

From Cross-Sectional CT to Dynamic Insights: Pseudotime-Based Modeling of Lung Nodule Progression

Luoting Zhuang¹

Linh M. Tran^{2,3}

Ashley E. Prosper¹

William Hsu¹

LUOTINGZHUANG@G.UCLA.EDU

LINHMTTRAN@MEDNET.UCLA.EDU

APROSPER@MEDNET.UCLA.EDU

WHSU@MEDNET.UCLA.EDU

¹ *Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, 90095, CA, USA*

² *Department of Medicine, Division of Pulmonology and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, 90095, CA, USA*

³ *VA Greater Los Angeles Healthcare System, Los Angeles, 90073, CA, USA*

Editors: Under Review for MIDL 2026

Abstract

Early detection of lung cancer relies on a comprehensive understanding of the progression of pulmonary nodules. Existing longitudinal modeling approaches are constrained due to the limited availability of longitudinal datasets and the failure to capture the inter-nodular relationship. In this study, we present the first application of pseudotime inference, adapted from single-cell RNA sequencing studies, to reconstruct progression trajectories of nodules from cross-sectional CT images. We collected 13,626 nodule snapshots from two screening cohorts and reserved a longitudinal test set for evaluation. We compared a graph-based pseudotime method, diffusion pseudotime, and an unsupervised deep learning framework combining a variational autoencoder and a neural ordinary differential equation. Both approaches demonstrate longitudinal consistency, with malignant nodules showing a higher correlation between pseudotime and actual time. Pseudotime aligns with clinically relevant features such as irregular margins and solid consistency. Furthermore, pseudotime and delta pseudotime effectively stratify nodules into distinct malignancy risk groups and remain significant independent predictors of malignancy after adjusting for established semantic biomarkers. Our study highlights pseudotime inference as a promising tool for dynamic modeling of lesion progression using static imaging data.

Keywords: Pseudotime inference, disease trajectory, lung nodules, diffusion maps, unsupervised learning, medical imaging biomarker

1. Introduction

Lung cancer remains the leading cause of cancer-related mortality, accounting for approximately 350 deaths per day in the United States (Siegel et al., 2023). Research studies suggest that implementing screening programs with low-dose computed tomography (LDCT) facilitates early lung cancer detection and results in a significant reduction in lung cancer mortality. (Team, 2011; Potter et al., 2022). Understanding the progression of pulmonary nodules is essential for the accurate detection of lung cancer. Multiple prior works have utilized convolutional neural networks, recurrent neural networks, and transformer models,

to predict lung cancer risk from longitudinal CT scans (Ardila et al., 2019; Gao et al., 2019; Li et al., 2023). However, these approaches have two limitations. First, these methods primarily focus on the local evolution of individual nodules, while ignoring the general progression patterns shared across different nodules. Therefore, the learned latent space can lack global structure, making it harder to capture clinically relevant dynamic characteristics across nodules. Second, longitudinal data are typically small, which limits model training across diverse samples and increases the risk of overfitting. For instance, the National Lung Screening Trial (NLST) is the largest publicly available longitudinal dataset for lung cancer screening, serving as a primary resource for nearly all studies on longitudinal modeling. Meanwhile, large collections of publicly available cross-sectional “static” CT scans have been underutilized.

Unlike conventional imaging analyses that treat nodules as isolated observations, pseudotime inference in single-cell RNA sequencing (scRNA-seq) studies has been extensively studied to learn cell differentiation or progression trajectories from static snapshots (Trapnell et al., 2014; Street et al., 2018; Haghverdi et al., 2016). The underlying assumption is that, although temporal information is lost when cells are sampled from tissue, they still reside along a latent developmental trajectory. By leveraging gene expression profiles, pseudotime algorithms reconstruct dynamic processes from these snapshots, ordering cells along a continuous trajectory that represents biological processes. Traditional algorithms typically follow two steps: (1) meaningful representations and relationships between cells are derived using techniques such as manifold learning, clustering, or graph-based methods, and (2) a root cell is selected, and pseudo-temporal ordering (pseudotime) is assigned to each cell using approaches such as shortest-path algorithms or diffusion maps (Cannoodt et al., 2016). More recently, research has been increasingly focused on leveraging deep learning (DL) models to learn complex, nonlinear relationships, generate batch-normalized, robust embeddings, and automatically infer pseudotime (Lopez et al., 2018; Li, 2023).

