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Abstract

The combination of linear transformations and non-linear activation functions
forms the foundation of most modern deep neural networks, enabling them to
approximate highly complex functions. This paper explores the introduction of
quadratic transformations to further increase nonlinearity in neural networks, with
the aim of enhancing the performance of existing architectures. To reduce parameter
complexity and computational complexity, we propose a lightweight quadratic
enhancer that uses low-rankness, weight sharing, and sparsification techniques.
For a fixed architecture, the proposed approach introduces quadratic interactions
between features at every layer, while only adding negligible amounts of additional
model parameters and forward computations. We conduct a set of proof-of-concept
experiments for the proposed method across three tasks: image classification, text
classification, and fine-tuning large-language models. In all tasks, the proposed
approach demonstrates clear and substantial performance gains.

1 Introduction

In modern deep learning, the majority of successful architectures are built on the combination of linear
transformations followed by non-linear activation functions. This fundamental framework allows
neural networks to learn complex mappings from input to output. The linear transformation serves to
project the input data into a different space, while the non-linear activation function introduces the
necessary complexity, enabling the network to model intricate, high-dimensional patterns.

The introduction of non-linearity has been a key factor in the success of neural networks, enabling
them to approximate highly complex functions and capture intricate data patterns. This ability is
what allows neural networks to tackle problems ranging from image classification to natural language
processing. Over the years, significant advancements have been made in the architecture of neural
networks, starting with MLPs for simple regression and classification tasks [38}[1], followed by CNNs
for image data [22| 21} [12, 23], RNNs and LSTMs for sequential data [14, 42} 25| [24], and more
recently, Transformer models [45]] that dominate a wide range of fields, including natural language
processing [35 |5} 34], computer vision [19] 6], and beyond [46, [18]].

The success of these architectures highlights the importance of incorporating non-linearity to achieve
the level of model expressiveness needed for complex real-world tasks. As a result, researchers
have continually sought ways to introduce more advanced non-linear transformations within neural
networks to enhance their capabilities. These explorations have generally followed three main
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directions: (i) employing more complex activation functions, (ii) designing non-linear network
modules, and (iii) replacing linear operations with polynomial transformations.

Firstly, recent advancements in neural network activation functions have focused on introducing more
complex forms of non-linearity to improve model expressiveness and tackle real-world tasks. For
instance, Swish [37]], which combines a sigmoid function with a linear term, offers a smoother, more
flexible non-linearity, outperforming ReLU in deep networks. Further enhancements include Mish
[31]], which introduces a combination of tanh and softplus to provide even finer gradients, and GELU
[13], a probabilistic function used in Transformer models, which incorporates multiple non-linear
operations such as tanh and cubic terms to introduce smooth, complex non-linearity. Despite their
success, all these activation functions focus on element-wise transformations, capturing non-linearity
at the level of individual neurons, yet often fail to exploit the potential for interactions between
neurons that could further enhance representational capacity.

Secondly, there have been attempts to design non-linear network modules that go beyond the simple
application of activation functions. For example, the introduction of GRU [3]] and LSTM [14] units
in recurrent networks adds non-linearity by incorporating gates that regulate the flow of information
over time. Additionally, the attention mechanism [45], introduces context-dependent weighting of
neurons, allowing the network to focus on more relevant parts of the input. While these modular
approaches have shown great success, they are often task-specific and depend on network architecture,
making them less universally applicable.

Finally, replacing linear operations with polynomial transformations represents a more radical
approach to non-linearity. This approach includes polynomial networks [4], which replace standard
linear layers with polynomial operations and reduce the number of parameters needed for higher-
order terms through tensor decomposition techniques. Recently, [28]] extended second-order methods
to convolutional neural networks. [7, 8] explored the advantages of quadratic transformations in
terms of both representational power and training efficiency. More recently, [48 47] combined
quadratic methods with neural architecture search, further improving model performance. These
methods have demonstrated both theoretically and experimentally that higher-order transformations
can enhance a model’s representational capacity, thereby boosting its overall performance. However,
these approaches have typically been limited due to the substantial increase in parameters and
computational cost associated with higher-order terms.

