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ABSTRACT

Reinforcement Learning with Human Feedback (RLHF) has achieved great success
in aligning large language models (LLMs) with human preferences. Prevalent
RLHF approaches are reward-based, following the Bradley-Terry (BT) model as-
sumption, which may not fully capture the complexity of human preferences. In
this paper, we explore RLHF under a general preference framework and approach
it from a game-theoretic perspective. Specifically, we formulate the problem as
a two-player game and propose a novel online algorithm, iterative Nash policy
optimization (INPO). The key idea is to let the policy play against itself via no-
regret learning, thereby approximating the Nash policy. Unlike previous methods,
INPO bypasses the need for estimating the expected win rate for individual re-
sponses, which typically incurs high computational or annotation costs. Instead,
we introduce a new loss objective that is directly minimized over a preference
dataset. We provide theoretical analysis for our approach and demonstrate its
effectiveness through experiments on various representative benchmarks. With an
LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win
rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard, showing substantial
improvement over the state-of-the-art online RLHF algorithms.

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT (Achiam et al., 2023), Claude (Anthropic, 2023),
and Bard (Google, 2023) have achieved tremendous success in various instruction-following tasks.
A key factor in this success is the technique of reinforcement learning with human feedback
(RLHF) (Christiano et al., 2017), which aligns LLMs with human preferences and values. The
first standard RLHF framework for LLM alignment was proposed by Ouyang et al. (2022). They first
train a reward model (RM) on a dataset containing human preferences. Subsequently, a pretrained
LLM is fine-tuned to maximize the reward from this RM using the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017). Models trained with this pipeline can generate human-
preferred outputs even with 100x fewer parameters. Nevertheless, fitting a high-quality RM requires a
large amount of human-labeled data, and training with PPO is generally less stable (Peng et al., 2023).
To bypass the training of the RM, Rafailov et al. (2024) propose the direct preference optimization
(DPO) algorithm, which directly learns a policy on a human preference dataset. Compared to RLHF
with PPO, DPO is more stable and computationally lightweight.

However, the approaches mentioned above, which rely on either an explicit or implicit RM, assume
that human preferences can be adequately modeled with the Bradley–Terry (BT) model (Bradley &
Terry, 1952). We argue that the BT model cannot fully capture the complexity of human preferences.
For example, the preference signal in the BT model is transitive, implying that if A is preferred
to B and B is preferred to C, A must be preferred to C. This kind of transitive property may not
always hold across diverse human groups and contradicts evidence in human decision-making (May,
1954; Tversky, 1969). In addition, experimental results show that the accuracy of BT-based RMs is
about 70% (Bai et al., 2022c; Cui et al., 2023), while preference models outperform them by a clear
margin (Ye et al., 2024). This motivates us to consider general preferences without the BT model
assumption.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To achieve this goal, Munos et al. (2023) formulate the LLM alignment problem as a symmetric
two-player game. One can show that for any other policy, the Nash policy of the game enjoys at least
one half win rate, ignoring the KL regularization terms. Given the general preference oracle, Munos
et al. (2023) propose a planning algorithm to solve for the Nash policy. In this paper, we consider
the learning problem, where the general preference oracle is unknown to us, and we only assume
access to query the oracle. Inspired by the connections between constant-sum games and online
learning (Freund & Schapire, 1999), we propose using a no-regret learning algorithm to learn the
Nash policy. The key idea originates from the self-play algorithms used in games, where the policy
plays against itself to achieve self-improvement. Our contributions are summarized as follows.

Contributions. In this paper, we study RLHF for LLM alignment from a game-theoretic perspective.
We propose a novel online algorithm called Iterative Nash Policy Optimization (INPO), which
learns the Nash policy of a two-player game. Our approach is built on the classical no-regret learning
algorithm, online mirror descent (OMD). Unlike previous studies that also explore online algorithms
for learning the Nash policy (Rosset et al., 2024; Wu et al., 2024), our approach does not require
calculation of the expected win rate for each response, which is difficult to estimate accurately
and may incur high costs in practice. Instead, we propose a new loss objective and prove that the
minimizer of this loss uniquely corresponds to our target policy in each iteration. Therefore, similar
to (Rafailov et al., 2024; Azar et al., 2024), our approach directly learns the policy over a preference
dataset by minimizing the loss objective.

We prove that our algorithm approximates Nash policy with an iteration complexity of Õ
(

1
ϵ2

)
and

achieves last-iterate convergence at a rate of O(1/T ). More importantly, our algorithm is easy to
implement in practice, and we conduct experiments on several popular benchmarks to demonstrate
its effectiveness. Remarkably, with an SFT model from LLaMA-3-8B, our INPO achieves a 42.6%
length-controlled win rate on AlpacaEval 2.0 (Li et al., 2023a) and a 37.8% win rate on Arena-Hard
v0.1 (Li et al., 2024), exhibiting at least 27.7% relative improvement over the state-of-the-art online
RLHF algorithms (Dong et al., 2024; Wu et al., 2024).

2 PRELIMINARIES

Notations. We use x ∈ X to denote a prompt where X is the prompt space. We assume that
x is sampled from a fixed but unknown distribution d0. An LLM is characterized by a policy
π : X → ∆(Y) that takes a prompt as the input and outputs a distribution over the response space
Y . A response y ∈ Y is then sampled from the distribution π(·|x). We use O(·) to hide absolute
constants and use Õ(·) to hide logarithmic factors. For a positive integer T , [T ] denotes the set
{1, 2, · · · , T}.

General Preference Oracle. We first introduce the definition of the general preference oracle as
follows.