There are conceptual parallels between scRNA-seq data and imaging features extracted from pulmonary nodules. Similar to cells, nodules from different individuals can also reflect stages along a continuum of nodule development, from benign to malignant transformation. Imaging features extracted from CT scans capture the dynamic nature of pulmonary nodules, which undergo gradual changes over time in terms of size, shape, texture, intensity, and vascularity. This perspective enables us to apply trajectory inference methods to imaging features, allowing for the reconstruction of developmental or pathological pathways. Several studies have explored using pseudotime inference techniques to model the progression of Alzheimer’s disease (He et al., 2024; Glazman et al., 2025) and the prognosis of rectal cancer with therapy (Lee et al., 2024) using imaging features.

In this study, we hypothesize that by applying pseudotime inference to imaging features from cross-sectional imaging data, we can construct a trajectory of nodule progression stages that captures the collective evolution of nodules, which can improve characterization of changes in longitudinal data and enhance prediction of lung cancer risk. To the best of our knowledge, this is the first study to apply pseudotime inference to medical imaging for modeling the progression of lesions. We also present a comparative analysis of two approaches, a traditional graph-based method and a DL-based method.

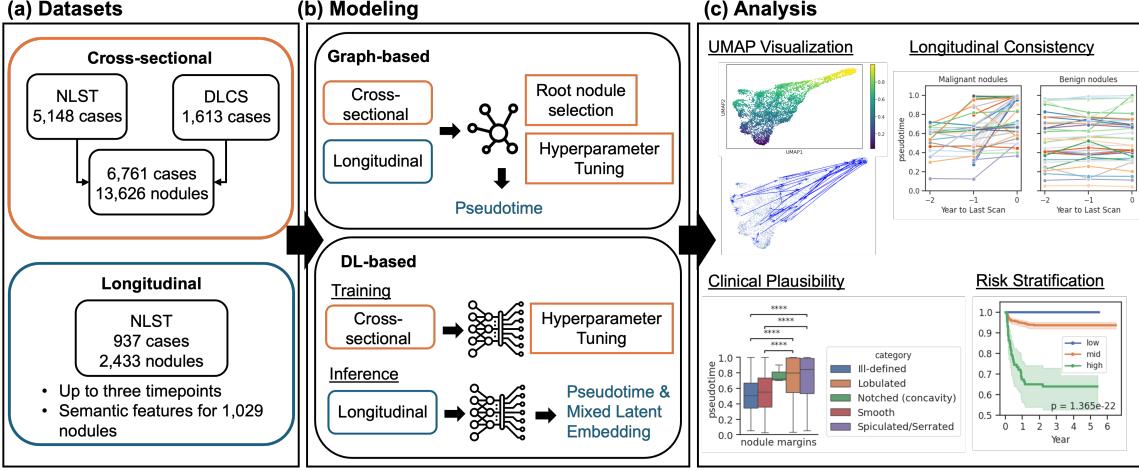


Figure 1: **Pipeline Overview.** (a) We collected cross-sectional data from the National Lung Screening Trial (NLST) and the Duke Lung Cancer Screening (DLCS) for modeling. A subset of longitudinal data from NLST were used for validation. (b) In graph-based methods, cross-sectional and longitudinal data were integrated in constructing graphs. However, hyperparameter tuning and root nodule selection were done based on cross-sectional data only. In contrast, the deep learning (DL)-based method used cross-sectional data for training and hyperparameter optimization, while longitudinal data were used during the inference stage to estimate pseudotime and latent embedding. (c) We evaluated the validity and utility of pseudotime through longitudinal consistency, clinical plausibility, risk stratification, and Cox Proportional Hazards Modeling.

2. Methods

2.1. Data Preprocessing

We utilized data from the NLST, which includes LDCT scans collected over a period of three years. We filtered out 6,995 cases with an indeterminate pulmonary nodule at least once during screening. We applied two pre-trained nodule detection models, MONAI (Cardoso et al., 2022) and Liao et al. (Liao et al., 2019). To reduce false positives, we matched the z-axis of the nodule detected by the algorithms to the slice number recorded in the Abnormality table provided by the NLST organizers. Additionally, we implemented the MaskedSeg model (Zhuang et al., 2025) to segment the lung and remove nodules that fall outside the lung region. In addition to the algorithm-detected nodules, we further incorporated three datasets with manually annotated nodules in NLST, including an in-house dataset from UCLA, LUNA25 (Peeters et al., 2025), and NLST annotations released by the developers of the Sybil lung cancer risk model (Mikhael et al., 2023). We obtained a total of 6,085 cases (19,588 nodules), of which 5,635 have longitudinal CT scans. We tracked the detected nodules across time points using a registration algorithm that combines affine and correspondence field registration (Heinrich et al., 2015), and identified 12,604 unique nodules across 5,636 cases. In total, we have 6,085 cases with 13,514 nodules.

