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Abstract

Transformers have excelled in natural language modeling and one reason behind
this success is their exceptional ability to combine contextual informal and global
knowledge. However, the theoretical basis remains unclear. In this paper, first we
introduce the Sparse Contextual Bigram (SCB), a natural extension of the classical
bigram model, where the next token’s generation depends on a sparse set of earlier
positions determined by the last token. We then analyze the training dynamics and
sample complexity of learning SCB using a one-layer linear transformer with a
gradient-based algorithm. We show that when trained from scratch, the training
process can be split into an initial sample-intensive stage where the correlation
is boosted from zero to a nontrivial value, followed by a more sample-efficient
stage of further improvement. Additionally, we prove that, provided a nontrivial
correlation between the downstream and pretraining tasks, finetuning from a
pretrained model allows us to bypass the initial sample-intensive stage. We also
empirically demonstrate that our algorithm can outperform SGD in this setting and
discuss its relationship with the usual softmax-based transformers.

1 Introduction

Transformers have played a central role in modern deep learning, achieving significant success across
various fields, including language modeling (OpenAI, 2023), computer vision (Dosovitskiy et al.,
2020), and natural sciences (Jumper et al., 2021). The core of transformers is the self-attention layer
(Vaswani et al., 2017), which can attend to any subset of the input sequence to output a weighted
linear combination of the (transformed) tokens.
Several capabilities of the transformers contribute to their success in language modeling. First,
they can extract contextual information from the input token sequences, which is essential in some
arithmetic tasks (Edelman et al., 2022; Liu et al., 2022; Nanda et al., 2023; Yao et al., 2021). In
addition, transformers can memorize global in-domain knowledge (Petroni et al., 2019; Zhang et al.,
2023a; Haviv et al., 2022; Carlini et al., 2021). These two abilities combined enable transformers
to predict the next token based on the in-context information as well as global knowledge (OpenAI,
2023) acquired during training.
To theoretically understand how transformers learn both capabilities, we propose a minimalist data-
generating model, the Sparse Contextual Bigram (SCB). This model builds on the classical bigram
model and requires learning both contextual information and the (global) transition probabilities.
Here, the next token depends on the transition matrix 𝑷 and a sparse set of prior tokens that is
determined by the last token. In particular, SCB can be represented by a one-layer linear transformer
— a simplified architecture that can serve as an abstraction for studying transformer optimization (Ahn
et al., 2023), which makes it suitable for theoretical analysis.

*Equal contribution.
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In this paper, we investigate the training dynamics and sample complexity of training a linear
transformer to learn the SCB task using a stochastic gradient-based algorithm. Our contributions are
summarized as follows:

• Data model: We introduce the Sparse Contextual Bigram (SCB) model, a simple task that
requires the model to learn both in-context and global information.

• Convergence: We prove convergence guarantees for a one-layer linear transformer trained on
with the nonconvex ℓ1-regularized MSE loss using preconditioned projected proximal descent,
given a dataset sampled from the SCB model.

• Sample Complexity: Under mild conditions on the data distribution, initialization, and hyperpa-
rameters, we prove that our algorithm can recover the ground-truth with polynomial dependence
on the sequence length 𝑇 , number of states 𝑁 , and the sparsity parameter 𝑄 ≪ 𝑇 . We show
that the training first goes through an initial sample-intensive stage which boosts the signal with
poly(𝑇) samples, followed by a more sample-efficient stage to achieve final convergence with
poly(𝑁,𝑄) samples. We empirically verify that our gradient-based methods converge to the
ground truth with a small batch size, while unregularized stochastic gradient descent fails due to
the large variance.

• Transfer Learning: We prove that, when there is a nontrivial correlation between the pretraining
and downstream tasks, we can transfer a pre-trained model to bypass the first sample intensive
stage, so that our algorithm converges to the ground truth of the downstream task with only
poly(𝑁,𝑄) samples.

1.1 Related works

Training dynamics of transformers. Several works have studied the learnability aspects of
specific transformer architectures. Jelassi et al. (2022) demonstrated that a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) trained through GD, augmented with positional-embedding attention
matrices, can effectively capture spatial structures. Li et al. (2023) investigated the sample complexity
necessary to achieve good generalization performance on a similar ViT model. Tarzanagh et al. (2023)
established a connection between the optimization landscape of self-attention and the formulation of
a hard-margin Support Vector Machine (SVM) problem that separates and selects specific optimal
tokens and established global convergence under strong assumptions. Tian et al. (2023a,b) provided
insights into the training dynamics of the self-attention and MLP layers, respectively, although they
did not establish convergence guarantees.
Another line of work focuses on the training dynamics of in-context learning. Mahankali et al. (2023)
was among the first to introduce linear regression as an in-context learning task, while Zhang et al.
(2023b) proved global convergence of gradient flow for a single-layer linear self-attention layer on this
task. Huang et al. (2023) provided a convergence guarantee for a one-layer transformer with softmax
attention on a similar task where the in-context tokens are drawn from a specific data distribution.
Chen et al. (2024) generalized the single-task linear regression task to a multi-task setting and proved
the global convergence of multi-head attention architecture using gradient flow on the population
loss with specific initialization. In contrast, our work focuses on the language modeling ability of
transformers instead of their in-context learning ability.
Several recent works analyzed transformers from a Markov chain perspective. Bietti et al. (2024)
studied the in-context bigram (phrased as induction head) from an associative memory viewpoint.
Nichani et al. (2024) proved that a simplified two-layer transformer can learn the induction head and
generalize it to certain latent causal graphs. Edelman et al. (2024) further investigated training process
on bigram and general 𝑛-gram tasks, and observed multi-phase dynamics. Makkuva et al. (2024)
studied the loss landscape of transformers trained on sequences sampled from a single Markov Chain.
Our SCB model extends the classical bigram models to allow context-dependent sparse attention on
previous tokens.
Several works, including Tian et al. (2023a); Zhang et al. (2023b); Huang et al. (2023); Tarzanagh
et al. (2023); Nichani et al. (2024); Kim and Suzuki (2024), and ours, use a similar reparameterization,
consolidating the key and query matrices into a single matrix 𝑾 to simplify the dynamics of the
training process. Most previous studies (Tian et al., 2023a; Zhang et al., 2023b; Huang et al., 2023;
Tarzanagh et al., 2023; Nichani et al., 2024; Kim and Suzuki, 2024; Wang et al., 2024; Chen et al.,
2024) uses population loss to simplify the analysis. In contrast, our work goes beyond the population
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loss to analyze the sample complexity of the stochastic gradient descent dynamics. Although Li et al.
(2023) also investigated the sample complexity on a different task, their model requires a pre-trained
initialization, while our model is trained from scratch.
Transfer Learning. Transfer learning (Devlin et al., 2018) has gained significant attention in this deep
learning era. From a theoretical perspective, several works have investigated the statistical guarantees
of transfer learning from the representation learning perspective (Tripuraneni et al., 2020; Du et al.,
2020; Arora et al., 2019; Hanneke et al., 2023). Recent studies on transfer learning mostly focus on
linear models (Li et al., 2022; Tian and Feng, 2023; Fei and Li, 2021; Zhang et al., 2022; Ju et al.,
2023; Dar and Baraniuk, 2022). For dynamics of transfer learning, Lampinen and Ganguli (2018)
studied the behaviors of multi-layer linear networks in a teacher-student setting, while Dhifallah and
Lu (2021) analyzed single-layer perceptrons. Damian et al. (2022) showed that a two-layer neural
network can efficiently learn polynomials dependent on a few directions, enabling transfer learning.
To the best of our knowledge, this is the first work studying transfer learning for transformers Moreover,
unlike previous works that assume a shared structure between the pretraining and downstream tasks,
we only require them to have a non-trivial correlation, which is a much weaker assumption.

1.2 Outline of this paper

In Section 2 we formalize the problem setup, including the SCB task, the transformer architecture,
and the training algorithm. Section 3 consists of our main results, and we analyze the population
dynamics to provide intuitions. Section 4 contains our transfer learning results. Experimental results
can be found in Section 5.

2 Setup

In this section, we describe our data-generating model, the one-layer linear transformer architecture,
and the training algorithm.
Notations. We use [𝑇] to denote the set {1, 2, ..., 𝑇}. Matrices and vectors are denoted in upper-case
bold letters (𝑨,𝑽,𝚫, etc.) and lower-case bold letters (𝒂, 𝒒, etc.), respectively. For norm, ∥·∥ denotes
ℓ2 norm and ∥ · ∥𝐹 denotes the Frobenius norm. Additionally, for 𝝁 ∈ R𝑁 , ∥𝑨∥𝝁 denotes 𝜇-norm for
matrix 𝑨 ∈ R𝑑×𝑁 for arbitrary 𝑑, which is defined as ∥𝑨∥2𝝁 := Tr (𝑨diag(𝝁)𝑨⊤). We use 1{·} to
denote the indicator function. We use �̃� (·) to hide logarithmic factors in the asymptotic notations.

2.1 Data-generating model: Sparse Contextual Bigram

The bigram model, where the next token depends only on the current one, is arguably one of
the simplest language models. To learn this model, it suffices to learn the transition probabilities
𝑷 ∈ R𝑁×𝑁 where 𝑃𝑛,𝑚 = P[𝑋𝑡+1 = 𝑛 | 𝑋𝑡 = 𝑚], which is achievable through a linear model (0-layer
transformer).
A natural way to extend the classical bigram model is to allow the next token to depend on a
context-dependent set of previous tokens. This extension can model situations such as generating the
words after the phrase “by Theorem 3.2”, which requires us to retrieve the statement of “Theorem
3.2”. Here, we propose a simple extension of this type, which we call the Sparse Contextual Bigram
(SCB). The contextual information is encoded by a sparse probability vector 𝒒 determined by the last
token. To generate the next token, the model retrieves the tokens referenced by 𝒒 and applies the
transition matrix 𝑷 (global knowledge) to one of them according to the distribution 𝒒.
Formally, our data-generating model SCB can be described as follows. Let 𝑇 be the sequence length
and [𝑁] the vocabulary. Let 𝑷 ∈ R𝑁×𝑁 be a transition matrix, with column1 𝑷𝑘 being the transition
probability vector of token 𝑘 . Suppose that 𝝁 ∈ R𝑁≥0 is the stationary distribution of 𝑷.

Each input sequence consists of 𝑇 + 1 tokens (𝑥1, . . . , 𝑥𝑇+1), i.i.d. sampled from distribution 𝝁. The
output token (label) is generated as follows. For each 𝑘 ∈ [𝑁], there is a probability vector 𝒒 (𝑘 ) ∈ 𝑅𝑇≥0
that represents the tokens the model needs to attend to when the last token 𝑥𝑇+1 is 𝑘 . For notational

1This differs from the convention of the usual Markov Chain literature where the rows are the transition
probability vectors. We use this convention as it is more compatible with our notations.
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simplicity, we will write 𝒙 = (𝑥1, . . . , 𝑥𝑇 ), 𝑿 = (𝒆𝑥1 , . . . , 𝒆𝑥𝑇 ) and 𝑸 = (𝒒 (1) , . . . , 𝒒 (𝑁 ) ) ∈ R𝑇×𝑁 .
When 𝑥𝑇+1 = 𝑘 , the output token 𝑥𝑜 is sampled from the distribution

P(𝑥𝑜 = 𝑛 | 𝑥𝑇+1 = 𝑘, 𝒙) =
𝑇∑︁
𝑡=1

𝑞
(𝑘 )
𝑡 𝑃𝑛,𝑥𝑡 , ∀𝑛 ∈ [𝑁] . (1)

In words, we first sample a position 𝑠 ∈ [𝑇] according to 𝒒 (𝑘 ) and then run one step of the Markov
Chain 𝑷 from 𝑥𝑠 to generate 𝑥𝑜. Note that this model can be represented by a one-layer linear
transformer (see the next subsection for details). We make the following assumptions on SCB task.
Assumption 2.1 (Sparse Contextual Bigram, SCB). In the SCB task, we assume the following:

(a) (𝑄-sparse) For some 𝑄 ≪ 𝑇 and each of 𝒒 (𝑘 ) , at most 𝑄 entries are nonzero.

(b) (Well-conditioned) There exists some constant 𝐶 ≥ 1 such that for every 𝑘 ∈ [𝑁] and
𝑡 ∈ [𝑇], 𝑞 (𝑘 )𝑡 ∈ [1/(𝐶𝑄), 𝐶/𝑄] if it is nonzero, and 𝜇𝑘 ∈ [1/(𝐶𝑁), 𝐶/𝑁].

(c) (Nontrivial transition) ∥𝑷∥2𝜇 − ∥𝝁∥2 ≥ ∥𝝁∥2.

(d) (Long sequence) 𝑇 ≥ (𝑁𝑄)10.

Remark on condition (c). We say the transition 𝑷 is trivial if the transition probability vectors
are all the same, i.e., 𝑷 = 𝝁1⊤. In this case, we have ∥𝑷∥2𝜇 = ⟨𝝁1⊤, 𝝁𝝁⊤⟩ = ∥𝝁∥2. Requiring
∥𝑷∥2𝜇 − ∥𝝁∥2 ≥ ∥𝝁∥2 rules out situations where 𝑷 is too close to the trivial one. Also, note that for
any well-conditioned 𝝁, we have ∥𝝁∥2 ≥ Ω(1/𝑁). ♣

In this work, we focus on the case where (𝒙, 𝑥𝑇+1, 𝑥𝑜) are given as (one data point of) the training data
with (𝑥1, . . . , 𝑥𝑇+1) i.i.d. sampled from 𝜇. The SCB task can be extended to a sequence-to-sequence
model: we drop 𝑥1 and append 𝑥𝑜 to get a new input sequence (𝑥2, . . . , 𝑥𝑇+1, 𝑥𝑜), and then repeat
the same sampling procedure to generate another token. This generates a sequence (𝑥𝑡 )∞𝑡=1 where
(𝑥𝑇+2, 𝑥𝑇+1, . . . ) are not independent, and this makes our model a true language model. We leave the
study of the more complicated learning-from-(𝑥𝑡 )∞𝑡=1 task to future works.

2.2 Transformer architecture

Our learner model is a one-layer single-head linear transformer (Akyürek et al., 2022; Zhang et al.,
2023b; Ahn et al., 2023). A general linear transformer can be expressed as: 𝑭(𝒙, 𝑥𝑇+1;𝑽, 𝑨) =
𝑽𝑬 (𝑬⊤𝑨𝑬) ,where 𝑬 is the embedding of the input tokens and positions, and 𝑨,𝑽 are the parameters
of the attention and output layers, respectively. In our setting, we only need a simpler model:

𝑭(𝒙, 𝑥𝑇+1;𝑽, 𝑨) := 𝑽𝑿
(
𝑰𝑇 𝑨𝒆𝑥𝑇+1

)
=: 𝑽𝑿𝒂 (𝑥𝑇+1 ) , (2)

where 𝑽 ∈ R𝑁×𝑁 and 𝑨 ∈ R𝑇×𝑁 are the trainable parameters, and 𝒂 (𝑘 ) denotes the 𝑘-th column
of 𝑨. This model uses cross-attention (replacing the last 𝑬 with 𝒆𝑥𝑇+1), uses only the positional
embeddings together with the last token to compute the attention weights (replacing the second 𝑬
with 𝑰𝑇 ), and discards the positional embeddings in the output layer (replacing the first 𝑬 with 𝑿).
This is equivalent to manually set certain blocks in the weight matrices to 0, which is a common
practice in the theoretical literature to simplify the analysis (Nichani et al., 2024; Huang et al., 2023;
Zhang et al., 2023b).
Note that our data-generating model (1) can be represented using (2) by setting 𝑨 = 𝑸 and 𝑽 = 𝑷.
We will show that a modified version of SGD can approximately recover this ground-truth model.

2.3 Training algorithm

We assume that the stationary distribution 𝝁 and certain norms of the ground-truth 𝑷 and 𝑸 are
known when choosing the initialization and learning rate. The goal here is to recover 𝑷 and 𝑸. Our
loss function is the ℓ1-regularized MSE loss. The standard way to optimize an ℓ1-regularized loss is to
use the proximal gradient descent. We adopt this algorithm with several additional pre-conditioning
and a projection step to ensure some basic properties.
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Formally, let the per-sample loss be defined as

𝑙 (𝒙, 𝑥𝑇+1, 𝑥𝑜;𝑽, 𝑨) :=
1
2

𝒆𝑥𝑜 − 𝑽𝑿𝑨𝒆𝑥𝑇+1
2
. (3)

We initialize 𝑨 = 1𝑇1⊤
𝑁
/𝑇 to have uniform attention and 𝑽 = 𝝁1⊤ to be the trivial transition. At each

step 𝜏 ≥ 0, we sample 𝐵𝜏 fresh samples {𝒙 (𝑖) , 𝑥 (𝑖)
𝑇+1, 𝑥

(𝑖)
𝑜 }𝐵𝜏𝑖=1 to form a mini-batch. The ℓ1-regularized

mini-batch loss is defined as

𝑙
(𝐵𝜏 ,𝜆)
reg

(
{𝒙 (𝑖) , 𝑥 (𝑖)

𝑇+1, 𝑥
(𝑖)
𝑜 }𝐵𝜏𝑖=1;𝑽, 𝑨

)
:=

1
𝐵𝜏

𝐵𝜏∑︁
𝑖=1

𝑙 (𝒙 (𝑖) , 𝑥 (𝑖)
𝑇+1, 𝑥

(𝑖)
𝑜 ;𝑽, 𝑨) + 𝜆

𝑁∑︁
𝑘=1

𝒂 (𝑘 )
1
,

where 𝜆 > 0 is a parameter that controls the strength of regularization. Let ∇(𝐵𝜏 )𝑽 𝑙 and ∇(𝐵𝜏 )𝑨 𝑙
denote the mini-batch gradients of the original 𝑙 w.r.t. 𝑽 and 𝑨, respectively. We then define the
preconditioned gradients as

∇̂(𝐵𝜏 )𝑽 𝑙 :=
(
𝑰𝑁 −

1𝑁1⊤
𝑁

𝑁

) (
∇(𝐵𝜏 )𝑽 𝑙

)
diag(1/𝝁)

(
𝑰𝑁 −

𝝁𝝁⊤

∥𝝁∥2

)
,

∇̂(𝐵𝜏 )
𝒂 (𝑘)

𝑙 :=
1
𝜇𝑘

(
𝑰𝑇 −

1𝑇1⊤
𝑇

𝑇

) (
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
, ∀𝑘 ∈ [𝑁] .

(4)

Here, the 1/𝝁 rescaling plays a role similar to importance sampling. We multiply ∇(𝐵𝜏 )𝑽 𝑙 with
𝑰 − 11⊤/𝑁 and 𝑰 − 𝝁𝝁⊤/∥𝝁∥2 to ensure at least 1⊤

𝑁
𝑽 = 1⊤

𝑁
, 1⊤
𝑇
𝑨 = 1⊤

𝑁
, and 𝑽𝝁 = 𝝁 always hold

throughout training. Note that we project each column of 𝑽 to the affine space {𝒗 ∈ R𝑇 : 1⊤𝒗 = 1}
instead of the probability simplex. This is sufficient for our analysis and is much easier to compute
than the latter. We update the output layer using

𝑽𝜏+1 = 𝑽𝜏 − 𝜂𝑽 ∇̂(𝐵𝜏 )𝑽 𝑙, (5)

where 𝜂𝑉 > 0 is the step size. Now, consider the attention layer. Due to the existence of the
ℓ1-regularization, the update rule becomes a simple variant of the standard proximal gradient descent.
Formally, for step size 𝜂𝐴 > 0, each 𝑘 ∈ [𝑁] and 𝑡 ∈ [𝑇], we have

𝒂 (𝑘,
′ )

𝜏+1 = 𝒂 (𝑘 )𝜏 −
𝜂𝐴

𝜇𝑘
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙, (preconditioned GD step),

𝑎
(𝑘,′′ )
𝑡 ,𝜏+1 =

{
𝑎
(𝑘,′ )
𝑡 ,𝜏+1 − 𝜆, if 𝑎 (𝑘,

′ )
𝑡 ,𝜏+1 ≥ 𝜆,

0, if
���𝑎 (𝑘,′ )
𝑡 ,𝜏+1

��� ≤ 𝜆, , (proximal step),

𝒂 (𝑘 )
𝜏+1 = Proj

{1⊤𝒂=1}

(
𝒂 (𝑘,

′′ )
𝜏+1

)
= 𝒂 (𝑘,

′′ )
𝜏+1 +

(
1 − 1⊤𝒂 (𝑘,

′′ )
𝜏+1

) 1
𝑇
, (projection step).

(6)

For the proximal step, we will later show that no 𝑎 (𝑘 )𝑡 can ever become smaller than −𝜆, so it suffices
to consider those two cases. During the proximal step, all small 𝑎 (𝑘 )𝑡 are set to 0, and 𝜆 is subtracted
from all large coordinates. For notational simplicity, we define 𝒈 (𝑘 )

𝜆,𝜏
:= −𝜂−1

𝐴
(𝒂 (𝑘 )
𝜏+1 − 𝒂 (𝑘 )𝜏 ) so that we

can write the update as 𝒂 (𝑘 )
𝜏+1 = 𝒂 (𝑘 )𝜏 − 𝜂𝐴𝒈 (𝑘 )𝜏 . We will choose 𝜆 = 0 in certain stages of training. In

this case, (6) becomes the usual projected preconditioned gradient descent and we have

𝒂 (𝑘 )
𝜏+1 = 𝒂 (𝑘 )𝜏 − 𝜂𝐴∇̂(𝐵𝜏 )𝒂 (𝑘)

𝑙 (when 𝜆 = 0).

Our algorithm consists of three stages with different hyperparameters being used in different stages
and certain rounding required between stages. The pseudocode is given in Algorithm 1 and more
details on the projection/normalization steps are provided in Appendix E and F. When we train the
model from scratch, all three stages are used and the initialization is 𝑽0 = 𝝁1⊤ and 𝑨 = 1𝑇1⊤

𝑁
/𝑇 .

Transfer learning. When doing transfer learning, the initialization will be obtained from the weights
of the pre-trained model and one step of gradient update. Then, we will run Algorithm 1 from Stage 2.
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Algorithm 1 Projected preconditioned ℓ1-proximal gradient descent

Input: Stationary distribution 𝝁; initialization 𝑽0, 𝑨0; learning rates 𝜂 (𝑖)
𝐴
, 𝜂
(𝑖)
𝑉

, 𝑖 ∈ [3]; threshold 𝜆0;
regularization strength �̂�; times T1,T2,T3
Stage 1: Run (5) and (6) with 𝜂𝐴 = 𝜂

(1)
𝐴

, 𝜂𝑉 = 𝜂
(1)
𝑉

, 𝜆 = 0 for T1 steps;
Thresholding-projection: ∀𝑘 ∈ [𝑛], �̂� (𝑘 ) = [𝑎 (𝑘 )𝑡 1{𝑎 (𝑘 )𝑡 ≥ 𝜆0}]𝑡 , 𝒂 (𝑘 ) ← (𝑰𝑇 − 1𝑇1⊤

𝑇
/𝑇) �̂� (𝑘 )

Stage 2: Run (5) and (6) with 𝜂𝐴 = 𝜂
(2)
𝐴

, 𝜂𝑉 = 𝜂
(2)
𝑉

, 𝜆 = �̂� for T2 − T1 steps;
Thresholding-normalization: ∀𝑘 ∈ [𝑛], �̂� (𝑘 ) = [𝑎 (𝑘 )𝑡 1{𝑎 (𝑘 )𝑡 ≥ Ω(1/𝑄)}]𝑡 . 𝒂 (𝑘 ) ←
�̂� (𝑘 )/1⊤ �̂� (𝑘 )
Stage 3: Run (5) and (6) with 𝜂𝐴 = 0, 𝜂𝑉 = 𝜂

(3)
𝑉

, 𝜆 = 0 for T3 − T2 steps;
Output: 𝑨T3 ,𝑽T3 .

3 Results for training from scratch

In this section, we consider the situations where we train the model from scratch, i.e., the initialization
is 𝑽0 = 𝝁1⊤ and 𝑨0 = 11⊤/𝑇 and discuss the ideas of the proof of the following theorem.
Theorem 3.1 (Theorem G.1). Let 𝜀 > 0 be our target accuracy and T1 = min{𝜏 ≥ 0 :
max{𝛼𝑉,𝜏 , 𝛼𝐴,𝜏} ≥ Θ(1/(𝑄𝑁))}. We can choose the hyperparameters in Algorithm 1 such
that within poly(𝑁,𝑄, 1/𝜀, log𝑇) steps, we have ∥𝑨 − 𝑸∥2𝜇 ≤ 𝜀 and ∥𝑽 − 𝑷∥2𝜇 ≤ 𝜀 with prob-
ability at least 1 − 𝛿 and the numbers of samples used before and after T1 are poly(𝑇, 𝛿) and
poly(𝑁,𝑄, 1/𝜀, log𝑇, 𝛿), respectively.

The overall strategy is analyzing the population process and then controlling the distance between the
mini-batch trajectory and the population process2. In Section 3.1, we discuss the key properties of the
population process that simplify the analysis. After that, we describe the dynamics of the algorithm
and the signal-noise-ratio (SNR) in each of the three stages of Algorithm 1 in Section 3.2∼3.4.

3.1 The population process

In this subsection, we analyze the behavior of the population process and the evolution of the
signal-noise ratio. More details can be found in Appendix C, where the so-called population projected
process are defined and rigorously analyzed.
For ease of presentation, we assume 𝜆 = 0 and access to the population loss L := E 𝑙. In other words,
we consider the projected preconditioned gradient descent. By Lemma B.8, the dynamics of the
population process is controlled by

𝑽𝜏+1 = 𝑽𝜏 − 𝜂𝑉
(
∥𝑨∥2𝜇

(
𝑽 − 𝝁1⊤

)
− ⟨𝑸, 𝑨⟩𝜇

(
𝑷 − 𝝁1⊤

) )
,

𝑨𝜏+1 = 𝑨𝜏 − 𝜂𝐴
((
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝒂 (𝑘 ) − 1

𝑇

)
−

(
⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2

) (
𝒒 (𝑘 ) − 1

𝑇

))
.