While methods involving more complex activation functions and specialized network modules
have demonstrated significant success, polynomial transformations—despite their theoretical poten-
tial—have been underexplored in many real-world applications. The main challenge lies in the fact
that higher-order terms require a considerable number of parameters, which can significantly increase
model complexity. For instance, even with aggressive decomposition techniques, the work of [4]]
still requires O(n?) parameters in high-order terms. Nevertheless, as a complementary approach to
existing methods, higher-order transformations offer the potential to further enhance expressiveness
without conflicting with activation functions or specialized network modules. This motivates the
investigation of how polynomial transformations can be integrated with standard non-linearities to
improve model performance while maintaining control over computational complexity.

In this paper, we propose a novel enhancement to traditional neural network architectures by in-
troducing a quadratic transformation at each linear layer. This quadratic enhancement introduces
higher-order interactions between neurons through quadratic terms, while maintaining computational
efficiency by reusing the linear activation outputs and sparsifying parameter matrix of the quadratic
term. Our method significantly reduces the number of parameters and operations required for standard
quadratic transformations, making it light-weight, easily applicable to modern architectures. The key
contributions of this paper are as follows:

* We introduce a novel quadratic transformation technique that enhances non-linearity in
neural networks by leveraging quadratic transformations to capture richer interactions
between neurons.

* We present a sparsified version of the quadratic transformation that reduces the number of
parameters, ensuring that the additional computational overhead remains minimal.

* We evaluate the effectiveness of our approach through extensive experiments on three tasks,
including image classification, text classification, and fine-tuning of large language models
(LLMs), showing substantial performance improvements over baseline models.



2 Preliminaries

2.1 Notation

Unless otherwise specified, scalars are denoted by normal font (e.g., z, y), vectors are denoted by
bold lowercase letters (i.e., , A), and matrices are denoted by bold uppercase letters (e.g., W, P
and A).

2.2 Standard linear transformation

A typical linear transformation converts an input signal € R" to a feature vector y € R by
multiplying a weight matrix W € R%*™ as

y:= Wz +b. (1

The transformed vector y is then fed to non-linear activation functions. When stacked together in
multiple layers, such linear operations, combined with nonlinear activation functions, form the basis
for more complex neural network architectures. These layers can be repeated and organized in various
ways to tackle a wide range of machine learning tasks, from classification to regression, progressively
transforming input data into high-level abstractions.

2.3 Primary objective

The goal of this work is to replace the standard linear operation in a neural network layer with a
quadratic function, while keeping activation functions unchanged. Specifically, we aim to replace the
linear transformation (1)) with a quadratic function g : R™ — R?, such that the output becomes:

z=yg(x;W,A) @

where W still represents the parameters of the linear term, and A represents the parameters associated
with the quadratic terms. A key challenge is to ensure that the additional matrix A, responsible for
quadratic terms, only adds a small number of extra parameters relative to the existing ones in W,
while the extra computational cost introduced by the quadratic transformation g remains minimal
compared to the standard linear transformation. We seek to enhance the expressiveness of the model
by introducing higher-order interactions between features without significantly increasing the model’s
complexity or computational overhead.

3 Methodologies

Based on the objective outlined in Section 2.3, this section will provide a detailed description of the
design of the quadratic function g(x; W, A).

3.1 Quadratic transformation in a single layer

Let us begin by considering a standard quadratic transformation that introduces additional nonlinearity
to the linear transformation in Equation (I)) by adding a quadratic term. The resulting transformation
is given by:

" Vix
z .= + Wax + b, 3)
" Vyx
where Vi, ..., V; € R™¥™ are the trainable weights for the quadratic terms, W € R*™ represents

the weights for the linear term, and b € R4 is the bias vector. However, as is, this modification
introduces a significant increase in the number of parameters, requiring (dn?) additional parameters,
which would substantially increase the complexity of the model.