In Figure 1, we summarized the dataset used for modeling and evaluation. We selected 937 cases from NLST to create a longitudinal cohort for the held-out evaluation set. Among these cases, semantic features such as nodule consistency, shape, and size have been

annotated for 1,029 nodules. Since our study examines whether cross-sectional data can help infer nodule trajectory, we included only the nodule at the final timepoint to form a cross-sectional cohort with 5,148 cases. Additionally, we collected LDCT scans from 1,613 individuals in the Duke Lung Cancer Screening (DLCS) dataset (Wang et al., 2025), which only contains cross-sectional scans. Combining the cross-sectional NLST and DLCS cohorts, we obtained 6,761 cases with 13,626 nodules for training.

2.2. Feature Extraction

We extracted imaging features from each nodule, similar to how gene expression profiles are derived in scRNA-seq analysis. We opted to extract imaging features using a lesion foundation model called the Foundation Model for Cancer Imaging Biomarkers (FMCIB) (Pai et al., 2024). FMCIB was trained with contrastive learning to distinguish volumes with and without lesions. The CT scans were resampled to a voxel spacing of $1 \times 1 \times 1$ mm, and boxes measuring $50 \times 50 \times 50$ voxels were cropped around the nodule’s centroid. We fed each nodule crop into the model to generate a 1,024-dimensional feature embedding.

2.3. Experimental Setup

2.3.1. PSEUDOTIME INFERENCE

We investigated two pseudotime analysis methods used for scRNA-seq data: a traditional graph-based method and a DL-based method.

Graph-Based Trajectory Inference. In Figure 2a, we illustrate the pipeline of leveraging a graph-based pseudotime method with diffusion pseudotime (Haghverdi et al., 2016). First, FMCIB features were used to construct a k-nearest neighbor (KNN) graph. We utilized the Leiden community detection algorithm (Traag et al., 2019) on the graph to obtain clusters of nodules. In most cases, the root nodule was randomly selected from the cluster with the lowest malignancy percentage. However, we observed that trajectories often originate from multiple starting points but converge toward a single destination. To better capture this progression, we randomly selected the root nodule from the cluster with the highest malignancy percentage in the cross-sectional data. Pseudotime was then computed starting from this root; the final pseudotime score was defined as $1 - \text{pseudotime}$.

Diffusion pseudotime first computed diffusion maps, which rely on the Markov transition matrix P to model random walks on the graph. Nodules that were similar to each other exhibited similar transition probabilities of reaching other cells in the graph. Diffusion maps are particularly effective at capturing the global structure of high-dimensional data and are robust to noise. The pseudotime of nodule i was then derived by calculating the Euclidean distance from the root nodule r within the diffusion space. Specifically, let P^t represent the t-step transition matrix and $\phi_0(k)$ the stationary distribution. The pseudotime for nodule i , the diffusion distance between nodule i and root nodule r is defined as:

$$\text{Pseudotime}_i = D_t^2(r, i) = \sum_{k=1}^n \frac{[(P^t)_{rk} - (P^t)_{ik}]^2}{\phi_0(k)}$$

DL-Based Trajectory Inference. We implemented the scTour framework (Li, 2023) to infer pseudotime trajectories in our dataset (Figure 2b). scTour is a DL-based pseudotime

analysis algorithm that uses self-supervised learning, combining a variational autoencoder (VAE) and neural ordinary differential equations (NODE). In VAE, the encoder mapped FMCIB features into two outputs, the mean (μ) and the standard deviation (σ) of a Gaussian distribution. The latent embedding (z) was randomly sampled from the distribution and fed into the decoder to reconstruct the nodule’s deep features. At the same time, an additional linear layer was attached to the encoder to predict pseudotime (t) for each of the nodules. Starting from the latent embedding of the nodule with the smallest pseudotime (z_{t_0}) and the set of predicted timepoints, the NODE module generated a continuous trajectory of latent states (h_t). Each latent representation was then passed through the same decoder to reconstruct the features. This design enforced that the latent dynamics inferred at each timepoint remain consistent with the observed data, thereby enabling the model to learn a meaningful pseudotime ordering. The latent embeddings z and h were combined to form a mixed representation for downstream analysis.