(7)

One can prove via induction on 𝜏 that 𝑽 (resp. 𝑨) always stays on the straight line crossing 𝝁1⊤ and
𝑷 (resp. 11⊤/𝑇 and 𝑸). In other words, there exists some time-dependent real numbers 𝛼𝑉,𝜏 , 𝛼𝐴,𝜏 ,
𝛽𝑉,𝜏 := 1−𝛼𝑉,𝜏 , 𝛽𝐴,𝜏 := 1−𝛼𝐴,𝜏 such that 𝑽𝜏 = 𝛼𝑉,𝜏𝑷 + 𝛽𝑉,𝜏𝝁1⊤ and 𝑨𝜏 = 𝛼𝐴,𝜏𝑸 + 𝛽𝐴,𝜏11⊤/𝑇 .
The same calculation yields the following equations that govern the dynamics of 𝛼𝑉 and 𝛼𝐴:

𝛼𝑉,𝜏+1 = 𝛼𝑉,𝜏 + 𝜂𝑉𝐾𝑄 (1 − 𝛼𝐴𝛼𝑉 ) 𝛼𝐴 + 𝜂𝑉
1 − 𝛼𝑉
𝑇

,

𝛼𝐴,𝜏+1 = 𝛼𝐴,𝜏 + 𝜂𝐴𝐾𝑃 (1 − 𝛼𝑉𝛼𝐴) 𝛼𝑉 ,
where 𝛼𝑉,0 = 𝛼𝐴,0 = 0, 𝐾𝑃 := ∥𝑷∥2𝜇 − ∥𝝁∥2 ≳ 1/𝑁 and 𝐾𝑄 := ∥𝑸∥2𝜇 − 1/𝑇 ≳ 1/𝑄. Choose
𝜂𝑉 = 𝜂/𝐾𝑄 and 𝜂𝐴 = 𝜂/𝐾𝑃 , and we can write the above in matrix form as[

𝛼𝑉,𝜏+1
𝛼𝐴,𝜏+1

]
= 𝜂(1 − 𝛼𝐴𝛼𝑉 )

[
0 1
1 0

] [
𝛼𝑉,𝜏
𝛼𝐴,𝜏

]
+ 𝜂

𝐾𝑄

[
(1 − 𝛼𝑉 )/𝑇

0

]
. (8)

2Strictly speaking, what we actually control is the distance of the mini-batch trajectory to the subspace the
population process lies. This allows us to prevent the potential exponential growth of the error caused by error
compounding in the analysis. For details on this technique, see Appendix C.
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Hence, in order to analyze the population process, it suffices to analyze the above 2-dimensional ODE.
In what follows, when we say the signal, we usually refer to these 𝛼’s or some quantities whose size
is proportional to them. In particular, as one can see from (8), the size of the expected gradients is
proportional to 𝛼𝑉 and/or 𝛼𝐴3.
Note that when both 𝛼𝑉 , 𝛼𝐴 are still small, the population dynamics of 𝛼𝑉 , 𝛼𝐴 are a linear system
with coefficient matrix 𝜂

[ 0 1
1 0

]
and drift

[
𝜂𝑇/𝐾𝑄

0

]
. The drift term will provide a small initial signal

that guides the process toward the correct direction and then the linear term will amplify this signal.
Since the linear term is close to 0 at initial and the initial signal provided by the drift term has order
1/𝑇 , we should expect that poly𝑇 samples are necessary to distinguish it from noises (Stage 1). After
the signal becomes reasonably large, the first term will have order 1/poly(𝑁,𝑄), and we can then
rely on it (combined with the 𝑙1-regularization) instead of the drift term to learn the model (Stage 2).

3.2 Stage 1: boosting the signal

At initialization, we have 𝛼𝑉 = 𝛼𝐴 = 0. We define Stage 1 to be the phase until at least one of them
has grown from 0 to some small 𝜎1 = 1/poly(𝑁,𝑄). Note that in this stage, the mini-batch version
of (8) is approximately equivalent to[

𝛼𝑉,𝜏+1
𝛼𝐴,𝜏+1

]
≈ 𝜂

[
0 1
1 0

] [
𝛼𝑉,𝜏
𝛼𝐴,𝜏

]
+ 𝜂

𝐾𝑄

[
1/𝑇
0

]
+ 𝜺noise + 𝜺approx, (9)

where 𝜺noise and 𝜺approx represent the errors introduced by the difference between the mini-batch
and population gradients, and the fact that we are not exactly on the population trajectory. If we had
infinite amount of samples so that both 𝜺noise and 𝜺approx were 0, then the second term on the RHS
of (9) could provide a small positive signal to 𝛼 and the first term would quickly boost it to 𝜎1 within
T1 = log(𝑇)/𝜂 iterations. In order for the above analysis to work, we need both 𝜺noise and 𝜺approx
to be at least 𝑂 (1)/𝑇 small. Since, unfortunately, 𝜺noise does not scale with 1/𝑇 , we need poly(𝑇)
samples to ensure these conditions.
We conjecture that this poly(𝑇) dependence is unavoidable (when only a polynomial amount of
computing time is available). That is because around the initialization, the only signal comes from
the second term and the first term amplifies whatever the second term provides, even if it has been
corrupted by the errors. It either takes poly(𝑇) fresh samples each step to reveal the signal or poly(𝑇)
steps (whence also poly(𝑇) samples) for the random noises to (hopefully) cancel with each other.

3.3 Stage 2: learning the model

We know that at the end of Stage 1, at least one of 𝛼𝑉 and 𝛼𝐴 is 𝜎1 = 1/poly(𝑄, 𝑁) large. Hence, one
may expect that the signal is 1/poly(𝑄, 𝑁) large now so that we no longer need to make the noises
1/𝑇 small and therefore, only poly(𝑁,𝑄) samples are needed. Unfortunately, this argument will not
work directly, since the variance of the mini-batch gradients scales with 𝑇 .4 Therefore, we still need
poly(𝑇) samples to reduce the squared ℓ2-norm of 𝜺noise from Ω(𝑇) to 1/poly(𝑄, 𝑁). To address
this issue, we introduce the ℓ1-regularizer and use a variant of proximal gradient descent.
The idea is, while the concentration in the ℓ2 sense is difficult, controlling the ℓ∞-error is easy as
every entry of ∇𝒂 (𝑘) 𝑙 is bounded whence subgaussian. As a result, we can make the coordinate-
wise difference between the population and mini-batch gradients 1/poly(𝑁,𝑄) small using only
poly(𝑁,𝑄) log𝑇 samples by a standard concentration argument. Moreover, we have (cf. the proof of
Lemma E.3)

−E 𝜕
𝑎
(𝑘)
𝑡

𝑙 = 𝜇𝑘𝛼𝑉𝐾𝑃

(
𝑞
(𝑘 )
𝑡 − 𝛼𝑉𝑎

(𝑘 )
𝑡

)
= 𝜇𝑘𝛼𝑉𝐾𝑃 ×

{
Ω(1/𝑄), if 𝑞 (𝑘 )𝑡 ≠ 0,
𝑂 (𝛼𝑉𝑎 (𝑘 )𝑡 ), if 𝑞 (𝑘 )𝑡 = 0.

(10)

Thus, as long as 𝛼𝑉 ≥ 1/poly(𝑁,𝑄), the ℓ∞-norm of the gradient noise being small is enough to
create a separation between those useful entries (𝑞 (𝑘 )𝑡 ≠ 0) and useless entries (𝑞 (𝑘 )𝑡 = 0) and ensure
the ℓ2-error of those 𝑄 useful entries is small.

3We will often drop the time subscript 𝜏 and write 𝛼𝑉 := 𝛼𝑉,𝜏 for simplicity.
4It is possible almost explicitly to compute the covariance matrix through some tedious calculation. Intuitively,

the reason it scale with 𝑇 is ∇𝒂 (𝑘) 𝑙 has 𝑇 entries with most of them almost uncorrelated in a certain sense.
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The above analysis suggests removing all small entries from the gradient will work. Now, we
claim that ℓ1-regularization and proximal gradient descent naturally implement this strategy, at least
approximately. We believe softmax-based attention layers also automatically implement this strategy.
See Section 5 for more discussion on the relationship between our model and softmax transformers.
Note that, at the end of Stage 1 and after the thresholding-projection step — which is approximately
equivalent to running one proximal step first — we know that all useful 𝑎 (𝑘 )𝑡 are at least Ω(𝛼𝑉/𝑄) =
1/poly(𝑁,𝑄), while all useless entries are of size 𝑂 (1)/𝑇 . By our previous discussion, we know
that if 𝜆 is chosen appropriately, with poly(𝑁,𝑄, log𝑇) samples, the gradients w.r.t. those useful
entries can be made approximately correct, while the gradients w.r.t. those useless entries are much
smaller than 𝜆. Thus, after one gradient step, the absolute value of each of those useless 𝑎 (𝑘 )𝑡 is still
much smaller than 𝜆. As a result, they will be set to 0 in the proximal step (and to 𝑂 (1/𝑇) after the
projection step), which is equivalent to filtering out all those entries, up to a small bias. Therefore,
the proximal gradient updates stay close to the population trajectory, and the growth of the signals
𝛼𝐴, 𝛼𝑉 can be analyzed using the population dynamics.
We end Stage 2 when (𝛼𝑉 + 𝛼𝐴)/2 ≈ 1. Similar to Stage 1, this also only takes T2 = �̃� (1/𝜂) steps.
We also show that the difference between the mini-batch trajectory and the “population trajectory”
can decrease to a small value (cf. Lemma E.10). This allows us to decouple the error introduced by
Stage 1 and the target accuracy. We defer the proof details to Appendix E.

3.4 Stage 3: final rounding and convergence

The purpose of Stage 3 is to fix a minor issue regarding |𝛼𝑉 − 𝛼𝐴 |. Taylor expand (8) around
(𝛼𝐴, 𝛼𝑉 ) = (1, 1) and one will notice that although (𝛼𝑉 + 𝛼𝐴)/2 can converge to 1 at a linear rate
(and the approximation error also decreases exponentially fast), the convergence rate of 𝛼𝐴 − 𝛼𝑉 is
much slower, and the process will get stuck around (1 + 𝛿, 1 − 𝛿) for some small nonzero 𝛿, instead
of converging to (1, 1). To accelerate this process, we directly round 𝑨 via normalization, which is
possible only after the approximation error becomes small in Stage 2. Then we freeze 𝑨 and train 𝑽
to the desired accuracy. More details about this stage can be found in Appendix F.

4 Results for transfer learning

The transferability of neural networks and transformers and their benefits have been widely observed
and studied in both practice and theory. It is often assumed that the downstream and pretraining tasks
share a common structure or representations/features, and these models can learn these common
structures during training, and then leverage them in fine-tuning.
In this section, we offer a different perspective: as long as there is a (potentially small) nontrivial
correlation between the pretraining and downstream tasks, the pretrained model can be used to provide
a nonzero initial signal, allowing us to bypass the initial sample-intensive signal-boosting stage.

Formally, we consider the following setting. Let �̂� be the transition matrix of the pretraining task and
(𝑷,𝑸) the transition matrix and 𝑸-matrix of the downstream task. We still assume Assumption 2.1.
In addition, we assume �̂� and 𝑷 share the same stationary distribution 𝝁,

�̂�2
𝜇
= Θ(1) ∥𝑷∥2𝜇 and〈

�̂�, 𝑷
〉
𝜇
− ∥𝝁∥2 ≥ ∥𝝁∥2 . The last condition can be viewed as the transfer learning version of condition

(c) of Assumption 2.1. Note that we allow the correlation between �̂� and 𝑷 to be as small as 𝑜(1).
Theorem 4.1 (informal version of Theorem H.3). Consider the above setting. Initialize 𝑨 = 11⊤/𝑇 ,
𝑽 = 𝜃 �̂� + (1 − 𝜃)𝝁1⊤ for some small 𝜃 > 0, and run one step of gradient update on 𝑨. Then,
running Algorithm 1 from Stage 2 allows us to recover (𝑷,𝑸) to 𝜀-accuracy with high probability
with poly(𝑁,𝑄, 1/𝜀, log𝑇) samples.

To intuitively see why using poly(𝑁,𝑄, 1/𝜀, log𝑇) samples is possible, recall from (9) that the reason
we need poly(𝑇) samples in Stage 1 is the signal is additive and has order𝑂 (1/𝑇), so we need the size
of the noise to be at most 𝑂 (1/𝑇). On the other hand, when we initialize 𝑽 = 𝜃 �̂� + (1 − 𝜃)𝝁1⊤, we
have 𝛼𝑉 ≥ Θ(𝜃/(𝑁𝐾𝑃)) ≫ 1/𝑇 . Then we can rely on 𝛼𝑉 , instead of the 1/𝑇-sized additive signal,
to boost the signal of 𝛼𝐴 to 𝜔(1/𝑇) in one step, which leads to a sample complexity that depends on
𝛼𝑉 instead of the 1/𝑇-sized additive signal. Then, we can reuse the analysis of Stage 2 and 3 to show
that the downstream (𝑷,𝑸) can be approximately recovered using poly(𝑁,𝑄, 1/𝜀, log𝑇).
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Note that unlike the case of training from scratch, when performing transfer learning, the initial
approximation error ∥𝚫𝑉 ∥𝜇, i.e., the distance between 𝑽 and its population projection, can be much
larger than the signal 𝛼𝑉 , and it might seem unreasonable to expect that we can leverage the small
signal in the presence of a large approximation error. To handle this issue, we show that the influence
of ∥𝚫𝑉 ∥2𝜇 on the dynamics scales with 𝛼𝐴(≈ 𝛼𝑉 ), which is small. In addition, we also show that
as long as 𝛼𝐴 is bounded away from 0 and the batch size is large, the approximation error will not
grow. This allows us to ignore the approximation errors in the signal-boosting stage until we enter the
regime of the Stage 2 analysis.

5 Experiments and relationship with softmax transformers
This section contains our experimental results. We also discuss the relationship between our linear
model and the usual softmax transformers.

Experiment setup We use the same shallow transformer model (2) to train on the synthetic data.
The data distribution follows the SCB model (1) with a randomly sampled transition matrix 𝑷 together
with its stationary 𝜇, and the ground truth attention pattern 𝑸. We choose the number of states 𝑁 = 3,
sparsity 𝑄 = 2, and the sequence length 𝑇 = 5000 ≫ 𝑁,𝑄. We use a batch size 𝐵 = 64 to run the
online projected proximal gradient descent with 𝜆 = 1e-5 and the vanilla SGD for T = 1000 iterations.
Through the signal boosting stage 𝜏 ∈ [0, 400], we use 𝜂1 = 0.01 to accelerate the process. After
𝜏 > 400, we use 𝜂2 = 0.005 for further improvement. For SGD, we add another set of experiments
with 𝜂′2 = 0.001 to prevent potential instability. For more details, see Appendix I.

5.1 Convergence
Our experiments (cf. Fig. 1) show that after switching to proximal gradient descent after Stage 1 (the
signal-boosting stage), both ∥𝑷 − 𝑽∥𝜇 and ∥𝑨 − 𝑸∥𝜇 decrease faster than SGD. The final distance
to the ground-truth after normalization gets close to 0, and the similarity between the ground truth
and parameters quickly converges close to 1. In comparison, SGD struggles to converge with the
same small batch size and large learning rate, while the convergence rate is too slow when a smaller
learning rate is used. This phenomenon verifies our theory that the variance of the original stochastic
gradient will be too large for SGD to converge when 𝑇 ≫ 𝑄, 𝑁 , while proximal gradient descent with
an ℓ1 regularizer can resolve this issue.
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Figure 1: Convergence analysis: We plot the distance to the ground truth ∥𝑽 − 𝑷∥𝜇, ∥𝑨 − 𝑸∥𝜇 in
different settings. After stage 1 ends at 𝜏 = 400 (when 𝛼𝐴, 𝛼𝑉 ≈ 0.1), we use vanilla SGD and our
proximal gradient method to train the transformer. Compared with SGD, the ℓ1 regularized proximal
gradient descent quickly converges, and the final solution (the star) recovers the ground truth. SGD
either suffers from the large gradient variance (when 𝜂2 is large) or a slow convergence rate (small 𝜂′2).

5.2 Relationship between our model and softmax transformers

We claim that they have our linear model and softmax transformers have qualitatively similar behaviors:
there will be a sample-intensive initial stage, and after the model and the target have a nontrivial
correlation, proximal gradient descent/SGD will become much more sample efficient.

For ease of presentation, in the following, we will assume 𝑁 = 1, write 𝒂 := 𝒂 (1) , and assume the
ground-truth 𝒒 := 𝒒 (1) is 𝒆1 = (1, 0, . . . , 0). Most of our argument below can be generalized to the
general setting at least at a heuristic level. Recall that our linear model is 𝑓 (𝑿;𝑽, 𝒂) = 𝑽𝑿𝒂. By a
softmax transformer, we mean the model 𝑓𝜎 (𝑿;𝑽, 𝒘) = 𝑽𝑿𝜎(𝒘) =: 𝑽𝑿𝒂𝜎 where 𝜎 is the softmax
function and 𝒘 ∈ R𝑇 is the trainable first-layer weights.
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Figure 2: Similarity between the softmax and linear attention. We train two transformers with
(1) (Left) softmax attention and (2) (Middle) linear attention layer on the SCB tasks with the same
ground-truth (𝑇 = 50, 𝑁 = 10, 𝑄 = 2). The attention pattern and the value matrix (learned transition
matrix) are very similar (left two plots) and they converge to approximately the same loss (right plot).

Let 𝑙 denote the (per-sample) loss. We have ∇𝒘 𝑙 ( 𝑓𝜎 (𝑿)) =
(
diag(𝒂𝜎) − 𝒂𝜎𝒂

⊤
𝜎

)
(𝑽𝑿)⊤∇𝑙 ( 𝑓𝜎 (𝑿)).

As a result, the dynamics of the attention weights are controlled by

𝒂(𝜏 + 1) ≈ 𝒂(𝜏) − 𝜂
(
𝑰 − 11⊤

𝑇

)
(𝑽𝑿)⊤∇𝑙 ( 𝑓 (𝑿)), in our linear model,

𝒂𝜎 (𝜏 + 1) ≈ 𝒂𝜎 (𝜏) − 𝜂
(
diag(𝒂𝜎) − 𝒂𝜎𝒂

⊤
𝜎

)2 (𝑽𝑿)⊤∇𝑙 ( 𝑓𝜎 (𝑿)), in softmax transformers.

In other words, the main difference is that there will be a preconditioning matrix (diag(𝒂) − 𝒂𝒂⊤)2 in
the dynamics of softmax transformers.
Near initialization, i.e., when the attention pattern is still close to the uniform attention, we have(
diag(𝒂𝜎) − 𝒂𝜎𝒂

⊤
𝜎

)2 ≈ 1
𝑇2

(
𝑰 − 11⊤

𝑇

)
. In other words, our linear model and softmax transformers

are approximately equivalent up to a change in learning rates.
Now, suppose that there is a nontrivial correlation between 𝒂𝜎 and 𝒒 = 𝒆1, say, 𝑎𝜎,1 is a small constant
while all other entries are𝑂 (1/𝑇). In this case, we have

(
diag(𝒂𝜎) − 𝒂𝜎𝒂

⊤
𝜎

)2 ≈ 𝑎𝜎,1 (1−𝑎𝜎,1)𝒆1𝒆
⊤
1 +

𝑂 (1/𝑇). Effectively, softmax transformers automatically adjust the learning rate according to 𝑎𝜎,𝑡
and roughly ignore those positions with a small attention weight to stabilize the gradients. Note that
this is also what ℓ1-regularization does in our algorithm. In fact, mimicking this behavior is one of the
motivations of using ℓ1-regularization in our linear setting. We run further experiments to highlight
the resemblance between softmax attention and our linear attention model (Figure 2).

6 Conclusion and discussion
In this paper, we propose the Sparse Contextual Bigram (SCB) model, which is a natural extension
of the bigram model, that requires both contextual and global information. Then, we analyze the
problem of learning a SCB model using a one-layer linear transformer and a gradient-based algorithm.
We prove quantitative bounds on the convergence rate and the sample complexity. In particular, we
show when trained from scratch, the training process can be split into two stages, where the first stage
uses a lot of samples to boost the signal from zero to a nontrivial value, while the second stage is
much more sample-efficient. Then, we consider the problem in a transfer learning setting and prove
that when there is a nontrivial correlation between the pretraining and downstream tasks, the first
sample intensive stage can be bypassed.
Our data-generating model and results also lead to some interesting future directions. For example,
can we improve the sample complexity of the first stage? What can we gain if the datapoints are
sequences generated by repeatedly applying the SCB model?
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A Limitation

In this section, we briefly discuss the limitation of this work.
First, we consider one-layer single-head linear transformers with certain (blocks of the) weights
merged or fixed. Though this simplification are widely used in theoretical works and linear and
nonlinear transformers share some training behaviors (Ahn et al., 2023), this architecture is still very
far away from the transformers used in practice.
We also use a non-standard training algorithm that has several manually separated stages. Some
parts of the modification are made to address certain issues of linear transformers, while the other
are made to simplify the analysis. It would be interesting (and more challenging) to consider more
natural/practical training algorithms.
Finally, for our data-generating model, we only use it to generate one next token, instead of repeatedly
apply SCB on the previous generated results to obtain a long sequence. In our setting, the contextual
tokens are independent. While this simplifies the analysis, it deviates from how natural language
works.

B Probabilities, expectations, and variances

We collect in this section closed-form formulas for the probabilities of certain events, and the
expectations and variances of some random vectors of interest. All proofs are deferred to the end of
this section.

B.1 Probabilities

Lemma B.1. For any 𝑡 ∈ [𝑇] and 𝑘, 𝑛, 𝑚 ∈ [𝑁], we have

P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚 | 𝑥𝑇+1 = 𝑘) = 𝑞 (𝑘 )𝑡 𝑃𝑛,𝑚𝜇𝑚 +
(
1 − 𝑞 (𝑘 )𝑡

)
𝜇𝑛𝜇𝑚.

Lemma B.2. For any 𝑠 ≠ 𝑡 ∈ [𝑇], 𝑘, 𝑛, 𝑚, 𝑙 ∈ [𝑁], we have

P(𝑥𝑜 = 𝑛 | 𝑥𝑇+1 = 𝑘, 𝑥𝑠 = 𝑚, 𝑥𝑡 = 𝑙) = 𝑞 (𝑘 )𝑠 𝑃𝑛,𝑚 + 𝑞 (𝑘 )𝑡 𝑃𝑛,𝑙 +
(
1 − 𝑞 (𝑘 )𝑠 − 𝑞 (𝑘 )𝑡

)
𝜇𝑛.

B.2 Gradient and Expectations

Lemma B.3. Suppose the last input token 𝒙𝑇+1 and 𝒂 := 𝑨𝒙𝑇+1. The gradients of the objective are

∇𝑽 𝑙 =
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
(𝑿𝒂)⊤,

∇𝒂 (𝑘) 𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
Lemma B.4. For any 𝑘 ∈ [𝑁] and 𝑠, 𝑡 ∈ [𝑇], we have

E(𝑘 ) [𝒆𝑥𝑠 𝒆⊤𝑥𝑡 ] = E[𝒆𝑥𝑠 𝒆
⊤
𝑥𝑡
] =

{
diag(𝝁), 𝑠 = 𝑡,

𝝁𝝁⊤, 𝑠 ≠ 𝑡.

Lemma B.5. For any 𝑽 ∈ R𝑁×𝑁 with 𝑽𝝁 = 𝝁 and 𝑠, 𝑡 ∈ [𝑇], we have
𝑁∑︁
𝑛=1
E[𝑉𝑛,𝑥𝑠𝑉𝑛,𝑥𝑡 ] =

{
∥𝑽∥2𝜇 , 𝑠 = 𝑡,

∥𝝁∥2 , 𝑠 ≠ 𝑡.

Lemma B.6. For any 𝑽 ∈ R𝑁×𝑁 with 𝑽𝝁 = 𝝁 and 𝑡 ∈ [𝑇], we have

E(𝑘 )𝑉𝑥𝑜 ,𝑥𝑡 = 𝑞
(𝑘 )
𝑡 ⟨𝑽, 𝑷⟩𝜇 +

(
1 − 𝑞 (𝑘 )𝑡

)
∥𝝁∥2 .

Lemma B.7 (Expected gradients).

E∇𝑽 𝑙 = ∥𝑨∥2𝜇 𝑽diag(𝝁) +
(
1 − ∥𝑨∥2𝜇

)
𝝁𝝁⊤
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− ⟨𝑸, 𝑨⟩𝜇 𝑷diag(𝝁) −
(
1 − ⟨𝑸, 𝑨⟩𝜇

)
𝝁𝝁⊤,

E∇𝒂 (𝑘) 𝑙 = 𝜇𝑘
(
∥𝑽∥2𝜇 − ∥𝝁∥2

)
𝒂 (𝑘 ) + 𝜇𝑘1 ∥𝝁∥2

− 𝜇𝑘𝒒 (𝑘 ) ⟨𝑽, 𝑷⟩𝜇 − 𝜇𝑘
(
1 − 𝒒 (𝑘 )

)
∥𝝁∥2 .

Lemma B.8 (Expected preconditioned gradients).

E ∇̂𝑽 𝑙 = ∥𝑨∥2𝜇
(
𝑽 − 𝝁1⊤

)
− ⟨𝑸, 𝑨⟩𝜇

(
𝑷 − 𝝁1⊤

)
,

E ∇̂𝒂 (𝑘) 𝑙 =
(
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝒂 (𝑘 ) − 1

𝑇

)
−

(
⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2

) (
𝒒 (𝑘 ) − 1

𝑇

)
.

B.3 Deferred proofs of this section

B.3.1 Probabilities

Proof of Lemma B.1. For notational simplicity, define 𝒙−𝑡 = (𝑥1, . . . , 𝑥𝑡−1, 𝑥𝑡+1, . . . , 𝑥𝑇 ). We com-
pute

P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚 | 𝑥𝑇+1 = 𝑘)
=

∑︁
�̂�∈[𝑁 ]𝑇−1

P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚, 𝒙−𝑡 = �̂� | 𝑥𝑇+1 = 𝑘)

=
∑︁

�̂�∈[𝑁 ]𝑇−1

P(𝑥𝑜 = 𝑛 | 𝑥𝑡 = 𝑚, 𝒙−𝑡 = �̂�, 𝑥𝑇+1 = 𝑘)

× P(𝑥𝑡 = 𝑚, 𝒙−𝑡 = �̂� | 𝑥𝑇+1 = 𝑘).
By the independence assumption, we have P(𝑥𝑡 = 𝑚, 𝒙−𝑡 = �̂� | 𝑥𝑇+1 = 𝑘) = P(𝑥𝑡 = 𝑚, 𝒙−𝑡 = �̂�) =
P(𝑥𝑡 = 𝑚) P(𝒙−𝑡 = �̂�). For the first factor, we have P(𝑥𝑜 = 𝑛 | 𝑥𝑡 = 𝑚, 𝒙−𝑡 = �̂�, 𝑥𝑇+1 = 𝑘) =
𝑄
(𝑘 )
𝑡 𝑃𝑛,𝑚 +

∑
𝑠≠𝑡 𝑄

(𝑘 )
𝑠 𝑃𝑛,�̂�𝑠 . Therefore,

P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚 | 𝑥𝑇+1 = 𝑘)

=
∑︁

�̂�∈[𝑇 ]𝑁−1

(
𝑄
(𝑘 )
𝑡 𝑃𝑛,𝑚 +

∑︁
𝑠≠𝑡

𝑄
(𝑘 )
𝑠 𝑃𝑛,�̂�𝑠

)
P(𝑥𝑡 = 𝑚) P(𝒙−𝑡 = �̂�)

=
©«𝑄 (𝑘 )𝑡 𝑃𝑛,𝑚 +

∑︁
𝑠≠𝑡

𝑄
(𝑘 )
𝑠

∑︁
�̂�∈[𝑇 ]𝑁−1

𝑃𝑛,�̂�𝑠 P(𝒙−𝑡 = �̂�)ª®¬ 𝜇𝑚.
Note that for any 𝑠 ≠ 𝑡∑︁

�̂�∈[𝑇 ]𝑁−1

𝑃𝑛,�̂�𝑠 P(𝒙−𝑡 = �̂�) =
∑︁

�̂�−𝑠∈[𝑇 ]𝑁−2

(
𝑁∑̂︁

𝑚𝑠=1
𝑃𝑛,�̂�𝑠 𝜇�̂�𝑠

)
P(𝒙−𝑠,−𝑡 = �̂�−𝑠) = 𝜇𝑛.

