and varying choices of digit length 473

n. For integer addition, we examine the addition 474

of integers in both base-2 and base-10, with digit 475

lengths n ∈ {4, 8, 16, 32, 64}. For iterated addi- 476

tion, we examine the addition of three numbers in 477

base-2, with digit lengths n ∈ [2, 11], as well as in 478

base-10, with digit lengths n ∈ [1, 4]. Similarly, for 479

integer multiplication, we run experiments in base- 480

2 with digit lengths n ∈ [2, 14], and in base-10 481

with digit length n ∈ [2, 5]. Both training data and 482

test data are dynamically generated. We use a batch 483

size of 512 with 100k steps, resulting in a total train- 484

ing dataset size of 51.2M. Further details regarding 485

the data generation function and the construction 486

of datasets are provided in Algorithms 4 and 5. 487

Training and Evaluation. All experiments use 488

Transformers as the backbone. We trained models 489

with 3 and 5 layers and evaluated their performance 490

on each task. Detailed model and training config- 491

urations are listed in Tables 2 and 3. No prompts 492

or chat templates were added to the dataset. The 493

models were trained with cross-entropy loss over 494

the answer tokens. During evaluation, the mod- 495

els were required to produce exact answers, with 496

accuracy reported as the evaluation metric. For 497

each task, accuracy was computed over 50k test 498

samples. To assess the impact of numerical preci- 499

sion, experiments were conducted with float32 500
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Figure 3: Model performance on iterated addition tasks involving three numbers and integer multiplication tasks.
Each sub-figure presents a comparison of the performance between float32 and bfloat16.

and bfloat16.501

6.2 Experimental Results502

Integer addition proved relatively simple, main-503

taining over 94% accuracy even as digit lengths504

increased to 32 across both base-2 and base-10 for505

both float32 and bfloat16 (see Appendix F.3).506

The results for iterated addition and multiplica-507

tion in base-2 are shown in Figure 2, while the508

corresponding base-10 results are presented in Fig-509

ure 3. In each sub-figure, the x-axis represents the510

maximum digit length for addends or multiplicands,511

while the y-axis indicates test accuracy.512

For iterated addition, accuracy under bfloat16513

declined significantly as the digit length increased,514

while float32 consistently achieved near-perfect515

accuracy across all model depths. Specifically, in516

base-2, 16-bit precision exhibited a pronounced517

decline for digit lengths between 7 and 10, whereas518

32-bit precision maintained high accuracy. In519

base-10, at digit lengths up to 10, float32520

achieved over 90% accuracy, whereas bfloat16521

struggled to produce correct results.522

In the multiplication task, the gap between the523

two precisions became even more apparent as digit524

lengths increased. For example, at a digit length525

of 13 in base-2, 16-bit precision accuracy dropped526

sharply, signifying its inability to handle such in-527

puts. Similarly, in base-10, 16-bit precision showed528

a marked reduction in accuracy, particularly for in-529

puts with lengths of 3 in 3-layer models and lengths530

of 4 in 5-layer models. These results underscore531

the critical role of precision in achieving reliable532

performance for elementary arithmetic tasks, con-533

sistent with our theoretical findings.534

6.3 Further Experiments on LLMs 535

To further substantiate our theoretical results, 536

we conducted additional experiments on LLMs, 537

specifically evaluating the LLAMA-3.1-8B 538

Instruct model on elementary arithmetic tasks. 539

Task Description. For integer addition, we 540

tested the addition of two base-10 integers with 541

digit lengths ranging from 1 to 13. For iterated 542

addition, we extended the task to include three and 543

five base-10 numbers, with digit lengths spanning 544

1 to 9 and 1 to 5, respectively. For integer multi- 545

plication, we evaluated the multiplication of two 546

base-10 numbers, with digit lengths varying from 547

1 to 5. Data generation followed the same proce- 548

dure as earlier experiments, with details provided 549

in Algorithms 4 and 5. 550

Model Configuration. All experiments used 551

the LLAMA-3.1-8B Instruct model (Dubey et al., 552

2024). To study the effects of reduced precision, 553

we evaluated the model under four settings: 554

• Original model operating under bfloat16 555

• Quantized model operating under int4 556

• Fine-tuned model using LoRA (bfloat16) 557

• Fine-tuned model using QLoRA (int4) 558

The baseline configuration employs the original 559

LLaMA-3.1-8B Instruct model, which operates un- 560

der bfloat16 precision. To assess the effects of 561

reduced precision, we applied 4-bit quantization us- 562

ing the AWQ algorithm (Lin et al., 2024). Further, 563

we fine-tuned the model using LoRA and QLoRA 564

(Hu et al., 2021; Dettmers et al., 2024). The fine- 565

tuning configurations for LoRA and QLoRA are 566

listed in Table 6 in Appendix F.4. For the LoRA 567

fine-tuning experiments, model weights were main- 568

tained in bfloat16. In contrast, the QLoRA ex- 569

7
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Figure 4: The performance of LLAMA-3.1-8B Instruct model on arithmetic tasks in base-10. In each sub-figure, we
compare the original model in bfloat16 and the quantized model in int4, alongside fine-tuned models, with LoRA
using bfloat16 and QLoRA using int4.

periments extended this setup by enabling 4-bit570

quantization, represented by the int4. Fine-tuning571

was performed individually for each task. Further-572

more, we add a baseline of GPT-4o (OpenAI, 2023)573

as a reference, whose results are listed in Table 9.574

Dataset for Fine-tuning. We generated the fine-575

tuning data for both multiplication and addition576

tasks, with both multiplicands and addends varying577

in length from 1 to 9. The dataset comprised a total578

of 60k samples, including 5k samples with lengths579

between 1 and 6, and 10k samples with lengths580

between 7 and 9. The generation process of the581

dataset is the same as in previous experiments. Fur-582

thermore, we add the few-shot learning prompt to583

the raw dataset and apply the LLaMA chat template584

for data preprocessing. The prompt for few-shot585

learning can be found in Tables 7 and 8.586

Evaluation. For the evaluation, we employ a587

few-shot learning approach for inference. The588

prompts are the same as the prompts of fine-tuning589

dataset and can be found in Appendix F.1. The gen-590

eration configurations for LLMs can be also found591

in Table 5 in Appendix F.4. During inference, the592

LLMs were tasked with producing exact solutions593

to the given arithmetic problems. Both the original594

model and the model fine-tuned with LoRA are595

evaluated using bfloat16, whereas the quantized596

model and the model fine-tuned with QLoRA are597

evaluated using int4. For each task, we evaluate598

the model on 1k samples to compute the accuracy599

serving as the evaluation metric.600

The results of the experiments are shown in601

Figure 4. Each sub-figure presents the results of a602

task, where the x-axis denotes the maximum length603

of the addends or multiplicands, and the y-axis 604

represents the test accuracy. For each task, reduc- 605

ing numerical precision in both the original and 606

fine-tuned models leads to a significant decrease in 607

accuracy. Specifically, in the iterated addition task 608

for 3 numbers, accuracy drops by nearly 20% as 609

the length of the addends increases. Similarly, for 610

models fine-tuned with QLoRA and LoRA, low- 611

ering precision also results in a decline in accuracy. 612

Furthermore, in some cases, even after fine-tuning 613

a low-precision model with QLoRA, the perfor- 614

mance does not surpass that of the original model 615

with standard precision. These experimental find- 616

ings support our theoretical results that numerical 617

precision is a critical factor in the success of iter- 618

ated addition and integer multiplication tasks. Over- 619

all, the results underscore the consistency between 620

the precision requirements for these elementary 621

arithmetic tasks and our theoretical predictions. 622

7 Conclusion 623

In this work, we have theoretically analyzed the 624

impact of numerical precision on LLMs for arith- 625

metical reasoning. By focusing on three elementary 626

arithmetic tasks, integer addition, iterated addition, 627

and integer multiplication, we demonstrate that 628

the Transformers operating under standard preci- 629

sion can handle these tasks effectively. In contrast, 630

Transformers with low precision struggle with com- 631

plex arithmetic tasks, excelling only at integer ad- 632

dition. Extensive experimental results corroborate 633

our theoretical findings, showing that standard pre- 634

cision models outperform low precision ones. We 635

believe this study offers valuable insights for devel- 636

oping more powerful LLMs in mathematics. 637
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8 Limitations638

One limitation of this work is that we have not fully639

explored all key components of mathematical rea-640

soning. While the arithmetic tasks considered are641

foundational, there remain other essential elements642

of mathematical reasoning whose dependence on643

numerical precision is still unclear. Additionally,644

our focus was exclusively on numerical precision,645

but we acknowledge that other factors are likely to646

play a significant role in applying LLMs to mathe-647

matical reasoning. We leave these explorations for648

future work.649
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A Related Work1093

A.1 LLMs for Mathematical Reasoning1094

Mathmetical Reasoning. Recent studies highlight the limitations of current LLMs in mathematical1095

reasoning (Ahn et al., 2024; Srivastava et al., 2024). Satpute et al. (2024) demonstrated that advanced1096

models like GPT-4 can generate relevant answers, but these answers are not always accurate. Additionally,1097

Mao et al. (2024) found that current LLMs struggle even with verifying the solutions to mathematical1098

problems. To enhance the mathematical capabilities of LLMs, several studies have carefully designed1099

prompting strategies (Shakarian et al., 2023; Cheng and Yu, 2023; Gu, 2023; Lu et al., 2024) or finetuned1100

LLMs on mathematics-related datasets (An et al., 2024; Liang et al., 2024; Raiyan et al., 2023; Mishra1101

et al., 2022; Yue et al., 2024). Other approaches include inference-based searching methods (Kang et al.,1102

2024), the application of external tools (Yamauchi et al., 2023; He-Yueya et al., 2023; Chen et al., 2023),1103

and the introduction of simulated interaction processes (Wu et al., 2024b) or self-verification mechanisms1104

(Wang et al., 2023; Zhou et al., 2024a).1105

Arithmetical Reasoning. Bubeck et al. (2023) highlighted arithmetical reasoning as a key component1106

of true mathematical ability. However, Saxton et al. (2019); Dziri et al. (2023) identified significant1107

challenges that LLMs encounter when solving elementary arithmetic tasks, such as multi-digit addition1108

and multiplication. A common approach to mitigate these difficulties is to reverse the output digit order1109

(Shen et al., 2024), or both the input and output digit order simultaneously (Lee et al., 2024). Other studies1110

have focused on developing improved positional encodings (Golkar et al., 2024; McLeish et al., 2024) or1111

positional tokens (Nogueira et al., 2021) that are more suitable for arithmetic tasks. Zhou et al. (2024b,c)1112

further examined the length extrapolation capabilities of LLMs in solving basic arithmetic problems,1113

emphasizing the importance of data formats and positional embeddings for better generalization.1114