The model was optimized with four loss functions. First, two reconstruction losses were computed using latent embedding z and h with mean-squared error. Second, we minimized Kullback–Leibler (KL) divergence to prompt a well-structured latent space that follows a Gaussian prior. Finally, a consistency loss was used to enforce similarity between latent embeddings z and h . We set α to be 0.5.

$$\mathcal{L} = \underbrace{-\alpha \cdot \log p(x | z) - (1 - \alpha) \cdot \log p(x | h)}_{\text{Reconstruction Loss on } z \text{ and } h} + \underbrace{D_{\text{KL}}(q(z | x) \| p(z))}_{\text{VAE KL divergence}} + \underbrace{\|z - h\|_2^2}_{\text{Consistency Loss}}$$

2.3.2. HYPERPARAMETER TUNING

Hyperparameters for diffusion pseudotime were tuned via grid search to maximize the alignment between inferred pseudotime and malignancy label in the cross-sectional cohort. The search space included the number of neighbors in KNN (30,50,100,150,200,300) and the number of diffusion map components (5,10,15) used for computing pseudotime. Spearman correlation was used to assess the alignment. The optimal configuration with the highest correlation was 50 nearest neighbors and 10 diffusion map components. Similarly, for the VAE-NODE model, we performed hyperparameter tuning for latent embedding dimensions (16,64,128), batch sizes (256,512,4096), and learning rates (1e-3, 5e-4). Based on the highest Spearman correlation, we selected the model trained with a latent embedding dimension of 128, a batch size of 512, and a learning rate of 5e-4. The model was trained for 400 epochs.

2.4. Evaluation

To assess the validity and utility of pseudotime, we conducted four evaluations. (1) **Temporal validity:** In the longitudinal NLST set, we computed the Pearson correlation between pseudotime and actual time for benign and malignant nodules separately. (2) **Clinical Plausibility:** To evaluate clinical plausibility, we compared pseudotime across nodules with different semantic features, including nodule margins, shape, consistency, and size. Hypothesis testing was performed using the Mann-Whitney U test with a significance level of 0.05. We corrected multiple testing using Benjamini-Hochberg. (3) **Risk Stratification:** We also stratified nodules into three groups with equal width in pseudotime and delta pseudotime, separately, and plotted Kaplan-Meier curves to show the cumulative probability of