Definition 1 (General Preference Oracle). There exists a preference oracle P : X × Y × Y → [0, 1],
which can be queried to obtain the preference signal:

z ∼ Ber
(
P(y1 ≻ y2 | x)),

where z = 1 means y1 is preferred to y2, and z = 0 means that y2 is preferred.

Given the preference oracle, we introduce the preference distribution λp (Calandriello et al., 2024).
For any x ∈ X and y, y′ ∈ Y , we have

λp(x, y, y
′) =

{
(y, y′) with probability P(y ≻ y′ | x)
(y′, y) with probability 1− P(y ≻ y′ | x). (1)

In this paper, we study how to learn a policy π that has a high probability of generating a preferred
response over any other policy given the prompt x. We focus on the online setting and assume online
access to the preference oracle. As demonstrated by Tang et al. (2024), online RLHF algorithms
usually perform better than their offline counterparts.
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2.1 RLHF WITH BT MODEL ASSUMPTION

Bradley-Terry (BT) Model Assumption. Instead of directly considering the general preference,
the prevalent RLHF framework makes the Bradley-Terry (BT) model assumption. It assumes that
there exists a reward function R∗ such that for any x ∈ X and y1, y2 ∈ Y:

P(y1 ≻ y2 | x) = exp(R∗(x, y1))

exp(R∗(x, y1)) + exp(R∗(x, y2))
= σ

(
R∗(x, y1)−R∗(x, y2)

)
.

After learning a reward function R, previous RLHF algorithms aim to maximize the following
KL-regularized objective:

J(π) = Ex∼d0

[
Ey∼π(·|x) [R(x, y)]− τKL(π(·|x)∥πref(·|x))

]
. (2)

Here πref is the reference policy, which is usually a supervised fine-tuned LLM, and τ > 0 is the
regularization parameter. By maximizing the objective, the obtained policy simultaneously achieves
a high reward and stays close to πref, which can mitigate reward hacking (Tien et al., 2022; Skalse
et al., 2022) to some extent.

Direct Preference Optimization (DPO). Rafailov et al. (2024) propose the direct preference
optimization (DPO) algorithm, which directly optimizes a policy and bypasses the need to learn a
reward function. The key idea is that there is a closed-form solution to Eq. (2):

π∗(y|x) ∝ πref(y|x) exp
(
1

τ
R(x, y)

)
,

which shows that each policy π implicitly parameterizes a reward function. We can directly formulate
a maximum likelihood objective to learn the optimal policy:

−Ex,yw,yl∼D

[
log σ

(
τ log

π(yw|x)
πref(yw|x)

− τ log
π(yl|x)
πref(yl|x)

)]
,

where D represents a preference dataset, σ(z) = 1/(1 + exp(−z)) is the sigmoid function, (yw, yl)
is a preference pair for the prompt x, with yw being the preferred response.

2.2 RLHF WITH GENERAL PREFERENCES

The previously mentioned algorithms all rely on the BT model assumption, which may not hold in
practice. Recently, a line of studies (Munos et al., 2023; Ye et al., 2024; Calandriello et al., 2024)
directly consider the general preference P without additional assumptions and formulate the policy
optimization problem as a two-player game. Specifically, given two policies π1 and π2, the game
objective is written as:

J(π1, π2) = Ex∼d0 [Ey1∼π1,y2∼π2 [P(y1 ≻ y2 | x)]− τKL(π1(·|x)∥πref(·|x)) + τKL(π2(·|x)∥πref(·|x))] ,
(3)

where π1, the max-player, aims to maximize the objective, and π2, the min-player, aims to minimize
the objective. The goal of both players is to maximize their win rates against the opponent while not
deviating too far from πref, which shares a similar spirit with the objective in Eq. (2).

Nash Policy and Duality Gap. Without loss of generality, we restrict our attention to the policy
class Π containing the policies with the same support set as πref. The Nash equilibrium of the game
is then defined as:

π∗
1 , π

∗
2 := argmax

π1∈Π
argmin
π2∈Π

J(π1, π2).

Since the game is symmetric for the two players, as proven by Ye et al. (2024), the Nash policies of
the two players are unique and coincide, meaning that π∗

1 = π∗
2 = π∗. We remark that for any policy

π ∈ Π, we always have J(π∗, π) ≥ 0.5, since J(π∗, π∗) = 0.5 and π∗ is the best response against
itself. This indicates that the win rate of π∗ over any policy π is at least one half if the KL divergence
terms are negligible. Motivated by this property, our goal is to learn the Nash policy π∗. For each
policy π ∈ Π, we use the following duality gap to measure how well it approximates π∗:

DualGap(π) := max
π1∈Π

J(π1, π)− min
π2∈Π

J(π, π2).

The duality gap is always non-negative and DualGap(π) = 0 only if π = π∗. When DualGap(π) ≤
ϵ, we say that π is an ϵ-approximate Nash policy.
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3 ALGORITHM

In this section, we introduce our algorithm that learns the Nash policy via no-regret learning. For
notation simplicity, we consider the non-contextual case and omit the prompt x. Since the policy
processes each prompt independently, extending to the contextual case is straightforward, as shown
by Azar et al. (2024).

3.1 ONLINE MIRROR DESCENT FOR SOLVING NASH POLICY

Given the preference oracle P, we first consider the planning problem and introduce how to use the
online mirror descent (OMD) algorithm to solve for the Nash policy. We initialize our policy π1 as
πref. At iteration t, our current policy is πt and we define the loss function for any π ∈ Π as:

ℓt(π) := −Ey∼π,y′∼πt
[P(y ≻ y′)] + τKL(π∥πref).

