
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ITERATIVE NASH POLICY OPTIMIZATION:
ALIGNING LLMS WITH GENERAL PREFERENCES VIA
NO-REGRET LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Human Feedback (RLHF) has achieved great success
in aligning large language models (LLMs) with human preferences. Prevalent
RLHF approaches are reward-based, following the Bradley-Terry (BT) model as-
sumption, which may not fully capture the complexity of human preferences. In
this paper, we explore RLHF under a general preference framework and approach
it from a game-theoretic perspective. Specifically, we formulate the problem as
a two-player game and propose a novel online algorithm, iterative Nash policy
optimization (INPO). The key idea is to let the policy play against itself via no-
regret learning, thereby approximating the Nash policy. Unlike previous methods,
INPO bypasses the need for estimating the expected win rate for individual re-
sponses, which typically incurs high computational or annotation costs. Instead,
we introduce a new loss objective that is directly minimized over a preference
dataset. We provide theoretical analysis for our approach and demonstrate its
effectiveness through experiments on various representative benchmarks. With an
LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win
rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard, showing substantial
improvement over the state-of-the-art online RLHF algorithms.

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT (Achiam et al., 2023), Claude (Anthropic, 2023),
and Bard (Google, 2023) have achieved tremendous success in various instruction-following tasks.
A key factor in this success is the technique of reinforcement learning with human feedback
(RLHF) (Christiano et al., 2017), which aligns LLMs with human preferences and values. The
first standard RLHF framework for LLM alignment was proposed by Ouyang et al. (2022). They first
train a reward model (RM) on a dataset containing human preferences. Subsequently, a pretrained
LLM is fine-tuned to maximize the reward from this RM using the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017). Models trained with this pipeline can generate human-
preferred outputs even with 100x fewer parameters. Nevertheless, fitting a high-quality RM requires a
large amount of human-labeled data, and training with PPO is generally less stable (Peng et al., 2023).
To bypass the training of the RM, Rafailov et al. (2024) propose the direct preference optimization
(DPO) algorithm, which directly learns a policy on a human preference dataset. Compared to RLHF
with PPO, DPO is more stable and computationally lightweight.

However, the approaches mentioned above, which rely on either an explicit or implicit RM, assume
that human preferences can be adequately modeled with the Bradley–Terry (BT) model (Bradley &
Terry, 1952). We argue that the BT model cannot fully capture the complexity of human preferences.
For example, the preference signal in the BT model is transitive, implying that if A is preferred
to B and B is preferred to C, A must be preferred to C. This kind of transitive property may not
always hold across diverse human groups and contradicts evidence in human decision-making (May,
1954; Tversky, 1969). In addition, experimental results show that the accuracy of BT-based RMs is
about 70% (Bai et al., 2022c; Cui et al., 2023), while preference models outperform them by a clear
margin (Ye et al., 2024). This motivates us to consider general preferences without the BT model
assumption.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To achieve this goal, Munos et al. (2023) formulate the LLM alignment problem as a symmetric
two-player game. One can show that for any other policy, the Nash policy of the game enjoys at least
one half win rate, ignoring the KL regularization terms. Given the general preference oracle, Munos
et al. (2023) propose a planning algorithm to solve for the Nash policy. In this paper, we consider
the learning problem, where the general preference oracle is unknown to us, and we only assume
access to query the oracle. Inspired by the connections between constant-sum games and online
learning (Freund & Schapire, 1999), we propose using a no-regret learning algorithm to learn the
Nash policy. The key idea originates from the self-play algorithms used in games, where the policy
plays against itself to achieve self-improvement. Our contributions are summarized as follows.

Contributions. In this paper, we study RLHF for LLM alignment from a game-theoretic perspective.
We propose a novel online algorithm called Iterative Nash Policy Optimization (INPO), which
learns the Nash policy of a two-player game. Our approach is built on the classical no-regret learning
algorithm, online mirror descent (OMD). Unlike previous studies that also explore online algorithms
for learning the Nash policy (Rosset et al., 2024; Wu et al., 2024), our approach does not require
calculation of the expected win rate for each response, which is difficult to estimate accurately
and may incur high costs in practice. Instead, we propose a new loss objective and prove that the
minimizer of this loss uniquely corresponds to our target policy in each iteration. Therefore, similar
to (Rafailov et al., 2024; Azar et al., 2024), our approach directly learns the policy over a preference
dataset by minimizing the loss objective.

We prove that our algorithm approximates Nash policy with an iteration complexity of Õ
(

1
ϵ2

)
and

achieves last-iterate convergence at a rate of O(1/T). More importantly, our algorithm is easy to
implement in practice, and we conduct experiments on several popular benchmarks to demonstrate
its effectiveness. Remarkably, with an SFT model from LLaMA-3-8B, our INPO achieves a 42.6%
length-controlled win rate on AlpacaEval 2.0 (Li et al., 2023a) and a 37.8% win rate on Arena-Hard
v0.1 (Li et al., 2024), exhibiting at least 27.7% relative improvement over the state-of-the-art online
RLHF algorithms (Dong et al., 2024; Wu et al., 2024).

2 PRELIMINARIES

Notations. We use x ∈ X to denote a prompt where X is the prompt space. We assume that
x is sampled from a fixed but unknown distribution d0. An LLM is characterized by a policy
π : X → ∆(Y) that takes a prompt as the input and outputs a distribution over the response space
Y . A response y ∈ Y is then sampled from the distribution π(·|x). We use O(·) to hide absolute
constants and use Õ(·) to hide logarithmic factors. For a positive integer T , [T] denotes the set
{1, 2, · · · , T}.

General Preference Oracle. We first introduce the definition of the general preference oracle as
follows.

Definition 1 (General Preference Oracle). There exists a preference oracle P : X × Y × Y → [0, 1],
which can be queried to obtain the preference signal:

z ∼ Ber
(
P(y1 ≻ y2 | x)),

where z = 1 means y1 is preferred to y2, and z = 0 means that y2 is preferred.