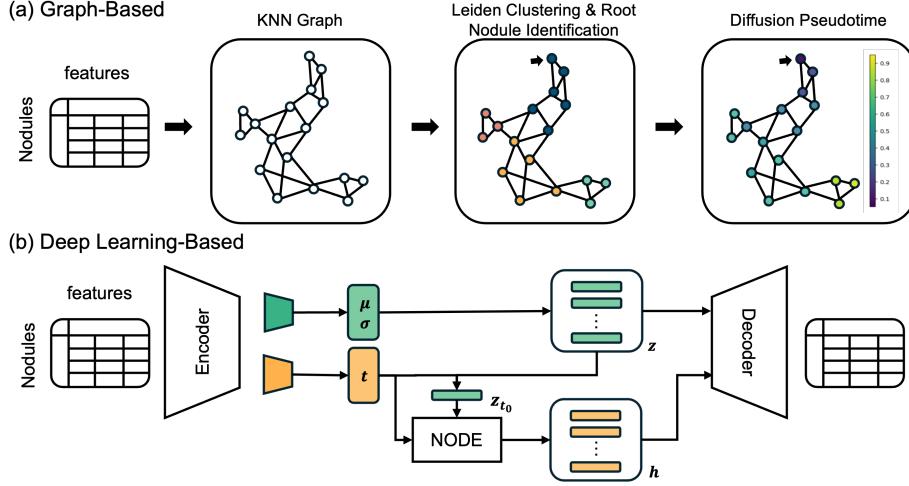


Figure 2: **Pseudotime Inference Algorithms.** (a) Graph-based method. A k-nearest neighbor (KNN) graph is constructed from imaging features. The Leiden algorithm is applied to identify communities within the graph. After selecting a root nodule, diffusion pseudotime is computed to assign a temporal ordering to all nodules. (b) Deep learning-based method. A variational autoencoder architecture with an encoder-decoder framework is employed. In the green subsection, the encoder estimates the mean (μ) and standard deviation (σ) of a Gaussian distribution, from which latent embeddings (z) are sampled. In the orange branch, the encoder predicts pseudotime (t) for each nodule. Based on the smallest pseudotime value, the corresponding embedding z_{t_0} is selected as the initial state. A neural ordinary differential equation (NODE) model then integrates z_{t_0} and t to produce a transformed latent representation (h). Both z and h are passed to the decoder for feature reconstruction.

remaining benign over time for each group. The log-rank test was performed to evaluate whether there is a statistically significant difference in the time-to-diagnosis distributions between groups. (4) **Independent Predictive Value:** To assess whether pseudotime acts as an independent biomarker, we fitted a Cox proportional hazards model to analyze time to lung cancer diagnosis, incorporating semantic features (size, change in size, margin, shape, consistency, and change in consistency), pseudotime, and delta-pseudotime, and reported the associated p-values for each variable.

3. Results

3.1. Increasing pseudotime over time in malignant nodules validates its longitudinal consistency

We visualize FMCIB feature embeddings in Uniform Manifold Approximation and Projection (UMAP) for the graph-based method, colored by pseudotime in Figure 3a, and Leiden clusters in Figure 3b-c. In contrast, the mixed latent embeddings were used for computing UMAP for the DL-based method (Figure 3d). We display the trajectory of nodules that progress to lung cancer (Figure 3b and e) and those that remain as benign nodules (Figure 3c and f) in blue arrows. Most malignant nodules have arrows pointing toward higher pseu-

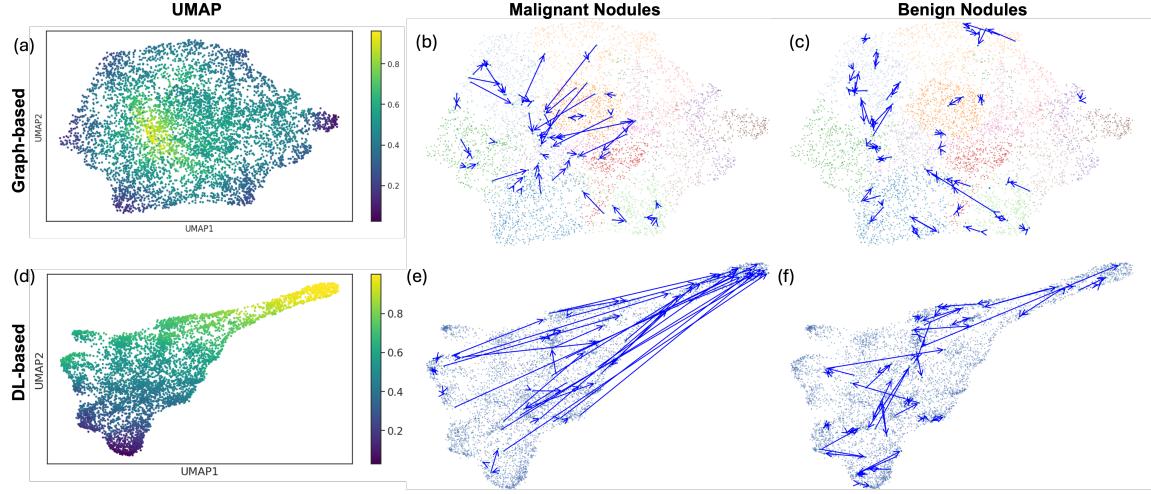


Figure 3: Visualizations on UMAP. Pseudotime is colored on UMAP on subplots **a** and **b**. In the graph-based method, the UMAP is constructed using FMCIB features, whereas in the deep learning-based method, it is built on a mixed latent embedding. Panels **b** and **e** illustrate the trajectory of malignant nodules, and panels **c** and **f** depict the trajectory of benign nodules. Each arrow in the graph represents the change observed in a single nodule over approximately a one-year period.