A.2 Computational Powers of Transformers1115

Another more relevant line of work investigates the theoretical expressive power of Transformers from a1116

computational perspective.1117

Universal Approximation. Early theoretical work on Transformers primarily focused on their function1118

approximation capabilities. Yun et al. (2019) demonstrated that Transformers can universally approximate1119

any continuous sequence-to-sequence functions, given sufficient size. This universality result has since1120

been extended to various Transformer variants, such as Sparse Transformers (Yun et al., 2020), Linear1121

Transformers (Alberti et al., 2023), and Transformers with relative positional encodings (RPE) (Luo1122

et al., 2022). Additionally, previous studies established that infinite-precision Transformers are Turing-1123

complete (Pérez et al., 2019, 2021), while Wei et al. (2022a) showed that finite-precision Transformers are1124

approximately Turing-complete. Although these results highlight Transformers’ computational capacity,1125

our work develops expressiveness results under more practical settings, exploring the differences in1126

expressiveness across varying levels of numerical precision.1127

Formal Language Learning. Another line of research focuses on the ability of Transformers to learn1128

formal languages. Liu et al. (2023) explored how Transformers simulate finite state automata, while1129

Bhattamishra et al. (2020); Yao et al. (2021) studied their ability to recognize counter languages and1130

Dyck languages, respectively. On the negative side, Hahn (2020) showed that Transformers are not1131

capable of learning distributions over languages. In addition to affirmative results, several works have1132

characterized the limitations of Transformers from the perspective of formal language modeling (Hahn,1133

2020; Bhattamishra et al., 2020; Weiss et al., 2021; Yao et al., 2021; Chiang et al., 2023) or circuit1134

simulation (Hao et al., 2022; Merrill et al., 2022; Merrill and Sabharwal, 2023). However, few of these1135

studies focus on the autoregressive Transformers commonly used in LLMs, which we investigate in this1136

paper.1137

Chain-of-Thought and In-Context Learning. Chain-of-Thought prompting (Wei et al., 2022b) plays1138

a crucial role in tasks requiring complex reasoning structures, and several studies aim to understand1139

its underlying mechanisms. For instance, Feng et al. (2023); Li et al. (2024) analyzed CoT from an1140
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expressiveness perspective, and Yang et al. (2024); Wen et al. (2024) examined CoT across more different 1141

model variants. In-context learning (Brown et al., 2020; Garg et al., 2022) is another powerful aspect 1142

of LLMs. Some theoretical work has shown that in-context learning can be explained through gradient 1143

descent (Akyürek et al., 2022; Dai et al., 2023; Von Oswald et al., 2023), while others attribute it to the 1144

induction heads mechanism (Elhage et al., 2021; Olsson et al., 2022). 1145

A.3 Scaling Laws of Precision 1146

Concurrent works (Kumar et al., 2024; Ouyang et al., 2024) explore the impact of numerical precision 1147

on scaling laws, particularly in the contexts of training and quantization. Kumar et al. (2024) introduced 1148

“precision-aware” scaling laws, demonstrating that low-precision training effectively reduces a model’s 1149

“effective parameter count” but may still be compute-optimal for larger models. Their framework unifies 1150

the effects of both training and post-training quantization. Ouyang et al. (2024) examined quantization- 1151

induced degradation (QiD), showing that larger or undertrained models exhibit greater robustness to 1152

low-bit quantization, whereas fully trained models experience significant performance degradation. While 1153

both studies underscore precision as a critical dimension in scaling laws, they leave theoretical gaps in 1154

understanding the role of precision for LLMs. Our work focuses on addressing these gaps by analyzing 1155

the impact of numerical precision on elementary arithmetic reasoning tasks. 1156

B Additional Background and Preliminary 1157

B.1 Circuit Complexity 1158

Circuit complexity classes capture various aspects of computational complexity, typically bounding circuit 1159

width and depth. For a more detailed introduction, we refer to Arora and Barak (2009). 1160

We begin by defining Boolean circuits. A Boolean circuit over a basis of gates is represented as a 1161

finite-size directed acyclic graph (DAG), where each vertex corresponds to either a basis function (or gate) 1162

or an input bit. Some internal nodes are designated as outputs, and the fan-in of a vertex is defined as its 1163

in-degree. Building on this definition, we can define the complexity classes NCi, ACi, and TCi: 1164

• NCi: This class consists of constant fan-in, polynomial-sized circuits made up of AND, OR, and 1165

NOT gates, with a depth of O(logi n). 1166

• ACi: This class includes unbounded fan-in, polynomial-sized circuits composed of AND, OR, and 1167

NOT gates (with NOT gates allowed only on inputs), also having a depth of O(logi n). 1168

• TCi: This class extends ACi by allowing majority gates. 1169

The relationships among the NC, AC, and TC hierarchies are as follows: 1170

NCi ⊂ ACi ⊂ TCi ⊂ NCi+1, NC0 ⊊ AC0 ⊊ TC0. 1171

B.2 Constant-precision Transformer 1172

Previous work has investigated the expressiveness of constant-precision Transformers (Li et al., 2024), 1173

utilizing a simplified version of the IEEE 754 standards (IEEE, 2019). Our constant-precision setting is 1174

analogous, and we will introduce the floating-point representations we consider here. 1175

Definition B.1. A (e+ 2s+ 1)-floating point representation includes e exponent bits, 2s precision bits, 1176

and one sign bit. The numbers representable under this representation are defined as follows: 1177

Fe,s := {S · 2−s+E | −2−2s + 1 ≤ S ≤ 22s − 1,−2e−1 ≤ E ≤ max(2e−1 − 1, 0), S, E ∈ Z}. 1178

For any x ∈ R, its representation under this floating-point format is determined by rounding to the nearest 1179

value in F. In the event of a tie, we select the number with the smaller absolute value. 1180

In this paper, we focus on the case where e = 0, which means all representable numbers take the form 1181

S ·2−s, with S ∈ Z such that−2−2s+1 ≤ S ≤ 22s−1. However, this is necessary only for Theorem 4.1, 1182

while Theorems 4.2 and 4.3 do not depend on specific numerical representations. 1183
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Definition B.2 (Constant-Precision Transformer). A constant-precision Transformer is a Transformer in1184

which each neuron and activation are restricted to using a constant number of bits for computation.1185

Li et al. (2024) demonstrated that constant-precision Transformers with constant depth belong to the1186

complexity class AC0.1187

B.3 Logarithmic-precision Transformer1188

A key limitation of constant-precision representation is that it fails to capture the input size n within a1189

single neuron. To address this, we consider logarithmic precision, allowing for O(log n) bits for numerical1190

representations.1191

Definition B.3 (Logarithmic-Precision Transformer). A logarithmic-precision Transformer is a Trans-1192

former in which each neuron and activation are allowed to use O(log n) bits for computation, where n1193

denotes the size of the input.1194

Logarithmic-precision Transformers possess several advantageous properties (Feng et al., 2023; Feng1195

and Zhong, 2023):1196

• For floating-point representations with O(log n) bits, any real number x ∈ O(poly(n)) can be1197

represented with O(poly(1/n)) error.1198

• Each neuron in the Transformer can only store O(log n) bits of information, which means it cannot1199

retain all input data. Consequently, computation must be distributed across the network, aligning1200

with the operational principles of Transformers.1201

Previous work (Merrill et al., 2022; Merrill and Sabharwal, 2023) has shown that logarithmic-precision1202

Transformers fall within the complexity class TC0.1203

B.4 Tokenization Scheme1204

In this section, we formalize the tokenization scheme adopted in this paper and provide the necessary1205

definitions and examples to establish a foundation for the subsequent analysis.1206

Definition B.4 (Tokenizer Tc). Let x = (xn−1 · · ·x0)p denote an n-digit integer in base p. The tokenizer1207

Tc maps x into k = ⌈nc ⌉ tokens, represented as t = [tk−1, · · · , t0], where1208

ti =

{
[xic, xic+1, · · · , xic+c−1], i < k;

[xic, xic+1, · · · , xn−1], i = k.
1209

Furthermore, for any operator (e.g., “+”, “×”, “=”), the tokenizer Tc assigns each operator a single token.1210

Example B.5. Consider the 5-digit integer 13215. Under the tokenizer T3, it is tokenized into [13, 215].1211

A key property of this tokenization scheme is that, for any fixed base p and tokenizer Tc, the resulting1212

tokenized sequence can be reinterpreted as an arithmetic expression in base pc. Specifically, there exists1213

a one-to-one mapping τ between the vocabulary of the base-p tokenizer Tc and the vocabulary of the1214

base-pc tokenizer T1, such that1215

τ(Tc([ac−1, · · · , a0]p)) = T1

∑
i∈[c]

aip
i

 .1216

Proposition B.6. Let a be an integer. If t = Tc(a) = [tk−1, · · · , t0] and t′ = T1(a) = [t′k−1, · · · , t′0],1217

then for all i, we have τ(ti) = t′i.1218

This property is particularly significant as it allows us to abstract away the specific effects of the1219

tokenizer Tc and focus exclusively on the case where the tokenizer is T1. This simplification is leveraged1220

in proving the main theorems presented in this paper.1221

Example B.7 illustrates how a tokenized sequence in base-10, generated using the tokenizer T3, can be1222

equivalently interpreted as a sequence in base-1000.1223

Example B.7. Consider the base-10 arithmetic expression 44505 + 9416 = 53921. When tokenized1224

using T3, the sequence becomes [44, 505,+, 9, 416,=, 53, 921]. This tokenized representation can then1225

be reinterpreted as an arithmetic expression in base-1000.1226
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C Technical Lemmas 1227

C.1 Technical Lemmas for Logarithmic Precision MLP 1228

In this subsection, we present several foundational results concerning logarithmic precision multi-layer 1229

perceptrons (MLPs), as introduced in (Feng et al., 2023). For brevity, proofs of these results are omitted 1230

here but are available in the appendix of (Feng et al., 2023). 1231

Lemma C.1 (Feng et al., 2023, Lemma C.1). Let ϵ > 0. There exists a two-layer MLP f : R2 → R with 1232

four hidden units and GeLU activation, such that for any a, b ∈ [−M,M ], the inequality |f(a, b)−ab| ≤ ϵ 1233

holds. Furthermore, the ℓ∞ norm of f is bounded by O(poly(M, 1/ϵ)). 1234

Lemma C.2 (Feng et al., 2023, Lemma C.2). Let g : Rd1 → Rd2 be a two-layer MLP with ReLU 1235

activation and ℓ∞ norm bounded by M . Then, for any ϵ > 0, there exists a two-layer MLP f of the same 1236

size with GeLU activation such that for all x ∈ Rd1 , the inequality ∥f(x) − g(x)∥∞ ≤ ϵ is satisfied. 1237