Given the preference oracle, we introduce the preference distribution λp (Calandriello et al., 2024).
For any x ∈ X and y, y′ ∈ Y , we have

λp(x, y, y
′) =

{
(y, y′) with probability P(y ≻ y′ | x)
(y′, y) with probability 1− P(y ≻ y′ | x). (1)

In this paper, we study how to learn a policy π that has a high probability of generating a preferred
response over any other policy given the prompt x. We focus on the online setting and assume online
access to the preference oracle. As demonstrated by Tang et al. (2024), online RLHF algorithms
usually perform better than their offline counterparts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 RLHF WITH BT MODEL ASSUMPTION

Bradley-Terry (BT) Model Assumption. Instead of directly considering the general preference,
the prevalent RLHF framework makes the Bradley-Terry (BT) model assumption. It assumes that
there exists a reward function R∗ such that for any x ∈ X and y1, y2 ∈ Y:

P(y1 ≻ y2 | x) = exp(R∗(x, y1))

exp(R∗(x, y1)) + exp(R∗(x, y2))
= σ

(
R∗(x, y1)−R∗(x, y2)

)
.

After learning a reward function R, previous RLHF algorithms aim to maximize the following
KL-regularized objective:

J(π) = Ex∼d0

[
Ey∼π(·|x) [R(x, y)]− τKL(π(·|x)∥πref(·|x))

]
. (2)

Here πref is the reference policy, which is usually a supervised fine-tuned LLM, and τ > 0 is the
regularization parameter. By maximizing the objective, the obtained policy simultaneously achieves
a high reward and stays close to πref, which can mitigate reward hacking (Tien et al., 2022; Skalse
et al., 2022) to some extent.

Direct Preference Optimization (DPO). Rafailov et al. (2024) propose the direct preference
optimization (DPO) algorithm, which directly optimizes a policy and bypasses the need to learn a
reward function. The key idea is that there is a closed-form solution to Eq. (2):

π∗(y|x) ∝ πref(y|x) exp
(
1

τ
R(x, y)

)
,

which shows that each policy π implicitly parameterizes a reward function. We can directly formulate
a maximum likelihood objective to learn the optimal policy:

−Ex,yw,yl∼D

[
log σ

(
τ log

π(yw|x)
πref(yw|x)

− τ log
π(yl|x)
πref(yl|x)

)]
,

where D represents a preference dataset, σ(z) = 1/(1 + exp(−z)) is the sigmoid function, (yw, yl)
is a preference pair for the prompt x, with yw being the preferred response.

2.2 RLHF WITH GENERAL PREFERENCES

The previously mentioned algorithms all rely on the BT model assumption, which may not hold in
practice. Recently, a line of studies (Munos et al., 2023; Ye et al., 2024; Calandriello et al., 2024)
directly consider the general preference P without additional assumptions and formulate the policy
optimization problem as a two-player game. Specifically, given two policies π1 and π2, the game
objective is written as:

J(π1, π2) = Ex∼d0 [Ey1∼π1,y2∼π2 [P(y1 ≻ y2 | x)]− τKL(π1(·|x)∥πref(·|x)) + τKL(π2(·|x)∥πref(·|x))] ,
(3)

where π1, the max-player, aims to maximize the objective, and π2, the min-player, aims to minimize
the objective. The goal of both players is to maximize their win rates against the opponent while not
deviating too far from πref, which shares a similar spirit with the objective in Eq. (2).

Nash Policy and Duality Gap. Without loss of generality, we restrict our attention to the policy
class Π containing the policies with the same support set as πref. The Nash equilibrium of the game
is then defined as:

π∗
1 , π

∗
2 := argmax

π1∈Π
argmin
π2∈Π

J(π1, π2).

Since the game is symmetric for the two players, as proven by Ye et al. (2024), the Nash policies of
the two players are unique and coincide, meaning that π∗

1 = π∗
2 = π∗. We remark that for any policy

π ∈ Π, we always have J(π∗, π) ≥ 0.5, since J(π∗, π∗) = 0.5 and π∗ is the best response against
itself. This indicates that the win rate of π∗ over any policy π is at least one half if the KL divergence
terms are negligible. Motivated by this property, our goal is to learn the Nash policy π∗. For each
policy π ∈ Π, we use the following duality gap to measure how well it approximates π∗:

DualGap(π) := max
π1∈Π

J(π1, π)− min
π2∈Π

J(π, π2).

The duality gap is always non-negative and DualGap(π) = 0 only if π = π∗. When DualGap(π) ≤
ϵ, we say that π is an ϵ-approximate Nash policy.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 ALGORITHM

In this section, we introduce our algorithm that learns the Nash policy via no-regret learning. For
notation simplicity, we consider the non-contextual case and omit the prompt x. Since the policy
processes each prompt independently, extending to the contextual case is straightforward, as shown
by Azar et al. (2024).

3.1 ONLINE MIRROR DESCENT FOR SOLVING NASH POLICY

Given the preference oracle P, we first consider the planning problem and introduce how to use the
online mirror descent (OMD) algorithm to solve for the Nash policy. We initialize our policy π1 as
πref. At iteration t, our current policy is πt and we define the loss function for any π ∈ Π as:

ℓt(π) := −Ey∼π,y′∼πt
[P(y ≻ y′)] + τKL(π∥πref).

The loss function corresponds to the game objective of the min-player with the max-player as πt

in Eq.(3). It consists of two parts: the negative win rate of π against current policy πt and the KL
penalty term, which keeps π close to the reference policy πref. A natural self-play strategy is to
find πt+1 = argminπ∈Π ℓt(π), which is the best response to πt. However, this greedy algorithm is
unstable and the next policy πt+1 may deviate significantly from πt. One can construct examples that
such a greedy algorithm suffers undesirable linear regret (Lattimore & Szepesvári, 2020). Instead,
in OMD with entropy regularization, also known as Hedge (Freund & Schapire, 1997), we seek the
policy that minimizes the following objective:

πt+1 = argmin
π∈Π

⟨∇ℓt(πt), π⟩+ ηKL(π∥πt), (4)

where ∇yℓt(πt) = −Ey′∼πt
[P(y ≻ y′)] + τ

(
log πt(y)

πref(y)
+ 1
)

, η > 0 and 1
η is the learning rate of

OMD. Compared to the previous greedy algorithm, our objective now includes another KL divergence
term between π and πt. The spirit is to develop a stable algorithm, requiring that the next policy
πt+1 not only outperforms πt but also stays close to πt. Before presenting the theoretical guarantee,
we make the bounded log density ratio assumption, which is also used in previous RLHF analysis
(Rosset et al., 2024; Xie et al., 2024).
Assumption A (Bounded Log Density Ratio). For each t ∈ [T], let Πt ⊆ Π be the feasible solution
space such that πt obtained by OMD always belongs to Πt. Then, for any t ∈ [T] and π ∈ Πt, we
assume that ∣∣∣∣log π(y)

πref(y)

∣∣∣∣ ≤ B, ∀y ∈ Supp(πref).