3.2 Rank-1 matrices for quadratic terms

A common technique to reduce the number of parameters in matrices is to impose low-rankness.
Specifically, we set each matrix V;,Vi = 1,...,d, in to be rank-1. That is, for two vectors



Pi,q; € R,
Vii=piq;, Yi=1,...,d. 4)

Consequently, Equation (3]) becomes

z=(Px)® (Qx)+ Wz + b, 5)
where P = [py,--- ,pd]T € R™™ Q = [qi,... ,qd]T € R¥*™ and ® denotes the Hadamard
(element-wise) product. This approach effectively reduces the number of extra parameters from (dn?)
to (2dn), significantly lowering the model’s complexity while still allowing it to capture the quadratic
interactions between the input features.

3.3 Weight sharing

To further reduce the computational and parameter complexities of the quadratic transformation,
we introduce weight sharing. Specifically, we share the weight matrix W between the linear and
quadratic terms. By defining:

P:=AW, Q:=W, 6)

where A € R%*? is a new weight matrix that differentiates the feature space of P and Q, we can
rewrite the quadratic transformation as:

z=(AWz)o Wzx)+ Wz +b=(Ag)©Og+9y+b, @)

where y := Wz represents the linear transformation of the input. This reuse of the weight matrix W
provides two key advantages. First, by sharing W across both the linear and quadratic components,
we significantly reduce the number of model parameters. Instead of three independent parameters
W,P,Q € R?™", the model now only needs to learn W and A. Second, the linear response
y = W is computed once and reused in both the linear and quadratic operations, reducing the
computational overhead.

3.4 Sparsification of A

While the rank-1 decomposition significantly re- A
duces the number of parameters in the quadratic
term, the weight matrix A still requires O(d?) d
parameters, which could result in a substantial :
increase in model complexity. To address this, e |, Vs,
we apply a sparsification strategy to A by con- ! d
verting it into a band matrix. In this structure,

non-zero elements are restricted to a specific k=3 k=1

"band". Additionally, we introduce two small

triangular regions in the lower-left and upper- Figure 1: Sparse structure of A.

right corners, as illustrated in Figure [T} This

allows the band matrix with width & to be divided into & lines of d-dimensional parameters, where
the missing elements of these lines are filled by values from the triangular regions. Hence, the total
number of trainable parameters in A is reduced to k& x d, with k£ being much smaller than d (e.g.,
k = 1). With this sparse structure, the computation of Ay becomes:

Trainable

Zeros

Ag=> A @Roll(g,r), ®)
rek
where IC := {---,—1,0,1,---} is the set of shifts with |IC| = k, A, represents a line of parameters

in A, and the function Roll(-) is defined as

ROH(’Q, 7”) = [g1+(7' mod d)y - -+ 7gd+(7' mod d)]T~ )]

The advantage of using a band matrix is that it ensures the rank of A remains sufficiently high, even
when the number of parameters is significantly reduced (e.g., when k = 1). Specifically, it guarantees
that rank(P) < min{rank(A), rank(W)} does not get too small, preserving the representational
capacity of the quadratic term. This is crucial for maintaining the expressiveness of the model while
reducing both parameter count and computational overhead. In our experiments, we exclude the shift
r = 0, as it produces square terms ¢, whereas any non-zero shift produces cross terms. In practice,



the square terms are more prone to numerical instabilities (such as overflows or exploding gradients)
than the cross terms, especially when training with the FP16 precision whose limited dynamic
range amplifies numerical instability issues. The rationale behind this design choice is illustrated in
Example Consequently, our experiments use C = {1}, as shown in the right-hand subfigure of
Figure[I] This choice effectively results in quadratic interactions between nearest-neighbor neurons,
excluding the self-interaction.