Moreover, the ℓ∞ norm of f is bounded by O(poly(M, 1/ϵ)). 1238

Lemma C.3 (Feng et al., 2023, Lemma C.4). Consider the selection function g : Rd × Rd × R→ Rd 1239

defined as 1240

g(x,y, t) =

{
x if t > 0,

y otherwise.
1241

For any ϵ > 0, α > 0, and M > 0, there exists a two-layer MLP f with 2d + 2 hidden units and 1242

GeLU activation such that, for all x ∈ [−M,M ]d, y ∈ [−M,M ]d, and t ∈ (−∞,−α] ∪ [α,+∞), 1243

the inequality ∥f(x,y, t) − g(x,y, t)∥∞ ≤ ϵ holds. Furthermore, the ℓ∞ norm of f is bounded by 1244

O(poly(M, 1/α, 1/ϵ)). 1245

C.2 Technical Lemmas for Logarithmic Precision Attention Layer 1246

Feng et al. (2023) investigated the expressive power of the standard attention layer and introduced 1247

two fundamental operations: COPY and MEAN, demonstrating that a standard attention layer with 1248

logarithmic precision can perform these operations under certain regularity conditions. In this subsection, 1249

we restate their results and extend the discussion to a specialized operation referred to as SINGLE COPY. 1250

Consider a sequence of vectors x1,x2, . . . ,xn, where each xi = (x̃i, ri, 1) ∈ [−M,M ]d+2, and 1251

M is a fixed constant. Let the attention matrices be K,Q,V ∈ Rd′×(d+2), and define the following 1252

transformed vectors: 1253

qi = Qxi, kj = Kxj , vj = V xj . 1254

For any scalars 0 < ρ, δ < M , define the matching set as: 1255

Si = {j ≤ i : |qi · kj | ≤ ρ}. 1256

Using this matching set, we define the following operations: 1257

• COPY: The output is a sequence of vectors u1, . . . ,un, where 1258

ui = vpos(i), with pos(i) = argmaxj∈Si
rj . 1259

The output ui is undefined if Si = ∅. 1260

• MEAN: The output is a sequence of vectors u1, . . . ,un, where 1261

ui = meanj∈Si vj =
1

|Si|
∑
j∈Si

vj . 1262

The output ui is undefined if Si = ∅. 1263

• SINGLE COPY: The output is a sequence of vectors u1, . . . ,un, where 1264

ui = vpos(i), with pos(i) being the unique element in Si. 1265

The output ui is undefined if |Si| ≠ 1. 1266
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We now impose the following regularity assumption to ensure the feasibility of the operations under1267

consideration:1268

Assumption C.4 (Regularity Assumption for Attention). For any input sequence x1,x2, . . . ,xn, the1269

matrices Q,K,V and scalars ρ, δ satisfy the following conditions:1270

• For any i, j ∈ [n], either |qi · kj | ≤ ρ or qi · kj ≤ −δ.1271

• For any i, j ∈ [n], either i = j or |ri − rj | ≥ δ.1272

• The infinity norm of the value matrix V satisfies ∥V ∥∞ ≤ 1.1273

Under this assumption, we demonstrate that a logarithmic precision attention layer with O(d) embed-1274

ding dimension and a single attention head can perform the operations defined in Section C.2.1275

Lemma C.5 (Feng et al., 2023, Lemma C.7). Suppose Assumption C.4 holds and ρ ≤ δ2

8M . For any1276

ϵ > 0, there exists an attention layer with a single attention head and O(d) embedding dimension that1277

can approximate the COPY operation. Furthermore, the ℓ∞ norm of the parameters is bounded by1278

O(poly(M, 1/δ, log(n), log(1/ϵ))).1279

Formally, for any input sequence x1,x2, . . . ,xn, let the attention layer outputs be o1,o2, . . . ,on.1280

Then, for any i ∈ [n] such that Si ̸= ∅, the following holds:1281

∥oi − ui∥∞ ≤ ϵ,1282

where ui is the target output of the COPY operation as defined in Section C.2.1283

Lemma C.6 (Feng et al., 2023, Lemma C.8). Suppose Assumption C.4 holds and ρ ≤ δϵ
16M ln(4Mn/ϵ) .1284

For any 0 < ϵ ≤ M , there exists an attention layer with a single attention head and O(d) embedding1285

dimension that can approximate the MEAN operation. Furthermore, the ℓ∞ norm of the parameters is1286

bounded by O(poly(M, 1/δ, log(n), log(1/ϵ))).1287

Formally, for any input sequence x1,x2, . . . ,xn, let the attention layer outputs be o1,o2, . . . ,on.1288

Then, for any i ∈ [n] such that Si ̸= ∅, the following holds:1289

∥oi − ui∥∞ ≤ ϵ,1290

where ui is the target output of the MEAN operation as defined in Section C.2.1291

The proofs of Lemmas C.5 and C.6 are omitted here for brevity. Complete proofs can be found in the1292

appendix of Feng et al. (2023).1293

Lemma C.7. Suppose Assumption C.4 holds and δ − ρ ≥ cρ for some constant c > 0. For any ϵ > 0,1294

there exists an attention layer with a single attention head and O(d) embedding dimension that can1295

approximate the SINGLE COPY operation. Furthermore, the ℓ∞ norm of the parameters is bounded by1296

O(poly(M, 1/δ, 1/c, log(n), log(1/ϵ))).1297

Formally, for any input sequence x1,x2, . . . ,xn, let the attention layer outputs be o1,o2, . . . ,on.1298

Then, for any i ∈ [n] such that |Si| = 1, the following holds:1299

∥oi − ui∥∞ ≤ ϵ,1300

where ui is the target output of the SINGLE COPY operation, as defined in Section C.2.1301

Proof. We construct the query, key, and value vectors as follows:1302

• Query: λqi ∈ Rd1303

• Key: ki ∈ Rd1304

• Value: vi ∈ Rd1305
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where λ > 0 is a constant to be determined. Denote ai,j as the attention score, defined as: 1306

ai,j =
exp(λ(qi · kj))∑
j′ exp(λ(qi · kj′))

. 1307

Since δ − ρ ≥ cρ, it follows that δ − ρ ≥ c
c+1δ. Setting 1308

λ =
(c+ 1) ln

(
2nM
ϵ

)
cδ

, 1309

which is bounded by O(poly(M, 1/δ, 1/c, log(n), log(1/ϵ))), we derive the following bounds for 1310

ai,pos(i): 1311

ai,pos(i) ≥
exp(−λρ)

exp(−λρ) + (n− 1) exp(−λδ)
(2) 1312

=
1

1 + (n− 1) exp(−λ(δ − ρ))
1313

≥ 1− (n− 1) exp(−λ(δ − ρ)) (3) 1314

≥ 1− n exp

(
− ln

(
2nM

ϵ

))
1315

= 1− ϵ

2M
. 1316

Here, Equation (2) follows from Assumption C.4 and the condition |Si| = 1, which ensures that for 1317

j′ ̸= pos(i), qi · kj′ ≤ −δ; Equation (3) uses the approximation 1
1+x ≥ 1− x for x ≥ 0. 1318

Thus, we can bound the error as follows: 1319

∥oi − ui∥∞ =

∥∥∥∥∥∥
∑
j

aijvj − vpos(i)

∥∥∥∥∥∥
∞

1320

≤M∥V ∥∞ ·

1− ai,pos(i) +
∑

j ̸=pos(i)

aij

 1321

= M∥V ∥∞ · (2− 2ai,pos(i)) 1322

≤ ϵ, 1323

where the last inequality follows from the bound ai,pos(i) ≥ 1− ϵ
2M and the constraint ∥V ∥∞ ≤ 1 from 1324

Assumption C.4. This concludes the proof. 1325

C.3 Technical Lemmas for Constant Precision Calculations 1326

In this section, we establish technical lemmas that underpin constant precision calculations. Assume 1327

a system with 2s-bit fixed-point precision and no exponent bits, and let Bs = 2s − 2−s. The largest 1328

representable value in this system is Bs, while the smallest is −Bs. 1329

Lemma C.8 (Li et al., 2024, Lemmas E.1 and E.2). For any s ∈ N+, it holds that exp(−Bs) = 0 and 1330

exp(Bs) = Bs. 1331

Proof. First, observe that exp(Bs) ≥ eBs > 2s+1. Consequently, exp(−Bs) ≤ 2−s−1, implying 1332

exp(−Bs) = 0 due to the truncation to zero under the given precision. For the second claim, note that 1333

exp(Bs) ≥ Bs + 1 > Bs, which enforces exp(Bs) = Bs under the constant precision constraints. 1334

Lemma C.9. For any s ∈ N+, we have GeLU(−Bs) = 0. 1335
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Proof. To prove this, it suffices to show that BsΦ(−Bs) ≤ 2−s−1, where Φ denotes the cumulative1336

distribution function (CDF) of the standard Gaussian distribution.1337

Case 1: s = 1. In this case, Bs =
3
2 . Thus,1338

BsΦ(−Bs) ≤
3

2
Φ(−1) ≤ 3

2
· 1− 0.68

2
<

1

4
.1339

Case 2: s ≥ 2. For larger s, we proceed as follows:1340

BsΦ(−Bs) =
Bs√
2π

∫ +∞

Bs

e−
x2

2 dx

≤ Bs√
2π

∫ +∞

Bs

e−
Bsx
2 dx

≤
√

2

π
e−

B2
s
2 ≤ 2

√
2√

π(B2
s + 2)

≤ 2
√
2√

π · 22s
≤ 1

2s+1
.

1341

This completes the proof.1342

D Proofs for Section 41343

In this section, we present the formal proofs of the theorems stated in Section 4. Before delving into the1344

proofs, we revisit the role of the tokenizer Tc. As established in Appendix B.4 and Proposition B.6, it1345

suffices to focus on the case of T1, where both the inputs and outputs are tokenized into single digits. This1346

simplification is key to the subsequent analysis and constructions.1347

D.1 Proof for Theorem 4.11348

Theorem 4.1. Fix integers p ≥ 2 and c ∈ N∗. Consider the tokenizer Tc defined in Eq. (1) for processing1349

the input and output sequences. There exist constant-precision Transformers with constant depth L1350

(independent of n) and hidden dimension d = O(n2) that can solve the ADDp(n) task.1351

To aid readability, we first describe an algorithm to perform the ADDp(n) task (Algorithm 1) and prove1352

its correctness. Subsequently, we construct a Transformer with the specified configuration in Theorem 4.11353

that simulates Algorithm 1.1354

Algorithm 1: ADDp(n) Algorithm
Input :Two p-adic numbers a, b with lengths n1 and n2, respectively.
Output :The sum of the inputs, o, represented as a p-adic number with (n+ 1) digits, where

n = max(n1, n2).

