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ABSTRACT

Recent text-to-image generative models have exhibited an impressive ability to gener-
ate fairly realistic images from some text prompts. In this work, we explore to leverage
off-the-shelf text-to-image generative models to train non-specific downstream few-shot
classification model architectures using synthetic dataset to classify real images. Current
approaches use hand-crafted or model-generated text prompts of text-to-image genera-
tive models to generate desired synthetic images, however, they have limited capability
of generating diverse images. Especially, their synthetic datasets have relatively limited
relevance to the downstream classification tasks. This makes them fairly hard to guaran-
tee training models from synthetic images are efficient in practice. To address this issue,
we propose a method capable of adaptively learning proper text prompts for the off-the-
shelf diffusion model to generate diverse and classification-aware synthetic images. Our
approach shows notable improvements in various classification datasets, with results com-
parable to existing prompt designing methods. We find that replacing data generation strat-
egy of existing zero/few-shot methods with proposed method could consistently improve
downstream classification performance across different network architectures, demonstrat-
ing its model-agnostic characteristic for few-shot learning. This makes it possible to train
an efficient downstream few-shot learning model from synthetic images generated by pro-
posed method for real problems.

1 INTRODUCTION

Recently, deep learning powered by large-scale annotated data has achieved great success in the field of
image recognition [17]. However, acquiring and curating a large-scale high-quality dataset can be notori-
ously costly and time-consuming. This is especially true for inherently expensive domains, such as medical
imaging, remote sensing, etc. Few-shot learning addresses the data issue by training a model using few data
from the concerned tasks [87; 72; 63]. Generally, few-shot learning models use specialised algorithms and
architectures to achieve the objective [99; 60; 105; 3; 98; 67]. This limits the variety of model architectures
and potential applicability for real-world problems.

An alternative approach is to generate a synthetic dataset which is then used to train a classification model. In
the early period, some efforts [5; 103; 26] explored the use of GANs for data generation in image recognition.
However, constrained by the limited generative capabilities of early GAN models, the synthetic datasets
usually address tasks on a small scale or only for a specific setting. Recently, text-to-image foundation
generative models, e.g., DALL-E [51], GLIDE [47], Imagen [56], and Stable Diffusion [54], which are
trained on billions of image-text pairs from web-datasets, have demonstrated impressive breakthroughs in
generating high-quality images from text descriptions. It is hopeful not only to generate high-quality labeled
data, but also achieve domain customization to train a classifier model tailored for the concerned tasks.
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Figure 1: The comparion between existing prompt designing methods and proposed DeCap method. Hand-
crafted methods usually generate images with different domain information but limited content informa-
tion. Model-generated methods overcome this shortcoming, while may generate images share similar pat-
terns. DeCap constructs a diversity-enhanced prompt pool by integrating the advantages of hand-crafted and
model-generated methods, and then carry out classification-aware prompt learning process to mine proper
prompts suitable to downstream few-shot tasks. Figure shows the mined prompts for airplane classification.

To achieve the goal, some researchers pay attention to designing proper text descriptions (prompts) of text-to-
image generation models to generate desired synthetic images. A direct approach is to construct prompts by
formatting class labels according to a template (called vanilla prompt [57; 50]), such as “a photo of {class}”.
To produce more diverse text descriptions, multi-domain prompt [62] additionally provides a list of domains
with the prompt, e.g., “ a {domain} of a {class}”, to construct a set of prompt templates, in which ‘{domain}’
refers to drawing, painting, sketch, etc. However, these hand-crafted prompts have limited capacity of
generating images with rich content information, which usually leads to inferior generalization performance
when training downstream models. To improve the content quality of prompts, the language enhancement
(LE) method [18] leverages an off-the-shelf word-to-sentence T5 model to automatically expand class names
into various sentences with rich content descriptions, containing the class names as language prompts. While
this method hardly considers the class-relevant visual information for classification. The CiP method [37]
generates high-quality prompts via extracting meaningful captions from real images using the off-the-shelf
image captioning models such as BLIP2 [40], showing a significant improvement in generating informative
synthetic images for better classification performance.

Although prompts produced by off-the-shelf foundational models can help generate high-quality images,
they still have evident deficiencies in practice. On the one hand, generated prompts tend to share fixed
or similar patterns for different images as reported in [82], which may limit diversity of synthetic images.
For example, as shown in Figure 1, images generated by LE and CiP methods usually follow the similar
styles and backgrounds. This limitation, which is even more serious under few-shot setting, may cause
subpopulation shift problem [45; 92], i.e., some subpopulations of synthetic images shift from real-world
datasets. On the other hand, existing prompt designing methods have relatively limited relevance to the
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downstream classification tasks. Generally, the generated text prompts only employ class names or class-
relevant visual information, which leads to some noises in generated prompts, e.g., prompts containing noisy
labels or additional negative class information (please also see Figure 3). Therefore, it is relatively hard to
guarantee that training models from synthetic images are efficient for downstream classification tasks, which
tends to hinder their application effectiveness and reduce their performance stability in real problems.

To alleviate the aforementioned issues, this paper presents a Diversity-enhanced and Classification-aware
prompt (DeCap) learning strategy to mine proper text prompts for downstream few-shot classification tasks
(see Figure 1 for illustration). Our main idea is to combine existing hand-crafted diverse prompt tem-
plates and rich content prompt descriptions generated by off-the-shelf foundational models to construct a
prompt pool containing potentially all-inclusive diverse prompt information. And then we propose a novel
meta-learning approach to learn proper prompts tailored for the few-shot learning task. The DeCap method
involves two nested learning loops: an inner-loop to train a classification model using generated synthetic
images, and an outer-loop to search suitable prompts for text-to-image foundational generative models that
produce synthetic training data for the inner-level classification model. The few-shot images are employed to
compute outer-loop meta-objective for helping achieve classification-aware prompt learning. Through iter-
atively ameliorating both prompts selection and classification model performance, our algorithm is capable
of mining proper prompts which are attained specifically suitable to concerned few-shot learning task.

In summary, this paper makes the following three-fold contributions:

(1) We proposed to automatically learn proper text prompts for text-to-image generative models to generate
diverse and classification-aware synthetic images for few-shot learning task in a meta-learning manner.

(2) We verify that improving the diversity and classification-awareness of synthetic images could bring better
downstream few-shot classification performance compared with existing prompt designing methods.

(3) We show that replacing data generation strategy of existing zero/few-shot methods could further improve
downstream classification performance across different algorithms and network architectures.

The paper is organized as follows. Section 2 discusses related work. Section 3 presents the proposed method.
Section 4 demonstrates experimental results and the conclusion is finally made.

2 RELATED WORK

Text-to-Image Diffusion Model. Diffusion model [21; 71] has emerged as a research hotspot in the field
of image generation recently, due to their impressive generative capabilities. It achieves gradual matching
from a Gaussian distribution to an image distribution by reversing the diffusion process. Recently, thanks
to large-scale image-text paired datasets [59] and the maturity of text-image foundation models such as
CLIP, some state-of-the-art text-to-image diffusion models, including DALL-E [51], GLIDE [47], Imagen
[56], and Stable Diffusion [54], can produce a wide variety of highly realistic images, which has greatly
propelled research in fields such as art [81], style transfer [95; 102], image controlling [55; 100; 14], data
augmentation [77; 10] etc. In this paper, we explore leveraging off-the-shelf diffusion models to generate
high-quality synthetic images for downstream few-shot image recognition.