Example 3.1 Let x1, z2 N (0,1) be independent standard normal random variables. The
expectations and variances of the square terms x3 and 3, as well as the cross term x1x5 are as
follows: E[z?] = E[x3] = 1,Var[z}] = Var[z3] = 2 and E[z122] = 0,Var[zi2s] = 1. The
cross term retains the expectations and variances of a normal distribution, while the square terms do
not. Monte Carlo estimates in Table | further show that the square terms are far more likely to attain
large absolute values compared to the cross terms.

Table 1: Estimated probability of the pure quadratic and cross terms

probability v=4 v=2_8 v =16
p(|z3| > v) 45 x 1072 4.7x107% 6.33x107°

=

p(Jxize] >v) 7.6x1072 4.1x107° 3.37x 10710

3.5 Quadratic enhancer

The complete workflow of the proposed quadratic enhancer is sketched in Figure [2] which is divided
into two panels. We recall the conventional linear transformation with bias, z = Wx + b, in the
upper panel. The lower panel then details the quadratic enhancer itself. First, the linear transformation
y = W is computed and fed to the enhancer. A set of rolling shifts Roll(-) is applied to y; these
shifted copies are linearly combined by a learnable, band-sparse matrix A, producing the refined
response Ay, after which a quadratically augmented feature (Ag) © g is calculated. The final output
isthen z = (Ag) ® g + g + b. Figure [2]illustrates how a single linear transformation can be
augmented by the quadratic enhancer. Crucially, the same enhancer block can be attached to every
linear layer in a neural network, endowing the entire model with richer quadratic interactions while
incurring only a negligible increase in parameters and computation.

W ~ b 3 Input

. . i z Yy zZ !
Linear Transformation 3 " ! 3 Output
* }_ Parameters
"""""""""""""""""""""""""""""" / Intermediates
Roll 79

I 1 k  Matrix multiplication

Quadratic Enhancer ®  Hadamard product
O+ O+ +H0O A

Figure 2: An overview of the quadratic enhancer.

3.6 Cost analysis

In this section, we evaluate the overhead introduced by the quadratic enhancement in terms of both
parameters and inference FLOPs, which ultimately impact the model’s efficiency.

Parameters: The quadratic enhancer introduces a single learnable matrix A € R4¥¢, but with
non-zero entries restricted to a bandwidth of width k (where k < d, e.g., k = 1). This results in k x d
free parameters in A. In contrast, the standard linear layer employs a weight matrix W € R4X" with
d x n parameters. The relative overhead in terms of parameters is thus: ¢ = O(k/n), which is

nd
negligible in practice given that £ < n (typically n ~ d).



Inference FLOPs: The quadratic enhancer reuses the linear activation y = Wz, resulting in only
three additional operations. These include: (i) a matrix multiplication Ay which requires 2kd FLOPs,
(i1) a Hadamard product ©®y which costs d FLOPs, and (iii) an addition +¥ which adds another d
FLOPs. Therefore, the total number of extra FLOPs introduced by the quadratic enhancer is 2(k+1)d
FLOPs. For comparison, the original linear transformation W x requires 2nd FLOPs, and the bias
addition adds d FLOPs, leading to a total of 2nd + d FLOPs for the original computation. The relative

2(k+1)d _

overhead is thus: ==~ = O(k/n), which, again, becomes negligible for k < n.

4 Experimental results

In this section, we conduct an evaluation of the proposed quadratic enhancer across three tasks. To
investigate the performance with minimal overhead, we focus on evaluating the quadratic enhancer
with IC = {1}. All experiments were conducted using four NVIDIA A100 80GB. The experimental
code is publicly available at https://github.com/chitar/QuadEnhancer.

4.1 Image classification

Image classification represents one of the most classical and foundational tasks in computer vision.
It serves as a benchmark for evaluating the effectiveness of novel neural architectures and training
methodologies. Following common practice, our experiments involve initial pre-training on a large-
scale dataset, subsequently fine-tuning the pre-trained models on various target datasets. Specifically,
we first pre-train on ImageNet-1k [20], then fine-tune and evaluate the models across several diverse
downstream datasets.