1 Initialize an = 0 and bn = 0;
2 foreach i ∈ {0, · · · , n− 1} do
3 Compute the carry-on bits c;
4 i∧ = max{j ≤ i | aj + bj ≥ p};
5 i∨ = max{j ≤ i | aj + bj ≤ p− 2};
6 ci = 1i∧>i∨ ;
7 end
8 Compute the output digits o: oi = (ai + bi + ci−1)mod p;

Lemma D.1 (An algorithm to perform ADDp(n)). Algorithm 1 outputs o = a+ b for all inputs a, b.1355
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Proof. Consider two n-bit p-adic numbers a and b. The carry-over bits c = (cn, · · · , c1) can be computed 1356

recursively as follows: 1357

c−1 = 0,

c0 = 1a0+b0≥p,

c1 = (c0 · 1a1+b1≥p−1) ∨ 1a1+b1≥p,

· · · ,
ci = (ci−1 · 1ai+bi≥p−1) ∨ 1ai+bi≥p.

(4) 1358

To avoid the recursive computation, the carry-over bits can be expressed in closed form as: 1359

i∧ = max{j ≤ i | aj + bj ≥ p},
i∨ = max{j ≤ i | aj + bj ≤ p− 2},
ci = 1i∧>i∨ .

(5) 1360

Alternatively, the carry-over bits can be expressed equivalently as: 1361

ci =
∨

0≤j≤i

1aj+bj≥p ∧
∧

j≤k≤i

1ak+bk≥p−2

 . (6) 1362

In Equation (5), i∧ identifies the largest bit index less than or equal to i that contributes a carry to higher 1363

bits, while i∨ identifies the largest bit index less than or equal to i such that the carry generated below i∨ 1364

does not propagate beyond i∨. Thus, the carry-over bit ci = 1 if and only if i∧ > i∨. 1365

After computing the carry-over bits, the sum of the input integers can be computed as: 1366

o0 = (a0 + b0)mod p,

o1 = (a1 + b1 + c0)mod p,

· · ·
oi = (ai + bi + ci−1)mod p,

on = cn−1.

(7) 1367

Therefore, the output o is exactly the sum of the two input numbers, and Algorithm 1 correctly computes 1368

ADDp(a, b) for all a, b ∈ {0, 1}n. 1369

Next, we provide the proof for Theorem 4.1. 1370

Proof for Theorem 4.1. We now demonstrate that a constant-precision Transformer, with constant depth 1371

L, a fixed number of attention heads, and a hidden dimension of size O(n2), is capable of simulating 1372

Algorithm 1. Consequently, this model can accurately produce the correct output for any pair of input 1373

integers a and b. 1374

Initial Embeddings: The total length of the input sequence is at most 2(n + 1). We categorize the 1375

tokens into two distinct classes: (1) number tokens representing digits (0, 1, · · · , p− 1), and (2) auxiliary 1376

tokens for operations and control flow (“+”, “=”, <SOS>, and <EOS>). 1377

The embeddings for each token are initialized as follows: 1378

• Embedding of input token ai: 1379

u0
a,i = (aiei+1,0,−1,0, 0, 1, 1). 1380

• Embedding of input token bi: 1381

u0
b,i = (0, biei+1,−1,0, 0, 2, 1). 1382
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• Embedding of output token oi:1383

u0
o,i = (0,0, oi, ei+1, 0, 3,−1).1384

• Embedding of the “+” token:1385

u0
+ = (0,0,−1,0, 0, 4,−1).1386

• Embedding of the “=” token:1387

u0
= = (0,0,−1,0, 1, 5,−1).1388

• Embedding of the <SOS> token:1389

u0
<SOS> = (0,0,−1,0, 0, 6,−1).1390

• Embedding of the <EOS> token:1391

u0
<EOS> = (0,0, 0,0, 0, 3,−1).1392

In each of these embeddings:1393

• ei ∈ Rn+1 is a one-hot vector representing the positional encoding of the token (e.g., digit ai) in the1394

sequence.1395

• 0 is a vector of zeros of appropriate dimensions.1396

Block 1. The first block of the Transformer performs the COPY operation, which copies the values of1397

ai, bi to the positions of the output tokens. This is achieved using the attention mechanism. The query,1398

key, and value are set as follows:1399

• Query: q = Bs1400

• Key: k = u0[3n+ 6], i.e., k = 1 for input number tokens, and k = −1 otherwise.1401

• Value: v = u0[1, · · · , 2n+ 2], i.e.,1402

v =


(aiei+1,0) for input a,
(0, biei+1) for input b,
0 otherwise.

1403

Since we operate under constant precision, we carefully analyze the attention values. The attention1404

value (before normalization) is Bs for tokens ai, bi and −Bs otherwise. By Lemma C.8, we know1405

exp(Bs) = Bs and exp(−Bs) = 0. The normalization term for attention is 2nBs = Bs, so the attention1406

weights are 1 for tokens ai, bi and 0 otherwise. As a result, the attention output at the positions of the1407

output tokens is always (a0, · · · , an, b0, · · · , bn).1408

Block 2. The second block of the Transformer uses MLPs to compute the output o based on Algorithm 1.1409

The calculations proceed in the following steps:1410

• Compute ri = ai + bi for i = 0, · · · , n.1411

This can be implemented using an MLP with constant hidden dimension. To avoid overflow of ri,1412

we require Bs ≥ 2p.1413
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• Compute fi = 1ri≥p and gi = 1ri≥p−2. 1414

Using Lemma C.9, we can calculate: 1415

fi =
GeLU[Bs · (2ri − 2p+ 1)]

GeLU(Bs)
, gi =

GeLU[Bs · (2ri − 2p+ 5)]

GeLU(Bs)
. 1416

Here, we require Bs ≥ 4p to avoid overflow of 2ri − 2p+ 1. 1417

• Compute ci using the formula: 1418

ci =
∨

0≤j≤i

1aj+bj≥p ∧
∧

j≤k≤i

1ak+bk≥p−2

 =
∨

0≤j≤i

fj ∧ ∧
j≤k≤i

gk

 . 1419

Notice that: 1420∨
1≤i≤γ

αi =
GeLU [Bs · (

∑γ
i=1 αi)]

GeLU(Bs)
,

∧
1≤i≤γ

αi = 1−
∨

1≤i≤γ

(1− αi). 1421

These formulas imply that the ∨ and ∧ operations can be implemented using a constant-depth, 1422

constant-precision MLP with constant hidden dimension. Therefore, ci can be computed using O(n) 1423

hidden dimension. 1424

• Compute oi = ai + bi + ci−1 for i = 0, · · · , n. 1425

This computation can also be implemented with a constant hidden dimension. Again, we require 1426

Bs ≥ 2p to avoid overflow of oi. 1427

Since we need to compute ri, fi, gi, ci for all i, the hidden dimension of this block is O(n2). 1428

Block 3. This block filters out the token oi from o. Specifically, for the token oi+1, where i ∈ 1429

{0, · · · , n− 1}, we predict the next token oi. 1430

First, we calculate the positional embedding ei+1 using ei+2 from the positional embedding of m0
o,i+1. 1431

Then, we compute oi as: 1432

oi = ⟨ei+1,o⟩. 1433

Using the property x = GeLU(x)− GeLU(−x), this can be expanded as: 1434

oi =
n+1∑
j=1

ei+1[j]o[j] =
n+1∑
j=1

[GeLU(ei+1[j]−Bs(2− 2o[j]))− GeLU(−ei+1[j]−Bs(2− 2o[j]))] . 1435

Thus, oi can be calculated using O(n) hidden dimension. The final output from this layer is given by: 1436

e3o,i+1 =

{
(oi, ei+1) if i > 0,

(0,0) if i = 0.
1437

Predict Next Token. Given the output embeddings from the last Transformer layer, e3o,i, and the word 1438

embeddings, the Transformer predicts the next token by finding the nearest word embedding. 1439

Precision Requirements. In this construction, we require Bs ≥ 4p, which guarantees that constant 1440

precision is sufficient for all computations. 1441

D.2 Proof for Theorem 4.2 1442

Theorem 4.2. Fix integers p ≥ 2 and c, L ∈ N∗. Consider the tokenizer Tc defined in Eq. (1) for 1443

processing the input and output sequences. For any polynomial f , there exist problem scales n and k such 1444

that no constant-precision autoregressive Transformer with L layers and hidden dimension d < f(n, k) 1445

can correctly solve the IterADDp(n, k) task. 1446
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Proof. Assume, for the sake of contradiction, that there exist integers p ≥ 2, L, and a polynomial f , such1447

that for all problem scales n and k, there exists a constant-precision autoregressive Transformer with L1448

layers and hidden dimension d ≤ f(n, k) that can solve the IterADDp(n, k) task correctly.1449

We now consider the majority function Maj(b1, . . . , bk), where bi ∈ {0, 1}. To establish the contra-1450

diction, we construct a reduction from Maj(b1, . . . , bk) to IterADDp(2, k
′), where k′ = p⌈logp k⌉ ≤ pk.1451

Specifically, let ai = bi(p
2 − 1) for i = 1, . . . , k, and define the remaining terms as follows:1452

ak+1 + · · ·+ ak′ = p⌈logp k⌉+1 − (p2 − 1)

⌈
k

2

⌉
.1453

This construction is feasible because:1454

p⌈logp k⌉+1 − (p2 − 1)

⌈
k

2

⌉
≤ (p⌈logp k⌉ − k)(p2 − 1),1455

which holds for p ≥ 2. Consequently, the following equivalence relationships hold:1456

Maj(b1, . . . , bk) = 1 ⇐⇒
k∑

i=1

bi ≥
⌈
k

2

⌉
⇐⇒

k′∑
i=1

ai ≥ p⌈logp k⌉+1 ⇐⇒ o⌈logp k⌉+1 > 0,1457

where o⌈logp k⌉+1 is the output token corresponding to the final layer of the Transformer.1458