Thus,

P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚 | 𝑥𝑇+1 = 𝑘) =
(
𝑞
(𝑘 )
𝑡 𝑃𝑛,𝑚 +

∑︁
𝑠≠𝑡

𝑞
(𝑘 )
𝑠 𝜇𝑛

)
𝜇𝑚

= 𝑞
(𝑘 )
𝑡 𝑃𝑛,𝑚𝜇𝑚 +

(
1 − 𝑞 (𝑘 )𝑡

)
𝜇𝑛𝜇𝑚.

Proof of Lemma B.2. For notational simplicity, let 𝒙−𝑠,−𝑡 denote the vector obtained by removing
the 𝑠, 𝑡 coordinates from 𝒙. Then, we compute

P(𝑥𝑜 = 𝑛 | 𝑥𝑇+1 = 𝑘, 𝑥𝑠 = 𝑚, 𝑥𝑡 = 𝑙)
=

∑︁
�̂�∈[𝑁 ]𝑇−2

P(𝑥𝑜 = 𝑛, 𝒙−𝑠,−𝑡 = �̂� | 𝑥𝑇+1 = 𝑘, 𝑥𝑠 = 𝑚, 𝑥𝑡 = 𝑙)
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=
∑︁

�̂�∈[𝑁 ]𝑇−2

P(𝑥𝑜 = 𝑛 | 𝑥𝑇+1 = 𝑘, 𝑥𝑠 = 𝑚, 𝑥𝑡 = 𝑙, 𝒙−𝑠,−𝑡 = �̂�) P(𝒙−𝑠,−𝑡 = �̂�)

=
∑︁

�̂�∈[𝑁 ]𝑇−2

©«𝑞 (𝑘 )𝑠 𝑃𝑛,𝑚 + 𝑞 (𝑘 )𝑡 𝑃𝑛,𝑙 +
∑︁
𝑖∉{𝑠,𝑡 }

𝑞
(𝑘 )
𝑖
𝑃𝑛,�̂�𝑖

ª®¬P(𝒙−𝑠,−𝑡 = �̂�)

= 𝑞
(𝑘 )
𝑠 𝑃𝑛,𝑚 + 𝑞 (𝑘 )𝑡 𝑃𝑛,𝑙 +

(
1 − 𝑞 (𝑘 )𝑠 − 𝑞 (𝑘 )𝑡

)
𝜇𝑛.

B.3.2 Expectations

Proof of Lemma B.3. For each sample 𝑿, we have

𝑙 (𝒙, 𝑥𝑇+1, 𝑥𝑜;𝑽, 𝑨) :=
1
2

𝒆𝑥𝑜 − 𝑽𝑿𝑨𝒆𝑥𝑇+1
2
.

and 𝒂 Then we have the matrix differential:

d𝑙 =
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)⊤d𝑽𝑿𝒂 +
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)⊤
𝑽𝑿d𝒂

Therefore,

∇𝑽 𝑙 =
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
(𝑿𝒂)⊤,

∇𝒂 (𝑘) 𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
Proof of Lemma B.4. When 𝑠 ≠ 𝑡, we have E(𝑘 ) [𝒆𝑥𝑠 𝒆⊤𝑥𝑡 ] = E

(𝑘 ) [𝒆𝑥𝑠 ]E(𝑘 ) [𝒆⊤𝑥𝑡 ] = 𝝁𝝁⊤. When 𝑠 = 𝑡,
we have E(𝑘 ) [𝒆𝑥𝑡 𝒆⊤𝑥𝑡 ] =

∑𝑁
𝑘=1 𝜇𝑘𝒆𝑘𝒆

⊤
𝑘
= diag(𝝁).

Proof of Lemma B.5. When 𝑠 ≠ 𝑡, we have

𝑁∑︁
𝑛=1
E[𝑉𝑛,𝑥𝑠𝑉𝑛,𝑥𝑡 ] =

𝑁∑︁
𝑛=1

(
E𝑉𝑛,𝑥𝑠

)2
=

𝑁∑︁
𝑛=1

(
𝑁∑︁
𝑘=1

𝜇𝑘𝑉𝑛,𝑘

)2

=

𝑁∑︁
𝑘,𝑙=1

𝜇𝑘𝜇𝑙

𝑁∑︁
𝑛=1

𝑉𝑛,𝑘𝑉𝑛,𝑙 = 𝝁⊤𝑽⊤𝑽𝝁 = ∥𝝁∥2 .

When 𝑠 = 𝑡, we have
∑𝑁
𝑛=1 E𝑉

2
𝑛,𝑥𝑡

=
∑𝑁
𝑛=1

∑𝑁
𝑘=1 𝜇𝑘𝑉

2
𝑛,𝑘

= ∥𝑽∥2𝜇 .

Proof of Lemma B.6. Recall Lemma B.1. Then, we compute

E(𝑘 )𝑉𝑥𝑜 ,𝑥𝑡 =
𝑁∑︁

𝑛,𝑚=1
𝑉𝑛,𝑚 P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚 | 𝑥𝑇+1 = 𝑘)

= 𝑞
(𝑘 )
𝑡

𝑁∑︁
𝑛,𝑚=1

𝑉𝑛,𝑚𝑃𝑛,𝑚𝜇𝑚 +
(
1 − 𝑞 (𝑘 )𝑡

) 𝑁∑︁
𝑛,𝑚=1

𝑉𝑛,𝑚𝜇𝑛𝜇𝑚

= 𝑞
(𝑘 )
𝑡 ⟨𝑽, 𝑷⟩𝜇 +

(
1 − 𝑞 (𝑘 )𝑡

)
𝝁⊤𝑽𝝁.

Proof of Lemma B.7. First, we consider ∇𝑽 𝑙 =
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
(𝑿𝒂)⊤, and compute E(𝑿𝒂) (𝑿𝒂)⊤

and E 𝒆𝑥𝑜 (𝑿𝒂)⊤. Write 𝑿𝒂 =
∑𝑇
𝑡=1 𝑎𝑡 𝒆𝑥𝑡 . Then, we have

E(𝑘 )
[
(𝑿𝒂) (𝑿𝒂)⊤

]
=

𝑇∑︁
𝑠,𝑡=1

𝑎
(𝑘 )
𝑠 𝑎

(𝑘 )
𝑡 E[𝒆𝑥𝑠 𝒆⊤𝑥𝑡 ]

16



=

𝑇∑︁
𝑡=1
(𝑎 (𝑘 )𝑡 )2 E[𝒆𝑥𝑡 𝒆⊤𝑥𝑡 ] +

∑︁
𝑠≠𝑡

𝑎
(𝑘 )
𝑠 𝑎

(𝑘 )
𝑡 E[𝒆𝑥𝑠 𝒆⊤𝑥𝑡 ]

=

𝒂 (𝑘 )2
diag(𝝁) +

(
1 −

𝒂 (𝑘 )2
)
𝝁𝝁⊤,

where the last line comes from Lemma B.4. Then, we compute

E(𝑘 ) [𝒆𝑥𝑜 (𝑿𝒂)⊤] =
𝑇∑︁
𝑡=1

𝑎
(𝑘 )
𝑡 E

(𝑘 ) [𝒆𝑥𝑜 𝒆⊤𝑥𝑡 ] =
𝑇∑︁
𝑡=1

𝑎
(𝑘 )
𝑡 [P(𝑥𝑜 = 𝑛, 𝑥𝑡 = 𝑚 | 𝑥𝑇+1 = 𝑘)]𝑛,𝑚∈[𝑁 ]

=

𝑇∑︁
𝑡=1

𝑎
(𝑘 )
𝑡

(
𝑞
(𝑘 )
𝑡 𝑷diag(𝝁) + (1 − 𝑞 (𝑘 )𝑡 )𝝁𝝁⊤

)
=

〈
𝒒 (𝑘 ) , 𝒂 (𝑘 )

〉
𝑷diag(𝝁) +

(
1 −

〈
𝒒 (𝑘 ) , 𝒂 (𝑘 )

〉)
𝝁𝝁⊤,

where the second line comes from Lemma B.1. Thus, for ∇𝑽 𝑙, we have

E∇𝑽 𝑙 = 𝑽
𝑁∑︁
𝑘=1

𝜇𝑘E
(𝑘 ) [(𝑿𝒂) (𝑿𝒂)⊤

]
−

𝑁∑︁
𝑘=1

𝜇𝑘E
(𝑘 ) [𝒆𝑥𝑜 (𝑿𝒂)⊤]

= ∥𝑨∥2𝜇 𝑽diag(𝝁) +
(
1 − ∥𝑨∥2𝜇

)
𝑽𝝁𝝁⊤ − ⟨𝑸, 𝑨⟩𝜇 𝑷diag(𝝁) −

(
1 − ⟨𝑸, 𝑨⟩𝜇

)
𝝁𝝁⊤.

Now, consider ∇𝒂 (𝑘) 𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
and compute E(𝑘 ) (𝑽𝑿)⊤ (𝑽𝑿) and

E(𝑘 ) (𝑽𝑿)⊤𝒆𝑥𝑖 . By Lemma B.5, for each 𝑠, 𝑡 ∈ [𝑇], we have

𝒆⊤𝑠 E
(𝑘 ) [(𝑽𝑿)⊤ (𝑽𝑿)]𝒆𝑡 = E(𝑘 ) [(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡 ] =

𝑁∑︁
𝑛=1
E𝑉𝑛,𝑥𝑠𝑉𝑛,𝑥𝑡 =

{
∥𝑽∥2𝜇 , 𝑠 = 𝑡,

∥𝝁∥2 , 𝑠 ≠ 𝑡.

In matrix form, this is

E(𝑘 ) (𝑽𝑿)⊤𝑽𝑿 =

(
∥𝑽∥2𝜇 − ∥𝝁∥2

)
𝑰 + 11⊤ ∥𝝁∥2 .

Then, by Lemma B.6, for each 𝑡 ∈ [𝑇], we have

𝒆⊤𝑡 E[(𝑽𝑿)⊤𝒆𝑥𝑜 ] = E(𝑘 ) [(𝑽𝒆𝑥𝑡 )⊤𝒆𝑥𝑜 ] = E(𝑘 )𝑉𝑥𝑜 ,𝑥𝑡
= 𝑞
(𝑘 )
𝑡 ⟨𝑽, 𝑷⟩𝜇 +

(
1 − 𝑞 (𝑘 )𝑡

)
∥𝝁∥2 .

In matrix for, this is
E[(𝑽𝑿)⊤𝒆𝑥𝑜 ] = 𝒒 (𝑘 ) ⟨𝑽, 𝑷⟩𝜇 +

(
1 − 𝒒 (𝑘 )

)
∥𝝁∥2 .

Combine these together, and we obtain

𝜇−1
𝑘 E∇𝒂 (𝑘) 𝑙 = E(𝑘 )

[
(𝑽𝑿)⊤𝑽𝑿

]
𝒂 (𝑘 ) − E(𝑘 )

[
(𝑽𝑿)⊤𝒆𝑥𝑜

]
=

(
∥𝑽∥2𝜇 − ∥𝝁∥2

)
𝒂 (𝑘 ) + 1 ∥𝝁∥2 − 𝒒 (𝑘 ) ⟨𝑽, 𝑷⟩𝜇 −

(
1 − 𝒒 (𝑘 )

)
∥𝝁∥2 .

Proof of Lemma B.8. Recall from Lemma B.7 that

E∇𝑽 𝑙 = ∥𝑨∥2𝜇 𝑽diag(𝝁) +
(
1 − ∥𝑨∥2𝜇

)
𝑽𝝁𝝁⊤

− ⟨𝑸, 𝑨⟩𝜇 𝑷diag(𝝁) −
(
1 − ⟨𝑸, 𝑨⟩𝜇

)
𝝁𝝁⊤,

E∇𝒂 (𝑘) 𝑙 = 𝜇𝑘
(
∥𝑽∥2𝜇 − ∥𝝁∥2

)
𝒂 (𝑘 ) + 𝜇𝑘1 ∥𝝁∥2

− 𝜇𝑘𝒒 (𝑘 ) ⟨𝑽, 𝑷⟩𝜇 − 𝜇𝑘
(
1 − 𝒒 (𝑘 )

)
∥𝝁∥2 .

17



For ∇𝑽 , we have

𝑽diag(𝝁)diag(1/𝝁)
(
𝑰 − 𝝁𝝁⊤

∥𝝁∥2

)
= 𝑽 − 𝝁𝝁⊤

∥𝝁∥2
,

𝑷diag(𝝁)diag(1/𝝁)
(
𝑰 − 𝝁𝝁⊤

∥𝝁∥2

)
= 𝑷 − 𝝁𝝁⊤

∥𝝁∥2
,

𝝁𝝁⊤diag(1/𝝁)
(
𝑰 − 𝝁𝝁⊤

∥𝝁∥2

)
= 𝝁1⊤ − 𝝁𝝁⊤

∥𝝁∥2
.

In particular, note that the 𝝁𝝁⊤/∥𝝁∥2 terms will cancel with each other. Thus, we have

E ∇̂𝑽 𝑙 = ∥𝑨∥2𝜇 𝑽 +
(
1 − ∥𝑨∥2𝜇

)
𝝁1⊤ − ⟨𝑸, 𝑨⟩𝜇 𝑷 −

(
1 − ⟨𝑸, 𝑨⟩𝜇

)
𝝁1⊤

= ∥𝑨∥2𝜇
(
𝑽 − 𝝁1⊤

)
− ⟨𝑸, 𝑨⟩𝜇

(
𝑷 − 𝝁1⊤

)
.

For ∇̂𝒂 (𝑘) 𝑙, we have

E ∇̂𝒂 (𝑘) 𝑙 =
(
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝑰 − 11⊤

𝑇

)
𝒂 (𝑘 ) −

(
𝑰 − 11⊤

𝑇

)
𝒒 (𝑘 ) ⟨𝑽, 𝑷⟩𝜇

+
(
𝑰 − 11⊤

𝑇

)
𝒒 (𝑘 ) ∥𝝁∥2

=

(
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝒂 (𝑘 ) − 1

𝑇

)
−

(
𝒒 (𝑘 ) − 1

𝑇

)
⟨𝑽, 𝑷⟩𝜇 +

(
𝒒 (𝑘 ) − 1

𝑇

)
∥𝝁∥2

=

(
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝒂 (𝑘 ) − 1

𝑇

)
−

(
⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2

) (
𝒒 (𝑘 ) − 1

𝑇

)
.

B.4 Concentration

In this section, we provide concentration inequalities for the gradients of the loss function. The
concentration is applied on the gradient noise term

𝒉𝑽 ,𝜏 :=
(
∇̂(𝐵)𝑽 𝑙 − E ∇̂𝑽 𝑙

)
𝒉𝑨,𝜏 :=

(
∇̂(𝐵)𝑨 𝑙 − E ∇̂𝑨𝑙

)
where ∇̂(𝐵)𝑽 𝑙 and ∇̂(𝐵)𝑨 𝑙 are the preconditioned empirical gradients computed from a batch of size 𝐵.
Here, we first consider the concentration of the original gradients:

∇𝑽 𝑙 =
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
(𝑿𝒂)⊤,

∇𝒂 (𝑘) 𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤
(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
and then consider the concentration of the preconditioned gradients. In this paper, we focus on ∥·∥𝜇
as the mostly used metric for the gradient matrices.
First we prove a naive concentration w.r.t. any random vector 𝒚 with bounded second moment with
any ∥·∥.
Lemma B.9. Fix 𝛿, 𝜀 > 0. Let 𝒚 be a 𝐷-dimensional random vector with E ∥𝒚∥2 ≤ 𝐺. Define
𝒚 (𝐵) := 𝐵−1 ∑𝐵

𝑖=1 𝒚𝑖 where (𝒚𝑖)𝑖 are i.i.d. versions of 𝒚. If

𝐵 ≥ 𝐺

𝛿𝜀2 ,

then with probability at least 1 − 𝛿, we have ∥𝒚 − E 𝒚∥ ≤ 𝜀.

Proof of Lemma B.9. Assume w.l.o.g. that E 𝒚 = 0. First, note that

E
𝒚 (𝐵)2

=
1
𝐵2

𝑁∑︁
𝑖, 𝑗=1
E

〈
𝒚𝑖 , 𝒚 𝑗

〉
=

1
𝐵2

𝑁∑︁
𝑖=1
E ∥𝒚𝑖 ∥2 ≤

𝐺

𝐵
.
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Hence, by the Markov inequality, we have

P
(𝒚 (𝐵) ≥ 𝜀) = P (𝒚 (𝐵)2

≥ 𝜀2
)
≤
E

𝒚 (𝐵)2

𝜀2 ≤ 𝐺

𝐵𝜀2 .

Thus, for fixed 𝜀, 𝛿 ∈ (0, 1), if we choose 𝐵 = 𝐺/(𝛿𝜀2), then we have with probability at least 1 − 𝛿,𝒚 (𝐵) ≤ 𝜀.
Now we upper bound the infinity norm of the preconditioned gradients to apply concentration.
Lemma B.10. Suppose that ∥Vec𝑽∥∞ = 𝑂 (1),𝑽 = �̃� + 𝚫𝑽 , 𝑨 = �̃� + 𝚫𝑨, where �̃� ∈ R𝑁×𝑁 is a
transition probability matrix, and in the attention matrix �̃� each column �̃� (𝑘 ) is a probability vector.
Moreover, ∥𝚫𝑨∥2𝐹 , ∥𝚫𝑽 ∥2𝐹 ≤ 𝑂 (1/𝑇). Then, we have∇̂𝒂 (𝑘) 𝑙∞ ≤ 𝑂 (𝑁), Vec∇̂𝑽 𝑙


∞ ≤ 𝑂 (𝑁)

Proof. We first consider the infinity norm of the original gradient. Recall that the gradient for 𝑽 and
𝑨 are

∇𝒂 (𝑘) 𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝑽𝑿𝒂 (𝑘 ) − 𝒆𝑥𝑜 )
∇𝑽 𝑙 =

(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
(𝑿𝒂)⊤

and the preconditioned gradient is:

∇̂(𝐵𝜏 )𝑽 𝑙 :=
(
𝑰𝑁 −

1𝑁1⊤
𝑁

𝑁

) (
∇(𝐵𝜏 )𝑽 𝑙

)
diag(1/𝝁)

(
𝑰𝑁 −

𝝁𝝁⊤

∥𝝁∥2

)
,

∇̂(𝐵𝜏 )
𝒂 (𝑘)

𝑙 :=
1
𝜇𝑘

(
𝑰𝑇 −

1𝑇1⊤
𝑇

𝑇

) (
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
.

We first consider the maximum absolute value in the original gradients. For ∇𝒂 (𝑘) 𝑙, we have1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝑽𝑿𝒂 (𝑘 ) − 𝒆𝑥𝑜 )

∞

≤
1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝑽𝑿𝒂 (𝑘 ) )


∞
+

1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝒆𝑥𝑜 )

∞

≤ max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

����� + max
𝑠∈[𝑇 ]

��(𝑽𝒆𝑥𝑠 )⊤𝒆𝑥𝑜
��

The first term can be upper-bounded in the following way:

max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

����� = max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡 +
𝑇∑︁
𝑡=1

𝚫𝒂,𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

�����
≤

(
1 +

𝑇∑︁
𝑡=1
∥𝚫𝒂,𝑡 ∥1

)
max
𝑠,𝑡

��(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡
��

≤ (1 +
√
𝑇 ∥𝚫𝒂,𝑡 ∥2)max

𝑠,𝑡

��(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡
��

Since 𝑽 = �̃� + 𝚫𝑽 and ∥𝚫𝑽 ∥2𝐹 , ∥𝚫𝑨∥2𝐹 ≤ 𝑂 (1/𝑇), we have max𝑠,𝑡
��(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

�� upper bounded by
𝑂 (1). Therefore

max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

����� ≤ 𝑂 (1)
And similarly, the second term max𝑠∈[𝑇 ]

��(𝑽𝒆𝑥𝑠 )⊤𝒆𝑥𝑜
�� can be bounded by 𝑂 (1) because the infinity

norm of 𝑽 is also upper bounded by 𝑂 (1). Therefore, we know ∥∇𝒂 (𝑘) 𝑙∥∞ ≤ 𝑂 (1).

Now we consider the preconditioned gradient ∇̂(𝐵𝜏 )
𝒂 (𝑘)

𝑙:

∥∇̂(𝐵𝜏 )
𝒂 (𝑘)

𝑙∥∞ =

 1
𝜇𝑘

(
𝑰𝑇 −

1𝑇1⊤
𝑇

𝑇

) (
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
∞
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≤
 1
𝜇𝑘

𝑰𝑇
(
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
∞
+

 1
𝜇𝑘

(1𝑇1⊤
𝑇

𝑇

) (
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
∞
≤ 𝑂 (𝑁)

since 𝜇𝑘 ≥ 𝑐
𝑁

for all 𝑘 ∈ [𝑁].

We use similar technique on ∇̂(𝐵𝜏 )𝑽 𝑙. First, we prove the infinity norm upper bound on the original
gradient.

∥Vec∇𝑽 𝑙∥∞ =
Vec

(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
(𝑿𝒂)⊤


∞

=
Vec (𝑽𝑿𝒂) (𝑿𝒂)⊤


∞ +

Vec
(
𝒆𝑥𝑜 (𝑿𝒂)⊤

)
∞

= max
𝑠,𝑡∈[𝑇 ]

��(𝑽𝑿𝒂)𝑠 (𝑿𝒂)⊤𝑡
�� +  𝑇∑︁

𝑡=1
𝑎𝑡Vec

(
𝒆𝑥𝑜 𝒆

⊤
𝑥𝑡

)
∞

≤ ∥(𝑽𝑿𝒂)∥∞
(𝑿𝒂)⊤𝑡


∞ +

 𝑇∑︁
𝑡=1

𝑎𝑡Vec
(
𝒆𝑥𝑜 𝒆

⊤
𝑥𝑡

)
∞

=

𝑇∑︁
𝑠,𝑡=1
(𝑎𝑠 + ∥𝚫𝑨,𝑠 ∥1) (𝑎𝑡 + ∥𝚫𝑨,𝑡 ∥1)

𝑽𝒆𝑥𝑠

∞

𝒆𝑥𝑡 ∞
+

𝑇∑︁
𝑡=1
(𝑎𝑡 + ∥𝚫𝑨,𝑡 ∥1)

Vec
(
𝒆𝑥𝑜 𝒆

⊤
𝑥𝑡

)
∞ ≤ Θ(1).

And therefore, the preconditioned gradient can also be bounded.

∥∇̂(𝐵𝜏 )𝑽 𝑙∥∞ =

(𝑰𝑁 − 1𝑁1⊤
𝑁

𝑁

) (
∇(𝐵𝜏 )𝑽 𝑙

)
diag(1/𝝁)

(
𝑰𝑁 −

𝝁𝝁⊤

∥𝝁∥2

)
∞

≤
(∇(𝐵𝜏 )𝑽 𝑙

)
diag(1/𝝁)

(
𝑰𝑁 −

𝝁𝝁⊤

∥𝝁∥2

)
∞

+
1𝑁1⊤

𝑁

𝑁

(
∇(𝐵𝜏 )𝑽 𝑙

)
diag(1/𝝁)

(
𝑰𝑁 −

𝝁𝝁⊤

∥𝝁∥2

)
∞

≤ 𝑂 (𝑁)
since 𝜇𝑘 ≥ 𝑐

𝑁
for all 𝑘 ∈ [𝑁]. Now we finished the proof.

With the upper bound of the infinity norm, we have the following upper bound on the second order
moments of the preconditioned gradients of 𝑨 and 𝑽.
Corollary B.11. With the same setting in Lemma B.10 and

∇̂𝒂 (𝑘) 𝑙∞ ≤ 𝑂 (𝑁), Vec∇̂𝑽 𝑙

∞ ≤ 𝑂 (𝑁).

Moreover, ∥𝚫𝑨∥2𝐹 , ∥𝚫𝑽 ∥2𝐹 ≤ 𝑂 (1/𝑇). Then, we have

E
∇̂𝑨𝑙

2
𝜇
≤ 𝑂 (𝑇𝑁2), E

∇̂𝑽 𝑙2
𝜇
≤ 𝑂 (𝑁3)

Proof. We directly upper bound
∇̂𝑨𝑙

2
𝜇

and
∇̂𝑽 𝑙2

𝜇
using the upper bound on infinity norm. Since

∥𝚫𝑨∥2𝐹 , ∥𝚫𝑽 ∥2𝐹 ≤ 𝑂 (1/𝑇), we have the infinity norm be upper bounded by∇̂𝒂 (𝑘) 𝑙∞ ≤ 𝑂 (𝑁), Vec∇̂𝑽 𝑙

∞ ≤ 𝑂 (𝑁)

Then, we can first bound the Frobenius norm ∥∇̂𝑨𝑙∥2𝐹 , ∥∇̂𝑽 𝑙∥2𝐹 . We have 𝑽 ∈ R𝑁×𝑁 , 𝑨 ∈ R𝑇×𝑁 , so

∥∇̂𝑽 𝑙∥2𝐹 ≤ 𝑁2 ∇̂𝑽 𝑙2
∞ = 𝑂 (𝑁4), ∥∇̂𝑨𝑙∥2𝐹 ≤ 𝑁𝑇

Vec∇̂𝑨𝑙
2
∞ = 𝑂 (𝑁3𝑇).