Datasets: Our experiments begin with ImageNet-1k for the initial pre-training stage. For downstream
evaluation, we use six widely recognized benchmarks: Caltech [9]], CIFAR-10, CIFAR-100 [20],
Flowers [32]], Food [2]], and Pets [33]. Caltech is a classical image recognition dataset containing
various object categories. CIFAR-10 and CIFAR-100 are commonly used for small-scale visual
recognition, with the former covering 10 categories and the latter 100. The Flowers dataset focuses
on fine-grained classification of flower species, while the Food dataset includes a variety of food
categories. The Pets dataset is centered on distinguishing different pet breeds. Further details about
these datasets can be found in Table 2

Baselines: The Vision Transformer (ViT) [6] serves as our Table 2: Image datasets
baseline model due to its demonstrated effectiveness and wide
adoption. By varying key hyperparameters such as hidden size Dataset  # Classes # Samples
and number of layers, we consider three model sizes: ViT-M, caltech 102 9.0k
ViT-XT, and ViT-T. Specific hyperparameter configurations are cifar10 10 60k
detailed in the Table cifar100 100 60k
.. . . ) flower 102 8.1k
Training sgttlngs: In thg pre-training phase, each l?asehne pet 37 7 4k
model and its corresponding quadratic enhancer variant are food 101 101k

trained on ImageNet-1k. The training parameters, including
batch size, learning rate, number of epochs, and total training duration, are consistent with the settings
outlined in [29]. After pre-training, each model is fine-tuned individually on all downstream datasets,
with performance evaluated on the corresponding validation sets.

Results: The experimental results are presented in Table

Table 3: Model f ViTs.
where the column labeled "ImageNet" indicates valida- able 3: Model parameters of ViTs

tion accuracy obtained during pre-training, and subsequent

. Embed_dim Layers FFN_dim
columns represent accuracy scores achieved on each down-

stream dataset after fine-tuning. Models incorporating the ~ ViT-M 192 6 768
quadratic enhancer are indicated with "+QE." As shown VIT-XT 128 12 312
. . . . VIiT-T 192 12 768
in Table[d models equipped with the quadratic enhancer

consistently outperform their baseline counterparts across

all datasets. Specifically, VIT-M+QE surpasses ViT-M by 1.60% on ImageNet and achieves sub-
stantial gains on downstream tasks, notably improving Caltech by 2.55% and CIFAR-100 by 2.34%.
Similarly, ViT-XT+QE and ViT-T+QE outperform their respective baselines, demonstrating sig-
nificant accuracy boosts across datasets. The quadratic enhancer proves especially beneficial on
the challenging Pets dataset, where ViT-XT+QE achieves an impressive 6.94% improvement over


https://github.com/chitar/QuadEnhancer

VIiT-XT. Overall, these consistent performance enhancements underline the quadratic enhancer’s
capability to enrich model effectiveness across various visual classification tasks.

Table 4: Accuracy (%) of ViTs with and without the quadratic enhancer.

Model Params ImageNet Caltech Cifarl0 Cifar100 Flowers Food Pets Avg

ViT-M 2.45M 63.70 87.71 96.35 80.25 74.01 8394 91.03 8244
ViT-M+QE 2.47M 65.30 90.32 97.09 82.59 7558  84.63 91.88 83.91
ViT-XT 2.82M 66.04 90.25 96.51 81.24 84.41 8547 91.03 84.99
ViIT-XT+QE  2.83M 67.34 90.77 96.78 82.64 86.37 8585 97.97 86.82
ViT-T 5.37M 73.96 93.07 97.97 86.13 86.56  88.42 93.87 88.57

ViT-T+QE 5.40M 75.15 94.03 98.03 86.88 87.25 8859 9495 89.27

4.2 Text classification

Text classification is a cornerstone task in natural language processing, underpinning applications
ranging from sentiment analysis to topic categorization. It remains a classical and fundamental
benchmark for evaluating advances in language modeling and fine-tuning techniques. Analogous
to image classification, modern text classification pipelines typically involve pre-training a general-
purpose language model on large corpora, followed by fine-tuning on specific downstream datasets.
In our experiments, we adhere to this convention: we first pre-train on a small-scale corpus, then
fine-tune on several text classification benchmarks.