Now, observe that a bounded-depth, fixed-precision decoder-only Transformer with polynomial hidden1459

dimension, which generates a single token, operates within the complexity class AC0. However, by1460

the reduction above, solving IterADDp(2, k
′) implies the ability to compute Maj. This leads to a1461

contradiction, as Maj /∈ AC0.1462

Thus, no constant-precision autoregressive Transformer with L layers and hidden dimension d ≤ f(n, k)1463

can solve the IterADDp(n, k) task in general.1464

D.3 Proof for Theorem 4.31465

Theorem 4.3. Fix integers p ≥ 2 and c, L ∈ N∗. Consider the tokenizer Tc defined in Eq. (1) for1466

processing the input and output sequences. For any polynomial f , there exist problem scales n and l such1467

that no constant-precision autoregressive Transformer with L layers and hidden dimension d < f(n, l)1468

can correctly solve the MULp(n, l) task.1469

Proof. Assume, for contradiction, that there exist integers p ≥ 2, L, and a polynomial f , such that for all1470

problem scales n and l, there exists a constant-precision autoregressive Transformer with L layers and1471

hidden dimension d ≤ f(n, l) that can correctly solve the MULp(n, l) task.1472

Now, consider the majority function Maj(c1, . . . , ck), where ci ∈ {0, 1}. We construct a reduction1473

from Maj(c1, . . . , ck) to MULp(n, l). Specifically, let1474

n =
(
⌈logp k⌉+ 1

)(
p⌈logp k⌉ +

⌊
k

2

⌋)
= O(k log k), l = n+ ⌈logp k⌉ = O(k log k).1475

We extend ci by defining1476

k′ = p⌈logp k⌉ +

⌊
k

2

⌋
, ck+1 = · · · = ck′ = 1,1477

and construct the sequences a and b as follows:1478

a = c1 0 · · · 0︸ ︷︷ ︸
⌈logp n⌉

c2 0 · · · 0︸ ︷︷ ︸
⌈logp n⌉

· · · ck′ 0 · · · 0︸ ︷︷ ︸
⌈logp n⌉

, b = 1 0 · · · 0︸ ︷︷ ︸
⌈logp n⌉

1 0 · · · 0︸ ︷︷ ︸
⌈logp n⌉

· · · 1 0 · · · 0︸ ︷︷ ︸
⌈logp n⌉

.1479

Under this construction, the following equivalences hold:1480

Maj(c1, . . . , ck) = 1 ⇐⇒ c1 + · · ·+ ck ≥
⌈
k

2

⌉
⇐⇒ c1 + · · ·+ ck′ ≥ p⌈logp k⌉ ⇐⇒ ol−1 > 0,1481
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where ol−1 denotes the first output token. 1482

Now, observe that a bounded-depth, fixed-precision decoder-only Transformer with polynomial hidden 1483

dimension, which generates a single token, operates within the complexity class AC0. However, by the 1484

reduction above, solving MULp(n, l) implies the ability to compute Maj. This leads to a contradiction, 1485

as Maj /∈ AC0. 1486

Hence, no constant-precision autoregressive Transformer with L layers and hidden dimension d ≤ 1487

f(n, l) can correctly solve MULp(n, l) task for any problem scale n and l. 1488

E Proofs for Section 5 1489

In this section, we provide the formal proofs of the theorems stated in Section 5. Before proceeding with 1490

the proofs, we revisit the role of the tokenizer Tc. As established in Appendix B.4 and Proposition B.6, 1491

it is sufficient to focus on the case of T1, where both the input and output sequences are tokenized into 1492

single digits. This simplification is crucial for the subsequent analysis and constructions. Notably, this 1493

reasoning parallels the argument presented at the beginning of Appendix D (Proof of Section 4). 1494

E.1 Proof for Theorem 5.1 1495

Theorem 5.1. Fix integers p ≥ 2 and c ∈ N∗. Consider the tokenizer Tc defined in Eq. (1) for processing 1496

the input and output sequences. There exists a logarithmic-precision Transformer with constant depth and 1497

hidden dimension (independent of n) that can generate the correct output for any input on the ADDp(n) 1498

task. 1499

Proof. The result in Theorem 5.1 follows as a special case of Theorem 5.2. Specifically, by setting k = 2 1500

in Theorem 5.2, the proof is complete. Observe that in this case, m = ⌈logp k⌉ = 1, which implies that 1501

the combination of neighboring bits is unnecessary. 1502

E.2 Proof for Theorem 5.2 1503

Theorem 5.2. Fix integers p ≥ 2 and c ∈ N∗. Consider the tokenizer Tc defined in Eq. (1) for processing 1504

the input and output sequences. For any integers n and k, there exists a logarithmic-precision Transformer 1505

with constant depth and hidden dimension d (independent of n and k) that can generate the correct output 1506

for any input on the IterADDp(n, k) task. 1507

For ease of understanding, we first present an algorithm to compute IterADDp(n, k) (Algorithm 2) 1508

and prove its correctness. Subsequently, we demonstrate the construction of a constant-size Transformer 1509

with logarithmic precision to simulate Algorithm 2. 1510

Lemma E.1 (Algorithm for IterADDp(n, k)). Algorithm 2 computes o = a1 + · · ·+ ak for any inputs 1511

a1, . . . ,ak. 1512

Proof. The initial four steps of the algorithm transform p-adic addition into pm-adic addition. This 1513

transformation allows the sum of k numbers to be represented as
∑

i sip
im, where si are intermediate 1514

coefficients. 1515

At this stage, si ∈ [0, kpm). To ensure the final results are accurate, we must account for carry-over 1516

effects such that the outputs õi remain within the range [0, pm − 1]. Each si can be decomposed as 1517

si = bip
m + qi, where qi ∈ [0, pm − 1] and bi < k ≤ pm. Consequently, the overflow bi propagates only 1518

directly to the next subsequent digit qi+1. Notably, qi+1 + bi ≤ 2(pm − 1). 1519

Let c denote the vector recording carry-over effects at each position i. The carry-over can be computed 1520

iteratively as: 1521

c−1 = 0,

c0 = 1q0+b−1≥pm (b−1 := 0),

c1 =
(
c0 · 1q1+b0≥pm−1

)
∨ 1q1+b0≥pm ,

· · ·
ci =

(
ci−1 · 1qi+bi−1≥pm−1

)
∨ 1qi+bi−1≥pm .

(8) 1522
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Algorithm 2: IterADDp(n, k) Algorithm
Input : k p-adic numbers a1, · · · ,ak, each of maximum length n
Output : The sum of the inputs o

1 m = ⌈logp k⌉;
2 Compute the sum of each bit: rj =

∑
i∈[k] aij for j = 0, · · · , n− 1;

3 Combine neighboring m bits:

si =
m−1∑
j=0

rik+jp
j

for i = 0, · · · , ⌊n/m⌋;
4 Decompose si: si = bip

m + qi, where qi ∈ [0, pm − 1] and bi, qi ∈ N;
5 Initialize c0 = 0;
6 foreach i = 0, · · · , ⌊n/m⌋ do
7 Compute carry bits c:
8 i∧ = max{j ≤ i | qj + bj−1 ≥ pm};
9 i∨ = max{j ≤ i | qj + bj−1 ≤ pm − 2};

10 ci = 1i∧>i∨ ;
11 end
12 Compute the pm-adic outcome õ: õi = (qi + bi−1 + ci−1)mod pm for i = 0, · · · , ⌊n/m⌋+ 1;
13 Covert pm-adic õ to p-adic o:

oi =

⌊
õj mod p(l+1)

pl

⌋
for i = jk + l, where l ∈ {0, · · · , k − 1}, j ∈ Z;

To avoid recursive computation, the carry-over can also be derived using:1523

i∧ = max{j ≤ i | qj + bj−1 ≥ pm},
i∨ = max{j ≤ i | qj + bj−1 ≤ pm − 2},
ci = 1i∧>i∨ .

(9)1524

Alternatively, this can be expressed as:1525

ci =
∨

0≤j≤i

1qj+bj−1≥pm ∧
∧

j≤k≤i

1qk+bk−1≥pm−2

 . (10)1526

Here, i∧ identifies the highest bit contributing a carry to the i-th position, while i∨ identifies the highest1527

bit below i such that carry propagation from bits below i∨ does not affect higher bits. Thus, ci = 1 if and1528

only if i∧ > i∨.1529

Once the carry-over vector c is determined, the pm-adic sum can be computed as:1530

õ0 = q0,

õ1 = (q1 + b0 + c0)mod pm,

· · ·
õi = (qi + bi−1 + ci−1)mod pm.

(11)1531

Finally, to convert the pm-adic representation back to a p-adic number õ, we perform the following1532

modulus operation:1533

oi =

⌊
õj mod p(l+1)

pl

⌋
,1534
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for i = jk + l, where l ∈ {0, . . . , k − 1} and j ∈ Z. 1535

Therefore, the output o is precisely the sum of the k input p-adic numbers, and the algorithm in 1536

Algorithm 2 correctly computes IterADDp(a1, . . . ,ak) for all a1, . . . ,ak. 1537

Now we present the proof of Theorem 5.2. 1538

Proof of Theorem 5.2. We demonstrate that a log-precision transformer, with constant depth, a fixed 1539

number of attention heads, and constant embedding dimensions, is capable of simulating Algorithm 2. As 1540

a result, this model can reliably produce the correct output for any input integers a1, . . . ,ak. 1541

Initial Embeddings: The total length of the input sequence is at most k(n + 1). Tokens in the 1542

sequence are divided into two categories: numeric tokens (0, 1, . . . , p− 1) and auxiliary tokens (+, =, 1543

<SOS>, <EOS>). Given the parameters k and n, we define the parameter m = ⌈logp k⌉, as specified in 1544

Algorithm 2. The embeddings for these tokens are constructed as follows: 1545

• Embedding of input token ai,j: 1546

e0i,j =

(
ai,j , 0, 0, i, j, jmodm, ⌊ j

m
⌋, pjmodm, p−(jmodm), apei,j

)
. 1547

• Embedding of the i-th “+” token: 1548

e0i,+ =
(
0, 1, 0, i,−1,−1,−1, 0, 0, apei,+

)
. 1549

• Embedding of the “=” token: 1550

e0= = (0, 1, 0, k + 1,−1,−1,−1, 0, 0, ape=) . 1551

• Embedding of the <SOS> token: 1552

e0<SOS> = (0, 1, 0, 0,−1,−1,−1, 0, 0, ape<SOS>) . 1553

• Embedding of the <EOS> token: 1554

e0<EOS> = (0, 0, 1, 0,−1,−1,−1, 0, 0, ape<EOS>) . 1555

• Embedding of output token oi: 1556

e0o,i =

(
oi, 0, 0, 0, i, imodm, ⌊ i

m
⌋, pimodm, p−(imodm), apeo,i

)
. 1557

Here, ape··· represents the absolute positional encoding. In this construction, the first three dimensions 1558

of each embedding correspond to the word embedding, while the remaining six dimensions capture the 1559

positional embedding. 1560

Block 1. The first block of the Transformer computes the following quantities: 1561

1. li,j : The number of preceding tokens (inclusive) ai′,j′ satisfying i′ = i and ⌊ j
′

m⌋ = ⌊
j
m⌋. The value 1562

li,j is defined only for input number tokens ai,j . If undefined, we set l = −1. 1563

2. fi,j : Defined as fi,j = 1 if no preceding tokens (exclusive) ai′,j′ exist such that ⌊ j
′

m⌋ = ⌊ j
m⌋; 1564

otherwise, fi,j = 0. This value is defined only for input number tokens ai,j , and if undefined, we set 1565

f = −1. 1566

To compute li,j , we define the query, key, value, and r in Appendix C.2 as follows: 1567

• Query: qi,j =
(
−1, 2i,−i2,−1, 2⌊ j

m⌋,−⌊
j
m⌋

2
)