In the following lemma, we show that OMD achieves sublinear regret compared to π∗. The proof
directly follows from the standard analysis of the OMD algorithm (Lattimore & Szepesvári, 2020)
and is deferred to Appendix A.1.
Lemma 2 (Regret Bound for OMD). Under Assumption A, let D = maxπ∈Π KL(π∥π1), OMD

algorithm in Eq. (4) with η = max(Bτ,1)
√
T√

D
has the following guarantee:

T∑
t=1

⟨∇ℓt(πt), πt⟩ −
T∑

t=1

⟨∇ℓt(πt), π
∗⟩ ≤ O

(
max(Bτ, 1)

√
TD
)
:= RegT

We remark that in classical OMD, π1 is a uniformly random policy and D is bounded by logY . Here
we initialize π1 with πref, aligning our approach with the practical RLHF workflow. With the regret
bound, we are ready to show that the duality gap for uniform mixture of πt is well bounded.

Theorem 3 (Duality Gap Bound for Uniform Mixture Policy in OMD). Let π̄ := 1
T

∑T
t=1 πt. With

Assumption A and η = max(Bτ,1)
√
T√

D
, we have

DualGap(π̄) ≤ O

(
max(Bτ, 1)

√
D√

T

)
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The proof mainly relies on the convexity of ℓt and Lemma 2 (see Appendix A.2). According to
Theorem 3, our π̄ approximates π∗ with an iteration complexity Õ

(
1
ϵ2

)
. Furthermore, we show that

our algorithm also enjoys the last-iterate convergence to Nash policy π∗ at the speed O(1/T).
Theorem 4 (Last-Iterate Convergence for OMD). Under Assumption A, let C = max(Bτ, 1), at
each iteration t we have

KL(π∗, πt+1) ≤
(
1− τ

η

)
KL(π∗, πt) +

8C2

η2
.

Furthermore, suppose we use a time-varying parameter ηt =
τ(t+2)

2 in Eq. (4), we obtain

KL(π∗, πT) ≤
32C2

τ2(T + 1)
.

The proof is deferred to Appendix A.3. With Theorem 4, we can directly use the last iteration
policy instead of uniformly mixing all previous policies, which makes our algorithm more practical.
However, despite the OMD algorithm already enjoying a good theoretical guarantee, it assumes that
we have access to Ey∼π,y′∼πt

[P(y ≻ y′)] for any π ∈ Π, which is difficult to obtain in practice.
Therefore, we still need to design a learning algorithm that only assumes query access to the
preference oracle.

3.2 POPULATION LOSS

In this subsection, we introduce how to obtain a population loss objective for Eq. (4). Similar to the
derivation of DPO (Rafailov et al., 2024), we start with the closed-form solution to Eq. (4):

πt+1(y) ∝ πt(y) exp

(
−1

η
∇yℓt(πt)

)
∝ exp

(
P(y ≻ πt)

η

)
πref(y)

τ
η πt(y)

1− τ
η , (5)

where P(y ≻ πt) represents Ey′∼πt
[P(y ≻ y′)]. Note that direct computation of πt+1 involves a

normalization factor, which is intractable for the exponentially large response space Y . To avoid
computing this normalization factor, we consider the logarithmic ratio between response pair y and
y′, and define the function ht(π, y, y

′) as:

ht(π, y, y
′) = log

π(y)

π(y′)
− τ

η
log

πref(y)

πref(y′)
− η − τ

η
log

πt(y)

πt(y′)
.

Unlike (Azar et al., 2024), which focuses on the offline setting and competes against πref, our
algorithm operates in an online setting and iteratively competes against itself. According to the
objective in Eq. (4), our target πt+1 needs to stay close to both πt and πref for two distinct purposes:
staying close to πt ensures the stability of the online updates, while staying close to πref helps avoid
reward hacking. Therefore, different from its counterpart (Azar et al., 2024; Calandriello et al., 2024),
which only involves πref, our ht includes both the log-likelihood of πref and πt. From Eq. 5, we know
that the following equality holds for any response pair y, y′ ∈ Supp(πref):

ht(πt+1, y, y
′) =

P(y ≻ πt)− P(y′ ≻ πt)

η
. (6)

Based on this observation, we define the loss function Lt(π) as:

Lt(π) = Ey,y′∼πt

[(
ht(π, y, y

′)− P(y ≻ πt)− P(y′ ≻ πt)

η

)2
]
. (7)

It is clear to see that πt+1 is the minimizer of Lt(π) since Lt(πt+1) = 0. Furthermore, in the
following lemma, we show that πt+1 is the unique minimizer of Lt within the policy class Π. The
proof is deferred to Appendix A.4.

Lemma 5. For each t ∈ [T], πt+1 in Eq. (5) is the unique minimizer of Lt(π) within Π.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Iterative Nash Policy Optimization (INPO)
Input: Number of iterations T , KL regularization parameter τ , OMD parameter η, reference policy
πref, policy class Π, preference oracle P.

1: Initialize π1 ← πref.
2: for iteration t = 1, 2, . . . , T do
3: Use current policy πt to generate response pairs {y(i)1 , y

(i)
2 }ni=1 where y

(i)
1 , y

(i)
2 ∼ πt.

4: Query the preference oracle P to get the preference dataset Dt = {y(i)w , y
(i)
l }ni=1.