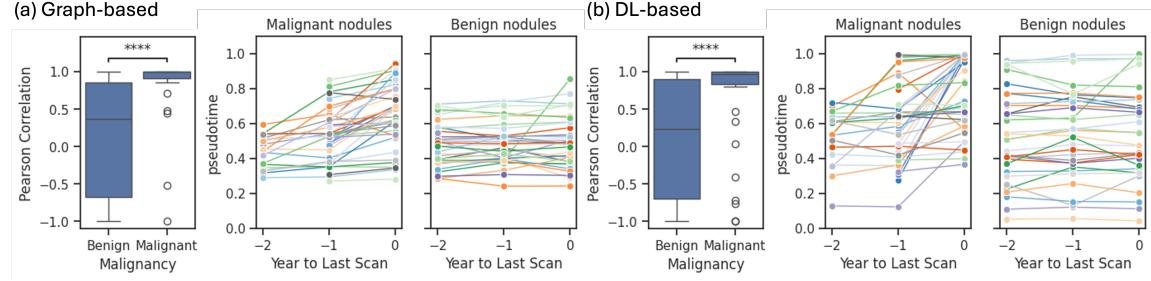


Figure 4: **Longitudinal Consistency.** Boxplots present Pearson correlations between inferred pseudotime and actual time for benign and malignant nodules. Line plots depict pseudotime trajectories over time for randomly selected nodules.

dotime, while benign nodules remain mostly local and occasionally display back-and-forth movements. Visualizations of selected nodules are shown in Figure A1.

In Figure 4, we show boxplots of Pearson correlations between inferred pseudotime and actual time for malignant and benign nodules. Nodules that later progress to malignancy exhibit significantly higher correlations across both methods. A similar pattern is observed in the line plots, where malignant cases exhibit a consistent upward trend in the final year, whereas most benign cases maintain a stable pseudotime throughout the screening period.

3.2. Pseudotime shows clinical relevance through semantic feature associations

To validate whether pseudotime preserves any clinical relevance, we present boxplots of pseudotime across different subtypes in semantic features, including nodule margin, con-

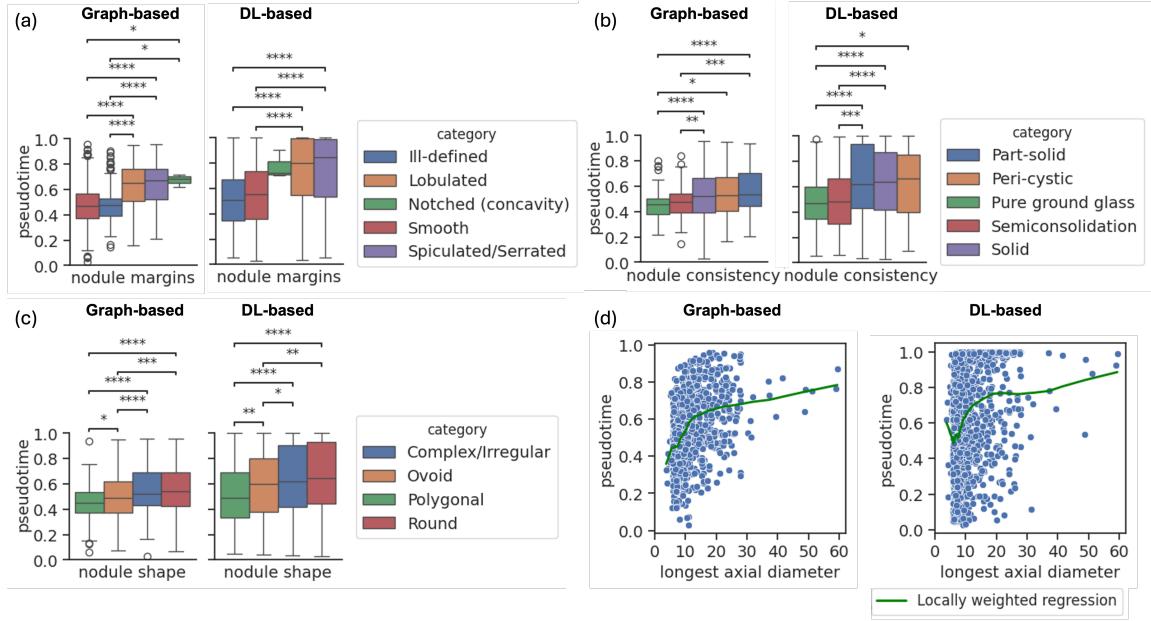


Figure 5: **Clinical Plausibility.** Boxplots illustrate differences in pseudotime across subtypes of nodule margin (a), consistency (b), and shape (c). Statistical significance was indicated by asterisks (*) based on the Mann–Whitney U test. Additionally, a scatter plot was presented to show the relationship between pseudotime and the longest axial diameter (in millimeters), with a locally weighted curve overlaid to suggest the general trend.