The loss function corresponds to the game objective of the min-player with the max-player as πt

in Eq.(3). It consists of two parts: the negative win rate of π against current policy πt and the KL
penalty term, which keeps π close to the reference policy πref. A natural self-play strategy is to
find πt+1 = argminπ∈Π ℓt(π), which is the best response to πt. However, this greedy algorithm is
unstable and the next policy πt+1 may deviate significantly from πt. One can construct examples that
such a greedy algorithm suffers undesirable linear regret (Lattimore & Szepesvári, 2020). Instead,
in OMD with entropy regularization, also known as Hedge (Freund & Schapire, 1997), we seek the
policy that minimizes the following objective:

πt+1 = argmin
π∈Π

⟨∇ℓt(πt), π⟩+ ηKL(π∥πt), (4)

where ∇yℓt(πt) = −Ey′∼πt
[P(y ≻ y′)] + τ

(
log πt(y)

πref(y)
+ 1
)

, η > 0 and 1
η is the learning rate of

OMD. Compared to the previous greedy algorithm, our objective now includes another KL divergence
term between π and πt. The spirit is to develop a stable algorithm, requiring that the next policy
πt+1 not only outperforms πt but also stays close to πt. Before presenting the theoretical guarantee,
we make the bounded log density ratio assumption, which is also used in previous RLHF analysis
(Rosset et al., 2024; Xie et al., 2024).
Assumption A (Bounded Log Density Ratio). For each t ∈ [T ], let Πt ⊆ Π be the feasible solution
space such that πt obtained by OMD always belongs to Πt. Then, for any t ∈ [T ] and π ∈ Πt, we
assume that ∣∣∣∣log π(y)

πref(y)

∣∣∣∣ ≤ B, ∀y ∈ Supp(πref).

In the following lemma, we show that OMD achieves sublinear regret compared to π∗. The proof
directly follows from the standard analysis of the OMD algorithm (Lattimore & Szepesvári, 2020)
and is deferred to Appendix A.1.
Lemma 2 (Regret Bound for OMD). Under Assumption A, let D = maxπ∈Π KL(π∥π1), OMD

algorithm in Eq. (4) with η = max(Bτ,1)
√
T√

D
has the following guarantee:

T∑
t=1

⟨∇ℓt(πt), πt⟩ −
T∑

t=1

⟨∇ℓt(πt), π
∗⟩ ≤ O

(
max(Bτ, 1)

√
TD
)
:= RegT

We remark that in classical OMD, π1 is a uniformly random policy and D is bounded by logY . Here
we initialize π1 with πref, aligning our approach with the practical RLHF workflow. With the regret
bound, we are ready to show that the duality gap for uniform mixture of πt is well bounded.

Theorem 3 (Duality Gap Bound for Uniform Mixture Policy in OMD). Let π̄ := 1
T

∑T
t=1 πt. With

Assumption A and η = max(Bτ,1)
√
T√

D
, we have

DualGap(π̄) ≤ O

(
max(Bτ, 1)

√
D√

T

)
.
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The proof mainly relies on the convexity of ℓt and Lemma 2 (see Appendix A.2). According to
Theorem 3, our π̄ approximates π∗ with an iteration complexity Õ

(
1
ϵ2

)
. Furthermore, we show that

our algorithm also enjoys the last-iterate convergence to Nash policy π∗ at the speed O(1/T ).
Theorem 4 (Last-Iterate Convergence for OMD). Under Assumption A, let C = max(Bτ, 1), at
each iteration t we have

KL(π∗, πt+1) ≤
(
1− τ

η

)
KL(π∗, πt) +

8C2

η2
.

Furthermore, suppose we use a time-varying parameter ηt =
τ(t+2)

2 in Eq. (4), we obtain

KL(π∗, πT ) ≤
32C2

τ2(T + 1)
.

The proof is deferred to Appendix A.3. With Theorem 4, we can directly use the last iteration
policy instead of uniformly mixing all previous policies, which makes our algorithm more practical.
However, despite the OMD algorithm already enjoying a good theoretical guarantee, it assumes that
we have access to Ey∼π,y′∼πt

[P(y ≻ y′)] for any π ∈ Π, which is difficult to obtain in practice.
Therefore, we still need to design a learning algorithm that only assumes query access to the
preference oracle.

3.2 POPULATION LOSS

In this subsection, we introduce how to obtain a population loss objective for Eq. (4). Similar to the
derivation of DPO (Rafailov et al., 2024), we start with the closed-form solution to Eq. (4):

πt+1(y) ∝ πt(y) exp

(
−1

η
∇yℓt(πt)

)
∝ exp

(
P(y ≻ πt)

η

)
πref(y)

τ
η πt(y)

1− τ
η , (5)

where P(y ≻ πt) represents Ey′∼πt
[P(y ≻ y′)]. Note that direct computation of πt+1 involves a

normalization factor, which is intractable for the exponentially large response space Y . To avoid
computing this normalization factor, we consider the logarithmic ratio between response pair y and
y′, and define the function ht(π, y, y

′) as:

ht(π, y, y
′) = log

π(y)

π(y′)
− τ

η
log

πref(y)

πref(y′)
− η − τ

η
log

πt(y)

πt(y′)
.