5: Calculate πt+1 as:

πt+1 = argmin
π∈Π

Eyw,yl∼Dt

[(
ht(π, yw, yl)−

1

2η

)2
]
.

6: end for
7: Output πT+1.

Therefore, solving for πt+1 is equivalent to finding a policy that minimizes Lt(π). However, we still
have the tricky term P(y ≻ πt) in our loss. To bypass this term, we propose the following population
loss:

Ey,y′∼πt,yw,yl∼λp(y,y′)

[(
ht(π, yw, yl)−

1

2η

)2
]
. (8)

Recall that λp(y, y
′) is the preference distribution defined in Eq. (1) without context. We then show

the equality between Lt(π) and Eq. (8) in the following proposition.
Proposition 6. For any policy π ∈ Π and any iteration t ∈ [T], Lt(π) in Eq. (7) and expression in
Eq. (8) are equal up to an additive constant independent of π.

See the proof in Appendix A.5. Here, the response pair y, y′ is directly sampled from the current
policy πt, which is crucial for the equivalence between Lt(π) and Eq. (8). Additionally, this sampling
is easy to implement, as we only need to perform inference using the current LLM model. In contrast,
Munos et al. (2023); Calandriello et al. (2024) propose sampling from a geometric mixture between
πref and πt, which makes implementation more challenging in practice. With the population loss in
hand, we can collect a preference dataset with πt in each iteration and directly minimize the loss on
the dataset to solve for πt+1.

3.3 ITERATIVE NASH POLICY OPTIMIZATION ALGORITHM

We summarize our algorithm INPO in Algorithm 1. In the beginning, we initialize our policy π1 as
the reference policy πref. For each iteration t, we sample the current policy πt to generate n response
pairs and query the preference oracle P to obtain the preference dataset Dt. With the preference
dataset, we find the policy πt+1 that minimizes the sampled version of Eq. 8. Since our OMD
algorithm enjoys the last-iterate convergence, we directly select the last iteration policy πT+1 as
our final policy, which also aligns with common practice. We highlight that, owing to the proposed
loss objective in Eq. (8), our algorithm bypasses the computation of the expected win rate P(y ≻ π)
used in previous work (Rosset et al., 2024; Wu et al., 2024), which is typically difficult to estimate
accurately in practice.

4 EXPERIMENTS

In this section, we use empirical results to verify the effectiveness of our INPO algorithm.

4.1 MAIN RESULTS

Settings. We follow the online RLHF workflow (Dong et al., 2024) and begin with the same
supervised fine-tuned (SFT) model1, which is based on LLaMA-3-8B (Dubey et al., 2024), for fair

1https://huggingface.co/RLHFlow/LLaMA3-SFT.

6

https://huggingface.co/RLHFlow/LLaMA3-SFT

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Evaluation results on three benchmarks. RM refers to using the BT-reward model to generate
preference signals, and PM refers to using the preference model to generate preference signals. The
underlined results, achieved by models at least nine times larger, exceed the performance of ours.

Model Size AlpacaEval 2.0 Arena-Hard MT-Bench
SFT Model 8B 16.0 10.2 7.52
Iterative DPO (RM) 8B 28.3 24.2 8.22
Iterative DPO (PM) 8B 28.5 29.6 8.29
SPPO (PM) 8B 32.8 29.2 8.26

INPO (RM) 8B 37.6 34.7 8.27
INPO (PM) 8B 42.6 37.8 8.43

LLaMA-3-8B-it 8B 24.8 21.2 7.97
Tulu-2-DPO-70B 70B 21.2 15.0 7.89
LLaMA-3-70B-it 70B 34.4 41.1 8.95
Mixtral-8x22B-it 141B 30.9 36.4 8.66

GPT-3.5-turbo-0613 - 22.7 24.8 8.39
GPT-4-0613 - 30.2 37.9 9.18
Claude-3-Opus - 40.5 60.4 9.00
GPT-4 Turbo (04/09) - 55.0 82.6 -

comparisons. We have similar observations using other backbone models (Appendix B). The learning
process of INPO lasts for T = 3 iterations. In each iteration, we sample responses from our current
policy with a new set of prompts2 and use preference signals on these responses to improve our policy.
Instead of costly human annotations, we employ evaluation models to generate the preferences. We
consider two choices for evaluation models: the BT reward model3, which is also used by Dong et al.
(2024), and the preference model4, which directly compares two responses and does not rely on the
BT-model assumption. For more details on the reward model and the preference model, please refer
to (Dong et al., 2024).

We follow the rejection sampling strategy suggested by Dong et al. (2024). For each prompt, we
generate K = 8 responses and use the best-of-8 as yw and the worst-of-8 as yl. For the BT reward
model, we directly select the response with the highest reward as the best and the response with the
lowest reward as the worst. For the preference model, we use a tournament approach, selecting the
winner as the best and the loser as the worst. We first split eight samples into four pairs and compare
each pair. If the result is a tie, we select the first one as the winner. Then, the winners are compared
against each other and the losers against each other until we get the final winning response yw and
losing response yl. We finally compare yw with yl and only train the model with the pairs where yw
wins over yl. We need eleven comparisons in total for eight responses. We remark that compared
to (Wu et al., 2024), which estimates the expected win rate and requires O(K2) preference queries,
our tournament strategy only needs O(K) queries.

We evaluate the model performance on three widely used benchmarks: MT-Bench (Zheng et al.,
2024), AlpacaEval 2.0 (Li et al., 2023a), and Arena-Hard v0.1 (Li et al., 2024). MT-Bench contains
80 questions from eight categories, with answers rated by GPT-4 on a scale of 1-10. Arena-Hard
v0.1 contains 500 technical problem-solving questions, and the answers are compared to reference
responses from the baseline model GPT-4-0314. We report the win rate (WR) as judged by GPT-4
Turbo (Preview-1106). AlpacaEval 2.0 includes 805 questions from five datasets, with the judge
model GPT-4 Turbo (Preview-1106) comparing the answers to reference responses from itself. We
report the length-controlled (LC) WR as suggested by Dubois et al. (2024).