Datasets: For pre-training, we use the WikiText-2 dataset [30], a widely adopted corpus containing
over 2 million tokens from English Wikipedia articles. While larger pre-training datasets exist, their
computational demands exceed our resource constraints. For downstream text classification, we
utilize six standard benchmarks: IMDB (movie review sentiment analysis) [27], Yelp (restaurant
review sentiment) [[17], AG-News (topic classification) [49], SST-2 (Stanford Sentiment Treebank)
[41], and Emotion (emotion recognition) [39]. Detailed dataset statistics are available in TableE}

Baselines: We use the GPT-2 architecture [36] as our baseline,
given its strong performance in language modeling and its
widespread applicability across various downstream tasks. We
evaluate two models: GPT-2/16 and GPT-2/32, differentiated

Table 5: Text datasets.

Dataset # Classes  # Samples

. s . . IMDB 2 50k
by the size of their hidden dimension. Yelp 5 700K
Training settings: Each model is pre-trained on WikiText-2 ~ AG-News 4 120k
for 20 epochs, with batch size 128, learning rate 0.0001, and Isii;l;zion é %E

a maximum sequence length of 256 tokens, sufficient to cover
most samples. Following pre-training, models are fine-tuned on each classification dataset for 10
epochs, with learning rate 0.00005, batch size 16, and other optimizer settings unchanged.

Results: Table [6|reports the perplexity on WikiText-2 and validation accuracy on each classification
dataset. The first column lists model variants, with +QE’ indicating use of the quadratic enhancer.
The second column shows the number of trainable parameters; the third column reports WikiText-2
perplexity (lower is better). Remaining columns present classification accuracy. As shown in Table
[6l models augmented with the quadratic enhancer achieve consistent improvements. GPT-2/16+QE
reduces perplexity from 4.90 to 4.81 and increases average accuracy by 0.91%, with notable gains on
IMDB and Emotion datasets. GPT-2/32+QE yields a perplexity drop from 4.57 to 4.44, and boosts
average accuracy by 0.86%, driven by significant improvements on the Emotion benchmark (from
64.50% to 69.05%). These results demonstrate that even with minimal additional parameters, the
quadratic enhancer can enhance language model expressiveness and downstream performance.



Table 6: Performance of GPT-2 variants with and without the quadratic enhancer (QE). WikiText is
evaluated in perplexity (lower is better), whereas all other datasets are reported in accuracy (%).

Model Params WikiText (ppl.) IMDB Yelp AG-News SST-2 Emotion Avg Acc.
GPT-2/16 0.71IM 4.90 79.68  93.51 90.90 79.70 39.70 76.70
GPT-2/16+QE  0.82M 4.81 81.16 93.64 91.67 78.78 42.80 77.61
GPT-2/32 1.56M 4.57 84.01 93.72 91.97 81.53 64.50 83.15
GPT-2/32+QE  1.61M 4.44 83.52  93.80 92.01 81.65 69.05 84.01

4.3 LLMs finetuning

Fine-tuning LLMs through parameter-efficient fine-tuning [11]] is critically important due to its
capability to efficiently adapt powerful pretrained models to diverse downstream tasks with minimal
additional resources. We evaluate the quadratic enhancer’s integration into the LoRA algorithm [15]]
and fine-tune three variants of the open-source LLaMA models [43, 144} 10].

Dataset: Our fine-tuning experiments focus on the commonsense reasoning task, a crucial benchmark
to assess language models’ practical reasoning capabilities. We use several benchmark datasets
including BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA. Each dataset
assesses different aspects of commonsense understanding and reasoning skills. Detailed descriptions
of these datasets are provided in the appendix of [16].