Unlike (Azar et al., 2024), which focuses on the offline setting and competes against πref, our
algorithm operates in an online setting and iteratively competes against itself. According to the
objective in Eq. (4), our target πt+1 needs to stay close to both πt and πref for two distinct purposes:
staying close to πt ensures the stability of the online updates, while staying close to πref helps avoid
reward hacking. Therefore, different from its counterpart (Azar et al., 2024; Calandriello et al., 2024),
which only involves πref, our ht includes both the log-likelihood of πref and πt. From Eq. 5, we know
that the following equality holds for any response pair y, y′ ∈ Supp(πref):

ht(πt+1, y, y
′) =

P(y ≻ πt)− P(y′ ≻ πt)

η
. (6)

Based on this observation, we define the loss function Lt(π) as:

Lt(π) = Ey,y′∼πt

[(
ht(π, y, y

′)− P(y ≻ πt)− P(y′ ≻ πt)

η

)2
]
. (7)

It is clear to see that πt+1 is the minimizer of Lt(π) since Lt(πt+1) = 0. Furthermore, in the
following lemma, we show that πt+1 is the unique minimizer of Lt within the policy class Π. The
proof is deferred to Appendix A.4.

Lemma 5. For each t ∈ [T ], πt+1 in Eq. (5) is the unique minimizer of Lt(π) within Π.

5
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Algorithm 1 Iterative Nash Policy Optimization (INPO)
Input: Number of iterations T , KL regularization parameter τ , OMD parameter η, reference policy
πref, policy class Π, preference oracle P.

1: Initialize π1 ← πref.
2: for iteration t = 1, 2, . . . , T do
3: Use current policy πt to generate response pairs {y(i)1 , y

(i)
2 }ni=1 where y

(i)
1 , y

(i)
2 ∼ πt.

4: Query the preference oracle P to get the preference dataset Dt = {y(i)w , y
(i)
l }ni=1.

5: Calculate πt+1 as:

πt+1 = argmin
π∈Π

Eyw,yl∼Dt

[(
ht(π, yw, yl)−

1

2η

)2
]
.

6: end for
7: Output πT+1.

Therefore, solving for πt+1 is equivalent to finding a policy that minimizes Lt(π). However, we still
have the tricky term P(y ≻ πt) in our loss. To bypass this term, we propose the following population
loss:

Ey,y′∼πt,yw,yl∼λp(y,y′)

[(
ht(π, yw, yl)−

1

2η

)2
]
. (8)

Recall that λp(y, y
′) is the preference distribution defined in Eq. (1) without context. We then show

the equality between Lt(π) and Eq. (8) in the following proposition.
Proposition 6. For any policy π ∈ Π and any iteration t ∈ [T ], Lt(π) in Eq. (7) and expression in
Eq. (8) are equal up to an additive constant independent of π.

See the proof in Appendix A.5. Here, the response pair y, y′ is directly sampled from the current
policy πt, which is crucial for the equivalence between Lt(π) and Eq. (8). Additionally, this sampling
is easy to implement, as we only need to perform inference using the current LLM model. In contrast,
Munos et al. (2023); Calandriello et al. (2024) propose sampling from a geometric mixture between
πref and πt, which makes implementation more challenging in practice. With the population loss in
hand, we can collect a preference dataset with πt in each iteration and directly minimize the loss on
the dataset to solve for πt+1.

3.3 ITERATIVE NASH POLICY OPTIMIZATION ALGORITHM

We summarize our algorithm INPO in Algorithm 1. In the beginning, we initialize our policy π1 as
the reference policy πref. For each iteration t, we sample the current policy πt to generate n response
pairs and query the preference oracle P to obtain the preference dataset Dt. With the preference
dataset, we find the policy πt+1 that minimizes the sampled version of Eq. 8. Since our OMD
algorithm enjoys the last-iterate convergence, we directly select the last iteration policy πT+1 as
our final policy, which also aligns with common practice. We highlight that, owing to the proposed
loss objective in Eq. (8), our algorithm bypasses the computation of the expected win rate P(y ≻ π)
used in previous work (Rosset et al., 2024; Wu et al., 2024), which is typically difficult to estimate
accurately in practice.

4 EXPERIMENTS

In this section, we use empirical results to verify the effectiveness of our INPO algorithm.

4.1 MAIN RESULTS

Settings. We follow the online RLHF workflow (Dong et al., 2024) and begin with the same
supervised fine-tuned (SFT) model1, which is based on LLaMA-3-8B (Dubey et al., 2024), for fair

1https://huggingface.co/RLHFlow/LLaMA3-SFT.
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Table 1: Evaluation results on three benchmarks. RM refers to using the BT-reward model to generate
preference signals, and PM refers to using the preference model to generate preference signals. The
underlined results, achieved by models at least nine times larger, exceed the performance of ours.

Model Size AlpacaEval 2.0 Arena-Hard MT-Bench
SFT Model 8B 16.0 10.2 7.52
Iterative DPO (RM) 8B 28.3 24.2 8.22
Iterative DPO (PM) 8B 28.5 29.6 8.29
SPPO (PM) 8B 32.8 29.2 8.26

INPO (RM) 8B 37.6 34.7 8.27
INPO (PM) 8B 42.6 37.8 8.43

LLaMA-3-8B-it 8B 24.8 21.2 7.97
Tulu-2-DPO-70B 70B 21.2 15.0 7.89
LLaMA-3-70B-it 70B 34.4 41.1 8.95
Mixtral-8x22B-it 141B 30.9 36.4 8.66

GPT-3.5-turbo-0613 - 22.7 24.8 8.39
GPT-4-0613 - 30.2 37.9 9.18
Claude-3-Opus - 40.5 60.4 9.00
GPT-4 Turbo (04/09) - 55.0 82.6 -

comparisons. We have similar observations using other backbone models (Appendix B). The learning
process of INPO lasts for T = 3 iterations. In each iteration, we sample responses from our current
policy with a new set of prompts2 and use preference signals on these responses to improve our policy.
Instead of costly human annotations, we employ evaluation models to generate the preferences. We
consider two choices for evaluation models: the BT reward model3, which is also used by Dong et al.
(2024), and the preference model4, which directly compares two responses and does not rely on the
BT-model assumption. For more details on the reward model and the preference model, please refer
to (Dong et al., 2024).