Synthetic Dataset for Image Recognition. In the early stages, some research[5; 103; 26] explored the role
of synthetic datasets with GAN models. However, due to the limited data generation capabilities of early
GANs, the application scenarios are significantly constrained. With the emergence of large-scale text-to-
image generative models, recent studies have validated the utility of synthetic datasets at a large scale. For
example, for classification tasks, [57; 4] train synthetic ImageNet datasets from scratch, [18; 38] showing
that CLIP [50] can boost performance from synthetic datasets. [76] validates the outstanding performance
of synthetic dataset using SimCLR and MAE models. In the field of object detection, [29] utilizes the output
results of generative model’s cross-attention layers as weak supervision for zero-shot object recognition.
Additionally, synthetic datasets are also applied to addressing long-tail problems [61].
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The data generation strategy could be roughly divided into two categories. One is fine-tuning based method
[2; 96], which fine-tunes generative models’ parameters using task data. These methods demonstrate strong
domain adaptation capabilities on large-scale datasets and can effectively generate samples that conform to
the distribution of real dataset. However, it often requires large-scale real datasets. Therefore, the other
is prompt designing method to address few-shot learning. They don’t alter the parameters of generative
models; instead, it focuses on setting proper prompts for off-the-shelf generative models to generate synthetic
datasets. As discussed in Section 1, there exist two methodologies of setting prompts, i.e., hand-crafted and
model-generated prompts. While they are not sufficient to generate high-quality images for classification.
In this paper, we propose to integrate the advantages of both methodologies to achieve a diversity-enhanced
and classification-aware prompt learning strategy. We need to clarify that, different from prompt learning
methods [106; 107] specifically designed for multimodal models like CLIP, which directly helps adjust
off-the-shell models prediction adapting to the concerned data, our prompt learning strategy focuses on
generating efficient synthetic data for further help train downstream few-shot learning.

Meta Learning. Meta learning[22; 65], also known as learning to learn, focuses on how to quickly adapt and
apply previously acquired knowledge when faced with new learning tasks. Meta learning is widely used in
few-shot learning [12; 63; 52; 69], hyperparameter optimization [13], transfer learning [27; 74], label noise
learning [64; 66; 89], machine learning automation [90], etc. For image generation field, meta learning is
used to achieve data distillation [46; 86; 85; 73], data augmentation [91], etc. Different from previous works
updating parameters of generative model, we use meta learning technique to learn proper text prompts of
generative models to generate high-quality synthetic images for concerned few-shot learning task.

3 THE PROPOSED DECAP METHOD

3.1 PRELIMINARY

For a N -classification task, We use x̂
(k)
ij = g(θij , ϵk) to denote the generated image x̂

(k)
ij via an off-the-

shelf text-to-image foundational models g, where i ∈ [N ], [N ] = {1, · · · , N} represents the i-th class,
j ∈ [M ], [M ] = {1, · · · ,M}, where M means how many different prompts for this class, θij represents
the prompt used to generate this image, ϵk represents random gaussian noise. We denote the mini dataset
generated by prompt θij as Xsyn

ij = {x̂(k)
ij , k = 1, 2, · · · , l}, where l means the generation number of each

prompt. We only study prompt setting for image generation, and we will drop explicit dependence of Xsyn
ij

on ϵk for brevity in the following, i.e., Xsyn
ij = g(θij). Our approach can be directly applied to different

diffusion models, and in this work we study the open-sourced model: Stable Diffusion (SD) [54].

Considering a few-shot classification task with real data Dreal = {(xij , yij), i = 1, · · · , N, j = 1, · · · ,K},
where xij , yij denote image and its label, and N,K denote the number of classes and samples of each class,
respectively. To boost few-shot model performance, it could use SD model to help generate high-quality
synthetic data for few-shot image recognition tasks. Specifically, the synthetic data could be formulated as

Xsyn = g(θ),θ = {θi, i ∈ [N ]},θi = {θi1, θi2, · · · , θiM}, Xsyn = {Xsyn
ij = g(θij), i ∈ [N ], j ∈ [M ]}.

For simplicity, we denote the obtained synthetic data as Dsyn(θ) = {Xsyn(θ), Y }, where Y = {Yi, i ∈
[N ]}, Yi = {yi1, · · · , yiM}. Based on Dsyn(θ), we could train a classification network fw by optimizing
the following objective:

w∗ = arg min
w∈W

Ltask(fw, D
syn(θ)), (1)

where W denotes parameter space, Ltask(fw, D
syn(θ)) = 1

MN

∑N
i=1

∑M
j=1 Ltask(fw(xij), yij), and

Ltask denote the classification loss for the downstream few-shot learning task, e.g., cross-entropy loss.

As discussed in Section 1, existing prompt designing methods may generate limited diversity of synthetic
images, tending to degrade generalization performance when training downstream classification models.
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Especially, we could see that the prompt construction process of existing methods has limited relevance to
the downstream classification tasks from Eq.(1), i.e., drops the explicit dependence of w∗ on θ. In other
words, existing prompt learning methods are classification-agnostic, which greatly reduces the alignment
between synthetic datasets and downstream classification task requirement. To address these two issues,
we propose a novel prompt learning strategy called DeCap, which explores to learn proper prompts for
generating high-quality images to improve downstream few-shot learning task. We present the method and
solving algorithm in Section 3.2 and 3.3, respectively.

3.2 PROPOSED DECAP METHOD

The proposed DeCap method firstly constructs a diversity-enhanced prompt pool (Section 3.2.1) by integrat-
ing the advantages of hand-crafted and model-generated methods, and then carry out classification-aware
prompt learning process (Section 3.2.2) to mine proper prompts suitable to downstream few-shot task.

3.2.1 DIVERSITY-ENHANCED PROMPT POOL CONSTRUCTION

In this section, we proposed to integrate the advantages of both hand-crafted and model-generated methods
to construct a prompt pool that contains potentially all-inclusive diverse prompt information.

Specifically, we construct a unique prompt pool Θ, which contains hand-crafted prompts and model gener-
ated prompts, for every class in the dataset. For hand-crafted prompts, we first select some common prompt
templates provided by [50] which contain various domain information. Then we manually add some new
prompts into the pool, covering aspects such as color, style, camera angle and so on. Since these prompts
describe the object in general terms, we share these prompts for all classes. For model generated prompts,
we use BLIP2 model as CiP method [37] to describe images from few-shot datasets, and utilize T5 model
as LE method [18] to generate corresponding class prompts with class labels as information. These prompts
describe the object in detail, so different classes will have totally different descriptions. In conclusion, for
each category’s prompt θi, it consists of two parts: the hand-crafted prompt θh

i and the model-generated
prompt θm

i , i.e., θi = [θh
i ,θ

m
i ], where all classes share the same template θh

i , while possess private prompt
θm
i .

After conducting this process, there already exists adequate prompts containing both diverse domain and
content information in the prompt pool. However, this prompt pool is overly abundant and classification-
agnostic, which contains not only proper prompts but also noisy prompts for downstream few-shot learning
task.An illustration of the necessity of using adaptive prompt learning please see Appendix D.1. Therefore,
we further propose a classification-aware prompt learning strategy to mine proper prompts form the prompt
pool in a meta-learning manner to help generate high-quality images suitable for downstream few-shot task.
We give a simple example about what our prompt pool looks like in Appendix B.1.

3.2.2 CLASSIFICATION-AWARE PROMPT LEARNING

The main idea is to establish the direct connection between prompt setting process and downstream clas-
sification model learning. Inspired by recent meta learning methods [65; 73; 22], we formulate the
classification-aware prompt learning as the following bi-level optimization objective:

θ∗ = argmin
θ∈Θ

Lmeta(fw∗(θ), D
real), (2)

where w∗(θ) = arg min
w∈W

Ltask(fw, D
syn(θ)), (3)

where the inner-level objective (Eq.(3)) is the same as Eq.(1), while we explicitly require the performance
of classification model to depend on the prompts θ. Specifically, given a prompt set θ ∈ Θ, we use these
prompts to obtain the synthetic dataset Dsyn(θ), and then train the downstream classification model on the
synthetic dataset. Different from existing method preassigning the prompts, we want to learn proper prompts
to generate high-quality data that more suitable to downstream task. To this goal, we use few-shot data Dreal

given by the downstream tasks to compute the outer-level meta loss Lmeta for evaluating the performance

5
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Figure 2: Overview of the proposed DeCap method. DeCap training involves two nested training loops.
In the inner-loop optimization, we use the selected prompts set θ to generate synthetic dataset and then help
train a downstream classification model, while in the outer-loop optimization, we search proper prompts
from pre-constructed prompt pool which are attained specifically suitable to few-shot learning task.