Baselines and training settings: We select three baseline models for our experiments: LLaMA-7B
[43], LLaMA2-7B [44], and LLaMA3-8B [10], reflecting a progression of model capabilities. We
employ LoRA, a widely studied parameter-efficient fine-tuning method, known for its efficiency and
simplicity. For each baseline, we apply the quadratic enhancer to LoRA adapters with two ranks
(r=16 and r=32). Our training configurations follow the established settings from prior works [16}26]].

Results: The experimental results are summarized in Table[7] The first three columns specify the
model names, methods (with LoRA rank indicated after the ‘/’ and ‘+QE’ denoting the quadratic
enhancer’s use), and the number of parameters trained, respectively. Subsequent columns report
accuracy on the commonsense reasoning benchmark datasets. Results for LORA without QE are taken
from prior works [[16, [26]. As shown in Table[/] the quadratic enhancer consistently and significantly
improves performance across all model variants and benchmarks, even with half-parameter versions
where the rank is 16. Notably, LLaMA2-7B with LoRA/16+QE achieves an impressive average
accuracy improvement of 2.64% over LoRA/32. Furthermore, LLaMA3-8B models integrated with
QE outperform the baseline LoRA models, particularly on complex reasoning tasks like HellaSwag
and ARC datasets. This demonstrates the quadratic enhancer’s strong ability to enhance LLMs’
reasoning capabilities with minimal additional computational cost and parameters.

Table 7: Accuracy (%) of LoRA finetuning on LLaMA variants with and without the quadratic
enhancer (QE).

Model Method Params BoolQ PIQA SIQA HellaSwag WinoG. ARC-e ARC-c OBQA Avg
LoRA/32 53.5M 6890 80.70  77.40 78.10 78.80 77.80 61.30 74.80  74.73
LLaMA-7B LoRA/16+QE  27.6M 69.69 82.64 79.68 87.11 80.11 79.41 63.99 80.20 77.85
LoRA/32+QE  543M  69.14 81.06 77.99 74.00 81.29 79.33 64.16 80.80 75.97
LoRA/32 53.5M 69.80  79.90 79.50 83.60 82.60 79.80 64.70 81.00 77.61
LLaMA2-7B  LoRA/16+QE 27.6M  72.26 82.86 79.78 86.98 83.66 85.35 68.51 82.60  80.25
LoRA/32+4QE  543M  69.63 8253 80.24 90.01 83.03 83.41 68.51 80.80  79.77
LoRA/32 540M 7080 8520 79.90 91.70 84.30 84.20 71.20 79.00  80.79
LLaMA3-8B LoRA/16+QE 27.7M 7440 88.46 80.29 95.45 86.42 91.37 80.63 85.00 85.25
LoRA/32+QE  547M 7492 89.44 81.32 95.02 87.29 89.85 79.60 86.20 85.46

4.4 Additional experimental results

In addition to the main results of the three tasks considered, we perform several further experiments
to evaluate the performance and scalability of the proposed quadratic enhancer. These experiments
provide further insights into its comparative advantages and practical considerations in different
settings. The results of these additional experiments are reported below.



Comparison with quadratic baselines We additionally compare QuadEnhancer with two existing
quadratic MLP variants: (i) QuadraNet [48]], which uses the quadratic formulation y = W,z ®
Wy + Wz, where W,, Wy, W, € R%*™ are learnable parameters, and (ii) SWiGLU [40], which
defines the quadratic interaction as y = (W) ® Sigmoid(W;z) ® (Waz), with Wi, W, € R4*",
All experiments are conducted on the image classification task using the ViT-M model as the backbone,
and the number of parameters is matched by adjusting the hidden dimension d. The results, presented
in Table[8] demonstrate that QuadEnhancer consistently outperforms both quadratic baselines across
all evaluated datasets.

Table 8: Accuracy (%) of different quadratic methods.