That leads to: ∇̂𝑽 𝑙2
𝜇
= ⟨∇̂𝑽 𝑙, ∇̂𝑽 𝑙 diag(𝜇)⟩ ≤ 𝑂

(
1
𝑁

)
∥∇̂𝑽 𝑙∥2𝐹 ≤ 𝑂 (𝑁3)∇̂𝑨𝑙

2
𝜇
= ⟨∇̂𝑨𝑙, ∇̂𝑨𝑙 diag(𝜇)⟩ ≤ 𝑂

(
1
𝑁

)
∥∇̂𝑨𝑙∥2𝐹 ≤ 𝑂 (𝑁2𝑇)

where the second inequality comes from the assumption that 𝜇 ∼ Θ(1/𝑁).
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Now with the upper bound of the second moments of the gradients, we begin to prove the concentration
of the gradients. We first consider the first-order terms that need to be bounded in the signal dynamics:

⟨𝒉𝑽 , 𝑷⟩𝜇
𝐾𝑷𝐾𝑸

,
⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑷𝐾𝑸

Lemma B.12. Fix 𝜀, 𝛿 > 0. Under Assumption 2.1, suppose
∇̂𝒂 (𝑘) 𝑙∞ ≤ Θ(𝑁),

∇̂𝑽 𝑙∞ ≤ Θ(𝑁).
If 𝐵 ≥ Θ(1)max

(
𝑁4, 𝑄2𝑁2) 𝑁2 log 4

𝛿

𝜖 2𝐾2
𝑷𝐾

2
𝑸

, then with probability at least 1 − 𝛿, we have:���� ⟨𝒉𝑽 , 𝑷⟩𝜇𝐾𝑷𝐾𝑸

���� ≤ 𝜀, ���� ⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑷𝐾𝑸

���� ≤ 𝜀.
Proof. Note 𝒉𝑨 = 1

𝐵

∑
𝑖 ∇̂𝒂 (𝑘𝑖 ) 𝑙 (𝑖) − E ∇̂𝒂 (𝑘) 𝑙, thus we have the upper bound for each coordinate of

the gradient error bounded by Θ(𝑁). Similarly, we have the upper bound for each coordinate of the
gradient error of 𝒉𝑽 bounded by Θ(𝑁).
Then, we can bound the infinity norm of ⟨∇̂𝑽 𝑙 (𝑖), 𝑷⟩𝜇 and ⟨∇̂𝑨𝑙 (𝑖), 𝑷⟩𝜇:����� ⟨∇̂𝑽 𝑙 (𝑖), 𝑷⟩𝜇𝐾𝑷𝐾𝑸

����� =
�����
∑𝑁
𝑛,𝑚=1 ∇̂𝑽 𝑙 (𝑖)𝑛,𝑚𝑷𝑛,𝑚

𝐾𝑷𝐾𝑸

�����
≤
𝑁2

∇̂𝑽 𝑙 (𝑖)∞ ∥𝑷∥∞
𝐾𝑷𝐾𝑸

≤ Θ(1)𝑁3

𝐾𝑷𝐾𝑸
. (∥𝑷∥∞ ≤ 1.)����� ⟨∇̂𝑨𝑙 (𝑖),𝑸⟩𝜇

𝐾𝑷𝐾𝑸

����� =
�����∑𝑇

𝑛=1
∑𝑁
𝑚=1 ∇̂𝑨𝑙 (𝑖)𝑛,𝑚𝑸𝑛,𝑚
𝐾𝑷𝐾𝑸

�����
≤
𝑄𝑁

∇̂𝑨𝑙 (𝑖)

∞ ∥𝑸∥∞

𝐾𝑷𝐾𝑸
(𝑸 is Q-sparse.)

≤ Θ(1)𝑄𝑁2

𝐾𝑷𝐾𝑸
. (∥𝑸∥∞ ≤ 1.)

Note that E
[
∇𝒂 (𝑘𝑖 ) 𝑙 (𝑖) − E∇𝒂 (𝑘) 𝑙

]
= 0,E [∇𝑽 𝑙 (𝑖) − E∇𝑽 𝑙] = 0, which means the two terms above

have expectation 0. Since 𝒉𝑨, 𝒉𝑽 are both averages of 𝐵 gradients of a single sample, we use
Hoeffding Inequality:

P

(���� ⟨𝒉𝑽 , 𝑷⟩𝜇𝐾𝑷𝐾𝑸

���� ≥ 𝜀) ≤ 2 exp

(
−𝐵𝜀2𝐾2

𝑷𝐾
2
𝑸

𝑁6

)
P

(���� ⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑷𝐾𝑸

���� ≥ 𝜀) ≤ 2 exp

(
−𝐵𝜀2𝐾2

𝑷𝐾
2
𝑸

𝑁4𝑄2

)
By union bound, if 𝐵 ≥ max

(
𝑁2, 𝑄2) 𝑁 4 log 4

𝛿

𝜖 2𝐾2
𝑷𝐾

2
𝑸

it has at least 1 − 𝛿 probability, s.t.���� ⟨𝒉𝑽 , 𝑷⟩𝜇𝐾𝑷𝐾𝑸

���� ≤ 𝜀, ���� ⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑷𝐾𝑸

���� ≤ 𝜀.
Then we finish this section with the concentration of the second order terms ∥𝒉𝑨∥2 and ∥𝒉𝑽 ∥2, which
need to be bounded in the error evolution.
Lemma B.13. Fix 𝜀, 𝛿 > 0. Under Assumption 2.1, if E ∥∇̂𝑽 𝑙∥2𝜇 = Tmp3 = 𝑂 (𝑁3),E ∥∇̂𝑨𝑙∥2𝜇 =

Tmp4 = 𝑂 (𝑇𝑁2), 𝐵 ≥ Θ(𝑇𝑁 2 )
𝛿𝜖 2 , then with probability at least 1 − 𝛿, we have:

∥𝒉𝑨∥𝜇 ≤ 𝜀, ∥𝒉𝑽 ∥𝜇 ≤ 𝜀.
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Proof. Similar to Lemma B.12, E 𝒉𝑽 = 0,E 𝒉𝑨 = 0. By Lemma B.9, when we pick 𝐵 ≥ Θ(𝑇𝑁 2 )
𝛿𝜖 2 we

have ∥𝒉𝑨∥𝜇 ≤ 𝜀, ∥𝒉𝑽 ∥𝜇 ≤ 𝜀 with probability at least 1 − 𝛿.

C The population projected process

In this section, we define the projection of the true SGD process onto the “space of population
trajectories”. Then, we derive formulas for the dynamics of projected process and the distance of the
true SGD process to the space of population trajectories. All proofs — except for those short ones —
are deferred to the end of this section.

C.1 Definition of the population projection

The main reason we analyze the population process first is that on the population trajectory, both
layers possess special structures. Recall that

E ∇̂𝑽 𝑙 = ∥𝑨∥2𝜇
(
𝑽 − 𝝁1⊤

)
− ⟨𝑸, 𝑨⟩𝜇

(
𝑷 − 𝝁1⊤

)
,

E ∇̂𝑨𝑙 =

(
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
−

(
⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2

) (
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
,

and we initialize𝑽0−𝝁1⊤ = 0 and 𝑨−11⊤/𝑇 = 0. Note that for any (𝒛𝜏)𝜏 , if 𝒛0 = 0 and ¤𝒛 = 𝐴𝒛+𝐵𝒛∗,
then 𝒛𝜏 ∝ 𝒛∗ for all 𝜏 ≥ 0. In other words, 𝒛𝜏 moves only along the direction 𝒛∗ and therefore, can be
characterized by a single real number. This is exactly the same case of 𝑽 − 𝝁1⊤ and 𝑨 − 11⊤/𝑇 in
the population case. Hence, in the population case, 𝑽 stays on the line crossing 𝝁1⊤ and 𝑷, and 𝑨
stays on the line crossing 11⊤/𝑇 and 𝑸.
Unfortunately, mini-batch SGD does not stay exactly on the population trajectory. We can still,
however, look at the projection of SGD onto the “population trajectories”. Formally, for any 𝑽, 𝑨
satisfying 1⊤

𝑁
𝑽 = 1⊤

𝑁
, 1⊤
𝑇
𝑨 = 1⊤

𝑁
, and 𝑽𝝁 = 𝝁, we define

𝛼𝑉 := argmin
𝛼∈R

𝛼𝑷 + (1 − 𝛼)𝝁1⊤𝑁 − 𝑽
2
𝜇
,

𝛼𝐴 := argmin
𝛼∈R

𝛼𝑸 + (1 − 𝛼) 1𝑇1⊤
𝑁

𝑇
− 𝑨

2

𝜇

.

By setting the derivative to be 0, we can obtain the following closed-form formulas for 𝛼𝑉 and 𝛼𝐴.
Note: Without specification, we drop the the time subscript 𝜏 and consider 𝛼𝑉 := 𝛼𝑉,𝜏 for similicity.
Lemma C.1. For any 𝑽, 𝑨 satisfying 1⊤

𝑁
𝑽 = 1⊤

𝑁
, 1⊤
𝑇
𝑨 = 1⊤

𝑁
, and 𝑽𝝁 = 𝝁, we have

𝛼𝑉 = 𝐾𝑉𝑃/𝐾𝑃 and 𝛼𝐴 = 𝐾𝐴𝑄/𝐾𝑄,

where 𝐾𝑃 = ∥𝑷∥2𝜇 − ∥𝝁∥2, 𝐾𝑉𝑃 = ⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2, 𝐾𝑄 = ∥𝑸∥2𝜇 − 1/𝑇 , 𝐾𝐴𝑄 = ⟨𝑨,𝑸⟩𝜇 − 1/𝑇 .

For notational simplicity, we define 𝛽𝑉 = 1 − 𝛼𝑉 , 𝛽𝐴 = 1 − 𝛼𝐴,

�̃� = 𝛼𝑉𝑷 + 𝛽𝑉 𝝁1⊤ and �̃� = 𝛼𝐴𝑸 + 𝛽𝐴
11⊤

𝑇
.

Then, define 𝚫𝑉 = 𝑽 − �̃� and 𝚫𝐴 = 𝑨 − �̃� so that we can decompose 𝑽 = �̃� + 𝚫𝑉 and 𝑨 = �̃� + 𝚫𝐴.
By our construction, we have �̃� − 𝝁1⊤ ⊥ 𝚫𝑉 and similarly for 𝚫𝐴. We will now show that we can in
fact drop 𝝁1⊤.
Lemma C.2. For any 𝑽′ = 𝜃𝑷 + (1 − 𝜃)𝝁1⊤ and 𝑨′ = 𝜃𝑸 + (1 − 𝜃)11⊤/𝑇 with 𝜃 ∈ R, we
have ⟨𝚫𝑉 ,𝑽′⟩𝜇 = 0 and ⟨𝚫𝐴, 𝑨′⟩𝜇 = 0. In particular, we have ⟨𝚫𝑉 , 𝑷⟩𝜇 =

〈
𝚫𝑉 , �̃�

〉
𝜇
= 0 and

⟨𝚫𝐴,𝑸⟩𝜇 =
〈
𝚫𝐴, �̃�

〉
𝜇
= 0.

Proof. Note that ⟨𝝁1⊤,𝚫𝑉 ⟩𝜇 =
〈
𝝁, (𝑽 − �̃�)𝝁

〉
= 0. Hence, ⟨𝚫𝑉 ,𝑽′⟩ = ⟨𝚫𝑉 ,𝑽′ − 𝝁1⊤⟩ = 0. For

⟨𝚫𝐴, 𝑨′⟩, it suffices to note that ⟨𝚫𝐴, 11⊤/𝑇⟩𝜇 =
〈
1⊤ (𝑨 − �̃�), 1⊤/𝑇

〉
𝜇
= 0.

The following lemma the basic definitions and results about the population projection.
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Lemma C.3 (Definitions and basic results on the population projection). Suppose that 𝑽, 𝑨 satisfy
1⊤
𝑁
𝑽 = 1⊤

𝑁
, 1⊤
𝑇
𝑨 = 1⊤

𝑁
, and 𝑽𝝁 = 𝝁. We define the following:

𝐾𝑃 = ∥𝑷∥2𝜇 − ∥𝝁∥2 , 𝐾𝑉𝑃 = ⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2 , 𝐾𝑉 = ∥𝑽∥2𝜇 − ∥𝝁∥2 ,
𝛼𝑉 = 𝐾𝑉𝑃/𝐾𝑃 , 𝛽𝑉 = 1 − 𝛼𝑉 , �̃� = 𝛼𝑉𝑷 + 𝛽𝑉 𝝁1⊤,

𝚫𝑽 = 𝑽 − �̃�,
𝐾𝑄 = ∥𝑸∥2𝜇 − 1/𝑇, 𝐾𝐴𝑄 = ⟨𝑨,𝑸⟩𝜇 − 1/𝑇, 𝐾𝐴 = ∥𝑨∥2𝜇 − 1/𝑇,

𝛼𝐴 = 𝐾𝐴𝑄/𝐾𝑄, 𝛽𝐴 = 1 − 𝛽𝐴, �̃� = 𝛼𝐴𝑨 + 𝛽𝐴1𝑇1⊤𝑁/𝑇,
𝚫𝑨 = 𝑨 − �̃�.

Moreover, by Lemma C.2, the following hold.

𝐾𝑉𝑃 =
〈
�̃�, 𝑷

〉
𝜇
− ∥𝝁∥2 = 𝛼𝑉𝐾𝑃 ,

𝐾𝑉 =
�̃�2

𝜇
+ ∥𝚫𝑽 ∥2𝜇 − ∥𝝁∥2 = 𝛼2

𝑉𝐾𝑃 + ∥𝚫𝑽 ∥2𝜇 ,

𝐾𝐴𝑄 =
〈
�̃�,𝑸

〉
𝜇
− 1/𝑇 = 𝛼𝐴𝐾𝑄,

𝐾𝐴 =
�̃�2

𝜇
+ ∥𝚫𝑨∥2𝜇 − 1/𝑇 = 𝛼2

𝐴𝐾𝑄 + ∥𝚫𝑨∥2𝜇 .

C.2 Dynamics of the population projected process and the approximation error

We write

𝑽𝜏+1 = 𝑽𝜏 − 𝜂𝑉 E ∇̂𝑽 𝑙 − 𝜂𝑉
(
∇̂(𝐵)𝑽 𝑙 − E ∇̂𝑽 𝑙

)
=: 𝑽𝜏 − 𝜂𝑉 E ∇̂𝑽 𝑙 − 𝜂𝑉 𝒉𝑽 ,𝜏 ,

𝑨𝜏+1 = 𝑨𝜏 − 𝜂𝐴 E ∇̂𝑨𝑙 − 𝜂𝐴
(
∇̂(𝐵)𝑨 𝑙 − E ∇̂𝑨𝑙

)
=: 𝑨𝜏 − 𝜂𝐴 E ∇̂𝑨𝑙 − 𝜂𝐴𝒉𝑨,𝜏 ,

where the expectations are taken over the fresh samples at step 𝜏.
First, we expand the expected preconditioned gradients around the population projection.
Lemma C.4 (Expanding the gradients).

E ∇̂𝑨𝑙 = 𝐾𝑃𝛼𝑉 (𝛼𝑉𝛼𝐴 − 1)
(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
+ 𝐾𝑃𝛼2

𝑉𝚫𝑨 + ∥𝚫𝑉 ∥2𝜇
(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
,

E ∇̂𝑽 𝑙 = 𝛼𝐴𝐾𝑄 (𝛼𝐴𝛼𝑉 − 1)
(
𝑷 − 𝝁1⊤

)
+ 𝛼𝑉 − 1

𝑇

(
𝑷 − 𝝁1⊤

)
+

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
𝚫𝑽 + ∥𝚫𝐴∥2

(
𝑽 − 𝝁1⊤

)
.

Then, we compute the dynamics of the projected process.
Lemma C.5 (Dynamics of the population projection).

𝛼𝑉,𝜏+1 = 𝛼𝑉,𝜏 + 𝜂𝑉𝐾𝑄 (1 − 𝛼𝐴𝛼𝑉 ) 𝛼𝐴 + 𝜂𝑉
1 − 𝛼𝑉
𝑇

− 𝜂𝑉𝛼𝑉 ∥𝚫𝐴∥2 −
𝜂𝑉

𝐾𝑃

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇
,

𝛼𝐴,𝜏+1 = 𝛼𝐴,𝜏 + 𝜂𝐴𝐾𝑃 (1 − 𝛼𝑉𝛼𝐴) 𝛼𝑉 − 𝜂𝐴𝛼𝐴 ∥𝚫𝑉 ∥2𝜇 −
𝜂𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇
.

Note that �̃� = 𝝁1⊤ + 𝛼𝑉 (𝑷 − 𝝁1⊤) and �̃� = 1𝑇1⊤
𝑁
/𝑇 + 𝛼𝐴(𝑸 − 1𝑇1⊤

𝑁
/𝑇). Hence, this also gives

formulas for �̃�𝜏+1 and �̃�𝜏+1.

Now, we consider the dynamics of the errors.
Lemma C.6 (Dynamics of the errors).𝚫𝑨,𝜏+1

2
𝜇
=

(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇

)2
∥𝚫𝑨∥2𝜇

− 2𝜂𝐴
(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇

)
⟨𝚫𝑨, 𝒉𝑨⟩𝜇
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−
𝜂2
𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉2
𝜇
+ 𝜂2

𝐴 ∥𝒉𝑨∥2𝜇 ,𝚫𝑽 ,𝜏+1
2
𝜇
=

(
1 − 𝜂𝑉

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
− 𝜂𝑉 ∥𝚫𝐴∥2

)2
∥𝚫𝑽 ∥2𝜇

+ 2𝜂𝑉
(
1 − 𝜂𝑉

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
− 𝜂𝑉 ∥𝚫𝐴∥2

)
⟨𝚫𝑽 , 𝒉𝑽 ⟩𝜇

−
𝜂2
𝑉

𝐾𝑃
⟨𝑷, 𝒉𝑽 ⟩2𝜇 + 𝜂2

𝑉 ∥𝒉𝑽 ∥
2
𝜇 .

C.3 Omitted proofs in this section

Proof of Lemma C.1. We compute
1
2
𝜕𝛼

𝛼𝑷 + (1 − 𝛼)𝝁1⊤ − 𝑽
2
𝜇
=

〈
𝛼𝑷 + (1 − 𝛼)𝝁1⊤ − 𝑽, 𝑷 − 𝝁1⊤

〉
𝜇

=
〈
𝛼𝑷 + (1 − 𝛼)𝝁1⊤ − 𝑽, 𝑷

〉
𝜇
= 𝛼𝐾𝑃 + ∥𝝁∥2 − ⟨𝑽, 𝑷⟩𝜇 .

Set the derivative to be 0, and we get 𝛼𝑉 = (⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2)/𝐾𝑃 . Similarly, we compute

1
2
𝜕𝛼

𝛼𝑸 + (1 − 𝛼) 11⊤

𝑇
− 𝑨

2

𝜇

=

〈
𝛼𝑸 + (1 − 𝛼) 11⊤

𝑇
− 𝑨,𝑸 − 11⊤

𝑇

〉
𝜇

=

〈
𝛼𝑸 + (1 − 𝛼) 11⊤

𝑇
− 𝑨,𝑸

〉
𝜇

= 𝛼

(
∥𝑸∥2𝜇 − 1/𝑇

)
−

(
⟨𝑨,𝑸⟩𝜇 − 1/𝑇

)
.

Again, set the derivative to be 0, and we get 𝛼𝐴 =

(
⟨𝑨,𝑸⟩𝜇 − 1/𝑇

)
/(∥𝑸∥2𝜇 − 1/𝑇).

Proof of Lemma C.4. Recall from Lemma B.8 that

E ∇̂𝑽 𝑙 =
(
𝐾𝐴 +

1
𝑇

) (
𝑽 − 𝝁1⊤

)
−

(
𝐾𝐴𝑄 +

1
𝑇

) (
𝑷 − 𝝁1⊤

)
,

E ∇̂𝑨𝑙 = 𝐾𝑉

(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
− 𝐾𝑉𝑃

(
𝑸 − 1𝑇1⊤

𝑇

)
.

First, consider the dynamics of 𝑨. By Lemma C.3, we can further decompose it as

E ∇̂𝑨𝑙 =

(
𝛼2
𝑉𝐾𝑃 + ∥𝚫𝑉 ∥

2
𝜇

) (
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
− 𝛼𝑉𝐾𝑃

(
𝑸 − 1𝑇1⊤

𝑇

)
= 𝐾𝑃𝛼𝑉

(
𝛼𝑉

(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
−

(
𝑸 − 1𝑇1⊤

𝑇

))
+ ∥𝚫𝑉 ∥2𝜇

(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
= 𝐾𝑃𝛼𝑉

(
𝛼𝑉

(
�̃� −

1𝑇1⊤
𝑁

𝑇

)
−

(
𝑸 − 1𝑇1⊤

𝑇

))
+ 𝐾𝑃𝛼2

𝑉𝚫𝑨 + ∥𝚫𝑉 ∥2𝜇
(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
= 𝐾𝑃𝛼𝑉 (𝛼𝑉𝛼𝐴 − 1)

(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
+ 𝐾𝑃𝛼2

𝑉𝚫𝑨 + ∥𝚫𝑉 ∥2𝜇
(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
.

Similarly, we can rewrite the expected preconditioned gradient of 𝑽 as

E ∇̂𝑽 𝑙 =
(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

) (
𝑽 − 𝝁1⊤

)
−

(
𝛼𝐴𝐾𝑄 +

1
𝑇

) (
𝑷 − 𝝁1⊤

)
+ ∥𝚫𝐴∥2

(
𝑽 − 𝝁1⊤

)
=

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

) (
�̃� − 𝝁1⊤

)
−

(
𝛼𝐴𝐾𝑄 +

1
𝑇

) (
𝑷 − 𝝁1⊤

)
+

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
𝚫𝑽 + ∥𝚫𝐴∥2

(
𝑽 − 𝝁1⊤

)
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= 𝛼𝐴𝐾𝑄 (𝛼𝐴𝛼𝑉 − 1)
(
𝑷 − 𝝁1⊤

)
+ 𝛼𝑉 − 1

𝑇

(
𝑷 − 𝝁1⊤

)
+

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
𝚫𝑽 + ∥𝚫𝐴∥2

(
𝑽 − 𝝁1⊤

)
.

Proof of Lemma C.5. Recall that 𝛼𝑉 = ⟨𝑽, 𝑷⟩𝜇 /𝐾𝑃 and 𝛼𝐴 = ⟨𝑨,𝑸⟩𝜇 /𝐾𝑄. First, consider the
dynamics of 𝑽. By Lemma C.4 and Lemma C.3, we have

𝛼𝑉,𝜏+1 = 𝛼𝑉,𝜏 − 𝜂𝑉

〈
∇̂𝑽L + 𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃

= 𝛼𝑉,𝜏 −
𝜂𝑉

𝐾𝑃
𝛼𝐴𝐾𝑄 (𝛼𝐴𝛼𝑉 − 1)

〈
𝑷 − 𝝁1⊤, 𝑷

〉
𝜇
− 𝜂𝑉
𝐾𝑃

𝛼𝑉 − 1
𝑇

〈
𝑷 − 𝝁1⊤, 𝑷

〉
𝜇

− 𝜂𝑉
𝐾𝑃
∥𝚫𝐴∥2

〈
𝑽 − 𝝁1⊤, 𝑷

〉
𝜇
− 𝜂𝑉

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃

= 𝛼𝑉,𝜏 + 𝜂𝑉𝐾𝑄 (1 − 𝛼𝐴𝛼𝑉 ) 𝛼𝐴 + 𝜂𝑉
1 − 𝛼𝑉
𝑇

− 𝜂𝑉𝛼𝑉 ∥𝚫𝐴∥2 −
𝜂𝑉

𝐾𝑃

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇
.

Similarly, for 𝑽, we have

𝛼𝐴,𝜏+1 = 𝛼𝐴,𝜏 − 𝜂𝐴

〈
∇̂𝑨L + 𝒉𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑄

= 𝛼𝐴,𝜏 −
𝜂𝐴

𝐾𝑄
𝐾𝑃𝛼𝑉 (𝛼𝑉𝛼𝐴 − 1)

〈
𝑸 −

1𝑇1⊤
𝑁

𝑇
,𝑸

〉
𝜇

− 𝜂𝐴

𝐾𝑄
∥𝚫𝑉 ∥2𝜇

〈
𝑨 −

1𝑇1⊤
𝑁

𝑇
,𝑸

〉
𝜇

− 𝜂𝐴

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑄

= 𝛼𝐴,𝜏 + 𝜂𝐴𝐾𝑃 (1 − 𝛼𝑉𝛼𝐴) 𝛼𝑉 − 𝜂𝐴𝛼𝐴 ∥𝚫𝑉 ∥2𝜇 −
𝜂𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇
.

Proof of Lemma C.6. First, consider the dynamics of 𝚫𝑨, which is given by

𝚫𝑨,𝜏+1 = 𝚫𝑨 − 𝜂𝐴𝐾𝑃𝛼2
𝑉𝚫𝑨 − 𝜂𝐴 ∥𝚫𝑉 ∥2𝜇

(
𝑨 −

1𝑇1⊤
𝑁

𝑇

)
− 𝜂𝐴𝒉𝑨

+
(
𝜂𝐴𝛼𝐴 ∥𝚫𝑉 ∥2𝜇 +

𝜂𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

) (
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
.

Decompose 𝑨 into �̃� + 𝚫𝑨, rearrange terms, and we obtain

𝚫𝑨,𝜏+1 = 𝚫𝑨 − 𝜂𝐴𝐾𝑃𝛼2
𝑉𝚫𝑨 − 𝜂𝐴 ∥𝚫𝑉 ∥2𝜇 𝚫𝑨

− 𝜂𝐴 ∥𝚫𝑉 ∥2𝜇
(
�̃� −

1𝑇1⊤
𝑁

𝑇

)
+ 𝜂𝐴𝛼𝐴 ∥𝚫𝑉 ∥2𝜇

(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
+ 𝜂𝐴
𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
− 𝜂𝐴𝒉𝑨.

Note that �̃� − 11⊤/𝑇 = 𝛼𝐴𝑸 + (1 − 𝛼𝐴)11⊤/𝑇 − 11⊤/𝑇 = 𝛼𝐴(𝑸 − 11⊤/𝑇). Hence, we have

𝚫𝑨,𝜏+1 = 𝚫𝑨 − 𝜂𝐴𝐾𝑃𝛼2
𝑉𝚫𝑨 − 𝜂𝐴 ∥𝚫𝑉 ∥2𝜇 𝚫𝑨

−
�����������

𝜂𝐴𝛼𝐴 ∥𝚫𝑉 ∥2𝜇
(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
+
�����������

𝜂𝐴𝛼𝐴 ∥𝚫𝑉 ∥2𝜇
(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
+ 𝜂𝐴
𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
− 𝜂𝐴𝒉𝑨
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=

(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇 𝚫𝑨

)
𝚫𝑨 +

𝜂𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
− 𝜂𝐴𝒉𝑨.

Recall that ⟨𝚫𝑨,𝑸 − 11⊤/𝑇⟩𝜇 = 0, ∥𝑸 − 11⊤/𝑇 ∥2𝜇 = 𝐾𝑄, and
〈
1𝑇1⊤

𝑁
/𝑇, 𝒉𝑨

〉
𝜇
= 0. Hence,𝚫𝑨,𝜏+1

2
𝜇
=

(1 − 𝜂𝐴𝐾𝑃𝛼2
𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥

2
𝜇

)
𝚫𝑨 +

𝜂𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

(
𝑸 −

1𝑇1⊤
𝑁

𝑇

)
− 𝜂𝐴𝒉𝑨

2

𝜇

=

(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇

)2
∥𝚫𝑨∥2𝜇 +

(
𝜂𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇

)2
𝐾𝑄 + 𝜂2

𝐴 ∥𝒉𝑨∥2𝜇

− 2𝜂𝐴
(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇

)
⟨𝚫𝑨, 𝒉𝑨⟩𝜇

− 2
𝜂2
𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉
𝜇
⟨𝑸, 𝒉𝑨⟩𝜇

=

(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇

)2
∥𝚫𝑨∥2𝜇 − 2𝜂𝐴

(
1 − 𝜂𝐴𝐾𝑃𝛼2

𝑉 − 𝜂𝐴 ∥𝚫𝑉 ∥
2
𝜇

)
⟨𝚫𝑨, 𝒉𝑨⟩𝜇

+ 𝜂2
𝐴 ∥𝒉𝑨∥2𝜇 −

𝜂2
𝐴

𝐾𝑄

〈
𝒉𝑨,𝜏 ,𝑸

〉2
𝜇
.