. 1568
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• Key: ki′,j′ =
(
i′2, i′, 1, ⌊ j

′

m⌋
2, ⌊ j

′

m⌋, 1
)

.1569

• Value: vi′,j′ = (apei′,j′).1570

• r: ri′,j′ = −apei′,j′ .1571

Using Lemma C.1, the components of the query and key can be computed by preceding MLP layers.1572

The result of the dot product is given by:1573

⟨qi,j ,ki′,j′⟩ = −
(
⌊ j

′

m
⌋ − ⌊ j

m
⌋
)2

− (i′ − i)2.1574

This implies that ⟨qi,j ,ki′,j′⟩ = 0 if ⌊ j
′

m⌋ = ⌊
j
m⌋ and i = i′, and ⟨qi,j ,ki′,j′⟩ ≤ −1 otherwise. By1575

Lemma C.5, one attention head can be used to copy the absolute position j′′ of the first token satisfying1576

these conditions. The value of li,j is then computed as j − j′′ + 1.1577

To compute fi,j , we redefine the query, key, and r as follows:1578

• Query: qi,j =
(
−1, 2⌊ j

m⌋,−⌊
j
m⌋

2
)

.1579

• Key: ki′,j′ =
(
⌊ j

′

m⌋
2, ⌊ j

′

m⌋, 1
)

.1580

• Value: vi′,j′ = (apei′,j′).1581

• r: ri′,j′ = −apei′,j′ .1582

In this case, the dot product is given by:1583

⟨qi,j ,ki′,j′⟩ = −
(
⌊ j

′

m
⌋ − ⌊ j

m
⌋
)2

.1584

This yields ⟨qi,j ,ki′,j′⟩ = 0 if ⌊ j
′

m⌋ = ⌊
j
m⌋, and ⟨qi,j ,ki′,j′⟩ ≤ −1 otherwise. By Lemma C.5, one1585

attention head can copy the absolute position j′′ of the first token satisfying these conditions. The value1586

fi,j is then determined by checking whether j′′ = j. Specifically, we evaluate:1587

1j′′=j = ReLU[1− (j − j′′)2],1588

which allows fi,j to be computed by a constant-width MLP via Lemma C.1.1589

Finally, for undefined values, l and f are set to −1 in the MLP stage using conditional selection1590

(Lemma C.3) based on positional embedding information. In summary, the embeddings generated in this1591

block are e1 = (l, f), and these embeddings are concatenated with the original input embeddings.1592

Block 2. The second block of the Transformer is designed to compute the first three lines of Algorithm 2.1593

Specifically, this block utilizes the attention mechanism to aggregate the adjacent m bits and derive si.1594

For each token ai,j , let ti,j denote the number of preceding tokens (including ai,j itself) ai′,j′ such that1595

⌊ j
m⌋ = ⌊

j′

m⌋. This block computes the following values:1596

1. 1
ti,j

, where ti,j is as defined above. If ti,j is undefined, its value is set to −1.1597

2. ci,j , the mean value computed over ai′,j′pj
′ modm for previous tokens (including ai,j) ai′,j′ , where1598

⌊ j
′

m⌋ = ⌊
j
m⌋. If this value is undefined, it is also set to −1.1599

Using these, we derive sw = ci,mwti,mw, where i is the largest index such that the length of ai exceeds1600

mk.1601

To compute the first value, the query, key, and value vectors are defined as follows:1602

• Query: qi,j =
(
−1, 2⌊ j

m⌋,−⌊
j
m⌋

2
)

.1603
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• Key: ki′,j′ =
(
⌊ j

′

m⌋
2, ⌊ j

′

m⌋, 1
)

. 1604

• Value: vi′,j′ = (fi′,j′). 1605

Using Lemma C.1, the components of the query and key can be computed by preceding MLP layers. 1606

The result of the dot product is given by: ⟨qi,j ,ki′,j′⟩ = −
(
⌊ j

′

m⌋ − ⌊
j
m⌋
)2

. This result implies that 1607

⟨qi,j ,ki′,j′⟩ = 0 when ⌊ j
′

m⌋ = ⌊
j
m⌋, and ⟨qi,j ,ki′,j′⟩ ≤ −1 otherwise. By the definition of fi,j and 1608

Lemma C.6, the output of the attention mechanism is 1
ti,j

, as required. 1609

To compute the second value, we redefine the query, key, and value vectors as follows: 1610

• Query: qi,j =
(
−1, 2⌊ j

m⌋,−⌊
j
m⌋

2
)

. 1611

• Key: ki′,j′ =
(
⌊ j

′

m⌋
2, ⌊ j

′

m⌋, 1
)

. 1612

• Value: vi′,j′ = (ai′,j′p
j′ modm). 1613

Similar to the computation of the first value, we use Lemma C.1 to compute the components of 1614

the query and key. In this case, the dot product is given by: ⟨qi,j ,ki′,j′⟩ = −
(
⌊ j

′

m⌋ − ⌊
j
m⌋
)2

. Thus, 1615

⟨qi,j ,ki′,j′⟩ = 0 when ⌊ j
′

m⌋ = ⌊
j
m⌋, and ⟨qi,j ,ki′,j′⟩ ≤ −1 otherwise. By applying Lemma C.6, the 1616

attention output is ci,j , as required. 1617

Finally, for undefined values, we assign −1 during the MLP stage by employing conditional selection, 1618

as outlined in Lemma C.3, utilizing information encoded in the positional embeddings. 1619

In summary, the new embeddings generated in this block can be expressed as e2 =
(
1
t , c
)
. These 1620

embeddings are subsequently concatenated with the original embeddings. 1621

Block 3. The third block of the Transformer computes the value of ci,jti,j . This is achieved by first 1622

determining ti,j via the attention layer and 1
ti,j

from the previous block. Subsequently, ci,jti,j is computed 1623

using Lemma C.1. 1624

Notice that ti,j does not exceed the absolute positional value of the current token. We define the query, 1625

key, and value vectors as follows: 1626

• Query: qi,j =
(

1
t2i,j

,− 2
ti,j

, 1

)
1627

• Key: ki′,j′ =
(

ape2i′,j′ , apei′,j′ , 1
)

1628

• Value: vi′,j′ = (apei′,j′) 1629

These vectors can be constructed using Lemma C.1. It follows that the inner product

⟨qi,j ,ki′,j′⟩ = −
(

apei′,j′
ti,j

− 1

)2

,

which implies ⟨qi,j ,ki′,j′⟩ = 0 if apei′,j′ = ti,j and ⟨qi,j ,ki′,j′⟩ ≤ − 1
n2k2

otherwise, given that ti,j ≤ nk. 1630

By leveraging Lemma C.6, the attention output is confirmed to be ti,j , as required. 1631

Finally, the computation of ci,jti,j is performed via the subsequent MLP layer. In summary, the 1632

embeddings generated in this block are represented as e3 = (ct). These new embeddings are concatenated 1633

with the original embeddings to produce the final output of this block. 1634

Block 4. This block of the Transformer corresponds to the fourth step in Algorithm 2, which decomposes 1635

ci,jti,j as bi,jp
m + qi,j . It is important to observe that bi,j ≤ i, meaning that bi,j does not exceed the 1636

absolute positional index of the current token. To achieve this decomposition, we define the query, key, 1637

and value as follows: 1638

• Query: qi,j =
(
−(ci,jti,j + 1

2)
2, 2pm(ci,jti,j +

1
2),−p

2m
)

1639
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• Key: ki′,j′ =
(
1, apei′,j′ − 1

2 , (apei′,j′ − 1
2)

2
)

1640

• Value: vi′,j′ = apei′,j′1641

The above components can be computed using Lemma C.1. Consequently, the inner product of the1642

query and key is given by:1643

⟨qi,j ,ki′,j′⟩ = −
[
ci,jti,j −

(
apei′,j′ −

1

2

)
pm +

1

2

]2
.1644

This expression implies that |⟨qi,j ,ki′,j′⟩| ≤
(
pm−1

2

)2
if apei′,j′ = ⌊ ci,jti,jpm ⌋, and ⟨qi,j ,ki′,j′⟩ ≤1645

−
(
pm+1

2

)2
otherwise. By applying Lemma C.7, we obtain:1646

c =
(pm + 1)2 − (pm − 1)2

(pm − 1)2
≥ 4

pm
.1647

From this, it follows that 1/c = O(pm) = O(k). Hence, we can design the query, key, and value such1648

that the attention output satisfies ⌊ ci,jti,jpm ⌋ = bi,j . Finally, qi,j can be computed as qi,j = ci,jti,j − pmbi,j1649

using the subsequent MLP. The embeddings generated by this block are thus given by e4 = (b, q).1650

Block 5. This block of the Transformer computes qw+1 + bw for sw. Recall that sw = ci,mwti,mw,1651

where i is the largest index such that the length of ai is greater than mw. The goal is to compute these1652

values at their corresponding positions.1653

First, we use the attention mechanism to copy qw+1 for the token ai defined above. Note that it is1654

always possible to retrieve the correct value because the position associated with the correct value of1655

sw+1 precedes that of sk. To achieve this, we utilize the attention mechanism to copy from the position1656

containing the value sw+1. This is implemented by appropriately configuring the query, key, value, and r1657

as described in Appendix C.2:1658

• Query: qi,j =
(
−1, 2⌊ j

m⌋,−⌊
j
m⌋

2,−1
)

.1659

• Key: ki′,j′ =
(
(⌊ j

′

m⌋ − 1)2, ⌊ j
′

m⌋ − 1, 1, (j′modm)2
)

.1660

• Value: vi′,j′ = (qi′,j′ , ⌊ j
′

m⌋).1661

• r: ri′,j′ = apei′,j′ .1662

The values required for the query or key can be computed using previous MLPs, as shown in Lemma C.1.1663

The dot product ⟨qi,j ,ki′,j′⟩ evaluates to1664

⟨qi,j ,ki′,j′⟩ = −
(
⌊ j

′

m
⌋ − ⌊ j

m
⌋ − 1

)2

− (j′modm)2.1665

This implies ⟨qi,j ,ki′,j′⟩ = 0 if ⌊ j
′

m⌋ = ⌊
j
m⌋+ 1 and j′modm = 0, and ⟨qi,j ,ki′,j′⟩ ≤ −1 otherwise.1666

Using Lemma C.5, one attention head suffices to copy the values qi′,j′ and ⌊ j
′

m⌋ from the last token1667

satisfying the conditions. Consequently, the first dimension of the attention output equals qw+1 if an1668

input number with length greater than m(w + 1) exists, as required. Otherwise, qw+1 should be zero, and1669

the attention output remains undefined. These two cases can be distinguished by inspecting the second1670

dimension of the attention output: if no input number has a length greater than m(w + 1), the second1671

dimension of the attention output is at most ⌊ j
m⌋. Using Lemma C.3, we can identify these cases and set1672

qw+1 = 0 when necessary.1673

Finally, a subsequent MLP computes the correct value of qw+1 + bw for sw. Additionally, this MLP1674

calculates the indicators 1qw+1+bw≥pm , 1qw+1+bw≤pm−2, 1bw≥pm , and 1bw≤pm−2 using the formulation:1675