Method Param Imagenetlk Cifarl0 Cifar100 Food Avg
ViT-M+QuadraNet 2.53M 61.17 95.81 79.08 81.58 79.41
ViT-M+SwiGLU 2.58M 63.25 96.76 80.58 8391 81.13
ViT-M+QuadEnhancer  2.47M 65.30 97.09 82.59 84.63 82.40

Scaling behavior Understanding the scaling behavior of a model is essential for evaluating its
effectiveness as both data and model sizes increase. While large-scale experiments were not feasible
due to computational constraints, we conduct experiments on data and model sizes ranging from
small to moderate scales. These experiments offer insights into the scaling behavior of the proposed
quadratic enhancer. All experiments are conducted on the image classification task with varying
hidden dimensions d and dataset sizes s. As shown in Table[9] we observe that the quadratic enhancer
yields increasing performance gains as both the model and dataset sizes grow.

Table 9: Accuracy (%) of different scales.

d=24,s =50k d=48,5s=100k d=96,s=200k d=192,s=400k

ViT 8.99 19.18 33.14 49.59
ViT+QE 9.06 19.95 34.03 50.78
Gain 0.07 0.77 0.89 1.19

Training time comparison To evaluate the trade-offs between computational cost and performance,
we report the training times for two tasks: pretraining on ImageNet-1k (Table[I0) and fine-tuning
on CIFAR-100 (Table[TT)). The results show that while the quadratic-enhanced models take slightly
longer to converge in the early stages of training, they ultimately achieve superior performance. These
findings suggest that while QuadEnhancer introduces some initial overhead, it offers substantial
long-term performance gains.

Table 10: Accuracy (%) of pretraining on ImageNet- 1k at different time.

Method Time(sec.)
1k 10k 20k 30k 40k 50k
ViT 2228 52.09 5835 63.51 6596 65.97

ViT+QE 1130 51.28 59.07 63.15 66.59 67.04

Table 11: Accuracy (%) of finetuning on CIFAR-100 at different time.

Method Time(sec.)
ViT 7879 81.78 83.00 84.21 8529 8529 85.29

ViT+QE 7933 81.07 8343 8449 8548 86.15 86.53

Ablation study on K We conduct an ablation study to investigate the effect of different choices for
the set XC in image classification tasks. Models with various /C sets and hidden dimensions are trained



from scratch on the Caltech dataset using ViT-M as the backbone. The accuracy results, shown in
Table|12] indicate that increasing the size of K generally improves performance. The most significant
improvement occurs when moving from X = @) to K = {1}, with further increases in K yielding
diminishing returns. This suggests a clear trade-off between model complexity and performance.

Table 12: Accuracy (%) when using different & and hidden size.

Hidden dimension

K

24 48 96 144 192 288
0 47.16 54.02 5820 59.87 60.50 61.13
{1} 4894 5479 5935 60.83 6139 61.57

{-1,1} 49.38 55.09 59.83 6128 61.80 61.65
{-2,-1,1,2} 49.72 55.16 60.28 61.39 61.50 61.76

5 Limitation and conclusions

Limitation: A key limitation of the quadratic enhancer is that it introduces additional computational
overhead, which, while minimal in terms of parameters and FLOPs, still represents an extra cost
compared to traditional linear transformations. However, our approach effectively minimizes this
impact, ensuring that the performance improvements far outweigh the added complexity.

Conclusions: In this work, we construct a class of quadratic enhancers to enable quadratic interactions
among features at a neural network layer. Compared to a fully-connected linear transformation, the
quadratic enhancers require only negligible amounts of extra parameters and FLOPs. Our proof-
of-concept experiments, conducted across multiple tasks and multiple datasets, have confirmed the
potentials of the proposed approach in delivering substantial performance improvements without
notably increasing model sizes. Evidences even suggest that, in some cases, our approach may be
able to significantly reduce model sizes while maintaining or even enhancing performance levels. At
this point, however, our study is still quite preliminary. More research is definitely needed in this
direction to better understand the promises and limitations of the proposed approach.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to Abstract and Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide a code link in Section 4.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiments are computationally intensive, and we have not yet had
enough time to conduct repeated experiments to obtain error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research presented in this paper adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not present any such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See the code link in Section 4.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No such usage.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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