Now, consider 𝚫𝑽 . Similar to the previous calculation, we have

𝚫𝑽 ,𝜏+1 = 𝚫𝑽 − 𝜂𝑉
(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
𝚫𝑽 − 𝜂𝑉 ∥𝚫𝐴∥2 𝚫𝑽 − 𝜂𝑉 𝒉𝑽

− 𝜂𝑉
𝛼𝑉 − 1
𝑇

(
𝑷 − 𝝁1⊤

)
− 𝜂𝑉 ∥𝚫𝐴∥2

(
�̃� − 𝝁1⊤

)
−

(
𝜂𝑉

1 − 𝛼𝑉
𝑇

− 𝜂𝑉𝛼𝑉 ∥𝚫𝐴∥2 −
𝜂𝑉

𝐾𝑃

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

) (
𝑷 − 𝝁1⊤

)
=

(
1 − 𝜂𝑉

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
− 𝜂𝑉 ∥𝚫𝐴∥2

)
𝚫𝑽

+ 𝜂𝑉
𝐾𝑃

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

(
𝑷 − 𝝁1⊤

)
− 𝜂𝑉 𝒉𝑽 .

Again, note that 𝚫𝑽 ⊥𝜇 𝑷 − 𝝁1⊤, ∥𝑷 − 𝝁1⊤∥2𝜇 = 𝐾𝑃 , and ⟨𝝁1⊤, 𝒉𝑽 ⟩𝜇 = 0. Hence, we have𝚫𝑽 ,𝜏+1
2
𝜇
=

(
1 − 𝜂𝑉

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
− 𝜂𝑉 ∥𝚫𝐴∥2

)2
∥𝚫𝑽 ∥2𝜇

+ 2𝜂𝑉
(
1 − 𝜂𝑉

(
𝛼2
𝐴𝐾𝑄 +

1
𝑇

)
− 𝜂𝑉 ∥𝚫𝐴∥2

)
⟨𝚫𝑽 , 𝒉𝑽 ⟩𝜇

−
𝜂2
𝑉

𝐾𝑃
⟨𝑷, 𝒉𝑽 ⟩2𝜇 + 𝜂2

𝑉 ∥𝒉𝑽 ∥
2
𝜇 .

D Stage 1: signal boosting

In this section, we assume both 𝛼𝑉 and 𝛼𝐴 are close to 0. In this case, we can approximate Lemma C.5
with

𝛼𝑉,𝜏+1 ≈ 𝛼𝑉,𝜏 + 𝜂𝛼𝐴 + 𝜂
1

𝑇𝐾𝑄
− 𝜂𝛼𝑉

∥𝚫𝐴∥2𝜇
𝐾𝑄

− 𝜂
⟨𝒉𝑽 , 𝑷⟩𝜇
𝐾𝑄𝐾𝑃

,

𝛼𝐴,𝜏+1 ≈ 𝛼𝐴,𝜏 + 𝜂𝛼𝑉 − 𝜂𝛼𝐴
∥𝚫𝑉 ∥2𝜇
𝐾𝑃

− 𝜂
⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑃𝐾𝑄

.

We can also write this matrix form as[
𝛼𝑉,𝜏+1
𝛼𝐴,𝜏+1

]
≈

[
𝛼𝑉,𝜏
𝛼𝐴,𝜏

]
+ 𝜂

[
− ∥𝚫𝐴∥2𝜇 /𝐾𝑄 1

1 − ∥𝚫𝑉 ∥2𝜇 /𝐾𝑃

] [
𝛼𝑉,𝜏
𝛼𝐴,𝜏

]
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+ 𝜂
[
1/(𝑇𝐾𝑄)

0

]
− 𝜂

[
𝛼𝐴 ∥𝚫𝑉 ∥2𝜇 /(𝐾𝑃𝐾𝑄)
⟨𝒉𝑨,𝑸⟩𝜇 /(𝐾𝑃𝐾𝑄).

]
Suppose that ∥𝚫𝐴∥2𝜇 /𝐾𝑄 and ∥𝚫𝑉 ∥2𝜇 /𝐾𝑃 are both bounded by 𝛿2. Then, we have

𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1 ⪆ (1 + 𝜂 − 2𝛿2𝜂)
(
𝛼𝑉,𝜏 + 𝛼𝐴,𝜏

)
+ 𝜂 1

𝑇𝐾𝑄

− 𝜂
⟨𝒉𝑽 , 𝑷⟩𝜇
𝐾𝑄𝐾𝑃

− 𝜂
⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑃𝐾𝑄

.

(11)

As long as 𝛿 ≪ 1 and we choose a sufficiently large batch size so that the second line is bounded by
𝜂/(2𝑇𝐾𝑄), 𝛼𝑉 + 𝛼𝐴 grows exponentially fast. Similarly, one can also bound the difference between
𝛼𝑉 and 𝛼𝐴. Formally, we have the following lemma.
Lemma D.1 (Main result of Stage 1). Define the end of Stage 1 as

T1 := min
{
𝜏 ≥ 0 : max{𝛼𝑉,𝜏 , 𝛼𝐴,𝜏} ≥ min

{
1
2
,
Θ(1)
𝑄𝑁

}}
.

Suppose 𝜂 ≤ 1/10, 𝜂𝑉,𝜏 = 𝜂/𝐾𝑄, and 𝜂𝐴,𝜏 = 𝜂/𝐾𝑃 for some 𝜂 ≤ min{𝐾𝑃 , 𝐾𝑄}. Let 𝐵𝜏 > 0 be the

number fresh samples we use at step 𝜏. Suppose that 𝐵𝜏 ≥ �̃�
(

𝑇2𝑄4𝑁 5

min{𝐾3
𝑃
,𝐾3
𝑄
}

)
are chosen s.t. with

probability 1 − 𝛿𝜏

max
{���� ⟨𝒉𝑽 , 𝑷⟩𝜇𝐾𝑄𝐾𝑃

���� , ���� ⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑃𝐾𝑄

����} ≤ 1
4𝑇𝐾𝑄

, (12)

max
{𝒉𝑉,𝜏𝜇 , 𝒉𝐴,𝜏𝜇} ≤ Θ(1)min

{
𝐾

1/2
𝑄
, 𝐾

1/2
𝑃
, 1√

𝑄𝑁 1/2

}
min{𝐾

𝑄
, 𝐾

𝑃
}

𝑇 log𝑇𝐾𝑄
(13)

Then, the following hold with probability at least 1 − 𝛿𝑃:

(a) T1 ≤ Θ(1) log
(
𝑇𝐾𝑄

)
/𝜂.

(b) Throughout Stage 1, ∥𝚫𝐴∥2𝜇 ≤ Δ/𝑇 and ∥𝚫𝑉 ∥2𝜇 ≤ Δ/𝑇 , where

Δ := min
{

1
4
𝐾𝑄,

1
4
𝐾𝑃 ,

Θ(1)
𝑄4𝑁3

}
.

(c) At T1, we have 𝛼𝑉 + 𝛼𝐴 = Θ( 1
𝑄𝑁
) and |𝛼𝑉 − 𝛼𝐴 | ≤ Θ(1)

𝑇𝐾𝑄
.

(d) For all 𝜏 ≤ T1, we have ∥𝑽∥∞ ≤ Θ(1), ∥𝑨∥∞ ≤ Θ(1/𝑄).

The proof of this lemma is a large induction argument. We will first assume the bounds on ∥𝚫𝐴∥𝜇
and ∥𝚫𝑉 ∥𝜇 are true, so that the approximation (11) is valid. This will give us an upper bound on the
length of Stage 1. Then, we show that within this many steps, the errors cannot exceed the given
maximum values. Thus, the induction hypotheses are true and Lemma D.1 can be established.

Part I of the proof of Lemma D.1: Signal growth rate

Proof. Since 𝛼𝑉𝛼𝐴 ≤ 1
4 by definition of Stage I, we can rewrite Lemma C.5 as

𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1 ≥ (1 + 3𝜂/4)
(
𝛼𝑉,𝜏 + 𝛼𝐴,𝜏

)
+ 𝜂 3

4𝑇𝐾𝑄

− 𝜂𝛼𝑉
∥𝚫𝐴∥2𝜇
𝐾𝑄

− 𝜂𝛼𝐴
∥𝚫𝑉 ∥2𝜇
𝐾𝑃

− 𝜂
⟨𝒉𝑽 , 𝑷⟩𝜇
𝐾𝑄𝐾𝑃

− 𝜂
⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑃𝐾𝑄

≥ (1 + 3𝜂/4)
(
𝛼𝑉,𝜏 + 𝛼𝐴,𝜏

)
+ 𝜂 3

4𝑇𝐾𝑄
− 1

4
𝜂𝛼𝑉 −

1
4
𝜂𝛼𝐴 −

1
4𝑇𝐾𝑄

× 2
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≥
(
1 + 𝜂

2

) (
𝛼𝑉,𝜏 + 𝛼𝐴,𝜏

)
+ 𝜂 1

4𝑇𝐾𝑄
,

where the second line comes from induction hypothesis (b) and (12). Recursively expand the RHS,
and we obtain

𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 ≥
(
1 + 𝜂

2

) 𝜏 (
𝛼𝑉,0 + 𝛼𝐴,0 +

1
2𝑇𝐾𝑄

)
− 1

2𝑇𝐾𝑄
=

((
1 + 𝜂

2

) 𝜏
− 1

) 1
2𝑇𝐾𝑄

.

Since the RHS is upper bounded by 1 by definition of stage I, and we obtain

T1 ≤ Θ(1)
log

(
𝑇𝐾𝑄

)
𝜂

.

Part II of the proof of Lemma D.1: Upper bounds on ∥𝚫∥𝜇
Proof. Recall from Lemma C.6 that𝚫𝑽 ,𝜏+1

2
𝜇
≤

𝚫𝑽 ,𝜏

2
𝜇
+ 2𝜂𝑉

𝚫𝑽 ,𝜏


𝜇

𝒉𝑽 ,𝜏𝜇 + 𝜂2
𝑉

𝒉𝑽 ,𝜏2
𝜇
,𝚫𝑨,𝜏+1

2
𝜇
≤

𝚫𝑨,𝜏

2
𝜇
+ 2𝜂𝐴

𝚫𝑨,𝜏


𝜇

𝒉𝑨,𝜏


𝜇
+ 𝜂2

𝐴

𝒉𝑨,𝜏

2
𝜇
.

By part I of the proof, Stage 1 takes at most Θ(1) log
(
𝑇𝐾𝑄

)
/𝜂 steps. Hence, it suffices to bound

the increase of these ∥𝚫∥2𝜇 in this many steps. Recall the notation Δ = min
{

1
4𝐾𝑄,

1
4𝐾𝑃 ,

Θ(1)
𝑄𝑁 1/2

}
. By

induction hypothesis (b), we have for all 𝜏,𝚫𝑽 ,𝜏+1
2
𝜇
≤

𝚫𝑽 ,𝜏

2
𝜇
+ 2𝜂𝑉

𝚫𝑽 ,𝜏


𝜇

𝒉𝑽 ,𝜏𝜇 + 𝜂2
𝑉

𝒉𝑽 ,𝜏2
𝜇

≤
𝚫𝑽 ,𝜏

2
𝜇
+ 2𝜂𝑉

√︁
Δ/𝑇

𝒉𝑽 ,𝜏𝜇 + 𝜂2
𝑉

𝒉𝑽 ,𝜏2
𝜇

≤
𝚫𝑽 ,𝜏

2
𝜇
+
Θ(1)𝜂

√︁
Δ/𝑇

𝐾𝑄
·
√︁
Δ/𝑇 min{𝐾𝑃 , 𝐾𝑄}

log
(
𝑇𝐾𝑄

) + 𝜂2
Θ(1)Δ ·min{𝐾2

𝑃
, 𝐾2

𝑄
}

𝑇𝐾2
𝑄

log
(
𝑇𝐾𝑄

)2𝚫𝑨,𝜏+1
2
𝜇
≤

𝚫𝑨,𝜏

2
𝜇
+ 2𝜂𝐴

𝚫𝑨,𝜏


𝜇

𝒉𝑨,𝜏


𝜇
+ 𝜂2

𝐴

𝒉𝑨,𝜏

2
𝜇

≤
𝚫𝑨,𝜏

2
𝜇
+ 2𝜂𝐴

√︁
Δ/𝑇

𝒉𝑨,𝜏


𝜇
+ 𝜂2

𝐴

𝒉𝑨,𝜏

2
𝜇

≤
𝚫𝑨,𝜏

2
𝜇
+
Θ(1)𝜂

√︁
Δ/𝑇

𝐾𝑃
·
√︁
Δ/𝑇 min{𝐾𝑃 , 𝐾𝑄}

log
(
𝑇𝐾𝑄

) + 𝜂2
Θ(1)Δ ·min{𝐾2

𝑃
, 𝐾2

𝑄
}

𝑇𝐾2
𝑃

log
(
𝑇𝐾𝑄

)2

Since Stage I at most takes T1 = Θ(1) log
(
𝑇𝐾𝑄

)
/𝜂 steps, the increase of

𝚫𝑨,𝜏

2
𝜇

and
𝚫𝑨,𝜏

2
𝜇

in
𝜏 ≤ T1 are at most (since 𝚫𝑨,0 = 0,𝚫𝑽 ,0 = 0):𝚫𝑽 ,𝑡

2
𝜇
≤

(
Θ(1)𝜂

√︁
Δ/𝑇

𝐾𝑄
·
√︁
Δ/𝑇 min{𝐾𝑃 , 𝐾𝑄}

log
(
𝑇𝐾𝑄

) + 𝜂2
Θ(1)Δ ·min{𝐾2

𝑃
, 𝐾2

𝑄
}

𝑇𝐾2
𝑄

log
(
𝑇𝐾𝑄

) )
𝑡

≤ ©«
Θ(1)𝜂

√︁
Δ/𝑇

𝐾𝑄
·
√︁
Δ/𝑇 min{𝐾𝑃 , 𝐾𝑄}

log
(
𝑇𝐾𝑄

)2 + 𝜂2
Θ(1)Δ ·min{𝐾2

𝑃
, 𝐾2

𝑄
}

𝑇𝐾2
𝑄

log
(
𝑇𝐾𝑄

)2
ª®¬T1 ≤ Δ/𝑇,

𝚫𝑨,𝑡

2
𝜇
≤

(
Θ(1)𝜂

√︁
Δ/𝑇

𝐾𝑃
·
√︁
Δ/𝑇 min{𝐾𝑃 , 𝐾𝑄}

log
(
𝑇𝐾𝑄

) + 𝜂2
Θ(1)Δ ·min{𝐾2

𝑃
, 𝐾2

𝑄
}

𝑇𝐾2
𝑃

log
(
𝑇𝐾𝑄

)2

)
𝑡

≤
(
Θ(1)𝜂

√︁
Δ/𝑇

𝐾𝑃
·
√︁
Δ/𝑇 min{𝐾𝑃 , 𝐾𝑄}

log
(
𝑇𝐾𝑄

) + 𝜂2
Θ(1)Δ ·min{𝐾2

𝑃
, 𝐾2

𝑄
}

𝑇𝐾2
𝑃

log
(
𝑇𝐾𝑄

)2

)
T1 ≤ Δ/𝑇.

Therefore, we completed the induction for the error terms.
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Part III of the proof of Lemma D.1: Ending state

Proof. First, consider the distance between 𝛼𝑉 and 𝛼𝐴. Similar to the part I of the proof, we rewrite
Lemma C.5 as

𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1 = − (1 − 𝜂 (1 − 𝛼𝑉𝛼𝐴))
(
𝛼𝑉,𝜏 − 𝛼𝐴,𝜏

)
+ 𝜂1 − 𝛼𝑉

𝑇𝐾𝑄

− 𝜂𝛼𝑉
∥𝚫𝐴∥2𝜇
𝐾𝑄

+ 𝜂𝛼𝐴
∥𝚫𝑉 ∥2𝜇
𝐾𝑃

− 𝜂
⟨𝒉𝑽 , 𝑷⟩𝜇
𝐾𝑄𝐾𝑃

+ 𝜂
⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑃𝐾𝑄

= − (1 − 𝜂/2)
(
𝛼𝑉,𝜏 − 𝛼𝐴,𝜏

)
±𝑂

(
𝜂

1
𝑇𝐾𝑄

)
.

Thus, whenever 𝛼𝑉,𝜏 − 𝛼𝐴,𝜏 ≥ Ω(1/(𝑇𝐾𝑄)), it will start to decrease. Since the amount of increase
at each step is also upper bounded by 𝑂 (1/(𝑇𝐾𝑄)), this implies |𝛼𝑉,𝜏 − 𝛼𝐴,𝜏 | ≤ 𝑂 (1/(𝑇𝐾𝑄)). The
other direction can be proved in the same way.
Finally, we bound the possible amount of overshot. By the part I of the proof, we can also upper
bound the signal term growth

𝛼𝑉,𝜏+1 + 𝛼𝑉,𝜏+1 ≤ (1 + 2𝜂)
(
𝛼𝑉,𝜏 + 𝛼𝐴,𝜏

)
+𝑂

(
𝜂

𝑇𝐾𝑄

)
.

Since 𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 ≤ 1 for all 𝜏 ≤ T1, we have 𝛼𝑉 + 𝛼𝐴 = Θ( 1
𝑄𝑁
) at time T1.

Part IV of the proof of Lemma D.1: Upper bound on Infinity norm of 𝑽 and 𝑨

Here we consider the upper bound of the weights 𝑽 and 𝑨, which can be used in the concentration
section below.

Proof. First, we upper bound the infinity norm of 𝑽𝜏 .

∥𝑽𝜏 ∥∞ = ∥�̃�𝜏 + 𝚫𝑽 ∥∞ ≤
�̃�𝜏∞ + ∥𝚫𝑽 ∥∞ ≤

�̃�𝜏∞ + ∥𝚫𝑽 ∥𝐹 .
and we can upper bound ∥𝚫𝑽 ∥𝐹 by its 𝜇-norm:

∥𝚫𝑽 ∥2𝜇 = ⟨𝚫𝑽 ,𝚫𝑽 diag(𝜇)⟩ ≥ 𝑐

𝑁
∥𝚫𝑽 ∥2𝐹 .

Thus we have ∥𝑽𝜏 ∥∞ ≤
�̃�𝜏∞ + Θ(1)√𝑁 ∥𝚫𝑽 ∥𝜇 ≤

�̃�𝜏∞ + Θ( 1
𝑄2𝑁
) by Induction hypothesis (b).

And we can further bound
�̃�𝜏∞:�̃�𝜏∞ =
𝛼𝑉,𝜏𝑷 + (1 − 𝛼𝑉,𝜏)𝜇1⊤


∞ ≤ ∥𝑷∥∞ + ∥𝜇1⊤∥∞ ≤ Θ(1).

Therefore, we have ∥𝑽𝜏 ∥∞ ≤ Θ(1).
Similarly, for 𝑨 we have (since

�̃�𝜏∞ =
1𝑇1⊤

𝑁
/𝑇 + 𝛼𝐴,𝜏 (𝑸 − 1𝑇1⊤

𝑁
/𝑇)


∞ ≤ 𝐶/𝑄.)

∥𝑨𝜏 ∥∞ = ∥ �̃�𝜏 + 𝚫𝑨∥∞ ≤
�̃�𝜏∞ + ∥𝚫𝑨∥∞ ≤

�̃�𝜏∞ + ∥𝚫𝑨∥𝐹 ≤ Θ(1/𝑄).

Part V of the proof of Lemma D.1: Concentration

Finally, we need to ensure that with high probability, all the error terms 𝒉 cannot exceed the given
bounds throughout 𝑡 ≤ T1. We use Lemma B.12 and Lemma B.13 to bound the concentration of the
error terms.

By Lemma B.13 and union bound, we have that if 𝐵𝜏 ≥
Θ(1) T1 ·𝑇2𝑄4𝑁5T1 log2 (𝑇𝐾𝑄 )

𝛿𝜏 min{𝐾3
𝑃
,𝐾3
𝑄
,1} , then with

probability at least 1 − 𝛿𝜏/2, the following holds for all 𝑡 ≤ T1:

max
{𝒉𝑉,𝜏𝜇 , 𝒉𝐴,𝜏𝜇} ≤ Θ(1)min

{
𝐾

1/2
𝑄
, 𝐾

1/2
𝑃
, 1
𝑄2𝑁3/2

}
min{𝐾

𝑄
, 𝐾

𝑃
}

√
𝑇 log𝑇𝐾𝑄
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By Lemma B.12 and union bound, we have that if 𝐵𝜏 ≥
Θ(1) T1 ·𝑇2 max{𝑁 2 ,𝑄2 }𝑁4 log

(
16 log(𝑇𝐾𝑄)

𝛿𝜏 𝜂

)
𝐾2
𝑃

, then
with probability at least 1 − 𝛿𝜏/2, the following holds for all 𝑡 ≤ T1:���� ⟨𝒉𝑽 , 𝑷⟩𝜇𝐾𝑃𝐾𝑄

���� ≤ 1
4𝑇𝐾𝑄

,

���� ⟨𝒉𝑨,𝑸⟩𝜇
𝐾𝑃𝐾𝑄

���� ≤ 1
4𝑇𝐾𝑄

.

And by union bound, we have that with probability at least 1 − 𝛿𝜏 , all the bounds above hold for all
𝑡 ≤ T1. Therefore, we conclude the proof of Lemma D.1.
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E Stage 2: learning the model

In this Stage 2, we use a positive 𝜆 for the ℓ1-regularization. In this case, we can write the update rule
of each 𝒂 (𝑘 ) as

𝒂 (𝑘,
′ )

𝜏+1 = 𝒂 (𝑘 )𝜏 −
𝜂𝐴

𝜇𝑘
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙, (gradient descent step),

𝑎
(𝑘,′′ )
𝜏+1,𝑡 =

{
𝑎
(𝑘,′ )
𝜏+1,𝑡 − 𝜆, if 𝑎 (𝑘,

′ )
𝜏+1,𝑡 ≥ 𝜆,

0, if
���𝑎 (𝑘,′ )
𝜏+1,𝑡

��� ≤ 𝜆, (proximal step),

𝒂 (𝑘 )
𝜏+1 = 𝒂 (𝑘,

′′ )
𝜏+1 +

(
1 − 1⊤𝒂 (𝑘,

′′ )
𝜏+1

) 1
𝑇
, (projection step).

(14)

For notational simplicity, we define

𝒈 (𝑘 )𝜏 := −𝜂−1
𝜏 (𝒂

(𝑘 )
𝜏+1 − 𝒂 (𝑘 )𝜏 ).

We further define 𝑮𝜆,𝜏 = −𝜂−1
𝐴
(𝑨𝜏+1 − 𝑨𝜏) as the full gradient of the matrix 𝑨.

First, we will show that with appropriate rounding at the beginning of Stage 2, we can ensure
𝒈 (𝑘 )𝜏 ≈ 𝜂 E ∇̂𝒂 (𝑘) 𝑙 using only 𝐵𝜏 ∝ log(𝑇) fresh samples at each step (Section E.1).

E.1 Rounding and gradient denoising

Recall that the first step of the Stage 2 is rounding each 𝒂 (𝑘 ) by setting all small coordinates to 0
and then projecting it back to the affine space the probability simplex lies. Since after Stage 1, there
will be a separation between 𝑎 (𝑘 )𝑡 with 𝑡 ∈ 𝒒 (𝑘 ) and 𝑡 ∉ 𝒒 (𝑘 ) , this rounding step makes all 𝑎 (𝑘 )𝑡 with
𝑡 ∉ 𝒒 (𝑘 ) have the same small value.
Also recall that we use ℓ1-regularization and proximal gradients in the Stage 2. Effectively, the
ℓ1-regularization ensures those useless 𝑎 (𝑘 )𝑡 are always 0 (before projection). Then, similar to the first
rounding step, projection will again make then have the same small value.
In this subsection, we formalize the above argument. We show that the rounding step can recover
the support of 𝒒 (𝑘 ) , analyze its influence on 𝛼𝐴 and the distance to the population subspace. Then,
we analyze the effect of use of the proximal gradients and show that with poly(𝑁,𝑄) log(𝑇) fresh
samples at each step, we can make sure the difference between update and the population update is
small with high probability.
Lemma E.1 (Separation between noise and signal). Assume that at the beginning of Stage 2, we have

𝛼𝑉 ≥ Θ

(
𝑄

𝑇
+𝑄
√
𝑁 ∥𝚫𝑨∥𝜇

)
.

Then, we can choose a threshold 𝜃Tmp = Θ(𝛼𝑉/𝑄) s.t. 𝑎 (𝑘 )𝑡 ≤ 𝜃Tmp iff 𝑞 (𝑘 )𝑡 = 0.

Proof. Note that there exists some universal constant 𝑐 > 0 such that 𝒒 (𝑘 )𝑡 ≥ 𝑐/𝑄 for all nonzero
𝑞
(𝑘 )
𝑡 and 𝜇𝑘 ≥ 𝑐/𝑁 for all 𝑘 ∈ [𝑁]. Recall that the population process �̃� = 𝛼𝐴𝑸 + (1 − 𝛼𝐴)1𝑇1⊤

𝑁
/𝑇 .

Hence, for all 𝑘 ∈ [𝑁] and 𝑡 ∈ [𝑇],

�̃�
(𝑘 )
𝑡 ≤ 1/𝑇, if 𝑡 ∉ 𝒒 (𝑘 ) ,

�̃�
(𝑘 )
𝑡 ≥ 𝑐𝛼𝑉/𝑄, if 𝑡 ∈ 𝒒 (𝑘 ) .

Then, note that

∥𝚫𝑨∥2𝜇 =

𝑇∑︁
𝑡=1

𝑁∑︁
𝑘=1

(
𝑎
(𝑘 )
𝑡 − �̃�

(𝑘 )
𝑡

)2
𝜇𝑘

≥ 𝑐

𝑁

𝑇∑︁
𝑡=1

𝑁∑︁
𝑘=1

(
𝑎
(𝑘 )
𝑡 − �̃�

(𝑘 )
𝑡

)2
≥ 𝑐

𝑁

Vec( �̃� − 𝑨)
2

2 ≥
𝑐

𝑁

Vec( �̃� − 𝑨)
2
∞ .
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Hence, for any 𝑘 ∈ [𝑁] and 𝑡 ∈ [𝑇], we have |𝑎 (𝑘 )𝑡 − �̃�
(𝑘 )
𝑡 | ≤ ∥𝚫𝑨∥𝜇

√︁
𝑁/𝑐. Combine these together,

and we obtain
𝑎
(𝑘 )
𝑡 ≤ 1/𝑇 + ∥𝚫𝑨∥𝜇

√︁
𝑁/𝑐, if 𝑡 ∉ 𝒒 (𝑘 ) ,

𝑎
(𝑘 )
𝑡 ≥ 𝑐𝛼𝑉/𝑄 − ∥𝚫𝑨∥𝜇

√︁
𝑁/𝑐, if 𝑡 ∈ 𝒒 (𝑘 ) .

Hence, in order to get a separation,

1/𝑇 + ∥𝚫𝑨∥𝜇
√︁
𝑁/𝑐 ≤ 1

2

(
𝑐𝛼𝑉/𝑄 − ∥𝚫𝑨∥𝜇

√︁
𝑁/𝑐

)
⇐ 2𝑄

𝑐𝑇
+ 3𝑄

√
𝑁

𝑐1.5 ∥𝚫𝑨∥𝜇 ≤ 𝛼𝑉 .