We follow the rejection sampling strategy suggested by Dong et al. (2024). For each prompt, we
generate K = 8 responses and use the best-of-8 as yw and the worst-of-8 as yl. For the BT reward
model, we directly select the response with the highest reward as the best and the response with the
lowest reward as the worst. For the preference model, we use a tournament approach, selecting the
winner as the best and the loser as the worst. We first split eight samples into four pairs and compare
each pair. If the result is a tie, we select the first one as the winner. Then, the winners are compared
against each other and the losers against each other until we get the final winning response yw and
losing response yl. We finally compare yw with yl and only train the model with the pairs where yw
wins over yl. We need eleven comparisons in total for eight responses. We remark that compared
to (Wu et al., 2024), which estimates the expected win rate and requires O(K2) preference queries,
our tournament strategy only needs O(K) queries.

We evaluate the model performance on three widely used benchmarks: MT-Bench (Zheng et al.,
2024), AlpacaEval 2.0 (Li et al., 2023a), and Arena-Hard v0.1 (Li et al., 2024). MT-Bench contains
80 questions from eight categories, with answers rated by GPT-4 on a scale of 1-10. Arena-Hard
v0.1 contains 500 technical problem-solving questions, and the answers are compared to reference
responses from the baseline model GPT-4-0314. We report the win rate (WR) as judged by GPT-4
Turbo (Preview-1106). AlpacaEval 2.0 includes 805 questions from five datasets, with the judge
model GPT-4 Turbo (Preview-1106) comparing the answers to reference responses from itself. We
report the length-controlled (LC) WR as suggested by Dubois et al. (2024).

Results and Analysis. We compare our INPO with the state-of-the-art online alignment methods,
including iterative DPO (Dong et al., 2024) and SPPO (Wu et al., 2024) (see implementation details

2Iteration 1, Iteration 2, Iteration 3.
3https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1.
4https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B.
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in Appendix B), as shown in Table 1. Note that SPPO algorithm requires the score from a pair
preference model. Therefore, it is only implemented with the preference model (PM). We observe
that INPO outperforms baselines on all three benchmarks, with notable improvements on AlpacaEval
2.0 and Arena-Hard v0.1. Additionally, we compare INPO with other open-source and closed-source
LLMs, including LLaMA-3-70B-it, GPT-4-0613, Claude-3-Opus, and GPT-4 Turbo (numbers copied
from (Dong et al., 2024)). For AlpacaEval 2.0, our INPO is only surpassed by GPT-4 Turbo and
outperforms all other models. According to the results in (Dubois et al., 2024), LC AlpacaEval
2.0 has the highest correlation with Chatbot Arena (Zheng et al., 2024), highlighting the superior
performance achieved by INPO.

Moreover, we note that methods utilizing the preference model as the oracle generally outperform
those relying on the BT reward model as the oracle. This observation aligns with the results from
previous studies (Ye et al., 2024; Dong et al., 2024), which show that the preference model outperforms
the BT reward model on RewardBench (Lambert et al., 2024), demonstrating the importance of
considering general preferences without the BT model assumption.

4.2 RESULTS ON MORE ACADEMIC BENCHMARKS

Table 2: Model performance on more academic benchmarks (AVG: average).

Model IFEval GPQA MMLU Hellaswag TruthfulQA GSM8K AVG
SFT Model 35.2 30.2 62.4 78.6 53.4 73.4 55.5
Iterative DPO 37.3 29.8 63.1 80.5 60.7 81.3 58.8
SPPO 40.4 29.0 63.1 80.8 63.0 80.9 59.5
INPO 41.6 28.9 63.1 80.8 64.9 80.8 60.0

It is known that RLHF alignment may have a negative effect on a model’s abilities in reasoning,
calibration, and generating accurate responses (Ouyang et al., 2022; Bai et al., 2022c; Dong et al.,
2024). Therefore, it is necessary to evaluate the model performance on more academic benchmarks.
In this subsection, we present the results on six benchmarks, evaluating various model abilities
including explicit instruction following (Zhou et al., 2023), general knowledge (Rein et al., 2023),
multitask language understanding (Hendrycks et al., 2020), commonsense reasoning (Zellers et al.,
2019), human falsehoods mimicking (Lin et al., 2021), and math word problem-solving (Cobbe et al.,
2021). We compare our INPO (PM) with the SFT baseline, iterative DPO (PM), and SPPO (PM).
The results are shown in Table 2.

Interestingly, compared to the SFT baseline, all three alignment methods exhibit performance
improvements on these benchmarks. A potential reason for this is that during the alignment stage, the
alignment methods more effectively leverage the model’s internal knowledge and abilities, which
were introduced during the pre-training and SFT stages. Additionally, both INPO and iterative DPO
incorporate KL regularization, which prevents the learned policy from deviating significantly from
the reference policy, thereby avoiding performance degradation. And the superior results of INPO
and SPPO demonstrate the advantage of considering general preferences.

4.3 ABLATION STUDIES OF KL REGULARIZATION

Table 3: Ablation study of KL regularization term. For INPO w/o KL, we set τ to be zero in
ht(π, y, y

′).