1qw+1+bw≥pm = ReLU[qw+1 + bw − (pm − 1)]− ReLU[qw+1 + bw − pm],1676
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as described in Lemma C.2. 1677

To summarize, the embeddings generated in this block are as follows: 1678

• For positions with the correct value of sw: 1679

e5 = (qw+1 + bw, bw,1qw+1+bw≥pm ,1qw+1+bw≤pm−2,1bw≥pm ,1bw≤pm−2, w). 1680

• For all other positions: 1681

e5 = (−1,−1,−1,−1,−1,−1,−1). 1682

This can be achieved by filtering out infeasible values using Lemma C.3. 1683

Block 6. This block of the Transformer computes the following values for positions with the correct 1684

value of sw: 1685

• The smallest w1 ≥ w such that 1qw+1+bw≥pm = 1. 1686

• The smallest w2 ≥ w such that 1qw+1+bw≤pm−2 = 1. 1687

Both calculations rely on the standard COPY operation, which can be implemented using Lemma C.5. To 1688

ensure the validity of w1 and w2 (i.e., the existence of such indices), we COPY the values 1qw1+1+bw1≥pm 1689

and 1qw2+1+bw2≤pm−2, verifying that they equal 1. Invalid values can then be filtered out using an MLP, 1690

as described in Lemma C.3. 1691

The embeddings generated in this block are as follows: 1692

• For positions with the correct value of sw: e6 = (w1, w2). 1693

• For all other positions: e6 = (−1,−1). (This can be achieved by filtering infeasible values using 1694

Lemma C.3.) 1695

Block 7. The last block of the Transformer executes the final four steps of Algorithm 2. This layer 1696

calculates the carry-over bits c and pm-adic representation of the final output o via the attention mechanism 1697

and the MLP, subsequently converting the pm-adic number into a p-adic number. 1698

The computation of carry-on bits, as described in Equation (9) within Algorithm 2, adheres to the 1699

following equations: 1700

i∧ = max{w ≤ i | qw + bw−1 ≥ pm},
i∨ = max{w ≤ i | qw + bw−1 ≤ pm − 2},
ci = 1i∧>i∨ .

(12) 1701

In the attention layer, operations are restricted to output tokens and other tokens will maintain the embed- 1702

dings via the residual connection and the filter operation by MLP. Let’s consider the token o(i+1)m+j+1, 1703

where j ∈ {0, · · · ,m− 1}, we want to predict the next token o(i+1)k+j . The model executes the COPY 1704

operation, duplicating the previous embeddings to extract qi+1 + bi, i∧, and i∨. The extraction is similar 1705

to previous blocks, but here we only need to focus on positions with correct value of sw. To find out the 1706

value of i∧, i∨, we first COPY the embedding of the position with the correct value of si, and find the 1707

minimum w′ which shares the same value of w1, w2 with si. Again, this can be implemented by several 1708

COPY operation with Lemma C.5. 1709

The carry-over bit ci and the pm-adic results õi+1 are then computed as follows: 1710

ci = 1i∧>i∨ , õi+1 = bi + ci + qi+1. 1711

This computation is facilitated by a constant-size MLP. Subsequently, for the output token õ(i+1)k+j , 1712

the result o(i+1)k+j = õi+1mod pj+1 is required. We first calculate õi+1/p
j+1 using the positional 1713

embedding and Lemma C.1, then calculate ⌊õi+1/p
j+1⌋ using the similar fashion to what we did in Block 1714

4, and then calculate õi+1mod pj+1 using MLP. Finally, we can get the value of ⌊ õi+1 mod pj+1

pj
⌋ using the 1715

similar fashion to what we did in Block 4. 1716
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Upon outputting the token o0, the model anticipates the <EOS> token, employing an MLP to filter the1717

hidden embeddings and output the word embedding for <EOS>. Thus, the final output from this layer is1718

characterized by the equation:1719

e7o,i =

{
(oi−1, i, 0) if i > 0,

(−1,−1, 1) if i = 0.
1720

Predict Next Token. Given the output embeddings of the last transformer layer e7o,i, and the word1721

embeddings, the transformer can simply predict the next token by finding the nearest word embeddings.1722

In this construction, the norm of the parameters is bounded by poly(n, k), therefore, this construction1723

can be implemented by a log-precision transformer with arbitrarily small error.1724

E.3 Proof for Theorem 5.31725

Theorem 5.3. Fix integers p ≥ 2 and c ∈ N∗. Consider the tokenizer Tc defined in Eq. (1) for processing1726

the input and output sequences. For any integers n and l ≤ 2n, there exists a logarithmic-precision1727

Transformer with constant depth (independent of n and k) and hidden dimensions O(n2) that can generate1728

the correct output for any input on the MULp(n, l) task.1729

Here, we first describe an algorithm to perform MULp(n, l) (Algorithm 3) and prove the correctness1730

of Algorithm 3. Then, we construct a Transformer with the configurations in Theorem 5.3 capable for1731

simulating Algorithm 3.1732

Lemma E.2 (An algorithm to perform MULp(n, l)). Algorithm 3 outputs o = abmod pl for all inputs1733

a, b.1734

Proof. It’s easy to verify
∑

i sip
im accurately represents the product of a, b. For the subsequent steps,1735

the proof is the same as that of Lemma E.1 since they share the same procedures.1736

Next, we provide the proof for Theorem 5.3.1737

Proof for Theorem 5.3. Now, we demonstrate that a log-precision transformer, with a constant depth, a1738

fixed number of attention heads, and O(n2) embedding dimensions, is capable of simulating Algorithm 3.1739

Consequently, this model can accurately generate correct output for any input integers a, b.1740

Initial Embeddings: The total length of the input sequence is no longer than 2(n+ 1). We categorize1741

the tokens into two classes: number tokens (0, 1, · · · , p − 1) and auxiliary tokens (+, =, <SOS> and1742

<EOS>). Given the parameters k, n, we determine the parameter m = ⌈logp k⌉+ 1 ≥ 2, as specified in1743

Algorithm 3. The embeddings for these classes are defined as follows:1744

• Embedding of input token ai: u0
a,i =

(
aiei+1, 0,−1,−1, 0, 1, i, 0, apea,i

)
.1745

• Embedding of input token bi: u0
b,i =

(
0, biei+1,−1,−1, 0, 2, i, 0, apeb,i

)
.1746

• Embedding of the “×” token: u0
× = (−1,−1,−1,−1,−1, 4,−1, 0, ape×).1747

• Embedding of the “=” token: u0
= = (−1,−1,−1,−1,−1, 5,−1, 0, ape=).1748

• Embedding of the <SOS> token: u0
<SOS> = (−1,−1,−1,−1,−1, 6,−1, 0, ape<SOS>).1749

• Embedding of the <EOS> token: u0
<EOS> = (−1,−1,−1,−1,−1, 7,−1, 0, ape<EOS>).1750

• Embedding of output token oi: u0
o,i = (−1,−1, oi, e⌊i/m⌋,−1, 3, i, p−(imodm), apeo,i).1751

where ei ∈ Rn is one-hot vector, and ape··· is absolute positional embedding. In this construction, the1752

first 3n + 3 dimensions of each initial embedding represent the word embedding, while the last three1753

dimensions accounts for the position embedding.1754

Block 1. The first block of the Transformer executes the first three lines of Algorithm 3. To be specific,1755

we first aggregate the input number a, b to the positions of b0, and then calculate the values of rj .1756

To aggregate the input number a, b to the positions of b0, we set the query, key and value as follows:1757
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Algorithm 3: MULp(n, l) Algorithm
Input : Two p-adic numbers a, b no longer than n bits, truncating length l
Output : o := abmod pl

1 m = ⌈logp n⌉+ 1;
2 Compute the product of each pair of bits: di,j = aibj ;
3 Compute each bit as

rj =

min(n−1,j)∑
k=max(0,j−(n−1))

dk,j−k

for j = 0, · · · , 2n− 1;
4 Combine neighboring m bits:

si =

m−1∑
j=0

rik+jp
j

for i = 0, · · · , ⌊(2n− 1)/m⌋;
5 Decompose si by si = bip

m + qi, where qi ∈ [0, pm − 1] and bi, qi ∈ N;
6 b−1 = 0;
7 foreach i = 0, · · · , ⌊(2n− 1)/m⌋ do
8 fi = 1qi+bi−1≥pm ;
9 gi = 1qi+bi−1≥pm−2;

10 end
11 Compute the carry-on bits c:

ci =
∨

0≤j≤i

fj ∧
∧

j≤k≤i

gk


for i = 0, · · · , ⌊(2n− 1)/m⌋;

12 Compute the pm-adic outcome õ: õi = (qi + bi−1 + ci−1)mod pm for i = 0, · · · , ⌊(2n− 1)/m⌋;
13 Covert pm-adic õ to p-adic o:

oi =

⌊
õj mod p(l+1)

pl

⌋
for i = jk + l where l ∈ {0, · · · , k − 1}, j ∈ Z;
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• Query: q = (e0[2n+ 2]), i.e., q = (0) for input number a, b, and q = (−1) otherwise.1758

• Key: k = (1).1759

• Value: v = e0[1, · · · , 2n].1760

Thus ⟨q,k⟩ = 0 for key of input number tokens, and ⟨q,k⟩ ≤ −1 otherwise. By Lemma C.6, the attention1761

output is1762
1

apeb,0 − 2
(a0, · · · , an−1, b0, · · · , bn−1).1763

By Lemma C.1, we can use the subsequent MLP to get (a0, · · · , an−1, b0, · · · , bn−1) given the value1764

of apeb,0. Then we can calculate all di,j using the MLP, which requires O(n2) hidden dimension by1765

Lemma C.1.1766

Finally, we calculate (r2n−1, · · · , r0) by1767

rj =

min(n−1,j)∑
k=max(0,j−(n−1))

dk,j−k.1768

Block 2. This block of the Transformer uses several MLPs to executes line 4-12 of Algorithm 3. All1769

the calculations below are also calculated at the position of b0, subsequent to what we did in Block 1.1770

• For the calculation of si, it’s easy to get the values via (r2n−1, · · · , r0).1771