Lemma E.2 (Effect of rounding). Under the conditions of Lemma E.1, choose 𝜆 as in Lemma E.1,
and set

𝒂 (𝑘 ) ←
(
𝑰 − 11⊤

𝑇

)
𝒂 (𝑘 ) ⊙

(
1{𝑎 (𝑘 )𝑡 ≥ 𝜆}

)𝑇
𝑡=1
+ 1
𝑇

= 𝒂 (𝑘 ) ⊙
(
1{𝑎 (𝑘 )𝑡 ≥ 𝜆}

)𝑇
𝑡=1
+ ©«1 −

∑︁
𝑡∈𝒒 (𝑘)

𝑎
(𝑘 )
𝑡

ª®¬ 1
𝑇
.

We have 𝛼𝐴← 𝛼𝐴 +𝑂 (1)/𝑇 and ∥𝚫𝐴∥2𝜇 ← ∥𝚫𝐴∥2𝜇 +𝑂 (1)/𝑇 .

Proof. For notational simplicity, put 𝒃 (𝑘 ) = 𝒂 (𝑘 ) ⊙ (1{𝑎 (𝑘 )𝑡 ≥ 𝜆})𝑇
𝑡=1. By Lemma E.1, we know 𝒃 (𝑘 )

is supported within 𝒒 (𝑘 ) . Set 𝑏 (𝑘 ) =
∑𝑇
𝑡=1 𝑏

(𝑘 )
𝑡 . Then, we can write

𝒂 (𝑘 ) ← 𝒃 (𝑘 ) +
(
1 − 𝑏 (𝑘 )

) 1
𝑇
.

Recall that 𝛼𝐴 = 𝐾𝐴𝑄/𝐾𝑄 where 𝐾𝐴𝑄 = ⟨𝑨,𝑸⟩𝜇 =
∑𝑁
𝑘=1 𝜇𝑘

〈
𝒂 (𝑘 ) , 𝒒 (𝑘 )

〉
. Hence, for each 𝑘 ∈ [𝑁],

we have 〈
𝒂 (𝑘 ) , 𝒒 (𝑘 )

〉
←

〈
𝒃 (𝑘 ) , 𝒒 (𝑘 )

〉
+

(
1 − 𝑏 (𝑘 )

) 〈
1
𝑇
, 𝒒 (𝑘 )

〉
←

〈
𝒂 (𝑘 ) , 𝒒 (𝑘 )

〉
+

(
1 − 𝑏 (𝑘 )

) 1
𝑇
.

As a result,

𝛼𝐴← 𝛼𝐴 +
1
𝑇

𝑁∑︁
𝑘=1

𝜇𝑘

(
1 − 𝑏 (𝑘 )

)
= 𝛼𝐴 +

𝑂 (1)
𝑇

.

Now, consider the effect of projection on the distance to the population subspace. We will use
subscript new to indicate values after rounding and use notations such as 𝒂 (𝑘 ) to denote the values
before rounding. Recall that ∥𝚫𝑨∥2𝜇 =

∑𝑁
𝑘=1 𝜇𝑘

𝒂 (𝑘 ) − �̃� (𝑘 )
2. We have𝒂 (𝑘 )new − �̃� (𝑘 )new

2
=

𝒃 (𝑘 ) + (1 − 𝑏 (𝑘 ) ) 1𝑇 − 1
𝑇
− 𝛼𝐴,new

(
𝒒 (𝑘 ) − 1

𝑇

)2

=

𝒃 (𝑘 ) − 𝛼𝐴,new𝒒
(𝑘 ) −

(
𝑏 (𝑘 ) − 𝛼𝐴,new

) 1
𝑇

2

=

𝒃 (𝑘 ) − 𝛼𝐴,new𝒒
(𝑘 )

2
+

(
𝑏 (𝑘 ) − 𝛼𝐴,new

)2 1
𝑇

− 2
(
𝑏 (𝑘 ) − 𝛼𝐴,new

) 〈
𝒃 (𝑘 ) − 𝛼𝐴,new𝒒

(𝑘 ) ,
1
𝑇

〉
=

𝒃 (𝑘 ) − (𝛼𝐴 +𝑂 (1)/𝑇)𝒒 (𝑘 )2
−

(
𝑏 (𝑘 ) − 𝛼𝐴,new

)2 1
𝑇
.

Note that𝒂 (𝑘 ) − �̃� (𝑘 )
2

=

𝒂 (𝑘 ) − 𝛼𝐴𝒒 (𝑘 ) − (1 − 𝛼𝐴) 1𝑇 2
=

𝒂 (𝑘 ) − 𝛼𝐴𝒒 (𝑘 )2
− (1 − 𝛼𝐴)2

1
𝑇
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≥
𝒃 (𝑘 ) − 𝛼𝐴𝒒 (𝑘 )2

− (1 − 𝛼𝐴)2
1
𝑇
.

Hence,𝒂 (𝑘 )new − �̃� (𝑘 )new

2
−

𝒂 (𝑘 ) − �̃� (𝑘 )
2

≤
𝒃 (𝑘 ) − 𝛼𝐴𝒒 (𝑘 ) − 𝑂 (1)𝑇 𝒒 (𝑘 )

2
−

𝒃 (𝑘 ) − 𝛼𝐴𝒒 (𝑘 )2
+ 𝑂 (1)

𝑇
≤ 𝑂 (1)

𝑇
.

Thus, ∥𝚫𝐴∥2𝜇 ← ∥𝚫𝐴∥2𝜇 +𝑂 (1)/𝑇 .

As we have seen in Stage 1, the norm of ∇𝒂 (𝑘) 𝑙 can scale linearly with 𝑇 . Hence, in order to make
𝒉𝒂 (𝑘) ,𝜏 has size 𝑂 (1) in terms of ∥·∥2, it is necessary to use poly(𝑇) samples, which is undesirable.
However, note that all entries of ∇𝒂 (𝑘) 𝑙 are bounded, and therefore are subgaussian. Hence, for each
entry of ∇𝒂 (𝑘) 𝑙, with𝑂 (log𝑇) samples, we can make sure the relative error is small with probability at
least 1 − 1/poly(𝑇). By union bound, this means the ∥·∥∞ error can be made small using only log(𝑇)
samples. Note that there is a separation between the signal and noise parts of E∇𝒂 (𝑘) 𝑙. This implies
that we can distinguish them using log(𝑇) samples and directly remove the noise part. Formally, we
have the following lemma.

Lemma E.3 (Gradient denoising). Given 𝜀 ∈
(
Θ

(
𝑄2𝑁3
√
𝑇

)
, 0.1

)
. Suppose that for any 𝑘, 𝑚, 𝑛 ∈ [𝑁],

|𝒂 (𝑘 )𝑡 | ≤ 1/𝑇 if 𝑡 ∉ 𝒒 (𝑘 ) , |𝑉𝑛,𝑚 | ≤ 𝑂 (1), and ∥𝚫𝐴∥𝜇 ≤ 𝑐(1−𝛼𝑉 )/(
√
𝑁𝑄) and ∥𝚫𝑉 ∥2𝜇 ≤ 𝑐(1−𝛼𝑉 )𝐾𝑃

for some small constant 𝑐 > 0. For the target accuracy 𝜀Tmp = Θ( 𝜀

𝑄𝑁 2 ), we have with probability
1 − 𝛿𝜏 . If we choose

𝐵𝜏 ≥ 𝐶
𝑁8𝑄4

𝜀2𝛼2
𝑉
𝐾2
𝑃

log
(
𝐶𝑁𝑇

𝛿𝜏

)
,

for some large constant 𝐶 > 0. Then, for each 𝑘 ∈ [𝑁], with probability at least 1 − 𝛿Tmp, we have

𝜕
(𝐵𝜏 )
𝑎
(𝑘)
𝑡

𝑙 =
(
1 ± 𝜀Tmp

)
E 𝜕

𝑎
(𝑘)
𝑡

𝑙 ≥ Θ

(
𝛼𝑉𝐾𝑃

𝑁𝑄

)
∀𝑡 ∈ 𝒒 (𝑘 ) ,

𝜕
(𝐵𝜏 )
𝑎
(𝑘)
𝑡

𝑙 = 𝑂

(
1
𝑇
+ 𝜀Tmp

𝛼𝑉𝐾𝑃

𝑁𝑄

)
= 𝑂

(
𝜀𝐾𝑃

𝑁3𝑄2

)
∀𝑡 ∉ 𝒒 (𝑘 ) .

Proof. For 𝑠 ∈ [𝑇], recall that

𝜕
𝑎
(𝑘)
𝑠
𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝒆𝑥𝑠 )⊤

(
𝑽𝑿𝒂 − 𝒆𝑥𝑜

)
,

E 𝜕
𝑎
(𝑘)
𝑠
𝑙 = 𝜇𝑘𝐾𝑉𝑎𝑠 − 𝜇𝑘𝐾𝑉𝑃𝑞𝑠 .

First, consider the expectations. If 𝑠 ∉ 𝒒 (𝑘 ) , then by our assumption, we have | E 𝜕
𝑎
(𝑘)
𝑠
𝑙 | = 𝜇𝑘𝐾𝑉𝑎𝑠 =

𝑂 (𝐾𝑉/(𝑁𝑇)). Meanwhile, for 𝑠 ∈ 𝒒 (𝑘 ) , we have

−E 𝜕
𝑎
(𝑘)
𝑠
𝑙 ≥ 𝜇𝑘𝐾𝑉𝑃 (𝑞𝑠 − 𝑎𝑠) + 𝜇𝑘 (𝐾𝑉 − 𝐾𝑉𝑃)𝑎𝑠

≥ 𝜇𝑘
(
𝛼𝑉 (1 − 𝛼𝑉 )𝐾𝑃𝑞𝑠 − 𝛼𝑉𝐾𝑃 ∥𝚫𝐴∥𝜇

√
𝑁 − ∥𝚫𝑉 ∥2𝜇 𝑎𝑠

)
.

As a result, we have for any 𝑘 ∈ [𝑁] and 𝑠 ∈ 𝒒 (𝑘 ) ,

−E 𝜕
𝑎
(𝑘)
𝑠
𝑙 ≥ 𝑐 𝛼𝑉𝐾𝑃

𝑁𝑄
≫ 𝑂

(
𝐾𝑉

𝑁𝑇

)
⇐


∥𝚫𝐴∥𝜇 ≤ 𝑐

1 − 𝛼𝑉
𝑄
√
𝑁
,

∥𝚫𝑉 ∥2𝜇 ≤ 𝑐(1 − 𝛼𝑉 )𝐾𝑃 ,

for some small constant 𝑐 > 0. Then, for the size of each entry, we have���𝜕
𝑎
(𝑘)
𝑠
𝑙

��� ≤ ��(𝑽𝒆𝑥𝑠 )⊤𝑽𝑿𝒂
�� + ��(𝑽𝒆𝑥𝑠 )⊤𝒆𝑥𝑜

�� ≤ ∑︁
𝑡∈𝒒 (𝑘)

𝑎𝑡

𝑁∑︁
𝑛=1
|𝑉𝑛,𝑥𝑠𝑉𝑛,𝑥𝑡 | + |𝑉𝑥𝑜 ,𝑥𝑠 | ≤ 𝑁.
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Therefore, 𝜕
𝑎
(𝑘)
𝑠
𝑙 is 𝑁2𝐾4

Tmp-subgaussian, whence 𝜕 (𝐵𝜏 )
𝑎
(𝑘)
𝑠

𝑙 is 𝑁2𝐾4
Tmp/𝐵𝜏-subgaussian. As a result, for

each 𝜉 > 0, we have

P

[����𝜕 (𝐵𝜏 )𝑎
(𝑘)
𝑠

𝑙 − E 𝜕
𝑎
(𝑘)
𝑠
𝑙

���� ≥ 𝜉] ≤ 2 exp
(
−𝜉2𝐵𝜏

𝑁2

)
.

Apply union bound and we get

P [∥∇𝑨𝑙 − E∇𝑨𝑙∥∞ ≥ 𝜉] ≤ 2𝑇𝑁 exp
(
−𝜉2𝐵𝜏

𝑁2

)
= exp

(
log(2𝑁𝑇) − 𝜉

2𝐵𝜏

𝑁2

)
.

Recall that the separation between the expectations is 𝑐𝛼𝑉𝐾𝑃/(𝑁𝑄). Hence, it suffices to choose
𝜉 = 𝑐𝛼𝑉𝐾𝑃/(2𝑁𝑄). Then, to make the failure probability at most 𝛿Tmp, we can choose 𝐵𝜏 as follows:

exp
(
log(2𝑁𝑇) − 𝜉

2𝐵𝜏

𝑁2

)
≤ 𝛿𝜏 ⇐ 𝐵𝜏 ≥ 𝐶

𝑁4𝑄2

𝛼2
𝑉
𝐾2
𝑃

log
(
𝐶𝑁𝑇

𝛿𝜏

)
,

for some large constant 𝐶 > 0. Then, to boost the accuracy from 1/2 to 𝜀Tmp, it suffices to increase
the batch size to 𝐶 𝑁 4𝑄2

𝜀2
Tmp𝛼

2
𝑉
𝐾2
𝑃

log
(
𝐶𝑁𝑇
𝛿𝜏

)
.

Using this lemma, we can pick 𝜆 = Θ( 𝜀𝐾𝑃
𝑄2𝑁 3 ) to sparsify our proximal gradient. Notice that our

proximal gradient is a biased estimate of the true preconditioned gradient, but the separation guarantees
that it is possible to make the error controllable. The following lemma calculates the error each
proximal step introduces. Here we define �̂�𝑨,𝜏 = 𝑮 (𝑘 )

𝜆,𝜏
− E ∇̂𝑨𝑙 instead of 𝒉 because of the bias

introduced by the proximal gradient.
Lemma E.4. Under the same setting of Lemma E.3, if the batch size

𝐵𝜏 ≥ max

{
𝐶

𝑁8𝑄4

𝜀2𝛼2
𝑉
𝐾2
𝑃

log
(
2𝐶𝑁𝑇
𝛿𝜏

)
,
Θ(𝑁6𝑄3)
𝛿𝜀2

}
,

the noise attention score |𝑎 (𝑘 )𝑡 | ≤ 𝑂 (1/𝑇) for all 𝑡 ∉ 𝒒 (𝑘 ) and all 𝑘 ∈ [𝑁], and 𝜆 = Θ

(
𝜀𝐾𝑃
𝑄2𝑁 3

)
, then

with probability 1 − 𝛿𝜏 , the gradient error at iteration 𝜏

∥ �̂�𝑨,𝜏 ∥𝜇 := ∥𝑮𝜆,𝜏 − E ∇̂𝑨𝑙∥𝜇 ≤ 𝑂
(
𝜀

𝑄𝑁2

)
.

Proof. For notational simplicity, we drop the superscript 𝑘 . The goal is to estimate the difference
between E ∇̂𝒂𝑙 and 𝒈𝜆,𝜏 by calculating the magnitude of the bias of the proximal gradient together
with the concentration error.
We consider the population gradient first. Since we have {𝑎𝑡 ,𝜏}𝑡∉𝒒 are all the same in Stage 2, we can
write

𝒂𝜏 = [𝒂𝜏]𝒒 +
(1 − 𝑏𝜏)1𝒒𝑐
𝑇 −𝑄 where 𝑏𝜏 =

∑︁
𝑡∈𝒒

𝑎𝑡 ,

and recall the projected preconditioned gradient for 𝑨.

E ∇̂𝒂𝑙 =
(
∥𝑽∥2𝜇 − ∥𝝁∥2

) (
𝒂 (𝑘 ) − 1

𝑇

)
−

(
⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2

) (
𝒒 (𝑘 ) − 1

𝑇

)
.

Therefore, we have

E ∇̂𝒂𝑙 =
[
E ∇̂𝒂𝑙

]
𝒒
+ 𝐾𝑽

(1 − 𝑏𝜏)1𝒒𝑐
𝑇 −𝑄 + (∥𝑽∥2𝜇 − ⟨𝑽, 𝑷⟩𝜇)

1𝒒𝑐
𝑇
.

Now, we consider 𝒈 by calculating the expression of 𝒂𝜏+1. First, note that by Lemma E.3, we have
𝑎′′
𝑡 ,𝜏+1 =

(
𝑎′
𝑡 ,𝜏+1 − 𝜆

)
1{𝑡 ∈ 𝒒}. This implies that {𝑎𝑡 ,𝜏+1}𝑡∉𝒒 are all the same and the value is at most

1/𝑇 . Moreover, it also implies that it suffices to focus on [𝒂′′
𝜏+1]𝒒 , for which we have

[𝒂′′𝜏+1]𝒒 = [𝒂′𝜏+1]𝒒 − 𝜆1𝒒 = [𝒂𝜏]𝒒 −
𝜂

𝜇𝑘

[
∇(𝐵𝜏 )𝒂 𝑙

]
𝒒
− 𝜆1𝒒 .
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Therefore,
∑
𝑡∈𝒒 𝑎

′
𝑡 ,𝜏+1 = 𝑏𝜏 − 𝜂

𝜇𝑘

∑
𝑡∈𝒒 𝜕

(𝐵𝜏 )
𝑎𝑡 𝑙 −𝑄𝜆 and

𝒂𝜏+1 = [𝒂𝜏]𝒒 −
𝜂

𝜇𝑘

[
∇(𝐵𝜏 )𝒂 𝑙

]
𝒒
− 𝜆1𝒒 +

(
1 − 𝑏𝜏 +

𝜂

𝜇𝑘

∑︁
𝑡∈𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙 +𝑄𝜆

)
1
𝑇

= 𝒂𝜏 −
(1 − 𝑏𝜏)1𝒒𝑐
𝑇 −𝑄 − 𝜂

𝜇𝑘

[
∇(𝐵𝜏 )𝒂 𝑙

]
𝒒
− 𝜆1𝒒 +

(
1 − 𝑏𝜏 +

𝜂

𝜇𝑘

∑︁
𝑡∈𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙 +𝑄𝜆

)
1
𝑇
.

Thus, we can write an explicit update

𝒈𝜆,𝜏 =
1
𝜇𝑘

[
∇(𝐵𝜏 )𝒂 𝑙

]
𝒒
+ 𝜆
𝜂

1𝒒 −
(
1 − 𝑏𝜏 +

𝜂

𝜇𝑘

∑︁
𝑡∈𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙 +𝑄𝜆

)
1
𝜂𝑇
+
(1 − 𝑏𝜏)1𝒒𝑐
𝜂(𝑇 −𝑄)

=

[
∇̂(𝐵𝜏 )𝒂 𝑙

]
𝒒
+

1𝒒1⊤∇(𝐵𝜏 )𝒂 𝑙

𝜇𝑘𝑇
−

(
1 − 𝑏𝜏 +

𝜂

𝜇𝑘

∑︁
𝑡∈𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙 +𝑄𝜆

)
1
𝜂𝑇

+
(1 − 𝑏𝜏)1𝒒𝑐
𝜂(𝑇 −𝑄) +

𝜆

𝜂
1𝒒

Then the gradient error at step 𝜏 can be decomposed into:

𝒈𝜆,𝜏 − E ∇̂𝒂𝑙 =
[
∇̂(𝐵𝜏 )𝒂 𝑙 − E ∇̂𝒂𝑙

]
𝒒

(Concentration error)

+
1𝒒1⊤∇(𝐵𝜏 )𝒂 𝑙

𝜇𝑘𝑇
−

(
1 − 𝑏𝜏 +

𝜂

𝜇𝑘

∑︁
𝑡∈𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙 +𝑄𝜆

)
1
𝜂𝑇
+ 𝜆
𝜂

1𝒒

+
(1 − 𝑏𝜏)1𝒒𝑐
𝜂(𝑇 −𝑄) − 𝐾𝑽

(1 − 𝑏𝜏)1𝒒𝑐
𝑇 −𝑄 − (∥𝑽∥2𝜇 − ⟨𝑽, 𝑷⟩𝜇)

1𝒒𝑐
𝑇

(Gradient bias error)

Here the gradient bias error can be further simplified to[
1
𝜇𝑘𝑇

∑︁
𝑡∉𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙 − 1 − 𝑏𝜏 +𝑄𝜆

𝜂𝑇
+ 𝜆
𝜂

]
1𝑞 (1*)

+
[
𝑄(1 − 𝑏𝜏 −𝑄𝜆) −𝑄𝜆𝑇 − 𝜂𝑇𝐾𝑽

𝜂𝑇 (𝑇 −𝑄) −
∑
𝑡∈𝒒 𝜕

(𝐵𝜏 )
𝑎𝑡 𝑙

𝜇𝑘𝑇
−
∥𝑽∥2𝜇 − ⟨𝑽, 𝑷⟩𝜇

𝑇

]
1𝒒𝑐 (2*)

First, we estimate the concentration error. Similar to Lemma B.10, we first upper bound the infinity
norm of the gradient. Consider the maximum absolute value in the original gradients. For ∇𝒂 (𝑘) 𝑙, we
have 1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝑽𝑿𝒂 (𝑘 ) − 𝒆𝑥𝑜 )


∞

≤
1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝑽𝑿𝒂 (𝑘 ) )


∞
+

1{𝑥𝑇+1 = 𝑘}(𝑽𝑿)⊤ (𝒆𝑥𝑜 )

∞

≤ max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

����� + max
𝑠∈[𝑇 ]

��(𝑽𝒆𝑥𝑠 )⊤𝒆𝑥𝑜
��

The first term can be upper-bounded in the following way:

max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

����� ≤
(∑︁
𝑡∈𝒒
|𝑎𝑡 | +

∑︁
𝑡∉𝒒

|𝑎𝑡 |
)

max
𝑠,𝑡

��(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡
��

≤ Θ(1)max
𝑠,𝑡

��(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡
��

The second inequality is due to |𝑎 (𝑘 )𝑡 | ≤ 𝑂 (1/𝑇) for 𝑡 ∉ 𝒒. Since 𝑽𝑛,𝑚 ≤ 𝑂 (1), we have
max𝑠,𝑡

��(𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡
�� upper bounded by 𝑂 (1). Therefore

max
𝑠∈[𝑇 ]

����� 𝑇∑︁
𝑡=1

𝑎𝑡 (𝑽𝒆𝑥𝑠 )⊤𝑽𝒆𝑥𝑡

����� ≤ 𝑂 (1)
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And similarly, the second term max𝑠∈[𝑇 ]
��(𝑽𝒆𝑥𝑠 )⊤𝒆𝑥𝑜

�� can be bounded by 𝑂 (1) because the infinity
norm of 𝑽 is also upper bounded by 𝑂 (1). Therefore, we know ∥∇𝒂 (𝑘) 𝑙∥∞ ≤ 𝑂 (1).

Now we consider the preconditioned gradient ∇̂(𝐵𝜏 )𝒂 𝑙:

∥∇̂(𝐵𝜏 )𝒂 𝑙∥∞ =

 1
𝜇𝑘

(
𝑰𝑇 −

1𝑇1⊤
𝑇

𝑇

) (
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
∞

≤
 1
𝜇𝑘

𝑰𝑇
(
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
∞
+

 1
𝜇𝑘

(1𝑇1⊤
𝑇

𝑇

) (
∇(𝐵𝜏 )
𝒂 (𝑘)

𝑙

)
∞
≤ 𝑂 (𝑁)

since 𝜇𝑘 ≥ 𝑐
𝑁

for all 𝑘 ∈ [𝑁]. Now since
[
∇̂(𝐵𝜏 )𝒂 𝑙

]
𝒒

is 𝑄-sparse, we have E
[∇̂𝑨𝑙

]
𝒒

2

𝜇
≤ 𝑂 (𝑄𝑁2).

By Lemma B.9, when 𝐵𝜏 ≥ Θ(𝑁 6𝑄3 )
𝛿𝜀2 , with probability 1 − 𝛿𝜏

2 ,[∇̂(𝐵𝜏 )𝒂 𝑙 − E ∇̂𝒂𝑙
]
𝒒

 ≤ 𝑂 (
𝜀

𝑄𝑁2

)
Then, consider the gradient bias term. With the selected 𝜆 = Θ

(
𝜀𝐾𝑃
𝑄2𝑁 3

)
and

𝜕 (𝐵𝜏 )𝑎𝑡 𝑙

 ≤ 𝑂 (
𝜀𝐾𝑃
𝑁3𝑄2

)
for

𝑡 ∉ 𝒒, with probability 1 − 𝛿𝜏/2 we have the 𝜇-norm of first term (since 𝐾𝑃 ≤ 𝑂 (𝑁)):

∥(1∗)∥ ≤
( 1
𝜇𝑘𝑇

∑︁
𝑡∉𝒒

𝜕
(𝐵𝜏 )
𝑎𝑡 𝑙

 + 𝑄𝜆𝑇 + 𝜆
)
·
√︁
𝑄

≤ 𝑂
(
𝜀

𝑄𝑁2

)
+𝑂

(
𝜀

𝑇𝑁2√𝑄

)
+𝑂

(
𝜀

𝑄3/2𝑁2

)
≤ 𝑂

(
𝜀

𝑄𝑁2

)
.

and the second term can be upper-bounded by

∥(2∗)∥ ≤
(
𝑂

(
𝑄𝑁

𝑇

)
+𝑂

(
𝑄𝑁

𝑇

)
+𝑂

(
𝑁

𝑇

))
·
√
𝑇 ≤ 𝑂

(
𝜀

𝑄𝑁2

)
.

since 1√
𝑇
≤ 𝑂

(
𝜀

𝑄2𝑁3

)
, 𝜕 (𝐵𝜏 )𝑎𝑡 𝑙 = 𝑂 (1), and ∥𝑽∥2𝜇 ≤ 𝑁 .

Combine all three terms and by union bound, we have with probability 1 − 𝛿𝜏�̂�𝐴,𝜏 = 𝑮 (𝑘 )𝜆,𝜏 − E ∇̂𝑨𝑙


𝜇

=

√√√
𝑁∑︁
𝑘=1

𝜇𝑘 ∥𝒈 (𝑘 )𝜆,𝜏 − E ∇̂𝒂 (𝑘) 𝑙∥2 ≤ 𝑂
(
𝜀

𝑄𝑁2

)
since 𝜇𝑘 = Θ(1/𝑁).

E.2 Model aligning and the decrease of the errors

First, we show that the signal will continue to grow and approximation error will decrease. This
decouples the error at the end of Stage 1 and the final error. In particular, we show that eventually we
will have 𝛼𝑉 + 𝛼𝐴 ≈ 2, ∥𝚫𝐴∥2𝜇 ≈ 0 and ∥𝚫𝑉 ∥2𝜇 ≈ 05.

For notational simplicity, define 𝛿2
𝐴
= ∥𝚫𝐴∥2𝜇 /𝐾𝑄 and 𝛿2

𝑉
= ∥𝚫𝑉 ∥2𝜇 /𝐾𝑃 . Recall Lemma C.5 and

Lemma C.6 and that we choose 𝜂𝑉 = 𝜂/𝐾𝑄, 𝜂𝐴 = 𝜂/𝐾𝑃 . The dynamics of the signals and the errors
can be described using6

𝛼𝑉,𝜏+1 = 𝛼𝑉,𝜏 + 𝜂 (1 − 𝛼𝐴𝛼𝑉 ) 𝛼𝐴 +
𝜂

𝐾𝑄

1 − 𝛼𝑉
𝑇

− 𝜂𝛼𝑉𝛿2
𝐴 − 𝜂

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄
,

5However, we cannot ensure 𝛼𝐴 ≈ 𝛼𝑉 since 𝛼𝐴 − 𝛼𝑉 is not contractive toward the end of training due to the
magnitude of gradient noise.This issue can be fixed by a final rounding stage (See Appendix F).