Preference Oracle Model AlpacaEval 2.0 Arena-Hard v0.1 MT-Bench

BT Reward Model INPO w/o KL 35.4 33.6 8.10
INPO w/ KL 37.6 34.7 8.27

Preference Model INPO w/o KL 41.6 36.5 8.31
INPO w/ KL 42.6 37.8 8.43
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In this subsection, we conduct an ablation study to examine the benefits of including the KL regular-
ization term in the game objective. The results are shown in Table 3. We observe that INPO with
KL regularization (INPO w/ KL) generally outperforms its counterpart without KL regularization
(INPO w/o KL) by a clear margin. This indicates regularizing our policy towards the reference policy
is beneficial for the alignment performance.

5 RELATED WORK

Reward-Based RLHF. Since RLHF has achieved great success in LLM alignment (Ouyang et al.,
2022; Touvron et al., 2023; Achiam et al., 2023), it has been extensively studied, including using
RL algorithms such as PPO (Schulman et al., 2017) to maximize a KL-regularized objective (Bai
et al., 2022c; Korbak et al., 2022; Li et al., 2023b) and reward-ranked finetuning (Dong et al., 2023;
Yuan et al., 2023; Gulcehre et al., 2023). Recently, Rafailov et al. (2024) propose the DPO algorithm,
which directly optimizes the policy on a preference dataset, bypassing the need for reward model
training. Further studies by Xiong et al. (2024); Dong et al. (2024); Xie et al. (2024) investigate the
online variant of DPO, proposing iterative algorithms with different exploration strategies. However,
all these methods are reward-based and rely on the BT model assumption. In this paper, we study
RLHF from a game-theoretic perspective and consider general preferences.

RLHF under General Preferences. (Azar et al., 2024) is the first work to consider general
preferences, proposing an offline algorithm IPO that learns the best policy against the reference
policy. Munos et al. (2023) formulate LLM alignment as a two-player game and propose a planning
algorithm to solve for the Nash policy when the general preference oracle is given. Ye et al. (2024)
provide theoretical analysis for both offline and online algorithms that learn the Nash policy in the
game. Calandriello et al. (2024) propose the online IPO algorithm and prove that the minimizer of
the online IPO objective is the Nash policy of the game. However, their algorithm uses the policy
gradient method, and the effective minimization of the objective remains unclear. Rosset et al. (2024)
propose an iterative algorithm to learn the Nash policy, they assume that the learner has access to
the expected win rate of each response, which serves a similar role to the reward of the response.
The closest related work to ours is (Wu et al., 2024), which also uses no-regret learning algorithms.
However, they study the game without KL-regularized terms. More importantly, their algorithm still
requires the estimation of the expected win rate, leading to square oracle query complexity that may
incur high costs in practice. Instead, our algorithm directly optimizes the policy over a preference
dataset and bypasses the need for win rate estimation.

No-Regret Learning in Games. There has been a long history of using no-regret learning to solve
for the equilibrium of games, including matrix games (Freund & Schapire, 1999; Daskalakis et al.,
2011; Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015; Chen & Peng, 2020; Wei et al., 2020;
Daskalakis et al., 2021; Zhang et al., 2022), extensive-form games (Kozuno et al., 2021; Bai et al.,
2022a;b; Fiegel et al., 2023) and Markov games (Bai et al., 2020; Song et al., 2021; Jin et al., 2021;
Mao & Başar, 2023). Our problem formulation can be viewed as a contextual case of the two-player
matrix game, and we use the classical OMD algorithm to learn the Nash equilibrium.

6 CONCLUSION AND FUTURE WORK

In this work, we consider RLHF under general preferences and formulate it as a two-player game.
Building on no-regret learning, we propose a new online algorithm, iterative Nash policy optimization
(INPO), to learn the Nash policy of the game. To bypass the estimation of the expected win rate,
we design a new loss objective, and our algorithm directly minimizes it over a preference dataset.
Our INPO algorithm not only has good theoretical guarantees but also empirically outperforms state-
of-the-art online RLHF algorithms across various benchmarks. In the future, we plan to study the
finite-sample analysis of our algorithm and extend it to the general reinforcement learning framework,
such as Markov decision processes.
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A PROOFS FOR SECTION 3

A.1 PROOF FOR LEMMA 2

Proof. According to the classical analysis of OMD algorithm (Lattimore & Szepesvári, 2020), for
any policy π, we have

T∑
t=1

⟨∇ℓt(πt), πt⟩ −
T∑

t=1

⟨∇ℓt(πt), π⟩ ≤ ηKL(π∥π1) +
1

η

T∑
t=1

∥∇ℓt(πt)∥2∞

≤ ηD +
(4τ2B2 + 1)T

η
.

In the second step, w.l.o.g., we assume B ≥ 1. Picking η = max(Bτ,1)
√
T√

D
finishes the proof.

A.2 PROOF FOR THEOREM 3

Proof. We first decompose DualGap(π̄) as

DualGap(π̄) = max
π1

J(π1, π̄)− J(π∗, π∗)︸ ︷︷ ︸
Term A

+ J(π∗, π∗)−min
π2

J(π̄, π2)︸ ︷︷ ︸
Term B

.