Results and Analysis. We compare our INPO with the state-of-the-art online alignment methods,
including iterative DPO (Dong et al., 2024) and SPPO (Wu et al., 2024) (see implementation details

2Iteration 1, Iteration 2, Iteration 3.
3https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1.
4https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B.

7

https://huggingface.co/datasets/RLHFlow/iterative-prompt-v1-iter1-20K
https://huggingface.co/datasets/RLHFlow/iterative-prompt-v1-iter2-20K
https://huggingface.co/datasets/RLHFlow/iterative-prompt-v1-iter3-20K
https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

in Appendix B), as shown in Table 1. Note that SPPO algorithm requires the score from a pair
preference model. Therefore, it is only implemented with the preference model (PM). We observe
that INPO outperforms baselines on all three benchmarks, with notable improvements on AlpacaEval
2.0 and Arena-Hard v0.1. Additionally, we compare INPO with other open-source and closed-source
LLMs, including LLaMA-3-70B-it, GPT-4-0613, Claude-3-Opus, and GPT-4 Turbo (numbers copied
from (Dong et al., 2024)). For AlpacaEval 2.0, our INPO is only surpassed by GPT-4 Turbo and
outperforms all other models. According to the results in (Dubois et al., 2024), LC AlpacaEval
2.0 has the highest correlation with Chatbot Arena (Zheng et al., 2024), highlighting the superior
performance achieved by INPO.

Moreover, we note that methods utilizing the preference model as the oracle generally outperform
those relying on the BT reward model as the oracle. This observation aligns with the results from
previous studies (Ye et al., 2024; Dong et al., 2024), which show that the preference model outperforms
the BT reward model on RewardBench (Lambert et al., 2024), demonstrating the importance of
considering general preferences without the BT model assumption.

4.2 RESULTS ON MORE ACADEMIC BENCHMARKS

Table 2: Model performance on more academic benchmarks (AVG: average).

Model IFEval GPQA MMLU Hellaswag TruthfulQA GSM8K AVG
SFT Model 35.2 30.2 62.4 78.6 53.4 73.4 55.5
Iterative DPO 37.3 29.8 63.1 80.5 60.7 81.3 58.8
SPPO 40.4 29.0 63.1 80.8 63.0 80.9 59.5
INPO 41.6 28.9 63.1 80.8 64.9 80.8 60.0

It is known that RLHF alignment may have a negative effect on a model’s abilities in reasoning,
calibration, and generating accurate responses (Ouyang et al., 2022; Bai et al., 2022c; Dong et al.,
2024). Therefore, it is necessary to evaluate the model performance on more academic benchmarks.
In this subsection, we present the results on six benchmarks, evaluating various model abilities
including explicit instruction following (Zhou et al., 2023), general knowledge (Rein et al., 2023),
multitask language understanding (Hendrycks et al., 2020), commonsense reasoning (Zellers et al.,
2019), human falsehoods mimicking (Lin et al., 2021), and math word problem-solving (Cobbe et al.,
2021). We compare our INPO (PM) with the SFT baseline, iterative DPO (PM), and SPPO (PM).
The results are shown in Table 2.

Interestingly, compared to the SFT baseline, all three alignment methods exhibit performance
improvements on these benchmarks. A potential reason for this is that during the alignment stage, the
alignment methods more effectively leverage the model’s internal knowledge and abilities, which
were introduced during the pre-training and SFT stages. Additionally, both INPO and iterative DPO
incorporate KL regularization, which prevents the learned policy from deviating significantly from
the reference policy, thereby avoiding performance degradation. And the superior results of INPO
and SPPO demonstrate the advantage of considering general preferences.

4.3 ABLATION STUDIES OF KL REGULARIZATION

Table 3: Ablation study of KL regularization term. For INPO w/o KL, we set τ to be zero in
ht(π, y, y

′).

Preference Oracle Model AlpacaEval 2.0 Arena-Hard v0.1 MT-Bench

BT Reward Model INPO w/o KL 35.4 33.6 8.10
INPO w/ KL 37.6 34.7 8.27

Preference Model INPO w/o KL 41.6 36.5 8.31
INPO w/ KL 42.6 37.8 8.43

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In this subsection, we conduct an ablation study to examine the benefits of including the KL regular-
ization term in the game objective. The results are shown in Table 3. We observe that INPO with
KL regularization (INPO w/ KL) generally outperforms its counterpart without KL regularization
(INPO w/o KL) by a clear margin. This indicates regularizing our policy towards the reference policy
is beneficial for the alignment performance.

5 RELATED WORK

Reward-Based RLHF. Since RLHF has achieved great success in LLM alignment (Ouyang et al.,
2022; Touvron et al., 2023; Achiam et al., 2023), it has been extensively studied, including using
RL algorithms such as PPO (Schulman et al., 2017) to maximize a KL-regularized objective (Bai
et al., 2022c; Korbak et al., 2022; Li et al., 2023b) and reward-ranked finetuning (Dong et al., 2023;
Yuan et al., 2023; Gulcehre et al., 2023). Recently, Rafailov et al. (2024) propose the DPO algorithm,
which directly optimizes the policy on a preference dataset, bypassing the need for reward model
training. Further studies by Xiong et al. (2024); Dong et al. (2024); Xie et al. (2024) investigate the
online variant of DPO, proposing iterative algorithms with different exploration strategies. However,
all these methods are reward-based and rely on the BT model assumption. In this paper, we study
RLHF from a game-theoretic perspective and consider general preferences.

RLHF under General Preferences. (Azar et al., 2024) is the first work to consider general
preferences, proposing an offline algorithm IPO that learns the best policy against the reference
policy. Munos et al. (2023) formulate LLM alignment as a two-player game and propose a planning
algorithm to solve for the Nash policy when the general preference oracle is given. Ye et al. (2024)
provide theoretical analysis for both offline and online algorithms that learn the Nash policy in the
game. Calandriello et al. (2024) propose the online IPO algorithm and prove that the minimizer of
the online IPO objective is the Nash policy of the game. However, their algorithm uses the policy
gradient method, and the effective minimization of the objective remains unclear. Rosset et al. (2024)
propose an iterative algorithm to learn the Nash policy, they assume that the learner has access to
the expected win rate of each response, which serves a similar role to the reward of the response.
The closest related work to ours is (Wu et al., 2024), which also uses no-regret learning algorithms.
However, they study the game without KL-regularized terms. More importantly, their algorithm still
requires the estimation of the expected win rate, leading to square oracle query complexity that may
incur high costs in practice. Instead, our algorithm directly optimizes the policy over a preference
dataset and bypasses the need for win rate estimation.