Algorithm 1 Learning Algorithm of the Proposed DeCap Method
Input: Downstream few-shot learning task dataset Dreal; Algorithm iteration number max-iter, population

quantity popsize; Prompt pool pool; off-the-shell text-to-image generative model g
Output: Optimal prompt set θ∗

1: GA.initial(max-iter,popsize) ▷ Genetic Algorithm (GA) initialize
2: for iter = 1, 2, . . . ,max-iter do
3: fitness=[] , Pop=[]
4: for m = 1, 2, . . . , popsize do
5: pop(m) =GA.sample() ▷ An individual in the population
6: θ(m) , Y syn = get prompt(pop(m), pool) ▷ See Algorithm 2 in Appendix B.2
7: Xsyn(θ(m)) = g(θ(m))
8: w∗(θ(m)) = argminLtask(fw, D

syn(θ(m))) ▷ Inner-loop Optimization
9: fitnesspop(m) = Lmeta(fw∗(θ(m)), D

real) ▷ Outer-loop Optimization
10: fitness.append(fitnesspop(m) ) , Pop.append(pop(m))
11: end for
12: GA.update(fitness,Pop) ▷ Updating searching direction
13: end for
14: return GA.best

of obtained classification model in Eq.(2), so as to learn proper prompts θ. Through iteratively ameliorating
both searching prompts at outer-level learning and classification model performance at inner-level learning,
our algorithm is capable of mining classification-aware prompts which is attained specifically suitable to
downstream few-shot learning task. In our implementation, the optimization of θ ∈ Θ is actually a discrete
prompt selection problem. We will introduce the solving algorithm in the next section.

3.3 LEARNING ALGORITHM OF THE PROPOSED DECAP METHOD

Considering that the optimization of prompt θ is a discrete search problem, we use the genetic algorithm
(GA) [31] to solve the outer-level optimization objective in Eq.(2). Generally speaking, a genetic algorithm
first generates different inputs, then obtains the corresponding value function outputs for these inputs, ad-
justs the search direction based on the magnitude of the outputs, and eventually completes the optimization
process. Therefore, we only need to define the GA’s input and value function for DeCap objective, and then
genetic algorithm can be employed to mine proper prompts θ∗ from prompts pool Θ.

6
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Table 1: Top-1 accuracy on different datasets. Bold scores represent the best result on each dataset, and the
second best scores are marked by orange.

STL-10 CIFAR10 Im-10 Pets Caltech-101 Im-100 EuroSAT Aircraft Country211
without real
zero-shot 94.26 70.25 97.22 81.85 83.89 70.14 23.11 17.07 13.44
vanilla prompt 95.33 72.37 97.69 82.29 84.74 70.62 31.31 17.04 13.72
multi-domain 94.97 70.66 97.89 83.07 87.56 70.50 30.11 17.85 13.90
LE 94.61 70.33 97.45 83.24 84.03 70.73 29.35 17.73 14.14
CiP 94.92 70.24 97.65 84.04 88.12 70.76 39.91 18.00 14.98
DeCap (ours) 95.91 76.98 97.95 85.36 88.67 71.08 41.94 19.74 15.44
with real
real-only 94.28 70.33 97.22 81.96 84.51 70.33 24.15 19.41 13.80
vanilla prompt 95.55 76.20 98.00 83.84 89.85 70.87 47.83 18.21 13.77
multi-domain 95.02 74.54 97.92 84.56 90.31 70.62 43.30 18.99 13.90
LE 94.72 71.66 97.49 84.00 84.34 70.46 42.06 20.22 14.37
CiP 95.05 70.51 97.75 85.16 89.86 70.86 49.17 20.31 15.49
DeCap (ours) 95.93 77.19 98.03 85.78 89.87 71.11 50.22 20.64 15.68

In our problem, the input is defined as a vector of integers. The length of the vector represents the number
of prompts selected, and each dimension of the vector corresponds to the index of the selected prompt, with
values ranging from 0 to the size of the prompt pool. Under this definition, each input represents a different
combination of selected prompts. The value function is defined as the outer-level meta loss Lmeta in Eq.(2).

For each category, the prompt θi includes the same hand-crafted prompts θh
i shared for all categories and

the class-specific model-generated prompt θm
i . This hypothesis could effectively reduce the number of

parameters for setting prompts. We believe this configuration is reasonable because domain information
could typically be shared, while class-specific content descriptions cannot. Our DeCap method is able to
balance the common patterns across categories with the unique differences specific to each category. The
whole learning algorithm of proposed DeCap method is summarized in Algorithm 1. More details about
genetic algorithm please see Appendix B.3.

4 EXPERIMENTAL RESULTS

4.1 FEW-SHOT CLASSIFICATION PERFORMANCE

We compared with existing prompt designing strategies including: (1) vanilla prompt [50]: using the tem-
plate “a photo of {class}”. (2) multi-domain prompt: using different text templates from domains provided
in [50]. (3) LE [18]: using the T5 model 1 for text prompt construction, where the input and output of T5
model are the class label and a sentence containing the class label, respectively. (4) CiP[37]: generating
captions for real image data using the BLIP22 model. We conduct experiments on 9 datasets: CIFAR10[34],
STL-10[7], Imagenette[24](Im-10), Pets[48], Caltech-101[11], ImageNet100[75](Im-100), EuroSAT[19],
FGVC Aircraft[43] and Country211[50]. Datasets details are introduced in Appendix C.1. For the selection
of the classification model, we use the CLIP model, as it has shown powerful classification ability. The
training strategy we used strictly follows the settings described in [18], where we finetune CLIP with gener-
ated data. We use “a photo of {class}” as the text initialization for CLIP tuning for all datasets to eliminate
the impact of different initializations on the evaluation of each method. Training and evaluating details are
presented in Appendix C.2. Table 1 shows the few-shot classification performance of each method on six
downstream few-shot learning datasets, where “without real” means that we only use synthetic datasets to
train downstream models, while “with real” means that we use both synthetic and real few-shot images to
train downstream models. Some ablation studies on DeCap method please see Appendix D.2.

Using synthetic data to train downstream classification model, DeCap method demonstrates the best classi-
fication accuracies across diverse datasets. All prompt designing methods can improve CLIP zero-shot per-

1https://huggingface.co/mrm8488/t5-base-finetuned-common_gen
2https://huggingface.co/Salesforce/blip2-opt-2.7b
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Table 2: Comparion of DeCap and SOTA methods on different datasets. “Method + DeCap” denotes the
performance of replacing original synthetic data strategies of each method with DeCap method.

STL-10 CIFAR10 Im-10 Pets Caltech-101 Im-100 EuroSAT Aircraft Country211 avergae
FakeIt[57] 52.26 38.45 69.60 29.74 66.20 32.75 48.40 37.70 3.61 42.08
With DeCap 60.39 48.80 75.40 55.22 70.51 39.21 51.20 40.60 4.22 49.51
SuS-X[78] 95.24 72.77 98.24 79.64 84.57 69.96 33.89 18.30 12.96 62.84
With DeCap 95.43 75.89 98.39 80.40 84.89 70.3 37.37 19.83 13.02 63.94
CaFo[101] 95.33 85.34 97.66 86.62 94.09 74.64 83.5 26.07 16.20 73.28
With DeCap 95.90 86.00 98.06 88.66 94.28 76.28 84.46 26.76 16.88 74.14

formance, showing that generating synthetic data is helpful to train downstream classification model. As for
datasets with simple categories like STL-10, CIFAR-10 and Im-10, the hand-crafted prompts could achieve
superior performance than model-generated prompts, illustrating that the prompts with only class/domain
information may be relatively more proper for these tasks; while for datasets with complex categories like
Pets, Caltech-101 and Im-100, the model-generated prompts could achieve better performance than hand-
crafted prompts, implying that rich content information is more helpful to address these complex tasks.
These results reveal that effective prompts should be set based on concerned task information. To this goal,
proposed DeCap method could adaptively learn proper prompts suitable to the concerned tasks by reconcil-
ing class/domain information and rich content information (visualization of mined prompts see Appendix
E.2), so as to achieve an average performance improvement of 1.30% point compared to the best results
of existing method on different datasets. We also evaluate the adversarial robustness of these methods in
Appendix D.4, which further substantiate the high-quality data generation capability of DeCap method.