Next, we show how to bound Term A. Since ℓt is convex for all t, for any π, we have

T∑
t=1

ℓt(πt)−
T∑

t=1

ℓt(π) ≤
T∑

t=1

⟨∇ℓt(πt), πt⟩ −
T∑

t=1

⟨∇ℓt(πt), π⟩ ≤ RegT . (9)

According to the definition of ℓt, we also get that

1

T

T∑
t=1

(ℓt(πt)− ℓt(π))
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=
1

T

T∑
t=1

(−Ey∼πt,y′∼πt [P(y ≻ y′)] + τKL(πt∥πref) + Ey∼π,y′∼πt [P(y ≻ y′)]− τKL(π∥πref))

=
1

T

T∑
t=1

(Ey∼π,y′∼πt
[P(y ≻ y′)] + τKL(πt∥πref))− τKL(π∥πref)−

1

2

≥ J(π, π̄)− 1

2
= J(π, π̄)− J(π∗, π∗). (10)

The inequality is from Jensen’s inequality and convexity of KL divergence. Combining Eq. (9) and
Eq. (10), we obtain that for any π

J(π, π̄)− J(π∗, π∗) ≤ RegT
T

.

Since the game is symmetric, Term B can also be bounded similarly. Finally, we get

DualGap(π̄) ≤ 2RegT
T

≤ O

(
max(Bτ, 1)

√
D√

T

)
.

The proof is completed.

A.3 PROOF FOR THEOREM 4

We start with a useful lemma for OMD.

Lemma 7 (Lemma 2 in Munos et al. (2023)). Let p ≥ 1 and q ≥ 1 such that 1/p+ 1/q = 1. Let ϕ
be a σ-strongly convex function with respect to the ℓp-norm ∥ · ∥p, i.e., for any π, π′,

ϕ(π) ≥ ϕ(π′) +∇ϕ(π′) · (π − π′) +
σ

2
∥π − π′∥2.

Let Dϕ be the associated Bregman divergence: for π, π′,

Dϕ(π, π
′) := ϕ(π)− ϕ(π′)−∇ϕ(π′) · (π − π′).

Let δ be a vector of dimension |Y|. For any π− ∈ ∆(Y), define π+ as

π+ = arg max
π∈∆(Y)

[∑
y

π(y)δ(y)−Dϕ(π, π
−)

]
,

Then for any π ∈ ∆(Y), we have,

Dϕ(π, π
+) ≤ Dϕ(π, π

−) +
∑
y

(π−(y)− π(y))δ(y) + (2/σ)∥δ∥2q.

We then prove Theorem 4.

Proof. We invoke Lemma 7 with π− = πt, π+ = πt+1, ϕ(π) =
∑

y π(y) log π(y) and

δ(y) = 1
ηP(y ≻ πt) − τ

η

(
log πt(y)

πref(y)
+ 1
)

. For notation simplicity, we use P(π1 ≻ π2) to rep-
resent Ey∼π1,y′∼π2 [P(y ≻ y′)]. Then, at iteration t, we get

KL(π∗, πt+1)

≤ KL(π∗, πt) +
1

η

∑
y

(πt(y)− π∗(y))

(
P(y ≻ πt)− τ log

πt(y)

πref(y)

)
+ 2∥δ∥2∞

≤
(
1− τ

η

)
KL(π∗, πt) +

1

η

(
1

2
− τKL(πt, πref)− P(π∗ ≻ πt)

)
+

τ

η

∑
y

π∗(y)

(
log

π∗(y)

πt(y)
+ log

πt(y)

πref(y)

)
+ 2∥δ∥2∞

≤
(
1− τ

η

)
KL(π∗, πt) +

1

η

(
1

2
− τKL(πt, πref)− P(π∗ ≻ πt) + τKL(π∗, πref)

)
+ 2∥δ∥2∞

14
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≤
(
1− τ

η

)
KL(π∗, πt) + 2∥δ∥2∞.

The last step is because π∗ is the Nash policy and J(π∗, π∗) = 1
2 . W.l.o.g., we assume B ≥ 1 and

have

∥δ∥∞ =
1

η

∥∥∥∥−P(y ≻ πt) + τ

(
log

πt(y)

πref(y)
+ 1

)∥∥∥∥
∞
≤ 2C

η
.

Now, we obtain

KL(π∗, πt+1) ≤
(
1− τ

η

)
KL(π∗, πt) +

8C2

η2
.

Suppose we use time-varying ηt =
τ(t+2)

2 , when t = 0, η0 = τ , and we have

KL(π∗, π1) ≤
8C2

τ2
.

By induction, assuming KL(π∗, πt) ≤ 32C2

τ2(t+1) , we further get

KL(π∗, πt+1) ≤
(
1− 2

t+ 2

)
32C2

τ2(t+ 1)
+

32C2

τ2(t+ 2)2

≤
(
1− 2

t+ 2
+

1

t+ 2

)
32C2

τ2(t+ 1)

≤ 32C2

τ2(t+ 2)
.

The proof is completed.

A.4 PROOF FOR LEMMA 5

Proof. We use contradiction to prove the lemma. Let π̃ ∈ Π be another policy such that π̃ ̸= πt+1

and Lt(π̃) = 0. Let y be an arbitrary element from Y . For any other y′ ∈ Supp(πref) and y′ ̸= y, we
have

π̃(y)

π̃(y′)
=

exp
(

P(y≻πt)
η

)
πref(y)

τ
η πt(y)

1− τ
η

exp
(

P(y′≻πt)
η

)
πref(y′)

τ
η πt(y′)

1− τ
η

. (11)

Since Supp(π̃) = Supp(πref), we also have
∑

y′∈Supp(πref)
π̃(y′) = 1. Hence, the value of π̃(y) is

uniquely determined. Because πt+1 also satisfies Eq. 11 and shares the same support set as π̃, we
have π̃(y) = πt+1(y) and hence π̃(y′) = πt+1(y

′) for all y′ ∈ Y , contradicting with π̃ ̸= πt+1.
Therefore, the minimizer is unique and the proof is completed.