No-Regret Learning in Games. There has been a long history of using no-regret learning to solve
for the equilibrium of games, including matrix games (Freund & Schapire, 1999; Daskalakis et al.,
2011; Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015; Chen & Peng, 2020; Wei et al., 2020;
Daskalakis et al., 2021; Zhang et al., 2022), extensive-form games (Kozuno et al., 2021; Bai et al.,
2022a;b; Fiegel et al., 2023) and Markov games (Bai et al., 2020; Song et al., 2021; Jin et al., 2021;
Mao & Başar, 2023). Our problem formulation can be viewed as a contextual case of the two-player
matrix game, and we use the classical OMD algorithm to learn the Nash equilibrium.

6 CONCLUSION AND FUTURE WORK

In this work, we consider RLHF under general preferences and formulate it as a two-player game.
Building on no-regret learning, we propose a new online algorithm, iterative Nash policy optimization
(INPO), to learn the Nash policy of the game. To bypass the estimation of the expected win rate,
we design a new loss objective, and our algorithm directly minimizes it over a preference dataset.
Our INPO algorithm not only has good theoretical guarantees but also empirically outperforms state-
of-the-art online RLHF algorithms across various benchmarks. In the future, we plan to study the
finite-sample analysis of our algorithm and extend it to the general reinforcement learning framework,
such as Markov decision processes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

AI Anthropic. Introducing claude, 2023.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. Advances in
neural information processing systems, 33:2159–2170, 2020.

Yu Bai, Chi Jin, Song Mei, Ziang Song, and Tiancheng Yu. Efficient phi-regret minimization in
extensive-form games via online mirror descent. Advances in Neural Information Processing
Systems, 35:22313–22325, 2022a.

Yu Bai, Chi Jin, Song Mei, and Tiancheng Yu. Near-optimal learning of extensive-form games with
imperfect information. In International Conference on Machine Learning, pp. 1337–1382. PMLR,
2022b.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022c.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Daniele Calandriello, Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang, Bernardo Avila Pires,
Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, et al. Human alignment of
large language models through online preference optimisation. arXiv preprint arXiv:2403.08635,
2024.

Xi Chen and Binghui Peng. Hedging in games: Faster convergence of external and swap regrets.
Advances in Neural Information Processing Systems, 33:18990–18999, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret algorithms
for zero-sum games. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete Algorithms, pp. 235–254. SIAM, 2011.

Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. Near-optimal no-regret learning
in general games. Advances in Neural Information Processing Systems, 34:27604–27616, 2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Côme Fiegel, Pierre Ménard, Tadashi Kozuno, Rémi Munos, Vianney Perchet, and Michal Valko.
Adapting to game trees in zero-sum imperfect information games. In International Conference on
Machine Learning, pp. 10093–10135. PMLR, 2023.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Google. Bard, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentralized
algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kl penalties is better viewed as
bayesian inference. arXiv preprint arXiv:2205.11275, 2022.

Tadashi Kozuno, Pierre Ménard, Rémi Munos, and Michal Valko. Model-free learning for two-player
zero-sum partially observable markov games with perfect recall. arXiv preprint arXiv:2106.06279,
2021.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E Gonzalez, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023a.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Forty-first International Conference on Machine Learning, 2023b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized general-
sum markov games. Dynamic Games and Applications, 13(1):165–186, 2023.

Kenneth O May. Intransitivity, utility, and the aggregation of preference patterns. Econometrica:
Journal of the Econometric Society, pp. 1–13, 1954.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Baolin Peng, Linfeng Song, Ye Tian, Lifeng Jin, Haitao Mi, and Dong Yu. Stabilizing rlhf through
advantage model and selective rehearsal. arXiv preprint arXiv:2309.10202, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences.
Advances in Neural Information Processing Systems, 26, 2013.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large
number of players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
regularized learning in games. Advances in Neural Information Processing Systems, 28, 2015.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
mance gap between online and offline alignment algorithms. arXiv preprint arXiv:2405.08448,
2024.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown. Causal
confusion and reward misidentification in preference-based reward learning. arXiv preprint
arXiv:2204.06601, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Amos Tversky. Intransitivity of preferences. Psychological review, 76(1):31, 1969.

Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate convergence
in constrained saddle-point optimization. arXiv preprint arXiv:2006.09517, 2020.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of
nash learning from human feedback under general kl-regularized preference. arXiv preprint
arXiv:2402.07314, 2024.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Mengxiao Zhang, Peng Zhao, Haipeng Luo, and Zhi-Hua Zhou. No-regret learning in time-varying
zero-sum games. In International Conference on Machine Learning, pp. 26772–26808. PMLR,
2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

A PROOFS FOR SECTION 3

A.1 PROOF FOR LEMMA 2

Proof. According to the classical analysis of OMD algorithm (Lattimore & Szepesvári, 2020), for
any policy π, we have

T∑
t=1

⟨∇ℓt(πt), πt⟩ −
T∑

t=1

⟨∇ℓt(πt), π⟩ ≤ ηKL(π∥π1) +
1

η

T∑
t=1

∥∇ℓt(πt)∥2∞

≤ ηD +
(4τ2B2 + 1)T

η
.

In the second step, w.l.o.g., we assume B ≥ 1. Picking η = max(Bτ,1)
√
T√

D
finishes the proof.

A.2 PROOF FOR THEOREM 3

Proof. We first decompose DualGap(π̄) as

DualGap(π̄) = max
π1

J(π1, π̄)− J(π∗, π∗)︸ ︷︷ ︸
Term A

+ J(π∗, π∗)−min
π2

J(π̄, π2)︸ ︷︷ ︸
Term B

.