When using additional real data, CLIP’s performance could be further improved, though the number of real
data is relatively smaller than synthetic data. This implies that the quality of real data may be higher than that
of synthetic data. All prompt designing methods obtain a further improvement over only using synthetic data.
Even so, DeCap method still shows advantages over other methods on most datasets, demonstrating that our
approach could genuinely augment few-shot datasets. These experimental results support the capability of
proposed DeCap method in generating high-quality images for downstream few-shot learning tasks.

4.2 COMPARION WITH SOTA METHODS

In Section 4.1, we showed that under the same CLIP model architecture, DeCap performs well compared
with other prompt designing methods. The key goal of DeCap method is to mine proper prompts to generate
high-quality data for downstream few-shot learning, while it is not confined to specialised algorithms and
architectures to complete few-shot learning tasks. To illustrate this, we explore to use synthetic data of
DeCap method to evaluate its performance on other zero/few-shot algorithms and architectures.

Specifically, we conducted our experiments on three SOTA algorithms: (1) FakeIt [57]: It uses synthetic
datasets to train the network on ResNet-50. (2) SuS-X [78]: It leverages synthetic datasets as a dynamic
support set and extends Tip-Adapter by utilizing the image-text distance. (3) CaFo [101]: It augments few-
shot datasets with synthetic data and then combines the predictions of pre-trained CLIP and DINO. In our
implementations, we replaced the data generation strategies of these methods with DeCap without altering
any of model architectures for a fair comparison, and follow original settings of these methods to train the
corresponding classification models. More details please refer to Appendix C.3.

Table 2 reports the results. Notice that FakeIt method uses synthetic data to train the ResNet-50 model from
scratch, which eliminates effects of pre-training data for downstream tasks. Thus performance of the trained
classification model could appropriately reflect the quality of synthetic data. The DeCap method achieves
a significant improvement of 7.43% point over original data generation strategy of FakeIt, substantiating
the capability of our method in generating high-quality data suitable to concerned tasks. Though SuS-X and
CaFo methods use pre-trained models, synthetic data of DeCap method could still outperform these methods
in the vast majority of datasets. These results demonstrate that synthetic data of our DeCap method are not
confined to specialised algorithms and architectures. This implies that our DeCap method is model-agnostic
for downstream few-shot learning tasks, and hopeful to be readily applied to real-world problems and tasks.
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Figure 3: Illustration of (a) noisy label, (b) model caption error or (c) low quality prompts in prompt pool
generated by existing prompt designing methods, and (d) mined reliable prompts by our DeCap method.

4.3 WHY PROPOSED DECAP METHOD PERFORM BETTER?

In this section, we further present some analysis of DeCap method in two aspects: robustness against noisy
or low quality prompts, and data value analysis of synthetic data.

4.3.1 ROBUSTNESS AGAINST NOISY OR LOW QUALITY PROMPTS

Existing prompts methods may set noisy or low quality prompts for downstream tasks. For LE method,
it may generate prompts that contain not only the class we want, but also other classes in the dataset. An
illustrated example is presented in Fig.3 (a): for STL10 dataset, when we generate images for “dog”/“car”
classes, some images also contain information of “cat”/“truck” classes. Since “cat”/“truck” classes belong
to the dataset, these prompts would generate images with noisy labels for the classification of “dog”/“car”.
For CiP method, due to the limitations of the BLIP2 model’s capability, it cannot always accurately annotate
images, which may result in misidentifications. Although CiP method recognizes this issue and employs a
prompt concatenation method like “a photo of {class}, {image caption}” to reduce the influence of noisy
captions, we found this may not always work. For example, as shown in Fig.3 (b), when the BLIP2 model
mistakenly identifies a monkey as a cat, the defined prompt “a photo of monkey, a cat sitting in a branch” may
generate an image that blending features of cat and monkey. The issue of misidentification is particularly
prominent in certain tasks, such as CIFAR10, where the low resolution images significantly impact the
model’s judgments. This explains why the CiP method performs poorly on CIFAR10 dataset, as presented in
Table 1. Moreover, hand-crafted prompts often introduce different domain information to construct diverse
prompts. Generally, only part of domain information is reliable, while an amount of domain information
may be of low quality for the concerned tasks. As shown in Fig.3 (c), though both of prompts could generate
images of dog, the improper domain information could hinder the performance of concerned classification
models, e.g., the synthetic pixelated images may provide low-quality training data for STL-10 task. In
Appendix D.6,we further illustrate influence of prompts with domain information on the synthetic images.

Unfortunately, these noisy prompts are relatively hard to be filtered using data cleaning strategies such as
CLIP filtering [18]. To address the issue, proposed DeCap method aims to mine proper prompts suitable
to the concerned classification task in a meta-learning manner. As shown in Fig.3 (d), with such higher-
level downstream classification-aware outer-loop supervised information, DeCap method could adaptively
select effective prompts that help boost downstream classification performance, and discard aforementioned
potential noisy prompts that would potentially hurt downstream classification performance.

9
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a doodle of the car. dog walking on a
sunny day. a photo of the bird. deer on a green pond.

olympic athletes racing
cars during racing

match.

a photo of dog , a dog
is running in the snow a embroidered bird. a photo of the clean

deer.

A dynamic car.
a photo of dog, a dog
plays in water with

stick
art of the bird. a cartoon deer.

Table 3: Examples of synthetic images generated by DeCap method for STL-10 dataset.

4.3.2 DATA VALUE ANALYSIS OF SYNTHETIC DATA

To better analyze why DeCap method outperforms existing prompt designing methods, we use “leave-one-
out” method [16] to evaluate data valuation, and then select typical high-quality images generated by DeCap
method. Specifically, given a dataset S and a measure function V , we use ϕi = V (D ∪ {i}) − V (D)
to represent data valuation of the synthetic image i. In our implementation, we use the dataset generated
by vanilla prompt method as the benchmark dataset S and classification accuracy as the measure function
V . Then we could compute data valuation of synthetic images generated by DeCap method via adding
one image at a time. Table 3 visualizes the synthetic images with high data valuations for STL-10 dataset,
and more visualizations are shown in Appendix E.1. As shown, we can see that synthetic images contain
various patterns such as image style, background, camera angles, and actions, providing novel, diverse,
and meaningful content information for original sparse data. This indicates that DeCap method does mine
proper diverse and rich content prompts suitable to concerned downstream few-shot learning tasks, naturally
leading to its better accuracy than other prompt designing methods.

5 CONCLUSION

We present the DeCap, a novel adaptive prompt learning approach to generate diverse and classification-
aware synthetic data for downstream few-shot learning in a meta-learning manner. Proposed DeCap method
could mine potential reliable prompts suitable to downstream few-shot learning tasks, demonstrating im-
pressive capabilities in improving downstream classification models for different few-shot learning tasks
compared with existing prompt designing methods. We could further boost existing SOTA zero/few-shot
learning methods by simply replacing data generation strategy with the proposed method, showing its poten-
tial model-agnostic characteristics. Besides, we also provide some intuitive visual interpretation, providing
an initial insight into proposed DeCap method. Such an adaptive prompt learning approach is hopeful to be
employed to other computer vision tasks, like semantic segmentation and object detection, etc.
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A LIMITATIONS

Although our DeCap method performs well among different datasets and model architectures compared
with existing prompt designing methods, we have to admit that DeCap has the following limitations. Firstly,
DeCap requires more training cost. It usually spends 160 GPU hours to mine proper prompts on small
scale datasets such as STL-10 and CIFAR10, and for large scale datasets such as Imagenet100, the cost
will go up to nearly 700 GPU hours. However, it is worth emphasizing that once we finish training, the
prompts we have learned could be used to generate sufficient images for training other few-shot algorithms
and model architectures. Secondly, the search space of prompt set for DeCap method is confined to the
pre-constructed prompt pool, which may lead to suboptimal solutions. One potential strategy is to learn
continuous soft prompts just like what [28; 107; 70] do. However, the computation of meta gradients for
learning soft prompts requires unaffordable memory: even a Nvidia A800 GPU can’t support the backward
of a single synthetic image. Note that the suboptimal solutions of DeCap method could achieve impressive
performance, we believe more advanced prompt learning strategy would further boost the downstream clas-
sification models. Lastly, compared with model-generated prompt methods, proposed DeCap method seems
to lack extensibility. One promising idea is to learn a prompt generator that produces prompts conditioned
on concerned tasks. We leave the above potential shortcomings for future work, and we also look forward
to the emergence of following works to address these problems.