A.5 PROOF FOR PROPOSITION 6

Proof. We first consider the following expression and show that it equals to Lt(π) up to some
constants:

Ey,y′∼πt,I∼Ber(P(y≻y′))

[(
ht(π, y, y

′)− I

η

)2
]
. (12)

It suffices to show that

Ey,y′ [ht(π, y, y
′)(P(y ≻ πt)− P(y′ ≻ πt))] = Ey,y′,I [ht(π, y, y

′)I] .

Let py = P(y ≻ πt) and πy = log π(y), πref,y = τ
η log πref(y) and πt,y = (1 − τ

η ) log πt(y). For
RHS, it can be written as

Ey,y′,I [ht(π, y, y
′)I]

15
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= Ey,y′,I [(πy − πy′ − πref,y + πref,y′ − πt,y + πt,y′) I]

= Ey [(πy − πref,y − πt,y)Ey′,I [I]] + Ey′ [(−πy′ + πref,y′ + πt,y′)Ey,I [I]]

= Ey,y′ [πypy − πref,ypy − πt,ypy − (1− py′)πy′ + (1− py′)πref,y′ + (1− py′)πt,y′ ]

= Ey [(2py − 1)πy − (2py − 1)πref,y − (2py − 1)πt,y] .

In the last step, we use the fact that y and y′ are from the same distribution. The LHS can be written
as

Ey,y′ [ht(π, y, y
′)(P(y ≻ πt)− P(y′ ≻ πt))]

= Ey,y′ [(πy − πy′ − πref,y + πref,y′ − πt,y + πt,y′) (py − py′)]

= Ey,y′ [2pyπy − pyπy′ − py′πy − 2pyπref,y + py′πref,y + pyπref,y′ − 2pyπt,y + py′πt,y + pyπt,y′ ]

= Ey [(2py − 1)πy − (2py − 1)πref,y − (2py − 1)πt,y] .

The second equality is from that y and y′ are from the same distribution. The last equality is from
that Ey[py] =

1
2 . Therefore, we show the equivalence between Lt(π) and Eq. 12. Next, we show the

equivalence between Eq. 8 and Eq. 12. We expand the expectation over λp(y, y
′) and rewrite Eq. 8 as

Ey,y′

[
P(y ≻ y′)

(
ht(π, y, y

′)− 1

2η

)2

+ (1− P(y ≻ y′))

(
ht(π, y

′, y)− 1

2η

)2
]
.

We also expand the expectation over I in Eq. 12 and write it as

Ey,y′

[
P(y ≻ y′)

(
ht(π, y, y

′)− 1

η

)2

+ (1− P(y ≻ y′))ht(π, y, y
′)2

]
.

Ignoring the constants, since ht(π, y, y
′) = −ht(π, y

′, y), the difference is:

1

η
Ey,y′ [P(y ≻ y′)ht(π, y, y

′)− (1− P(y ≻ y′))ht(π, y
′, y)] . (13)

For each pair y, y′, it will appear two times in the expectation and the total contribution is:

πt(y)πt(y
′)

η
(P(y ≻ y′)ht(π, y, y

′)− P(y′ ≻ y)ht(π, y
′, y) + P(y′ ≻ y)ht(π, y

′, y)− P(y ≻ y′)ht(π, y, y
′)) = 0.

Therefore, the expression in Eq. (13) equals to zero and the proof is completed.

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

Implementation Details. We implement iterative DPO according to Dong et al. (2024) and their
GitHub repository 5. We implement SPPO according to the official Github repository 6. For the
implementation of INPO, we follow the hyperparameters in Dong et al. (2024), including the cosine
learning rate scheduler with a peak learning rate of 5 × 10−7, a 0.03 warm-up ratio, and a global
batch size of 128. We use a grid search for η over [0.1, 0.01, 0.0075, 0.005, 0.002] and set η = 0.005.
τ is directly set to be one-third of η.

Additional Experiment Results. In the main text, we use a SFT model from LLaMA-3-8B as our
base model. Here, we also conduct experiments with Llama-3-8B-Instruct7, an instruction tuned
model. The results on three alignment benchmarks and six academic benchmarks are presented
in Table 4 and Table 5, respectively. As shown in the results, our INPO consistently outperforms
the baselines. However, the improvement is less significant than when using the SFT model as
the starting point. This is likely because the instruct model has already been fine-tuned using
RLHF methods, which may limit the potential for further improvement through additional training.
Therefore, fine-tuning starting from the SFT model may offer a greater scope for enhancement.

5https://github.com/RLHFlow/Online-RLHF.
6https://github.com/uclaml/SPPO.
7https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.
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Table 4: Results on three alignment benchmarks using LLaMA-3-8B-It as the base model.

Model AlpacaEval 2.0 Arena-Hard MT-Bench
LLaMA-3-8B-It 24.8 21.2 7.97

Iterative DPO 35.4 37.1 8.35
SPPO 39.2 37.9 8.42
INPO 41.8 42.5 8.43

Table 5: Results on six academic benchmarks using LLaMA-3-8B-It as the base model.

Model IFEval GPQA MMLU Hellaswag TruthfulQA GSM8K Average
LLaMA-3-8B-It 47.6 31.4 63.9 75.8 51.7 76.4 57.8

Iterative DPO 41.5 30.8 64.2 76.3 55.9 74.2 57.2
SPPO 43.0 30.7 64.1 75.0 57.2 74.8 57.5
INPO 42.6 31.0 64.0 75.3 57.9 76.8 57.9
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