6Here 𝒉𝑨,𝜏 → �̂�𝑨,𝜏 because each gradient step is changed to the ℓ1-regularized gradient. It does not change
the main parts in the population process.
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𝛼𝐴,𝜏+1 = 𝛼𝐴,𝜏 + 𝜂 (1 − 𝛼𝑉𝛼𝐴) 𝛼𝑉 − 𝜂𝛼𝐴𝛿2
𝑉 − 𝜂

〈
�̂�𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑃𝐾𝑄
,

and

𝛿2
𝐴,𝜏+1 =

(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝐴

)2
𝛿2
𝐴 − 2𝜂

(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝑉

) 〈
𝚫𝑨, �̂�𝑨,𝜏

〉
𝜇

𝐾𝑃𝐾𝑄

− 𝜂2

〈
�̂�𝑨,𝜏 ,𝑸

〉2
𝜇

𝐾2
𝑃
𝐾2
𝑄

+ 𝜂2

�̂�𝑨,𝜏

2

𝜇

𝐾2
𝑃
𝐾𝑄

,

𝛿2
𝑉,𝜏+1 =

(
1 − 𝜂

(
𝛼2
𝐴 +

1
𝐾𝑄𝑇

+ 𝛿2
𝐴

))2
𝛿2
𝑉 + 2𝜂

(
1 − 𝜂

(
𝛼2
𝐴 +

1
𝐾𝑄𝑇

+ 𝛿2
𝐴

)) ⟨𝚫𝑽 , 𝒉𝑽 ⟩𝜇
𝐾𝑃𝐾𝑄

− 𝜂2 ⟨𝑷, 𝒉𝑽 ⟩
2
𝜇

𝐾2
𝑄
𝐾2
𝑃

+ 𝜂2 ∥𝒉𝑽 ∥
2
𝜇

𝐾𝑃𝐾
2
𝑄

.

E.2.1 Lemmas for the dynamics

Before we come to the final convergence analysis, we first simplify the dynamics with some basic
lemmas.
Lemma E.5 (Dynamics of the errors). For the errors, we have

𝛿2
𝐴,𝜏+1 ≤ exp

(
−2𝜂𝛼2

𝑉

)
𝛿2
𝐴,𝜏 + 3𝜂

©«𝛿𝐴 + 𝜂
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

,

𝛿2
𝑉,𝜏+1 ≤ exp

(
−2𝜂𝛼2

𝐴

)
𝛿2
𝑉,𝜏 + 3𝜂

(
𝛿𝑉 + 𝜂

∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

)
∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

.

Proof. First, we write

𝛿2
𝐴,𝜏+1 =

(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝐴

)2
𝛿2
𝐴 − 2𝜂

(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝑉

) 〈
𝚫𝑨, �̂�𝑨

〉
𝜇

𝐾𝑃𝐾𝑄

− 𝜂2

〈
�̂�𝑨,𝜏 ,𝑸

〉2
𝜇

𝐾2
𝑃
𝐾2
𝑄

+ 𝜂2

�̂�𝑨

2

𝜇

𝐾2
𝑃
𝐾𝑄

≤
(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝐴

)2
𝛿2
𝐴 + 2𝜂

𝛿𝐴

�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄
+ 3𝜂2

�̂�𝑨,𝜏

2

𝜇

𝐾2
𝑃
𝐾𝑄

≤
(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝐴

)2
𝛿2
𝐴 + 3𝜂

©«𝛿𝐴 +
𝜂

𝐾𝑃

�̂�𝑨


𝜇√︁

𝐾𝑄

ª®®¬
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

.

For the first term, we have(
1 − 𝜂𝛼2

𝑉 − 𝜂𝛿2
𝐴

)2
≤ exp

(
−𝜂𝛼2

𝑉 − 𝜂𝛿2
𝐴

)2
≤ exp

(
−2𝜂𝛼2

𝑉

)
.

Thus, for 𝛿𝐴, we have

𝛿2
𝐴,𝜏+1 ≤ exp

(
−2𝜂𝛼2

𝑉

)
𝛿2
𝐴,𝜏 + 3𝜂

©«𝛿𝐴 + 𝜂
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

.
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Similarly, for 𝛿𝑉 , we have

𝛿2
𝑉,𝜏+1 ≤

(
1 − 𝜂

(
𝛼2
𝐴 +

1
𝐾𝑄𝑇

+ 𝛿2
𝐴

))2
𝛿2
𝑉 + 3𝜂

𝛿𝑉 ∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

+ 3𝜂2 ∥𝒉𝑽 ∥
2
𝜇

𝐾𝑃𝐾
2
𝑄

≤ exp
(
−2𝜂𝛼2

𝐴

)
𝛿2
𝑉 + 3𝜂

(
𝛿𝑉 + 𝜂

∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

)
∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

Lemma E.6 (Dynamics of 𝛼𝐴 − 𝛼𝑉 ). The difference between the signals evolves as follows

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 ≤ exp (−2𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴)2

+ 8𝜂
©«

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬ .
Proof. First, we write

𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1 = 𝛼𝑉,𝜏 − 𝛼𝐴,𝜏 − 𝜂 (1 − 𝛼𝐴𝛼𝑉 ) (𝛼𝑉 − 𝛼𝐴)

+ 𝜂

𝐾𝑄

1 − 𝛼𝑉
𝑇

− 𝜂𝛼𝑉𝛿2
𝐴 − 𝜂

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄
+ 𝜂𝛼𝐴𝛿2

𝑉 + 𝜂

〈
�̂�𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑃𝐾𝑄

=: (1 − 𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴) + Tmp.

Therefore, we have

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 = ((1 − 𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴) + Tmp)2

= (1 − 𝜂 (1 − 𝛼𝐴𝛼𝑉 ))2 (𝛼𝑉 − 𝛼𝐴)2

+ 2 (1 − 𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴) Tmp + Tmp2

≤ exp (−2𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴)2

+ 3|𝛼𝑉 − 𝛼𝐴 | |Tmp| + Tmp2.

Then, for Tmp, we compute

0.5𝜂−1 |Tmp| ≤ 1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

.

In particular, this implies |Tmp| ≤ 1. Thus, we have

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 ≤ exp (−2𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴)2 + 4|Tmp|
≤ exp (−2𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴)2

+ 8𝜂
©«

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬ .
Lemma E.7. Suppose that both 𝛼𝑉 , 𝛼𝐴 are at most 1. Then, we have

1 −
𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1

2
≤

(
1 − 𝜂𝛼𝑉 + 𝛼𝐴

2

) (
1 − 𝛼𝑉 + 𝛼𝐴

2

)
+ 𝜂𝛼𝑉 + 𝛼𝐴

2

(
𝛿2
𝐴 + 𝛿

2
𝑉

)
+ 𝜂

2

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+ 𝜂
2

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

.
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Proof. First, we write

𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1 = 𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 + 𝜂 (1 − 𝛼𝐴𝛼𝑉 ) (𝛼𝑉 + 𝛼𝐴)

+ 𝜂

𝐾𝑄

1 − 𝛼𝑉
𝑇

− 𝜂𝛼𝑉𝛿2
𝐴 − 𝜂𝛼𝐴𝛿

2
𝑉 − 𝜂

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄
− 𝜂

〈
�̂�𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑃𝐾𝑄

=: 𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 + 𝜂Tmpsig + 𝜂Tmperr.

For the signal growth, note that 𝛼𝐴𝛼𝑉 ≤ (𝛼2
𝑉
+ 𝛼2

𝐴
)/2 ≤ (𝛼𝑉 + 𝛼𝐴)/2. Hence,

(1 − 𝛼𝐴𝛼𝑉 ) (𝛼𝑉 + 𝛼𝐴) ≥
1
2
(𝛼𝑉 + 𝛼𝐴) (2 − 𝛼𝑉 − 𝛼𝐴) .

For the error terms, we have�����
〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄
+

〈
�̂�𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑃𝐾𝑄

����� ≤
𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

.

Thus, we have

𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1 ≥ 𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 + 𝜂 (𝛼𝑉 + 𝛼𝐴)
(
1 − 𝛼𝑉 + 𝛼𝐴

2
− 𝛿2

𝐴 − 𝛿
2
𝑉

)
− 𝜂

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

− 𝜂

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

,

and, therefore,

1 −
𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1

2
≤

(
1 − 𝜂𝛼𝑉 + 𝛼𝐴

2

) (
1 − 𝛼𝑉 + 𝛼𝐴

2

)
+ 𝜂𝛼𝑉 + 𝛼𝐴

2

(
𝛿2
𝐴 + 𝛿

2
𝑉

)
+ 𝜂

2

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+ 𝜂
2

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

.

Lemma E.8. Put 𝜀𝐴 = 1 − 𝛼𝐴 and 𝜀𝑉 = 1 − 𝛼𝑉 . When |𝜀𝐴 |, |𝜀𝑉 | ≤ 1/2, we have

(𝜀𝐴,𝜏+1 + 𝜀𝑉,𝜏+1)2 ≤ exp (−2𝜂) (𝜀𝐴 + 𝜀𝑉 )2 + 8𝜂 |𝜀𝐴 + 𝜀𝑉 |𝜀𝐴𝜀𝑉 + 16𝜂2𝜀2
𝐴𝜀

2
𝑉

+ 8𝜂 |𝜀𝐴 + 𝜀𝑉 |
©«

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬ .
Proof. Similar to the proof of the previous lemma, we write

𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1 = 𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 + 𝜂 (1 − 𝛼𝐴𝛼𝑉 ) (𝛼𝑉 + 𝛼𝐴)

+ 𝜂

𝐾𝑄

1 − 𝛼𝑉
𝑇

− 𝜂𝛼𝑉𝛿2
𝐴 − 𝜂𝛼𝐴𝛿

2
𝑉 − 𝜂

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄
− 𝜂

〈
�̂�𝑨,𝜏 ,𝑸

〉
𝜇

𝐾𝑃𝐾𝑄

=: 𝛼𝑉,𝜏 + 𝛼𝐴,𝜏 + 𝜂Tmpsig + 𝜂Tmperr.

For the signal term, we have

Tmpsig = (1 − (1 − 𝜀𝐴) (1 − 𝜀𝑉 )) (2 − 𝜀𝐴 − 𝜀𝑉 )
= (2 − 𝜀𝐴 − 𝜀𝑉 ) (𝜀𝐴 + 𝜀𝑉 ) − 𝜀𝐴𝜀𝑉 (2 − 𝜀𝐴 − 𝜀𝑉 ) .

For the error term, we have

|Tmperr | ≤
1

𝐾𝑄𝑇
+ 2𝛿2

𝐴 + 2𝛿2
𝑉 +

2
𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+
2
�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

.
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Combine these together, and we obtain
𝜀𝐴,𝜏+1 + 𝜀𝑉,𝜏+1 = 𝜀𝐴,𝜏 + 𝜀𝑉,𝜏 − 𝜂 (2 − 𝜀𝐴 − 𝜀𝑉 ) (𝜀𝐴 + 𝜀𝑉 )

+ 𝜂𝜀𝐴𝜀𝑉 (2 − 𝜀𝐴 − 𝜀𝑉 ) ± 2𝜂
©«

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬
=: (1 − 𝜂 (2 − 𝜀𝐴 − 𝜀𝑉 )) (𝜀𝐴 + 𝜀𝑉 ) + Tmp.

Thus,
(𝜀𝐴,𝜏+1 + 𝜀𝑉,𝜏+1)2 = ((1 − 𝜂 (2 − 𝜀𝐴 − 𝜀𝑉 )) (𝜀𝐴 + 𝜀𝑉 ) + Tmp)2

≤ exp (−2𝜂 (2 − 𝜀𝐴 − 𝜀𝑉 )) (𝜀𝐴 + 𝜀𝑉 )2 + 2|𝜀𝐴 + 𝜀𝑉 | |Tmp| + Tmp2.

Note that

|Tmp| ≤ 4𝜂
©«𝜀𝐴𝜀𝑉 +

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬ .
Recall |𝜀𝐴 |, |𝜀𝑉 | ≤ 1/2. Thus,

(𝜀𝐴,𝜏+1 + 𝜀𝑉,𝜏+1)2 ≤ exp (−2𝜂) (𝜀𝐴 + 𝜀𝑉 )2

+ 8𝜂 |𝜀𝐴 + 𝜀𝑉 |
(
𝜀𝐴𝜀𝑉 +

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

𝒉𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

)
+ 16𝜂2 ©«𝜀2

𝐴𝜀
2
𝑉 +

(
1

𝐾𝑄𝑇
+ 𝛿2

𝐴 + 𝛿
2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

𝒉𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

)2ª®¬
≤ exp (−2𝜂) (𝜀𝐴 + 𝜀𝑉 )2 + 8𝜂 |𝜀𝐴 + 𝜀𝑉 |𝜀𝐴𝜀𝑉 + 16𝜂2𝜀2

𝐴𝜀
2
𝑉

+ 8𝜂 |𝜀𝐴 + 𝜀𝑉 |
(

1
𝐾𝑄𝑇

+ 𝛿2
𝐴 + 𝛿

2
𝑉 +

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

𝒉𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

)
.

Lemma E.9. Suppose that (𝑋𝜏)𝜏 satisfies 𝑋𝜏+1 ≤ 𝑒−𝐴𝑋𝜏 + 𝐵 for some 𝐴 ∈ (0, 1], 𝐵 ≥ 0. If
𝑋0 ≤ 2𝐵/𝐴, then we have 𝑋𝜏 ≤ 3𝐵/𝐴 for all 𝜏 ≥ 0. If 𝑋0 ≥ 2𝐵/𝐴, then we have 𝑋𝜏 ≤ 3𝐵/𝐴 for all
𝜏 ≥ 6

𝐴
log

(
𝑋0𝐴
3𝐵

)
.

Proof. Since 𝑒−𝐴 ≤ 1 − 𝐴/2 for 𝐴 ∈ (0, 1], we have 𝑋𝜏+1 ≤ 𝑋𝜏 − 𝐴𝑋𝜏/2 + 𝐵. Hence, whenever
𝑋𝜏 ≥ 2𝐵/𝐴, we will have 𝑋𝜏+1 ≤ 𝑋𝜏 . Moreover, if 𝑋𝜏 < 2𝐵/𝐴, we have 𝑋𝜏+1 ≤ 2𝐵/𝐴 + 𝐵 ≤ 3𝐵/𝐴.
This proves the first part of the lemma.
Now, suppose that 𝑋0 ≥ 2𝐵/𝐴. When 𝑋𝜏 ≥ 3𝐵/𝐴, we have

𝑋𝜏+1 ≤ 𝑋𝜏 − 𝐴𝑋𝜏/2 + 𝐵 ≤ 𝑋𝜏 − 𝐴𝑋𝜏/6 ≤ 𝑒−𝐴/6𝑋𝜏 .

Thus, it takes at most 6
𝐴

log
(
𝑋0𝐴
3𝐵

)
steps to reduce 𝑋𝜏 from 𝑋0 to 3𝐵/𝐴. After that, the previous

analysis applies.

E.2.2 Main lemma of Stage 2

We split the analysis of Stage 2 into two substage. Let 𝑐𝛼 ∈ (0, 0.05) be a small constant. Define
T2.1 := inf

{
𝜏 ≥ T1 : (𝛼𝑉,𝜏 + 𝛼𝐴,𝜏)/2 ≥ 1 − 𝑐𝛼

}
.

We call {𝜏 : 𝜏 ≤ T2.1} stage 2.1 and {𝜏 : 𝜏 ≥ T2.1} stage 2.2. For notational simplicity, we define

Errsmall = max
𝜏


1

𝐾𝑄𝑇
+

𝒉𝑽 ,𝜏𝜇√
𝐾𝑃𝐾𝑄

+

�̂�𝑨,𝜏


𝜇

𝐾𝑃
√︁
𝐾𝑄

 .
Note that this can be made essentially arbitrarily small by choosing a large enough batch size.
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Lemma E.10. Suppose that the following hold at the beginning of Stage 2 (after thresholding and
projection):

(a) 𝛼𝑉 , 𝛼𝐴 ≥ 𝛼 (2)

(b) 𝛿2
𝐴
+ 𝛿2

𝑉
≤ (𝛿 (2) )2.

Let 𝛿∗ be our target value for 𝛿𝐴 and 𝛿𝑉 . Choose 𝜆 as in Lemma E.4. Suppose that

max
{
𝛿 (2) ,Errsmall

}
Errsmall ≤ 𝛿2

∗ , Errsmall ≤ 𝑂 (𝛼 (2) ),

max
{
(𝛼𝑉,T1 − 𝛼𝐴,T1 )2, 𝛿 (2) ,Errsmall

}
≤ 𝑂

(
1

log(1/𝛿∗)

)
.

Then, within 𝑂 (1/(𝜂𝛼 (2) ) + log(1/𝛿∗)/𝜂) steps, we will have 𝛿2
𝐴
, 𝛿2
𝑉
≤ 𝛿2
∗ and 𝛼𝑉 , 𝛼𝐴 ∈ (0.9, 1.1).

Remark. Note that our conditions on 𝛼𝑉 , 𝛼𝐴 and 𝛿 (2) are much weaker that what one can obtain
from Stage 1. This allows us to apply the analysis here to transfer learning. ♣

The following proof should be treated as a large induction argument though we do not explicitly write
down the induction as in the proof of Stage 1. In particular, we will show (by induction) that the
approximation errors 𝛿𝐴 and 𝛿𝑉 are small, so that most of the naïve bounds on the entries of �̃� and �̃�
can be transferred to 𝑨 and 𝑽. In particular, |𝑉𝑛,𝑚 | = 𝑂 (1) for all 𝑛, 𝑚 ∈ [𝑁] so that our bounds
in Section E.1 are valid, and |𝑎 (𝑘 )𝑡 | = 𝑂 (1) for all 𝑘 ∈ [𝑁], 𝑡 ∈ [𝑁], which implies that after the
projection step, 𝑎 (𝑘 )𝑡 = 𝑂 (1/𝑇) for all 𝑡 ∉ 𝒒 (𝑘 ) .

Proof of the Lemma E.10

Common results for Stage 2.1 and 2.2 First, we prove some basic results that hold for both Stage 2.1
and 2.2. First, we show (by induction) that 𝛼𝑉 , 𝛼𝐴 ≥ 𝛼 (2) and 𝛿2

𝑉
+ 𝛿2

𝐴
≤ 𝛿 (2) hold throughout

Stage 2. Recall from Lemma E.5 that

𝛿2
𝐴,𝜏+1 ≤ exp

(
−2𝜂𝛼2

𝑉

)
𝛿2
𝐴,𝜏 + 3𝜂

©«𝛿𝐴 + 𝜂
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

ª®®¬
�̂�𝑨


𝜇

𝐾𝑃
√︁
𝐾𝑄

≤ exp
(
−2𝜂(𝛼 (2) )2

)
𝛿2
𝐴,𝜏 + 𝜂Errsmall.

Hence, as long as Errsmall ≤ 𝑂 (1)𝛿 (2)/(𝛼 (2) )2, we can ensure 𝛿2
𝐴,𝜏+1 + 𝛿

2
𝑉,𝜏+1 ≤ (𝛿

(2) )2 always hold.

Stage 2.1: signal growth By Lemma E.7, we have

1 −
𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1

2
≤

(
1 − 𝜂𝛼𝑉 + 𝛼𝐴

2

) (
1 − 𝛼𝑉 + 𝛼𝐴

2

)
+ 𝜂𝛼𝑉 + 𝛼𝐴

2

(
𝛿2
𝐴 + 𝛿

2
𝑉

)
+ 𝜂Errsmall.

When (𝛼𝑉 + 𝛼𝐴)/2 ≤ 1 − 𝑐𝛼 and 𝛼𝑉 , 𝛼𝐴 ≥ 𝛼 (2) , we have

𝜂
𝛼𝑉 + 𝛼𝐴

2

(
1 − 𝛼𝑉 + 𝛼𝐴

2

)
≥ 𝜂𝛼𝑉 + 𝛼𝐴

2
𝑐𝛼 ≥ 𝜂𝛼 (2)𝑐𝛼 .

Hence, as long as Errsmall ≤ 𝛼 (2)𝑐𝛼/2 and 𝛿 (2) ≤ 𝑐𝛼/2, we have

1 −
𝛼𝑉,𝜏+1 + 𝛼𝐴,𝜏+1

2
≤

(
1 − 𝜂

2
𝛼𝑉 + 𝛼𝐴

2

) (
1 − 𝛼𝑉 + 𝛼𝐴

2

)
≤ exp

(
−𝜂𝛼

(2)

2

) (
1 − 𝛼𝑉 + 𝛼𝐴

2

)
.

Thus, stage 2.1 takes at most 𝑂 (1/(𝜂𝛼 (2) )) steps.
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Stage 2.1: difference between the 𝛼’s By Lemma E.6, we have

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 ≤ exp (−2𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴)2 + 8𝜂
(
(𝛿 (2) )2 + Errsmall

)
.

By the AM-GM inequality, we have 𝛼𝐴𝛼𝑉 ≤ ((𝛼𝐴+𝛼𝑉 )/2)2 ≤ (1−𝑐𝛼)2. Therefore, 1−𝛼𝐴𝛼𝑉 ≥ 𝑐𝛼
and the above inequality can be further rewritten as

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 ≤ exp (−2𝑐𝛼𝜂) (𝛼𝑉 − 𝛼𝐴)2 + 8𝜂
(
(𝛿 (2) )2 + Errsmall

)
.

Thus, by (the proof of) Lemma E.9, we have

(𝛼𝑉,𝜏 − 𝛼𝐴,𝜏)2 ≤ max

{
2(𝛼𝑉,T1 − 𝛼𝐴,T2 )2,

4
(
(𝛿 (2) )2 + Errsmall

)
𝑐𝛼

}
.

Stage 2.2: error decrease By Lemma E.5, we have

𝛿2
𝐴,𝜏+1 ≤ exp

(
−2𝜂𝛼2

𝑉

)
𝛿2
𝐴,𝜏 + 3𝜂max

{
𝛿 (2) ,Errsmall

}
Errsmall

≤ exp (−𝜂) 𝛿2
𝐴,𝜏 + 3𝜂max

{
𝛿 (2) ,Errsmall

}
Errsmall.

Thus, by Lemma E.9, we have

𝛿2
𝐴,𝜏 ≤ 𝑂 (1)max

{
𝛿 (2) ,Errsmall

}
Errsmall ≤ 𝛿2

∗ , ∀𝜏 ≥ 𝑂
(
log(1/𝛿∗)

𝜂

)
.

In other words, Stage 2.2 takes at most 𝑂
(

log(1/𝛿∗ )
𝜂

)
steps.

Stage 2.2: stability of 𝛼𝑉 ± 𝛼𝐴 Recall from Lemma E.8 and Lemma E.6 that

(𝜀𝐴,𝜏+1 + 𝜀𝑉,𝜏+1)2 ≤ exp (−2𝜂) (𝜀𝐴 + 𝜀𝑉 )2 + 8𝜂 |𝜀𝐴 + 𝜀𝑉 |𝜀𝐴𝜀𝑉 + 16𝜂2𝜀2
𝐴𝜀

2
𝑉

+ 8𝜂 |𝜀𝐴 + 𝜀𝑉 |
(
𝛿 (2) + Errsmall

)
,

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 ≤ exp (−2𝜂 (1 − 𝛼𝐴𝛼𝑉 )) (𝛼𝑉 − 𝛼𝐴)2 + 8𝜂
(
𝛿 (2) + Errsmall

)
.

We wish to maintain the induction hypotheses |𝛼𝑉 − 𝛼𝐴 | = |𝜀𝑉 − 𝜀𝐴 | = 𝜃− for some 𝜃− = 𝑜(1) and
(𝛼𝐴 + 𝛼𝑉 )/2 ≤ 1 + 𝑐/log(1/𝛿∗) =: 1 + 𝜃+.
First, assume these conditions are true. Then, we have

(𝛼𝑉,𝜏+1 − 𝛼𝐴,𝜏+1)2 ≤ exp (𝑂 (1)𝜂/log(1/𝛿∗)) (𝛼𝑉 − 𝛼𝐴)2 + 8𝜂
(
𝛿 (2) + Errsmall

)
.

Since Stage 2.2 takes at most 𝑂 (log(1/𝛿∗)/𝜂) steps, when the constant 𝑐 is small, we have

(𝛼𝑉,𝜏 − 𝛼𝐴,𝜏)2 ≤ 2
(
(𝛼𝑉,T2.1 − 𝛼𝐴,T2.1 )2, +8

(
𝛿 (2) + Errsmall

))
≤ 𝑂 (1)max

{
(𝛼𝑉,T2.1 − 𝛼𝐴,T2.1 )2, 𝛿 (2) ,Errsmall

}
=: 𝜃− .

We can choose the parameters appropriately so that 𝜃− < 𝑜(𝜃+). Then, when 𝜀𝐴 + 𝜀𝑉 ∈ (−2𝜃+,−𝜃+),
we have, for some large universal constant 𝐶 > 0,

(𝜀𝐴,𝜏+1 + 𝜀𝑉,𝜏+1)2 ≤ exp (−2𝜂) 𝜃2
+ + 𝐶𝜂𝜃3

+ + 𝐶𝜂2𝜃4
+ + 𝐶𝜂𝜃+

(
𝛿 (2) + Errsmall

)
≤ exp (−2𝜂) 𝜃2

+ + 𝐶𝜂𝜃3
+ + 𝐶𝜂𝜃+𝜃−

≤ 𝜃2
+.

This establishes the induction hypotheses on 𝛼𝑉 ± 𝛼𝐴.
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F Stage 3: Final Convergence

As mentioned last section, we cannot ensure 𝛼𝐴 ≈ 𝛼𝑉 since 𝛼𝐴−𝛼𝑉 is not contractive toward the end
of training. However, we can add a final rounding step and then continue train the model to recover
the ground-truth with 𝜀-error.
First, we formally define our rounding procedure. Let 𝑐 > 0 be a small constant (cf. the proof of
Lemma F.1). For each 𝑘 ∈ [𝑁], define

�̂� (𝑘 ) :=
[
𝑎
(𝑘 )
𝑡 1

{
𝑎
(𝑘 )
𝑡 ≥ 𝑐/𝑄

}]
𝑡∈[𝑇 ]

and 𝒂 (∗,𝑘 ) :=
�̂� (𝑘 )

1⊤ �̂� (𝑘 )
.

This 𝑨∗ := [𝒂 (∗,𝑘 ) ]𝑘∈[𝑁 ] is our rounded version of 𝑨. For the error between 𝑨∗ and 𝑸, we have the
following lemma.
Lemma F.1 (Rounding 𝑨). Let 𝜀 ∈

(
Θ(𝑄2/𝑇2), 0.1

)
be our target accuracy. Suppose that𝛼𝐴 = 1−𝜀𝐴

for some |𝜀𝐴 | ≤ 0.1 and ∥𝚫𝐴∥2𝜇 ≤ 𝛿2
𝐴

for some 0 < 𝛿𝐴 ≪ 1/(𝑄
√
𝑁). Then, after rounding, we have

∥𝑨∗ − 𝑸∥2𝜇 ≤ 𝑂
(
𝑄2

𝑇2 + 𝛿
2
𝐴𝑁𝑄

)
.