B MORE DETAILS OF PROPOSED DECAP METHOD

B.1 EXAMPLES OF PROMPT POOL CONSTRUCTION

In this section, we give a simple example about what our prompt pool looks like.

Let us consider “cat v.s. dog” classification task. Assuming that our hand-crafted prompts are [“a photo of
{}”, “a sketch of {}”, “a {} image”] and model-generated prompts are {cat:[“a cat on the grass”, “a cute cat
”], dog:[“a barking dog”, “a dog in the room”]}. Then, our prompt pool will be:

{cat:[“a photo of {cat}”, “a sketch of {cat}”, “a {cat} image”,“a cat on the grass”, “a cute cat”],
dog:[“a photo of {dog}”, “a sketch of {dog}”, “a {dog} image”,“a barking dog”, “a dog in the room”]}
If we randomly select 2 prompts for each class, for example, the 0th and 3th prompts for cat, and 1th and
2th prompts for dog, which represents pop = [0, 3, 1, 2] , the selected prompts for generating dataset will be
{cat:[“a photo of {cat}”,“a cat on the grass”; dog:“a sketch of {dog}”,“a {dog} image”]}.

If we share hand-crafted prompts, for example, assuming we select the prompt template “a photo of {}”,
then it means that [“a photo of {cat}”, “a photo of {dog}”] will be selected to help generate dataset.

B.2 “GET PROMPT” METHOD IN ALGORITHM 1

Algorithm 2 shows the “get prompt” method in Algorithm 1. We denote the number of classes as N , the
name of these classes as “class names”, prompt numbers per class as M .
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Algorithm 2 Get prompt Algorithm
Input: indexes pop, prompt pool pool; hyper-parameters including: whether share hand-crafted prompts

share, hand-crafted prompts numbers n;
Output: prompt set: prompts, labels: Y syn

1: pop.reshape[N ,M ] ▷ pop is the index of θ = [θ1,θ2, · · · ,θN ]⊤,θi ∈ RM in prompt pool
2: if share then
3: pop[:, : n]=pop[0, : n].repeat[N ,1] ▷ we make all the first n elements of θi the same
4: end if
5: prompts=[], Y syn=[] ▷ Y syn contains every synthetic sample’s label
6: for i = 1, 2, · · ·N do
7: class=class names[i]
8: prompts.append(pool[class][pop[i]])
9: Y syn.append(i.repeat[M ])

10: end for
11: return prompts, Y syn

B.3 GA ALGORITHM DETAILS

Genetic Algorithm (GA) is an optimization technique inspired by natural selection and genetic processes,
widely used for complex problem-solving. Its key steps can be summarized as follows:

• Initialization of Population: Randomly generate a set number of individuals (solutions) to form the
initial population, with each individual represented by a gene encoding (typically a binary string or
real numbers).

• Fitness Evaluation: Assess the fitness of each individual using a fitness function that quantifies their
performance based on the problem’s objectives.

• Selection: Select individuals for the next generation based on their fitness values. Common se-
lection methods include roulette wheel selection, tournament selection, and rank selection, where
fitter individuals have a higher chance of being chosen.

• Crossover: Combine parts of two parent individuals’ genes to produce new offspring. Crossover
enhances genetic diversity, with methods like single-point, multi-point, and uniform crossover.

• Mutation: Introduce random changes to a portion of an individual’s genes with a certain probability,
increasing genetic variation and helping to avoid local optima. Mutation can involve flipping gene
bits or assigning random values.

• Population Update: Merge the offspring with the current population and select suitable individuals
based on fitness, often using elitism to retain the best solutions.

• Termination Condition: Determine if termination criteria are met, such as reaching a maximum
number of iterations, achieving a predefined fitness goal, or when improvements in fitness become
negligible.

• Output Results: Present the final optimal solution or any satisfactory solutions, along with relevant
analysis and validation.

Actually, in Algorithm 1, the GA.update() operation means the steps from “selection” to “population update”
operation. Our code are based on the scikit-opt library, and we use their default operators. What’s more,
unlike traditional meta learning methods[12; 63; 13; 27; 74] relying on computing meta gradient to opti-
mize outer-level meta loss, our outer-level optimization does not involve any meta gradient calculation (i.e.,
derivative-free optimization), and we only execute gradient descent algorithm at the inner-level optimization.

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS

C.1 DATASETS DETAILS

In this section, we give a brief introduction about datasets we used in Section 4.

CIFAR10: The CIFAR10 dataset contains 10 common classes: airplane, car, bird, cat, dog, deer, frog, horse,
ship, truck. Each class contains 6000 color images with 32 × 32 size. CIFAR10 is widedly used in image
classification.

STL-10: The STL-10 dataset contains 10 common classes in real life: airplane, bird, car, cat, deer, dog,
horse, monkey, ship, and truck. Although these photos comes from ImageNet, their annotations may be
quite different, for example, “dog” class contains various dog breeds.

Imagenette: Imagenette is a subset of the larger ImageNet dataset, containing 10 easily distinguished
classes: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump,
golf ball, parachute. It was created to provide a smaller, more manageable subset for training and testing
image classification models.

Pets: The Pets dataset consists of images of 12 different cats breeds and 25 different dogs breeds. It is
commonly used for fine-grained classification tasks, where the goal is to classify images into specific sub-
categories within a broader class.

ImageNet100: ImageNet100 is a subset of the original ImageNet dataset, containing 100 classes. It serves
as a smaller alternative to the full ImageNet dataset for training and evaluating deep learning models for
image classification tasks.

Caltech-101: The Caltech-101 dataset is a widely used benchmark dataset for object recognition. It contains
images of objects belonging to 101 distinct categories, including animals, vehicles, and household items.

EuroSAT: EuroSAT is a dataset of Sentinel-2 satellite images for land cover classification. It contains
27,000 RGB images across 10 classes, such as agriculture, forest, and water bodies, with a resolution of
64x64 pixels. It is widely used in remote sensing and environmental monitoring tasks.

Aircraft: The FGVC Aircraft dataset is designed for fine-grained visual classification of aircraft. It includes
10,000 images of 102 different aircraft models, focusing on distinguishing subtle differences between similar
models. It is commonly used in fine-grained recognition research.

Country211: Country211 is a dataset released by OpenAI, designed to assess the geolocation capability of
visual representations. It filters the YFCC100m dataset to find 211 countries that have at least 300 photos
with GPS coordinates. OpenAI built a balanced dataset with 211 categories, by sampling 200 photos for
training and 100 photos for testing, for each country.

C.2 EXPERIMENT SETTINGS IN SECTION 4.1

C.2.1 MODEL SELECTION

For the pre-trained generative model, we choose the Stable Diffusion XL-Turbo (SDXL-Turbo) model3 for
its fast generation speed and high quality image generation. This model takes text prompts as input and
outputs images at a resolution of 512 × 512. During our experiments, we use ResNet-50 as the CLIP
image encoder backbone. For classifier tuning [18], different text prompt initializations may cause slight
differences in accuracy, but since our method focuses on the dataset quality, we simply use the vanilla
template “a photo of {class}” for all the datasets.

3https://huggingface.co/stabilityai/sdxl-turbo
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C.2.2 TRAINING SETTING

Since Stable Diffusion XL-Turbo doesn’t use Classifier-free guidance, we simply set the guidance scale to
0 and we set inference steps to 2. For inner training of classification model, we generated 80 images for
each class and trained for 20 epochs using the Adam optimizer with a learning rate from 2e − 3 to 2e − 5,
equipped with the Cosine learning rate schedule. For outer training, we set the hyper-parameters of the GA
algorithm as follows: popsize of 80, maxiter of 80.

Regarding the selection of few-shot datasets, we randomly selected 10 images per class to form the few-shot
datasets. For CIFAR10, STL-10, Imagenette, EuroSAT we learn 20 prompts for each class, while for others,
we use the technique mentioned in the Section 3.3 and learned 10 common prompts and 10 class-specific
prompts for each class. We do training on 8 NVIDIA A800 GPUs, with pytorch 1.12.1 and Ubuntu 20.04.