Next, we show how to bound Term A. Since ℓt is convex for all t, for any π, we have

T∑
t=1

ℓt(πt)−
T∑

t=1

ℓt(π) ≤
T∑

t=1

⟨∇ℓt(πt), πt⟩ −
T∑

t=1

⟨∇ℓt(πt), π⟩ ≤ RegT . (9)

According to the definition of ℓt, we also get that

1

T

T∑
t=1

(ℓt(πt)− ℓt(π))

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

=
1

T

T∑
t=1

(−Ey∼πt,y′∼πt [P(y ≻ y′)] + τKL(πt∥πref) + Ey∼π,y′∼πt [P(y ≻ y′)]− τKL(π∥πref))

=
1

T

T∑
t=1

(Ey∼π,y′∼πt
[P(y ≻ y′)] + τKL(πt∥πref))− τKL(π∥πref)−

1

2

≥ J(π, π̄)− 1

2
= J(π, π̄)− J(π∗, π∗). (10)

The inequality is from Jensen’s inequality and convexity of KL divergence. Combining Eq. (9) and
Eq. (10), we obtain that for any π

J(π, π̄)− J(π∗, π∗) ≤ RegT
T

.

Since the game is symmetric, Term B can also be bounded similarly. Finally, we get

DualGap(π̄) ≤ 2RegT
T

≤ O

(
max(Bτ, 1)

√
D√

T

)
.

The proof is completed.

A.3 PROOF FOR THEOREM 4

We start with a useful lemma for OMD.

Lemma 7 (Lemma 2 in Munos et al. (2023)). Let p ≥ 1 and q ≥ 1 such that 1/p+ 1/q = 1. Let ϕ
be a σ-strongly convex function with respect to the ℓp-norm ∥ · ∥p, i.e., for any π, π′,

ϕ(π) ≥ ϕ(π′) +∇ϕ(π′) · (π − π′) +
σ

2
∥π − π′∥2.

Let Dϕ be the associated Bregman divergence: for π, π′,

Dϕ(π, π
′) := ϕ(π)− ϕ(π′)−∇ϕ(π′) · (π − π′).

Let δ be a vector of dimension |Y|. For any π− ∈ ∆(Y), define π+ as

π+ = arg max
π∈∆(Y)

[∑
y

π(y)δ(y)−Dϕ(π, π
−)

]
,

Then for any π ∈ ∆(Y), we have,

Dϕ(π, π
+) ≤ Dϕ(π, π

−) +
∑
y

(π−(y)− π(y))δ(y) + (2/σ)∥δ∥2q.

We then prove Theorem 4.

Proof. We invoke Lemma 7 with π− = πt, π+ = πt+1, ϕ(π) =
∑

y π(y) log π(y) and

δ(y) = 1
ηP(y ≻ πt) − τ

η

(
log πt(y)

πref(y)
+ 1
)

. For notation simplicity, we use P(π1 ≻ π2) to rep-
resent Ey∼π1,y′∼π2 [P(y ≻ y′)]. Then, at iteration t, we get

KL(π∗, πt+1)

≤ KL(π∗, πt) +
1

η

∑
y

(πt(y)− π∗(y))

(
P(y ≻ πt)− τ log

πt(y)

πref(y)

)
+ 2∥δ∥2∞

≤
(
1− τ

η

)
KL(π∗, πt) +

1

η

(
1

2
− τKL(πt, πref)− P(π∗ ≻ πt)

)
+

τ

η

∑
y

π∗(y)

(
log

π∗(y)

πt(y)
+ log

πt(y)

πref(y)

)
+ 2∥δ∥2∞

≤
(
1− τ

η

)
KL(π∗, πt) +

1

η

(
1

2
− τKL(πt, πref)− P(π∗ ≻ πt) + τKL(π∗, πref)

)
+ 2∥δ∥2∞

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

≤
(
1− τ

η

)
KL(π∗, πt) + 2∥δ∥2∞.

The last step is because π∗ is the Nash policy and J(π∗, π∗) = 1
2 . W.l.o.g., we assume B ≥ 1 and

have

∥δ∥∞ =
1

η

∥∥∥∥−P(y ≻ πt) + τ

(
log

πt(y)

πref(y)
+ 1

)∥∥∥∥
∞
≤ 2C

η
.

Now, we obtain

KL(π∗, πt+1) ≤
(
1− τ

η

)
KL(π∗, πt) +

8C2

η2
.

Suppose we use time-varying ηt =
τ(t+2)

2 , when t = 0, η0 = τ , and we have

KL(π∗, π1) ≤
8C2

τ2
.

By induction, assuming KL(π∗, πt) ≤ 32C2

τ2(t+1) , we further get

KL(π∗, πt+1) ≤
(
1− 2

t+ 2

)
32C2

τ2(t+ 1)
+

32C2

τ2(t+ 2)2

≤
(
1− 2

t+ 2
+

1

t+ 2

)
32C2

τ2(t+ 1)

≤ 32C2

τ2(t+ 2)
.

The proof is completed.

A.4 PROOF FOR LEMMA 5

Proof. We use contradiction to prove the lemma. Let π̃ ∈ Π be another policy such that π̃ ̸= πt+1

and Lt(π̃) = 0. Let y be an arbitrary element from Y . For any other y′ ∈ Supp(πref) and y′ ̸= y, we
have

π̃(y)

π̃(y′)
=

exp
(

P(y≻πt)
η

)
πref(y)

τ
η πt(y)

1− τ
η

exp
(

P(y′≻πt)
η

)
πref(y′)

τ
η πt(y′)

1− τ
η

. (11)

Since Supp(π̃) = Supp(πref), we also have
∑

y′∈Supp(πref)
π̃(y′) = 1. Hence, the value of π̃(y) is

uniquely determined. Because πt+1 also satisfies Eq. 11 and shares the same support set as π̃, we
have π̃(y) = πt+1(y) and hence π̃(y′) = πt+1(y

′) for all y′ ∈ Y , contradicting with π̃ ̸= πt+1.
Therefore, the minimizer is unique and the proof is completed.