In particular, to achieve 𝜀 accuracy in terms of ∥·∥𝜇, we only need |𝜀𝐴 | ≤ 0.1 and 𝛿2
𝐴
≤ 𝑂 (𝜀/

√
𝑁𝑄).

Remark. In particular, this lemma implies that as long as 𝜀𝐴 is not too large, after rounding, the
error depends solely on ∥𝚫𝐴∥2𝜇. ♣

Proof. For notational simplicity, we omit the superscript 𝑘 for now. Write

𝒂 = �̃� + 𝚫𝒂 = 𝛼𝑉𝒒 + (1 − 𝛼𝑉 )
1
𝑇
+ 𝚫𝒂 = (1 − 𝜀𝐴)𝒒 + 𝜀𝐴

1
𝑇
+ 𝚫𝒂 .

Note that ∥𝚫𝒂 ∥∞ ≤ ∥𝚫𝒂 ∥2 ≤ 𝑂 (1)
√
𝑁 ∥𝚫𝑨∥𝜇 ≤ 𝑂 (

√
𝑁𝛿𝐴). Since all nonzero 𝑞𝑠 are lower bounded

by Ω(1/𝑄), we have, for any 𝑠 ∈ 𝒒 and 𝑡 ∉ 𝒒,

𝑎𝑠 ≥
Ω(1)
𝑄
− |𝜀𝐴 |

𝑇
−𝑂

(√
𝑁𝛿𝐴

)
=
Ω(1)
𝑄

,

|𝑎𝑡 | ≤
|𝜀𝐴 |
𝑇
+𝑂

(√
𝑁𝛿𝐴

)
≪ 1
𝑄
.

Hence, we can choose a small constant 𝑐 > 0, so that

�̂� := [𝑎𝑡1{|𝑎𝑡 | ≥ 𝑐/𝑄}]𝑡∈[𝑇 ] = (1 − 𝜀𝐴)𝒒 + 𝜀𝐴
1𝒒
𝑇
+ [𝚫𝒂]𝒒 ,

where for 𝒗 ∈ R𝑇 , 𝒗𝒒 ∈ R𝑇 is defined as [𝑣𝑡1{𝑡 ∈ 𝒒}]𝑡∈[𝑇 ] here. Now, consider the difference
between 𝒒 and �̂�/1⊤ �̂�. We have

1⊤ �̂� = 1 − 𝜀𝐴 +
𝜀𝐴𝑄

𝑇
±𝑂

(
𝑄
√
𝑁𝛿𝐴

)
,

and therefore,

𝒂∗ :=
�̂�

1⊤ �̂�
=

(1 − 𝜀𝐴)𝒒 + 𝜀𝐴1𝒒/𝑇 + [𝚫𝒂]𝒒
(1 − 𝜀𝐴) + 𝜀𝐴𝑄/𝑇 ±𝑂

(
𝑄
√
𝑁𝛿𝐴

)
=
(1 − 𝜀𝐴)𝒒 + 𝜀𝐴1𝒒/𝑇 + [𝚫𝒂]𝒒

(1 − 𝜀𝐴)

(
1 ±𝑂

(
𝜀𝐴𝑄/𝑇 +𝑄

√
𝑁𝛿𝐴

))
=

(
𝒒 ±𝑂

(
𝜀𝐴1𝒒/𝑇 + [𝚫𝒂]𝒒

) ) (
1 ±𝑂

(
𝜀𝐴𝑄/𝑇 +𝑄

√
𝑁𝛿𝐴

))
= 𝒒 ±𝑂2

(
𝜀𝐴𝑄/𝑇 +

√︁
𝑄𝑁𝛿𝐴

)
.

Thus,

∥𝑨∗ − 𝑸∥2𝜇 =

𝑁∑︁
𝑘=1

𝜇𝑘

𝒂 (𝑘 )∗ − 𝒒 (𝑘 )
2

= 𝑂

(
𝜀2
𝐴
𝑄2

𝑇2 + 𝛿2
𝐴𝑁𝑄

)
.

43



Lemma F.2. Let 𝜀 ∈
(
Θ(1)/(𝐾𝑄𝑇), 0.1

)
be our target accuracy. Suppose that ∥𝑨 − 𝑸∥𝜇 ≤ 𝛿𝐴,∗ ≤

0.01𝜀 and ∥𝚫𝑉 ∥𝜇 ≤ 𝛿𝑉 ≤ 0.01 at the beginning of Stage 3, and ∥𝒉𝑽 ∥𝜇 ≤ 𝑐𝜀
√
𝐾𝑃𝐾𝑄 for all 𝜏 and a

sufficiently small constant 𝑐. Then, we have ∥𝑽 − 𝑷∥2𝜇 ≤ 𝜀 for all 𝜏 ≥ T2 + Θ(log(1/𝜀)/𝜂).

Proof. Under the condition ∥𝑨 − 𝑸∥𝜇 ≤ 𝛿𝐴,∗, we have ∥𝚫𝐴∥𝜇 ≤ ∥𝑨 − 𝑸∥𝜇 ≤ 𝛿𝐴,∗ and

𝛼𝐴 =
1
𝐾𝑄

(
⟨𝑨,𝑸⟩𝜇 −

1
𝑇

)
=

1
𝐾𝑄

(
𝐾𝑄 + ⟨𝚫𝐴,𝑸⟩𝜇

)
= 1 ±𝑂

(√︁
𝑄𝛿𝐴,∗

)
.

Recall that we only train 𝑽 in Stage 3. Note that by Lemma C.3,

∥𝑽 − 𝑷∥2𝜇 =
�̃� − 𝑷

2
𝜇
+ ∥𝚫𝑉 ∥2𝜇 = (1 − 𝛼𝑉 )2𝐾𝑃 + ∥𝚫𝑉 ∥2𝜇 ≤ (1 − 𝛼𝑉 )2 + ∥𝚫𝑉 ∥2𝜇 .

Hence, to get 𝜀 accuracy, it suffices to have (1 − 𝛼𝑉 )2 ≤ 𝜀/2 and ∥𝚫𝑉 ∥2𝜇 ≤ 𝜀/2.

First, for 𝛼𝑉 , by Lemma C.5 and 𝜂𝑉 = 𝜂/𝐾𝑄, we have

𝛼𝑽 ,𝜏+1 = 𝛼𝑽 ,𝜏 + 𝜂𝑉𝐾𝑄 (1 − 𝛼𝑉𝛼𝐴) 𝛼𝑉 + 𝜂𝑉
1 − 𝛼𝑉
𝑇

− 𝜂𝑉𝛼𝑉 ∥𝚫𝐴∥2𝜇 −
𝜂𝑉

𝐾𝑃

〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

= 𝛼𝑽 ,𝜏 + 𝜂 (1 − 𝛼𝑉 ) 𝛼𝑉 ± 𝜂𝑂
(

1
𝐾𝑄𝑇

+ 𝛿𝐴,∗𝛼𝑉
)
± 𝜂𝑂

( 〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄

)
.

Hence,

(
1 − 𝛼𝑉,𝜏+1

)2
=

(
(1 − 𝜂𝛼𝑉 )

(
1 − 𝛼𝑽 ,𝜏

)
± 𝜂𝑂

(
1

𝐾𝑄𝑇
+ 𝛿𝐴,∗𝛼𝑉

)
± 𝜂𝑂

( 〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄

))2

≤ exp (−2𝜂𝛼𝑉 )
(
1 − 𝛼𝑽 ,𝜏

)2 + 𝜂𝑂
(

1
𝐾𝑄𝑇

+ 𝛿𝐴,∗𝛼𝑉
)
+ 𝜂𝑂

( 〈
𝒉𝑽 ,𝜏 , 𝑷

〉
𝜇

𝐾𝑃𝐾𝑄

)
≤ exp (−𝜂)

(
1 − 𝛼𝑽 ,𝜏

)2 + 0.1𝜂𝜀.

For ∥𝚫𝐴∥2𝜇, by (the proof of) Lemma E.5, we have𝚫𝑉,𝜏+12
𝜇
≤ exp

(
−2𝜂𝛼2

𝐴

) 𝚫𝑉,𝜏2
𝜇
+ 3𝜂

(𝚫𝑉,𝜏𝜇 + 𝜂 ∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

)
∥𝒉𝑽 ∥𝜇√
𝐾𝑃𝐾𝑄

≤ exp (−𝜂)
𝚫𝑉,𝜏2

𝜇
+ 0.1𝜂𝜀.

Thus, by Lemma E.9, we have (1 − 𝛼𝑉 )2 ≤ 𝜀/2 and ∥𝚫𝑉 ∥2𝜇 ≤ 𝜀/2 for all 𝜏 ≥ T2+Θ (log(1/𝜀)/𝜂).

Corollary F.3. Let 𝜀 ∈ (Θ(1)/(𝐾𝑄𝑇), 0.1) be our target accuracy. Suppose that 𝛼𝐴 ∈ (0.9, 1.1),
∥𝚫𝐴∥2𝜇 ≤ 𝑂 (𝜀/(𝑄

√
𝑁)), and ∥𝚫𝑉 ∥2𝜇 ≤ 0.01. Then with poly(𝑁,𝑄, 1/𝜀) samples, we have with high

probability that ∥𝑨 − 𝑸∥2𝜇 ≤ 𝜀 and ∥𝑽 − 𝑷∥2𝜇 ≤ 𝜀 after Stage 3, which takes 𝑂 (log(1/𝜀)/𝜂) steps.

Proof. It suffices to combine the previous two lemmas, the concentration results in Section B, and
apply union bound.

G Proof of the main theorem

In this section, we combine the results from the last three sections and prove the following formal
version of Theorem 3.1.
Theorem G.1. Let 𝜀 > 0 be our target accuracy and T1 = min{𝜏 ≥ 0 : max{𝛼𝑉,𝜏 , 𝛼𝐴,𝜏} ≥
Θ(1/(𝑄𝑁))}. We can choose the hyperparameters in Algorithm 1 such that within
𝑂

(
log(𝑇)/𝜂1 + 1/(𝜂𝛼 (2) ) + log(1/𝜀)/𝜂

)
steps, we have ∥𝑨 − 𝑸∥2𝜇 ≤ 𝜀 and ∥𝑽 − 𝑷∥2𝜇 ≤ 𝜀 with

probability at least 1 − 𝛿 and the number of samples used before and after T1 are poly(𝑇, 𝛿) and
poly(𝑁,𝑄, 1/𝜀, log𝑇, 𝛿), respectively.
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Proof. The results for Stage 1 follow directly from Lemma D.1. Now, consider the results for
Stage 2 and 3. First, by Corollary F.3, it suffices to make sure at time T2, we have 𝛼𝐴 ∈ (0.9, 1.1),
∥Δ𝐴∥2𝜇 ≤ 𝑂 (𝜀/(𝑄

√
𝑁)) and ∥𝚫𝑉 ∥2𝜇 ≤ 0.01 (with high probability). By Lemma D.1, we know the

following hold at time T1 w.h.p:

𝛼𝐴, 𝛼𝑉 = Θ(1/(𝑄𝑁)) and ∥𝚫𝐴∥2𝜇 , ∥𝚫𝑉 ∥2𝜇 ≤ 𝑂 (1/𝑇).

Therefore, by Lemma E.1, if we choose the threshold to be Θ(1/(𝑄2𝑁)), then after thresholding
and projection, we have 𝑎 (𝑘 )𝑡 = 𝑂 (1/𝑇) for all 𝑡 ∉ 𝒒 (𝑘 ) . Thus, by Lemma E.3 and Lemma E.4, with
poly(𝑄, 𝑁, 1/𝜀, log(𝑇)) samples, we have with high probability that 𝑎 (𝑘 )𝑡 = 𝑂 (1/𝑇) for all 𝑡 ∉ 𝒒 (𝑘 )

holds and
�̂�𝐴

𝜇
satisfies the requirements in Lemma E.10 throughout Stage 2. Thus, by Lemma E.10

with 𝛿2
∗ = 𝑂 (𝜀/𝑄

√
𝑁), at the end of Stage 2, we have with high probability that 𝛼𝐴 ∈ (0.9, 1.1),

∥Δ𝐴∥2𝜇 ≤ 𝑂 (𝜀/(𝑄
√
𝑁)) and ∥𝚫𝑉 ∥2𝜇 ≤ 0.01. When combined with Corollary F.3, this completes the

proof.

H Transfer learning

Lemma H.1 (Initialization). Suppose that we have learned �̂� and
〈
�̂�, 𝑷

〉
𝜇
≥ 2 ∥𝝁∥2,

�̂�2
𝜇
=

Θ(1) ∥𝑷∥2𝜇. Let 𝑽 = 𝜃 �̂� + (1 − 𝜃)𝝁1⊤ for some 𝜃 ∈ (0, 1). We have

𝛼𝑉 ∈
[
Θ

(
𝜃

𝑁𝐾𝑃

)
,Θ (𝜃)

]
and ∥𝚫𝑉 ∥2𝜇 ≤ Θ(1)𝜃2𝐾𝑃 .

Proof. First, consider 𝚫𝑉 . Since ∥𝚫𝑉 ∥𝜇 is the distance to a projection, we have

∥𝚫𝑉 ∥2𝜇 ≤
𝑽 − (

𝜃𝑷 + (1 − 𝜃)𝝁1⊤
)2
𝜇
= 𝜃2 �̂� − 𝑷

2
𝜇
≤ Θ(1)𝜃2 ∥𝑷∥2𝜇 = Θ(1)𝜃2𝐾𝑃 .

For 𝛼𝑉 , we compute

⟨𝑽, 𝑷⟩𝜇 − ∥𝝁∥2 = 𝜃

(〈
�̂�, 𝑷

〉
𝜇
− ∥𝝁∥2

)
≥ 𝜃 ∥𝝁∥2 ≥ Θ(1)𝜃/𝑁.

In particular, this implies 𝛼𝑉 ≥ Θ

(
𝜃

𝑁𝐾𝑃

)
.

Lemma H.2 (First gradient step). Let 𝑨 = 11⊤/𝑇 and 𝑽 given by Lemma H.1. Let 𝜀Tmp ≤
𝑂 (1/(𝑁𝐾𝑃)). Run one gradient step with poly(𝑁,𝑄, log𝑇, 1/𝜀Tmp) samples and 𝜂 = 1, remove all
entries of 𝒂 (𝑘 ) with |𝑎 (𝑘 )𝑡 | ≤ Θ(𝜃/(𝑁𝐾𝑃)) and the replace 𝒂 (𝑘 ) with the projection (𝑰 − 11⊤/𝑇)𝒂 (𝑘 ) .

With high probability, we have 𝛼𝐴 = (1 ±𝑂 (𝜀Tmp))𝛼𝑉 and ∥𝚫𝐴∥2𝜇 ≤ 𝑂
(
𝜀2
Tmp𝛼

2
𝑉

𝑄
+ 1
𝑇

)
.

Proof. The proof idea is essentially the same as Lemma E.3, though the reinitialization of the first
layer allows better estimations in several places. Recall that for each 𝑠 ∈ [𝑇], we have

𝜕
𝑎
(𝑘)
𝑠
𝑙 = 1{𝑥𝑇+1 = 𝑘}(𝑽𝒆𝑥𝑠 )⊤

(
𝑽𝑿1/𝑇 − 𝒆𝑥𝑜

)
,

E 𝜕
𝑎
(𝑘)
𝑠
𝑙 = 𝜇𝑘𝐾𝑉/𝑇 − 𝜇𝑘𝐾𝑉𝑃𝑞𝑠 .

Also recall from Lemma C.3 that 𝐾𝑉𝑃 = 𝛼𝑉𝐾𝑃 and 𝐾𝑉 = 𝛼2
𝑉
𝐾𝑃 + ∥𝚫𝑉 ∥2𝜇. For any 𝑠 ∈ 𝒒 (𝑘 ) , we

have

−E 𝜕
𝑎
(𝑘)
𝑠
𝑙 = 𝜇𝑘

(
𝛼𝑉𝐾𝑃𝑞𝑠 −

𝛼2
𝑉
𝐾𝑃 + ∥𝚫𝑉 ∥2𝜇

𝑇

)
≥ 𝜇𝑘𝛼𝑉𝐾𝑃𝑞𝑠

2

where the inequality comes from 𝜇𝑘𝛼𝑉𝐾𝑃𝑞𝑠 ≥ Ω(𝛼𝑉/𝑁2/𝑄) ≫ 1/𝑇 . Meanwhile, for any 𝑠 ∉ [𝑇],
we have E 𝜕

𝑎
(𝑘)
𝑠
𝑙 = 𝑂 (1/𝑇).
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Meanwhile, for any 𝑠 ∈ [𝑇] we have���𝜕
𝑎
(𝑘)
𝑠
𝑙

��� ≤ ��(𝑽𝒆𝑥𝑠 )⊤𝑽𝑿1/𝑇
�� + ��(𝑽𝒆𝑥𝑠 )⊤𝒆𝑥𝑜

�� ≤ 1
𝑇

𝑇∑︁
𝑡=1

��〈𝑽:,𝑥𝑠 ,𝑽:,𝑥𝑡
〉�� + ��𝑉𝑥𝑜 ,𝑥𝑠 �� ≤ 𝑂 (𝑁).

Thus, by some standard concentration argument similar to the one in Lemma E.3, we can show that
with poly(𝑁,𝑄, 1/𝛼𝑉 , 1/𝜀Tmp, log𝑇) samples, we can make sure with high probability,

𝜕
(𝐵𝜏 )
𝑎
(𝑘)
𝑡

𝑙 =
(
1 ± 𝜀Tmp

)
E 𝜕

𝑎
(𝑘)
𝑡

𝑙 =
(
1 ± 𝜀Tmp

)
𝜇𝑘𝛼𝑉𝐾𝑃𝑞𝑠 ∀𝑡 ∈ 𝒒 (𝑘 ) ,

𝜕
(𝐵𝜏 )
𝑎
(𝑘)
𝑡

𝑙 = 𝑂

(
1
𝑇
+ 𝜀Tmp

𝛼𝑉𝐾𝑃

𝑁𝑄

)
= 𝑂

(
𝜀Tmp

𝛼𝑉𝐾𝑃

𝑁𝑄

)
∀𝑡 ∉ 𝒒 (𝑘 ) .

Thus, after one gradient step with 𝜂 = 1, we have

𝑎
(𝑘 )
𝑡 = (1 ± 𝜀Tmp)𝛼𝑉𝑞 (𝑘 )𝑡 ∀𝑡 ∈ 𝒒 (𝑘 ) ,

𝑎
(𝑘 )
𝑡 = 𝑂

(
𝜀Tmp

𝛼𝑉

𝑄

)
∀𝑡 ∉ 𝒒 (𝑘 ) .

Recall from Lemma H.1 that 𝛼𝑉 ∈ [Θ(𝜃/(𝑁𝐾𝑃)),Θ(𝜃)]. Hence, we can choose the threshold 𝜆0 to
be Θ(𝜃/(𝑁𝐾𝑃)) and 𝜀Tmp ≤ 1/(𝑁𝐾𝑃) so that

�̂� (𝑘 ) =
[
𝑎
(𝑘 )
𝑡 1{𝑎 (𝑘 )𝑡 ≥ 𝜆0}

]
𝑡∈[𝑇 ]

=

[
(1 ± 𝜀Tmp)𝛼𝑉𝑞 (𝑘 )𝑡 1{𝑡 ∈ 𝒒 (𝑘 ) }

]
𝑡∈[𝑇 ]

.

Now, set
𝒂 (𝑘 ) ← (𝑰 − 11⊤/𝑇) �̂� (𝑘 ) = (1 ±𝑂∞ (𝜀Tmp))𝛼𝑉𝒒 (𝑘 ) +𝑂∞ (1)

1
𝑇
.

Note that this implies that after the first step, we have

𝛼𝐴 =

∑
𝑘 𝜇𝑘

〈
𝒂 (𝑘 ) , 𝒒 (𝑘 )

〉
− 1/𝑇

𝐾𝑄
=
𝛼𝑉 (1 ±𝑂 (𝜀Tmp)) ∥𝑸∥2𝜇 +𝑂 (𝑄/𝑇)

𝐾𝑄
= (1 ±𝑂 (𝜀Tmp))𝛼𝑉 ,

and
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𝑁∑︁
𝑘=1

𝜇𝑘

𝒂 (𝑘 ) − (
𝛼𝑉𝒒

(𝑘 ) + (1 − 𝛼𝑉 )1/𝑇
)2

𝜇
≤ 𝑂

(
𝜀2
Tmp𝛼

2
𝑉

𝑄
+ 1
𝑇

)
.

Theorem H.3 (Main theorem for transfer learning). Let 𝜀 > 0 be our target accuracy. Consider the
same setting of Lemma H.1 and Lemma H.2. Choose 𝜃 =

√︁
𝑂 (1/log(1/𝜀)) and 𝜀Tmp = 𝑂

(
1

log(1/𝜀)

)
.

Then, after one step of update on 𝑨 as in Lemma H.2, 𝑨 and 𝑽 satisfies the conditions of Lemma E.10,
and therefore we can learn (𝑷,𝑸) to 𝜀-accuracy using poly(𝑁,𝑄, 1/𝜀, 1/𝛿) samples with probability
at least 1 − 𝛿 within poly(𝑁,𝑄, 1/𝜀, 1/𝛿) steps.

I Additional Experiment

For all our experiments, we use Numpy and run on a normal laptop which takes about 20 minutes.
Setup. In all our experiments, we choose 𝑇 = 5000, 𝑄 = 2, 𝑁 = 3. The architecture is

𝑭(𝒙, 𝑥𝑇+1;𝑽, 𝑨) := 𝑽𝑿
(
𝑰𝑇 𝑨𝒆𝑥𝑇+1

)
=: 𝑽𝑿𝒂 (𝑥𝑇+1 ) , (15)

and the data model is the SCB (1) data-generating model. The batch size is 𝐵 = 64 and the
regularization hyperparameter is 𝜆 = 1e-5. The total time is T = 1000 iterations where stage 1 takes
𝜏 ∈ [0, 400] with learning rate 𝜂1 = 0.01. After 𝜏 > 400, we use 𝜂2 = 0.005 for further improvement
(stages 2 and 3).
Hyperparameter selection. Due to the limitation of computational resources, we do experiments
with 𝑁 ∈ [3, 20] for real-world batched gradient experiments, and 𝑁 ∈ {100, 500}, 𝑇 = 100000
experiments by using Gaussian noise SGD simulations based on the dynamics of Lemma C.5 and
C.6. As 𝑇 needs to scale with 𝑁 polynomially, it would be beyond our computation capability to
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experiment with larger 𝑁 . As for other hyperparameters, 𝜆 is chosen based on our theoretical results
(Theorem 3.1 and G.1): 𝜆 ∼ Θ(𝜖𝐾𝑃/𝑄2𝑁3) in Lemma E.4. The batch size can be chosen from
standard {64, 128, 256}, while smaller batch size will lead to divergence for both SGD and regularized
GD. 𝜂 is chosen as the largest learning rate without divergence.
Besides the original parameters, we consider the approximation error after the normalization step
(stage 3) in real-time. That is thresholding and normalizing the attention block

∀𝑘 ∈ [𝑛], �̂� (𝑘 ) = [𝑎 (𝑘 )𝑡 1{𝑎 (𝑘 )𝑡 ≥ Ω(1/𝑄)}]𝑡 . 𝒂 (𝑘 ) ← �̂� (𝑘 )/1⊤ �̂� (𝑘 )

and we do further gradient descent to recover 𝑽. In this case, we will directly use the linear regression
solution on population loss for 𝑽.
Here we report in addition: (1) original signal projection on the population process trajectory 𝛼𝐴, 𝛼𝑉
and the distance to the trajectory 𝚫𝑨,𝚫𝑽 . (2) The approximation error/similarity before and after
normalization for both SGD and proximal gradient descent. We conclude that in all metrics proximal
gradient descent performs better than the vanilla gradient descent with a small batch size (when the
noise is large).
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Figure 3: Signals 𝛼𝐴, 𝛼𝑉 and the distance to population process 𝚫𝑨,𝚫𝑽 . For the SGD, the distance
to the population process of the attention matrix 𝑨 keeps growing and dominates the signal term.
That explains the failure to learn the correct attention pattern, which leads to saturation of the signal.
In comparison, our proximal methods dramatically help reduce the gradient noise and keep close to
the population process. Though ∥𝚫𝐴∥ eventually grows up due to the bias of the gradient estimate
(the original signal growth is also slowed down), after normalization it can still approximately learn
the correct pattern. Both ∥𝚫𝑽 ∥ stay small empirically.
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Figure 4: Similarity with the ground-truth. The figure shows after Stage 1, normalization helps
further improve the solution of the proximal method. Meanwhile, with or without normalization, our
proximal method always outperforms the vanilla SGD, which fails to recover the ground-truth.

We tried different orders of state number 𝑁 and show that ℓ1 regularization is necessary and outperforms
SGD when batch size is small (gradient noise is large). Due to computation limitation, we experiment
with real batched gradient on 𝑁 ≤ 20, 𝑇 ≤ 5000, and do SGD simulation by combining our population
gradient + Gaussian noise (to mimic the batch gradient noise) for 𝑁 ≤ 500, 𝑇 ≤ 100000.
We also corroborate our previous experiments with the new test loss plot to show the convergence
of training. Note that since there are multiple global minima for the linear attention, ℓ1 regularized
dynamics eventually will make 𝐴 and 𝑄 deviate from the ground-truth while representing the same
function. That is why the loss converges but the distance to the ground-truth increases after some
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point, making the final normalization step essential to recover the ground-truth. Another point is that
according to our theory, the regularization will eventually distort the learned pattern when trained for
too many iterations. Empirically, the loss also increases a little after it converges. Therefore, we must
stop early and normalize before the distortion happens.
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Figure 5: Convergence analysis. We plot the distance to the ground-truth and the test loss for
𝑁 = 3, 10, 20 (from top to bottom). It shows that when gradient noise is large, ℓ1 regularized algorithm
with normalization and early-stopping can almost perfectly recover the ground-truth (the star), while
SGD struggles to learn the target function. Figure 3 (Appendix I) also shows when the gradient noise
is large, SGD never learns ground-truth 𝑄 even with normalization.
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Figure 6: Simulation with larger 𝑁 and 𝑇 . We simulate the SGD/ℓ1 regularized dynamics by
replacing the batched noise with Gaussian noise in the dynamics formula in Lemma C.5 and C.6. The
gaussian noise variance scales with the inverse of batch size. The experiments show that the conclusions
drawn from the small 𝑁 cases still hold in those simulations: when 𝑇 = 100000, 𝑁 = 100/500, our
ℓ1 regularized algorithm can recover the ground-truth since the distance to the population trajectory
(Δ𝐴,Δ𝑉 ) stays very small, while the error along SGD trajectories quickly increases with the same
batch size.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately summarized our claims and contributions in the abstract as well
as the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is included in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions and conditions are included in the Setup section 2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information is included in Section 5 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]
Justification: We will upload the codes in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more
details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All information is included in Section 5 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments are for dynamics simulations. We do not include perfor-
mance/accuracy results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: All information is included in Section 5 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work is a pure theory paper without potential harmful effect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is a theoretical paper without direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is a theoretical work without such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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