C.2.3 EVALUATION SETTINGS

Stable Diffusion model settings are the same in Appendix C.2.2. We generated 800 images for each class
and fine-tune CLIP for 30 epochs. We use the the Adam optimizer equipped with the Cosine schedule. After
training, we use the fine-tuned CLIP model to do evaluation on real test datasets. All the results are the
average over 5 times run, with random seed in 7, 21, 42, 84, 105.

C.3 EXPERIMENT SETTINGS IN SECTION 4.2

FakeIt: FakeIt use Stable Diffusion V1-4 model and different classifier-free guidance scale, but our gen-
erative model are not fit for using classifier-free guidance, so we re-implemented their generation approach
under our generative model. Other training settings are the same with original paper, including classification
model architecture, training learning rate, data augment strategy and so on.

SuS-X: The generative model of SuS-X is Stable Diffusion V1-4. For a better performance comparion,
we reimplement SuS-X method with SDXL-Turbo model for higher quality image generation. The prompt
strategy and other experimental settings keep the setting in the original paper.

CaFo: Since CaFo utilizes the OpenAI model to generate description for CLIP text initialization, and the
original model has been deprecated, we employed the simple template “a photo of {class}” for text ini-
tialization across all datasets to ensure fairness. All other experimental settings remain consistent with the
original paper. We have to point that CaFo is a few-shot learning method, and we only report the 16-shot
result in Table 2 due to space limitation. Other shot results are given in Section D.5.

D MORE EXPERIMENTAL ANALYSIS

D.1 WHY IS ADAPTIVE PROMPT LEARNING NECESSARY?

To validate the necessity of adaptive prompt selection, we implement two prompt selection baseline strate-
gies: (1) randomly selecting the same number of prompts from the prompt pool. (2) Using all prompts of the
prompt pool. Table 4 shows the performance comparison on the STL-10 dataset. All the experiment settings
are the same as Appendix C.2.3. We can see that the adaptive prompts selected by DeCap method could
significantly improve classification model performance compared to random selection strategy. Besides,
although using all prompts in the prompt pool offers more sufficient diversity than subset selection, it suf-
fers from various issues mentioned in Section 4.3, which may deteriorates the performance of classification
models. This explains that the performance of all prompts is only better than the random selection strategy
but not as good as DeCap method. These results further support that adaptive prompt learning strategy is
more effective in generating high-quality images for downstream few-shot learning tasks.
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Table 4: Comparion of random
selection, all selection strategy
and DeCap method.

Random All DeCap

94.74 95.19 95.90

Table 5: Ablation study on the
selecting prompt numbers per
class.

5 10 20 40

95.73 95.82 95.90 95.81

Table 6: Ablation study on the
number of GA algorithm itera-
tions.

20it 40it 60it 80it

95.73 95.87 95.91 95.90

D.2 ABLATION STUDY

We conducted ablation experiments on two important parameters of our method: the number of prompts
selected per class and the iteration count of the GA algorithm. By Table 5, We find that fewer prompts
may lead to low dataset diversity, negatively impacting model performance, while more prompts increase
optimization difficulty, making it hard to find the optimal solution. We suggest to set the number of prompts
selected per class as 20.

Table 6 shows the performance of different numbers of GA algorithm iterations. We observed that perfor-
mance of classification model converges around 80 generations. In our all experiments, we suggest to set
the number of GA algorithm iterations as 80.

D.3 DIFFERENT METRICS

In this section, we give results of other metrics including precision (Table 7), recall (Table 8) and F1-score
(Table 9), which are commonly used in few-shot learning, to further explore the robustness and generaliza-
tion ability of DeCap. Some brief introduction about these metrics are given as follows:

• Precision: Precision measures the accuracy of positive predictions. It is defined as:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

Precision answers the question: Of all the instances predicted as positive, how many are actually
positive?

• Recall: Recall, also known as sensitivity or true positive rate, measures the ability of the model to
correctly identify positive instances. It is defined as:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

Recall answers the question: Of all the actual positive instances, how many were correctly pre-
dicted?

• F1 Score: The F1-score is the harmonic mean of precision and recall, providing a single metric
that balances both. It is defined as:

F1 = 2 · Precision · Recall
Precision + Recall

The F1-score is particularly useful when the class distribution is uneven or when precision and
recall are equally important.

The results demonstrate that our method performs well on these metrics, indicating that it not only achieves
high accuracy but also excels in identifying positive samples and is more cautious when dealing with them.
It more comprehensively illustrates the robustness and generalization of our method.
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Table 7: Precision results of different methods among all datasets.
vanilla multi LE CiP DeCap

STL10 95.35 94.90 94.17 95.16 95.63
CIFAR10 76.61 76.55 77.32 77.23 77.40

Im-10 97.27 97.30 97.27 97.30 97.34
Pets 82.58 84.76 84.17 84.52 85.70

Caltech-101 84.42 84.57 85.27 85.39 85.43
Im-100 69.82 71.27 69.28 73.03 71.90

EuroSAT 43.01 38.45 50.50 47.32 49.36
Aircraft 18.38 18.85 20.85 18.67 20.85

Country211 17.20 17.26 18.10 17.12 17.77

Table 8: Recall results of different methods among all datasets.
vanilla multi LE CiP DeCap

STL10 95.31 94.78 94.04 94.72 95.57
CIFAR10 72.39 69.63 68.24 68.63 76.99

Imagenette 97.25 97.28 97.25 97.28 97.33
Pets 81.69 82.05 82.13 83.12 84.52

Caltech-101 85.21 86.02 85.37 86.07 86.54
Imagenet100 68.32 69.98 67.00 69.56 70.94

EuroSAT 31.07 29.62 28.31 40.62 42.22
Aircraft 17.03 17.84 17.72 17.98 19.71

Country211 13.72 13.90 14.14 14.98 15.44

Table 9: F1-score results of different methods among all datasets.
vanilla multi LE CiP DeCap

STL10 95.29 94.71 93.99 94.74 95.58
CIFAR10 71.89 69.04 67.30 69.19 76.89

Imagenette 97.23 97.26 97.23 97.26 97.31
Pets 81.28 81.96 82.09 83.23 84.67

Caltech-101 82.04 82.87 82.12 83.45 83.73
Imagenet100 67.06 68.99 65.52 69.42 70.25

EuroSAT 26.36 24.43 24.38 36.36 39.34
Aircraft 15.10 15.98 16.00 15.95 17.81

Country211 13.18 13.35 13.62 14.36 14.93
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D.4 ADVERSARIAL ROBUSTNESS

(a) PGD attack result (b) BIM attack result

Figure 4: Adersarial robustness of classification models trained with generated images using different
prompts designing methods. We report the results on the ImageNet100 validation set under two adversarial
attack methods. The horizontal axis represents the number of steps taken in the attack, and the vertical axis
represents the accuracy of the trained classification model on the validation set after the attack.

Adversarial learning aims to evaluate model robustness by adding small perturbations to the input data, caus-
ing the model to make false predictions but making little difference to human observers. We use two com-
mon attack methods: BIM (Basic Iterative Method) attack [35] and PGD (Projected Gradient Descent) attack
[42]. The BIM employs an iterative gradient ascent approach, where at each step, BIM perturbs the image
along the gradient direction predicted by the model. It can be written as xi+1 = xi + ϵ∇xiJθ(xi, y),where
x0 denotes the original image, y denotes its label, and ∇xiJ means the gradient of loss function w.r.t. xi.
PGD further projects the adversarial examples into an ϵ-ball around the original image.

We use classification model weights obtained from Section 4.1 and implement adversarial attack on Ima-
geNet100 validation dataset. We use torchattacks [32] library to conduct this experiment. We select attack
step size ϵ as 1/255 for these two methods, and Fig.4 reports the attack result on different attack steps. We
found that model-generated prompts, due to their rich content details, have a slight advantage in adversarial
robustness compared to hand-crafted prompts. Moreover, since DeCap integrates the strengths of hand-
crafted and model-generated prompts methods, it consistently performs well in terms of resilience against
adversarial attacks.