A.5 PROOF FOR PROPOSITION 6

Proof. We first consider the following expression and show that it equals to Lt(π) up to some
constants:

Ey,y′∼πt,I∼Ber(P(y≻y′))

[(
ht(π, y, y

′)− I

η

)2
]
. (12)

It suffices to show that

Ey,y′ [ht(π, y, y
′)(P(y ≻ πt)− P(y′ ≻ πt))] = Ey,y′,I [ht(π, y, y

′)I] .

Let py = P(y ≻ πt) and πy = log π(y), πref,y = τ
η log πref(y) and πt,y = (1 − τ

η) log πt(y). For
RHS, it can be written as

Ey,y′,I [ht(π, y, y
′)I]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

= Ey,y′,I [(πy − πy′ − πref,y + πref,y′ − πt,y + πt,y′) I]

= Ey [(πy − πref,y − πt,y)Ey′,I [I]] + Ey′ [(−πy′ + πref,y′ + πt,y′)Ey,I [I]]

= Ey,y′ [πypy − πref,ypy − πt,ypy − (1− py′)πy′ + (1− py′)πref,y′ + (1− py′)πt,y′]

= Ey [(2py − 1)πy − (2py − 1)πref,y − (2py − 1)πt,y] .

In the last step, we use the fact that y and y′ are from the same distribution. The LHS can be written
as

Ey,y′ [ht(π, y, y
′)(P(y ≻ πt)− P(y′ ≻ πt))]

= Ey,y′ [(πy − πy′ − πref,y + πref,y′ − πt,y + πt,y′) (py − py′)]

= Ey,y′ [2pyπy − pyπy′ − py′πy − 2pyπref,y + py′πref,y + pyπref,y′ − 2pyπt,y + py′πt,y + pyπt,y′]

= Ey [(2py − 1)πy − (2py − 1)πref,y − (2py − 1)πt,y] .

The second equality is from that y and y′ are from the same distribution. The last equality is from
that Ey[py] =

1
2 . Therefore, we show the equivalence between Lt(π) and Eq. 12. Next, we show the

equivalence between Eq. 8 and Eq. 12. We expand the expectation over λp(y, y
′) and rewrite Eq. 8 as

Ey,y′

[
P(y ≻ y′)

(
ht(π, y, y

′)− 1

2η

)2

+ (1− P(y ≻ y′))

(
ht(π, y

′, y)− 1

2η

)2
]
.

We also expand the expectation over I in Eq. 12 and write it as

Ey,y′

[
P(y ≻ y′)

(
ht(π, y, y

′)− 1

η

)2

+ (1− P(y ≻ y′))ht(π, y, y
′)2

]
.

Ignoring the constants, since ht(π, y, y
′) = −ht(π, y

′, y), the difference is:

1

η
Ey,y′ [P(y ≻ y′)ht(π, y, y

′)− (1− P(y ≻ y′))ht(π, y
′, y)] . (13)

For each pair y, y′, it will appear two times in the expectation and the total contribution is:

πt(y)πt(y
′)

η
(P(y ≻ y′)ht(π, y, y

′)− P(y′ ≻ y)ht(π, y
′, y) + P(y′ ≻ y)ht(π, y

′, y)− P(y ≻ y′)ht(π, y, y
′)) = 0.

Therefore, the expression in Eq. (13) equals to zero and the proof is completed.

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

Implementation Details. We implement iterative DPO according to Dong et al. (2024) and their
GitHub repository 5. We implement SPPO according to the official Github repository 6. For the
implementation of INPO, we follow the hyperparameters in Dong et al. (2024), including the cosine
learning rate scheduler with a peak learning rate of 5 × 10−7, a 0.03 warm-up ratio, and a global
batch size of 128. We use a grid search for η over [0.1, 0.01, 0.0075, 0.005, 0.002] and set η = 0.005.
τ is directly set to be one-third of η.

Additional Experiment Results. In the main text, we use a SFT model from LLaMA-3-8B as our
base model. Here, we also conduct experiments with Llama-3-8B-Instruct7, an instruction tuned
model. The results on three alignment benchmarks and six academic benchmarks are presented
in Table 4 and Table 5, respectively. As shown in the results, our INPO consistently outperforms
the baselines. However, the improvement is less significant than when using the SFT model as
the starting point. This is likely because the instruct model has already been fine-tuned using
RLHF methods, which may limit the potential for further improvement through additional training.
Therefore, fine-tuning starting from the SFT model may offer a greater scope for enhancement.

5https://github.com/RLHFlow/Online-RLHF.
6https://github.com/uclaml/SPPO.
7https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.

16

https://github.com/RLHFlow/Online-RLHF
https://github.com/uclaml/SPPO
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Results on three alignment benchmarks using LLaMA-3-8B-It as the base model.

Model AlpacaEval 2.0 Arena-Hard MT-Bench
LLaMA-3-8B-It 24.8 21.2 7.97

Iterative DPO 35.4 37.1 8.35
SPPO 39.2 37.9 8.42
INPO 41.8 42.5 8.43

Table 5: Results on six academic benchmarks using LLaMA-3-8B-It as the base model.

Model IFEval GPQA MMLU Hellaswag TruthfulQA GSM8K Average
LLaMA-3-8B-It 47.6 31.4 63.9 75.8 51.7 76.4 57.8

Iterative DPO 41.5 30.8 64.2 76.3 55.9 74.2 57.2
SPPO 43.0 30.7 64.1 75.0 57.2 74.8 57.5
INPO 42.6 31.0 64.0 75.3 57.9 76.8 57.9

17

	Introduction
	Preliminaries
	RLHF with BT Model Assumption
	RLHF with General Preferences

	Algorithm
	Online Mirror Descent for Solving Nash Policy
	Population Loss
	Iterative Nash Policy Optimization Algorithm

	Experiments
	Main Results
	Results on More Academic Benchmarks
	Ablation Studies of KL Regularization

	Related Work
	Conclusion and Future Work
	Proofs for Section 3
	Proof for Lemma 2
	Proof for Theorem 3
	Proof for Theorem 4
	Proof for Lemma 5
	Proof for Proposition 6

	Additional Experiment Details and Results