• For the calculation of bi, qi, notice that bi ≤ pm ≤ np2, thus we can use1772

bi =

np2∑
j=0

ReLU(si − pm)1773

for each bi, which requires O(n2) hidden dimension in total by Lemma C.2. Then qi = si − bip
m,1774

which can be easily implemented by MLP as well.1775

• For the calculation of fi, gi, we can get those values by1776

fi = ReLU[qi + bi−1 − (pm − 1)]− ReLU[qi + bi−1 − pm],

gi = ReLU[qi + bi−1 − (pm − 2)]− ReLU[qi + bi−1 − (pm − 1)]
1777

and Lemma C.2, which requires O(n) hidden dimension in total.1778

• For the calculation of ci, notice that1779

∧
1≤i≤γ

αi = ReLU

(
γ∑

i=1

αi − γ + 1

)
,
∨

1≤i≤γ

αi = 1− ReLU

(
1−

γ∑
i=1

αi

)
.1780

Combining with Lemma C.2, we can calculate the value of each ci with O(n) hidden dimension.1781

• Finally, for the calculation of õi, we can use the similar fashion of the calculation of qi. Since1782

qi + bi−1 + ci−1 < 2pm, we can calculate each õi using constant hidden dimension, which implies1783

we can calculate õ using O(n) hidden dimension in total.1784

Block 3. The last block of the Transformer executes the last step of Algorithm 3. Let’s consider the1785

token o(i+1)m+j+1, where j ∈ {0, · · · ,m − 1}, we want to predict the next token o(i+1)k+j . We first1786

COPY the value of õ from the position of b0, then extracts õi+1 by õi+1 = ⟨õ, ei+1⟩ using the positional1787

embedding of u0
o,i.1788

Subsequently, for the output token o(i+1)k+j , the result o(i+1)k+j = õi+1mod pj+1 is required. We1789

first calculate oi+1/p
j+1 using the positional embedding and Lemma C.1, then calculate ⌊õi+1/p

j+1⌋1790
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using the similar fashion to what we did when calculating si, bi in Block 2. Since õi+1 < 2pm ≤ np2, this 1791

can be implemented by a MLP with O(n) hidden dimension. Then we can calculate õi+1mod pj+1 using 1792

MLP. Similarly, we can finally get the value of ⌊ õi+1 mod pj+1

pj
⌋ using a MLP with O(n) hidden dimension. 1793

Upon outputting the token o0, the model anticipates the <EOS> token, employing an MLP to filter the 1794

hidden embeddings and output the word embedding for <EOS>. Thus, the final output from this layer is 1795

characterized by the equation: 1796

e3o,i =

{
(oi−1, i, 3) if i > 0,

(−1,−1, 7) if i = 0.
1797

Predict Next Token. Given the output embeddings of the last transformer layer e3o,i, and the word 1798

embeddings, the transformer can simply predict the next token by softmax. 1799

In this construction, the norm of the parameters is bounded by O(n2), therefore, this construction can 1800

be implemented by a log-precision transformer with arbitrarily small error. 1801

F Experimental Details 1802

In this section, we present the experimental details. 1803

F.1 Datasets 1804

The iterated addition and integer addition data are generated according to Algorithm 4. The multiplication 1805

data are generated according to Algorithm 5. Both datasets are used online for training and testing. 1806
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Algorithm 4: Iterated Addition Data Generation

1 Function large_number_add(a, b, base):
2 Input: a: List of digits of the first number
3 b: List of digits of the second number
4 base: The numerical base
5 Output: result: List of digits of the sum of a and b
6 carry← 0, result← []
7 max_length← max(length(a), length(b))
8 for i← 0 to max_length - 1 do
9 sum← carry

10 if i < length(a) then
11 sum← sum + a[i]
12 end
13 if i < length(b) then
14 sum← sum + b[i]
15 end
16 carry← floor(sum / base)
17 result.append(sum mod base)
18 end
19 if carry ̸= 0 then
20 result.append(carry)
21 end
22 return result
23 Function get_data(batch, length, num_count, base):
24 Input:
25 batch: Number of samples
26 length: Maximum length of addends
27 num_count: Number of addends
28 base: The numerical base
29 Output: tokenized_data: Tensor of generated sequences
30 data← random integers in range [0, base) with shape (batch, length, num_count)
31 tokenized_data← []
32 for i← 0 to batch− 1 do
33 numbers← data[i, :, :]
34 strip leading zeros of numbers and get stripped_numbers
35 for num in numbers do
36 sum_digits← large_number_add(sum_digits, num, base)
37 end
38 reverse stripped_numbers and sum_digits
39 add token of ’+’ and ’=’ and ’<EOS>’ to form sequence pad the sequence into the same

length
40 tokenized_data.append(sequence)
41 end
42 convert tokenized_data to tensor
43 return tokenized_data

1807
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Algorithm 5: Integer Multiplication Data Generation

1 Function large_number_mult(a, b, base):
2 Input: a: List of digits of the first number
3 b: List of digits of the second number
4 base: The numerical base
5 Output: result: List of digits of the product of a and b
6 result← [0] * (length(a) + length(b))
7 for i← 0 to length(a)− 1 do
8 carry← 0
9 for j ← 0 to length(b)− 1 do

10 product← a[i] ∗ b[j] + result[i+ j] + carry
11 carry← floor(product / base)
12 result[i+ j]← product mod base
13 end
14 if carry > 0 then
15 result[i + length(b)]← result[i + length(b)] + carry
16 end
17 end
18 strip leading zeros from result
19 return result
20 Function get_mult_data(batch, length, base):
21 Input:
22 batch: Number of samples
23 length: Maximum length of multiplicands
24 base: The numerical base
25 Output: tokenized_data: Tensor of generated sequences
26 data← random integers in range [0, base) with shape (batch, length, 2)
27 tokenized_data← []
28 for i← 0 to batch− 1 do
29 num_1← data[i, :, 0]
30 num_2← data[i, :, 1]
31 strip leading zeros of numbers and get stripped_numbers
32 product_digits← large_number_mult(num_1, num_2, base)
33 reverse stripped_numbers and product_digits
34 add token of ’×’ and ’=’ and ’<EOS>’ to form sequence pad the sequence into the same

length
35 tokenized_data.append(sequence)
36 end
37 convert tokenized_data to tensor
38 return tokenized_data

1808

F.2 Model Training 1809

The experiments were conducted on a single NVIDIA GeForce RTX 4090 GPU over a duration of 1810

two weeks, investigating the differences in performance between standard precision and low precision 1811

operations. To avoid some unexpected issues of hardware, we also conduct the same experiments on 1812

NVIDIA A100 GPUs, and the results are consistent with the results on NVIDIA GeForce RTX 4090 GPU. 1813

We try 3 different seeds and select the maximum accuracy for each task. 1814

The model configuration in our experiments is presented in Table 2, and the training configuration is 1815

presented in Table 3. 1816

37



Model Configuration

Model Depth {3, 5}
Hidden Dimension 256
Attention Heads 4
Positional Embeddings RoPE
Activation NewGeLU

Table 2: Model Configuration for Transformer in Experiments.

Training Configuration

Epochs 1
Learning Rate 1e-3
Optimizer AdamW
β1 0.9
β2 0.999
Weight Decay 0.01
Learning Rate Scheduler Cosine Scheduler with Warmup
Numerical Precision {float32, bfloat16}

Table 3: Training Configuration in Experiments.

F.3 Integer Addition Results1817

The results of the experiments are presented in Table 4.1818

Base-2 Base-10
Length float32 Accuracy bfloat16 Accuracy float32 Accuracy bfloat16 Accuracy

8 99.8% 99.6% 99.4% 99.0%
16 99.3% 98.4% 99.2% 98.1%
24 98.9% 96.3% 99.2% 97.4%
32 99.3% 95.9% 99.2% 94.1%

Table 4: Evaluation of integer addition accuracy across various length with both 32-bit and 16-bit precision.

F.4 Fine-tuing Configuration, Generation Configuration, and Prompt For LLM1819

The fine-tuning configuration and generation configuration for LLMs is listed in Tables 5 and 6. The1820

detailed prompts for the three elementary arithmetic tasks are listed in the Tables 7 and 8 and generation1821

configuration can be found in the Table 5.1822

Generation Configuration

TopK 50
TopP 0.95
Temperature 0.1

Table 5: Generation Configuration for LLAMA 3.1 8B Instruct in arithmetic tasks.
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Fine-tuning Configuration

Rank 8
Scaling Factor 16
Dropout Rate 0.05
Epochs 1
Learning Rate 2e-4
Optimizer AdamW
β1 0.9
β2 0.999
Weight Decay 0.01
Learning Rate Scheduler Cosine Scheduler with Warmup
Warmup Ratio 0.1
Numerical Precision {bfloat16, int4}

Table 6: Generation Configuration for LLAMA 3.1 8B Instruct in arithmetic tasks.

Prompt for LLAMA 3.1 8B Instruct in Integer Addition and Iterated Addition tasks.

Please directly calculate the following arithmetic expression in base <base> with the following format:
<Expression> = <Result>
It is important that you should not show any intermediate steps in your calculation process.
The final answer should be computed in one step and provided the final result immediately without any
explanation.
Here are some examples
32 + 78= 110
1234 + 4567 + 2134 + 4567 = 12502
2135 + 523 + 2135 + 523 = 5316
2314 + 4567 + 2314 + 4567 = 13762
Arithmetic Expression:
<Expression>

Table 7: Prompt for LLAMA 3.1 8B Instruct in Integer Addition and Iterated Addition tasks.

Prompt for LLAMA 3.1 8B Instruct in Integer Multiplication task.

Please directly calculate the following arithmetic expression in base <base>.
It is important that you should not show any intermediate steps in your calculation process.
The final answer should be computed in one step and provided the final result immediately without any
explanation.
Here are some examples
Examples:
32 * 56 = 1792
867 * 467 = 404889
123 * 456 = 56088
Arithmetic Expression:
<Expression>

Table 8: Prompt for LLAMA 3.1 8B Instruct in Integer Multiplication task.

39



F.5 Reference Results for LLMs1823

We also provide the results of GPT-4o and GPT-4o-mini as a baseline for these arithmetic tasks base-101824

for reference. The results are presented in Table 9.1825

Task Length GPT-4o GPT-4o-mini

Addition of 2 numbers

1 100.0% 100.0%
4 99.9% 98.8%
7 97.5% 51.4%
10 96.3% 46.0%
13 93.3% 44.0%

Addition of 3 numbers

1 100.0% 100.0%
3 99.8% 99.6%
5 98.9% 73.4%
7 69.2% 9.1%
9 38.5% 5.8%

Addition of 5 numbers

1 100.0% 100.0%
2 100.0% 99.4%
3 100.0% 89.5%
4 88.4% 31.1%
5 86.8% 24.7%

Multiplication of 2 numbers

1 100.0% 100.0%
2 100.0% 97.5%
3 76.6% 44.7%
4 21.5% 7.6%
5 4.1% 0.7%

Table 9: The Performance of GPT-4o and GPT-4o-mini on the arithmetic tasks.
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