D.5 MORE EXPERIMENTAL RESULTS OF CAFO AND CAFO + DECAP METHODS

Fig.5 show more experimental results on different shots of each class for CaFo and CaFo + DeCap Methods.
The experimental results are aligned with conclusions in Section 4.2.

D.6 ARE PROMPTS WITH DOMAIN INFORMATION ENOUGH FOR CLASSIFICATION?

To illustrate this point, we conducted experiments on the Sketch subclass of the PACS dataset [39]. In this
dataset, all images follow the same style. As shown in Fig.6, the hand-crafted prompts could generate sketch-
style guitar images, while the image distribution deviates the distribution of real images. This could explain
the degraded performance of hand-crafted prompts methods. This is aligned with existing substantial theory
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(a) CIFAR10 (b) STL10 (c) Imagenette

(d) Pets (e) Caltech-101 (f) Imagenet100

(g) EuroSAT (h) Aircraft (i) Country211

Figure 5: Classification accuracies on different shots of each class for CaFo and CaFo + DeCap Methods

[15; 83; 104], which suggests that samples perfectly matching the real data distribution are most useful for
classification. As a comparison, the synthetic images by DeCap method are surprisingly composed of only
a portion of sketch-type prompts, supplemented by a significant amount of other types of prompts. The
discrepancy between synthetic images and real images is significantly large, however, the performance of
classification model training with synthetic data using DeCap method could approach the performance with
real data. This result cannot be well explained by existing theories. We hope that a rational theoretical
insight could characterize such phenomenon in the future study.
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Figure 6: (Left) Examples of real images, synthetic images by hand-crafted prompts and DeCap methods on
PACS Sketch dataset. (Right) Performance comparison between hand-crafted prompts and DeCap methods.

E VISUALIZATION OF SYNTHETIC IMAGES AND LEARNED PROMPTS

E.1 VISUALIZATION OF SYNTHETIC IMAGES

Fig.7 and Fig.8 shows some examples of synthetic images on Pets and Imagenet100 datasets by DeCap
method.

Figure 7: Examples of generated images on Pets dataset by DeCap method.
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Figure 8: Examples of generated images on Imagenet100 dataset by DeCap method.

E.2 VISUALIZATION OF LEARNED PROMPTS

Figure 9: Illustrations of the number of hand-crafted prompts vs the number of model-generated prompts
mined by DeCap method on STL-10 dataset.

We will demonstrate that DeCap method can adaptively learn proper and dataset-specific prompts that are
suitable for concerned tasks from the following three aspects.
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Figure 10: Illustrations of the number of hand-crafted prompts vs the number of model-generated prompts
mined by DeCap method on CIFAR10 dataset.

Firstly, the ratios of the number of model-generated and hand-crafted prompts for each class are varying, as
shown in Fig. 9 and 10. This reflects that our method could adaptively adjust the proportions that reconcile
class/domain information and rich content information for different classes.

Secondly, though the hand-crafted prompts follow the same templates, we can see that different classes
may learn relatively different prompts in Fig.11. This further reveals our method could adaptively learn
classification-aware prompts for each class, so as to achieve better performance on downstream tasks. More-
over, we additionally give some examples about the consistently selected model-generated prompts during
the optimization process to further highlight the significance of integrating fine-grained prompt descriptions.
As we can see in Table 11, the consistently selected prompts show high diversity and fine-grained infor-
mation, including: movement, posture, background, color, quantity, other objects, and so on. This pictures
significantly help to provide classification-benefit features.

Lastly, Table 10 shows that though STL-10 and CIFAR-10 datasets have some same categories, the learned
prompts by our method could be almostly different. This demonstrated that our DeCap method could learn-
ing proper prompts suitable to concerned few-shot datasets. For instance, we can see that learned prompts for
the STL-10 dataset are realistic, while learned prompts for CIFAR-10 dataset are of low-resolution imagery.
Notice that these prompts are well aligned with prior knowledge of these datasets.

Moreover, we additionally display the complete set of prompt pool of the “airplane” class in STL-10 dataset
in Table 12, to offer a more intuitive understanding for the characteristic of our method stated above. And
we further give visualizations that demonstrate the prompt selection process over the course of optimization,
including image examples and the evolution of prompts, please see Fig.12.

Table 10: Illustration of mined prompts for “deer” class on different
datasets. DeCap method selects completely different prompts for the
same class across different datasets, demonstrating its ability to adap-
tively learn the prompts suited to each specific dataset.

STL-10

A deer is grazing the woods.
deer are grazing under a tree
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a photo of the clean deer.
A silhouette of deer.
a deer and young man roam around during a december game
a photo of a deer.
a deer in a video game.
a toy deer
a deer on a pond
the cartoon deer.
the hornets and deer are on a ridge
a deer.
deer resting with the grazing padou atop old farmhouse
An ink painting of a deer
deer on a green pond.
the toy deer.
a brown bear eats the deer
A glossy deer.
a photo of a large deer.
a group of deer on prairie are seen grazing in their natural habitat

CIFAR10

a photo of deer, a wild deer in the wild
a deer on a farm
A soft-focus deer.
art of a deer.
deer and their prey on the northern slopes
a photo of deer, a deer standing in the snow with a sky background
a pixelated photo of the deer.
several deer grazing in the desert
fox and a deer on the grounds of a city
a rendering of a deer.
a photo of deer, a group of deers standing in a field
A silhouette of deer.
a photo of deer, a deer is standing in the grass
a deer is grazing an ancient inscription.
a photo of deer, a herd of deer in the desert
deer and the munro.
A pair of deer on a trail.
a hunt deer on a desert land
deer and the munro.
a pixelated photo of the deer.
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(a) CIFAR-10 dataset (b) STL-10 dataset

Figure 11: Illustration of mined hand-crafted prompts for each class by DeCap method across two datasets.
Each column represents the same template, and each row indicates which prompts were selected for class
of this row. Black indicates prompt is not selected, orange indicates the prompt is selected once, and white
indicates the prompt is selected more than once. For clarity, we removed prompts that were not selected by
any class of the dataset. It could be observed that although the prompt templates are the same, the domain
information required by each class is distinctly different, demonstrating DeCap’s ability to adaptively learn
suitable prompts for the classification of each class.

Table 11: Examples of model-generated prompts which are consistently selected during optimization pro-
cess.

a bird sitting on a branch. cars that have to make an effort
to turn off.

A black cat is in a room where
the window is down.

A truck with lots of people on
it. A deer is grazing the woods. A dog is standing in its yard

with a harness on it.

A white horse in the open barn. dogs inside a home on a
summer.

a semi truck driving down a
rural road.

Table 12: The prompt pool of “airplane” class in STL-10 dataset. Mined
prompts by DeCap method are highlighted in bold.

Model-generated prompts
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a photo of airplane , a
small plane is parked on
the runway

a photo of airplane , a
large passenger jet flying
through a blue sky

a photo of airplane , a
small plane is on the run-
way

a photo of airplane ,
a yellow airplane flying
through a blue sky

a photo of airplane , a
large passenger jet flying
through the sky

a photo of airplane , a
small plane flying in the
sky

a photo of airplane , a
small plane is floating in
the water

a photo of airplane , a
large passenger jet sit-
ting on a runway

a photo of airplane , a
small plane flying in the
sky

a photo of airplane , a
small blue airplane is
taking off from the run-
way

a photo of airplane , a
plane is parked on the
tarmacl

a photo of airplane , two
small planes are sitting
on the water

a photo of airplane , a
plane flying in the sky

a photo of airplane , a
small plane flying over a
mountain range

a photo of airplane , a
plane is on the runway

a photo of airplane ,
a small plane flying
through the air

a photo of airplane , a
large white plane

a photo of airplane , two
planes flying in the sky

a photo of airplane , a
plane flying in the sky

a photo of airplane , a
small plane flying over a
city

a photo of airplane , a
plane flying in the sky

a photo of airplane ,
a small plane flying
through the air

a photo of airplane , a
plane flying in the sky

a photo of airplane , a
plane is parked on the
tarmacl

a photo of airplane , a
plane flying in the sky

a photo of airplane , a
plane flying in the sky

a photo of airplane , a
small plane is parked on
the water

a photo of airplane , a
plane flying in the sky

a photo of airplane , a
small plane sitting on a
snowy field

a photo of airplane , a
small plane flying in the
sky

An airplane that has been
seen flying over another
airplane.

A plane is in a parking
lot.

airplane that you bought
a few years ago

A small airplane is flying
over a highway at a time.

An airplane that is
parked in an airport

The plane has an en-
gine, a seat, a console, a
charger, and

An aircraft is in the flight
over a lake.

The airplanes are all
parked inside the parking
lot.

A plane is in the air. plane of a small aircraft.

A red and white airplane
with a green and green
color scheme.

An airplane parked on
the runway near a pier.

An airplane that has just
broken ground behind it.

A plane parked next
to one of the airplanes
above it’s engine.

Airplanes in space that
are not as big as usual.

An airplane parked along
a highway.

A small airplane that’s
flying at low speeds un-
der a cloudy sky.

airplanes need people to
work hard at the zoo

An airplane parked
next to a bridge.

Some airplanes flying
over people.

The airplane is in a green
sky with blue skies.

The airplane with the
lights is about to be
docked.

An airplane with three
engines and a propeller.

an airplane with a win-
dow

An airplane parked on
top of a hill next to it airplane on the tracks.

An airplane on an air-
plane track

A plane with tires on it
flying away from it.

An airplane is parked on
a runway at a airport.

These airplanes are in a
wing.

a commercial airplane
traveling in july.

airplane in flight... a
photo and video

Two air planes all flying
in a row.

A modern airplane is ar-
riving in the air.

An airplane in the mid-
dle of nowhere with its
doors lowered.

airplane is parked in a
parking lot

An airplane that is com-
ing in to land.

passengers in an airplane
in the rain
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airplanes flying at a rate
of 2 to 3 mph on a sun-
day

An airplane on a run-
way next to a small green
field.

an airplane on an airport
runway

a classic red blue air-
plane is shown in the
cockpit with bright col-
ors as well.

planes in a dry pit airplane and other ob-
jects in the air

an airplane makes an
outgoing landing on the
ground

An old airplane is com-
ing down the track.

A man attempting to
board a commercial air-
plane.

Small airplanes with
wing lights attached to
them.

A small airplane with the
tail mounted up.

An airplane in a flight
path with some passen-
gers nearby.

airplane on an old build-
ing

An aircraft goes up
through a window drip-
ping with smoke and
debris.

airplanes that have been
converted to jet engines

airplanes cruising in the
bay.

A boy is running with
an airplane that is on the
runway.

A blue airplane has its
wings shut.

An airplane is about to
land in a parking lot and
be delivered.

two airplanes parked at
the airport

A white airplane on the
runway with blue ice.

jet airplane is ready for a
test

An airplane is sitting on
a ground with all three
engines on the ground.

There’s one airplane in
the cockpit which is
parked by another air-
plane.

An airplane is in the air. A family is on a small
airplane at a hotel.

aircraft carrier and an
airplane together with
some gulls.

airplane inside of the air-
plane

The airplane is looking
down.

An airplane is shown fly-
ing on a runway.

small bodied airplane on
a plane

An airplane parked next
to fireworks on the sky.

An airplane that appears
to be on the runway.

An airplane that is very
close to the ground in an
airport.

Various aircraft and air-
planes are getting ready
for flight.

an airplane is seen arriv-
ing on a runway

Two aircrafts in a white
airplane at a station. The airplane landed. an airplane that is mak-

ing a flying flight
airplane on the runway at
the airport

this airplane was able to
take off with just a small
amount of effort to get
the

An airplane that is in a
flying position.

An airplane making its
way between jets. airplane sitting in air

a large old plane sits off
the fuel tank

aircraft carrier and its
crew arriving in an air-
plane

airplane on the runway A family of airplanes are
in a building.

plane flies around city an airplane about to land
in a desert

An electric airplane in
the sky.

an airplane that
is making it’s way
around the tarmac

airplanes on the runway the crew of airplane on
board The airplane is in the air. jet airplane wing during

maintenance
A blue and white air-
plane with white wing
panels.

A commercial airplane
flying under the radar.

The airplane has been
damaged by the winds.

An airplane flying near a
tarmac.

Hand-crafted prompts
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a good photo of the air-
plane.

a photo of many air-
plane. a sculpture of a airplane. a photo of the hard to see

airplane.
a low resolution photo of
the airplane. a rendering of a airplane. graffiti of a airplane. a bad photo of the air-

plane.
a cropped photo of the
airplane. a tattoo of a airplane. the embroidered air-

plane.
a photo of a hard to see
airplane.

a bright photo of a air-
plane.

a photo of a clean air-
plane.

a photo of a dirty air-
plane.

a dark photo of the air-
plane.

a drawing of a airplane. a photo of my airplane. the plastic airplane. a photo of the cool air-
plane.

a close-up photo of a air-
plane.

a black and white photo
of the airplane.

a painting of the air-
plane. a painting of a airplane.

a pixelated photo of the
airplane.

a sculpture of the air-
plane.

a bright photo of the air-
plane.

a cropped photo of a air-
plane.

a plastic airplane. a photo of the dirty air-
plane.

a jpeg corrupted photo of
a airplane.

a blurry photo of the air-
plane.

a photo of the airplane. a bad photo of a airplane. a rendering of the air-
plane.

a airplane in a video
game.

a photo of one airplane. a doodle of a airplane. a close-up photo of the
airplane. a photo of a airplane.

the origami airplane. the airplane in a video
game. a sketch of a airplane. a doodle of the air-

plane.

a airplane. a origami airplane. a low resolution photo of
a airplane. the toy airplane.

a rendition of the air-
plane.

a photo of the clean air-
plane.

a photo of a large air-
plane.

a rendition of a air-
plane.

a photo of a nice air-
plane.

a photo of a weird air-
plane.

a blurry photo of a air-
plane. a cartoon airplane.

art of a airplane. a sketch of the airplane. a embroidered airplane. a pixelated photo of a
airplane.

a jpeg corrupted photo of
the airplane.

a good photo of a air-
plane.

a photo of the nice air-
plane.

a photo of the small air-
plane.

a photo of the weird air-
plane. the cartoon airplane. art of the airplane. a drawing of the air-

plane.
a photo of the large air-
plane.

a black and white photo
of a airplane.

a dark photo of a air-
plane. graffiti of the airplane.

a toy airplane. a photo of a cool air-
plane.

a photo of a small air-
plane. a tattoo of the airplane.

a digital style airplane a colorful airplane a modern style airplane an abstract photo of air-
plane

a cartoon style airplane a virtual style airplane An ink painting of a air-
plane a toy airplane

A model airplane. a red airplane a blue airplane a yellow airplane
a black airplane a white airplane An old airplane. A futuristic airplane.

A minimalist airplane. A detailed illustration of
airplane. A close-up of airplane. A shadowy figure of air-

plane.

A silhouette of airplane. A bright and vibrant air-
plane.

An abstract concept of
airplane. A vintage style airplane.
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A neon-lit airplane. A monochrome airplane. A watercolor painting of
airplane. A sketch of airplane.

A digital art of airplane. A handcrafted airplane. An aerial view of air-
plane.

A side profile of air-
plane.

A textured airplane. A glossy airplane. A matte airplane. A glowing airplane.
A rustic airplane. A weathered airplane. A sparkling airplane. A serene airplane.

A chaotic airplane. A whimsical airplane. A dynamic airplane. A frozen moment of air-
plane.

A soft-focus airplane. A high-contrast airplane. A sepia-toned airplane. A saturated airplane.

An isolated airplane. A mirrored airplane. A panoramic view of air-
plane. An enchanted airplane.
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(a) Image examples during different optimization iterations.

(b) The evolution of prompts during different optimization iterations.

Figure 12: Image examples and the evolution of prompts during different optimization iterations. For clarify,
Fig.(b) shows only the selected prompts and omits the rest.
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(a) 96 resolution

(b) 224 resolution

(c) 512 resolution

Figure 13: prompt: “a photo of a car in the street”

F REBUTTAL DISPLAYS

This section is just for additional rebuttal visualization.

F.1 DIFFERENT RESOLUTIONS

We give some examples about generating images using different resolution in Fig.13. We can see that
generative large models are only good at the resolution of its training set, i.e. 512 resolution.
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