sistency, shape, and longest axial diameter, as depicted in Figure 5. In both graph-based and DL methods (Figure 5a), nodules exhibiting suspicious margins, such as notched, spiculated, and lobulated, demonstrate significantly higher pseudotime than those with smooth margins. Furthermore, in Figure 5b, pseudotime for pure ground glass and semiconsolidation nodules is markedly lower than that for part-solid and solid nodules. In Figure 5c, pseudotime in both methods consistently increases from polygonal to ovoid, then to complex and round nodules. While we observe an increasing trend in pseudotime when the longest axial diameter of nodules increases, the variation is quite large (Figure 5d).

3.3. Pseudotime and delta-pseudotime demonstrate distinct malignancy risk stratification and serve as independent predictors

Figure 6 shows Kaplan-Meier curves for three groups stratified by pseudotime and delta-pseudotime, respectively. We define delta-pseudotime as the change in pseudotime from the prior timepoint. All curves demonstrate statistically significant separation between the three groups, regardless of whether pseudotime or delta-pseudotime was used or which method was applied. Notably, the separation is more obvious when groups are stratified by delta-pseudotime. Pseudotime derived from the graph-based method shows a greater differentiation than that from the DL-based method.

As shown in Table 1, nodule margin, consistency, change in consistency, size, and change in size reveal significant p-values in the Cox model in predicting lung cancer risk. Despite

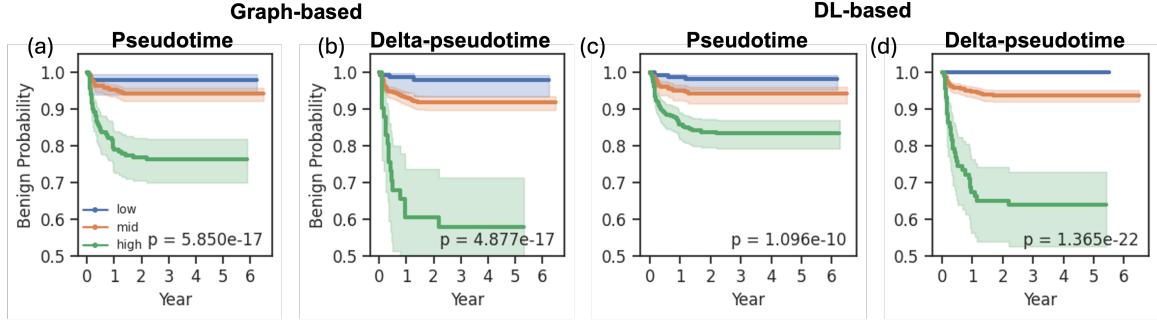


Figure 6: **Kaplan-Meier curves.** Kaplan-Meier curves shows the proportion of benign cases across three groups defined by equal-width intervals of pseudotime and delta-pseudotime. P-values from the log-rank test are shown in the lower right corner.

Table 1: **Cox Proportional Hazards Model Result.** Pseudotime and delta pseudotime were jointly modeled with other semantic features. Reported values include hazard ratios (HR) with 95% confidence intervals (CI) and p-values.

Feature	Feature Subgroups	Graph-based			DL-based		
		HR	HR 95% CI	p-value	HR	HR 95% CI	p-value
Margins (Smooth)	Lobulated	2.23	[1.47, 3.38]	<0.005	5.47	[2.75, 10.85]	<0.005
	Ill-defined	1.01	[0.66, 1.55]	0.96	4.08	[1.48, 11.21]	0.01
	Notched	0.72	[0.03, 16.16]	0.84	0.00	[0.00, inf]	1.00
	Spiculated	2.19	[1.45, 3.30]	<0.005	4.75	[2.39, 9.43]	<0.005
Shape (Ovoid)	Polygonal	0.75	[0.45, 1.27]	0.29	0.00	[0.00, inf]	1.00
	Round	1.23	[0.84, 1.78]	0.29	1.34	[0.70, 2.56]	0.38
	Complex	1.03	[0.75, 1.41]	0.88	0.69	[0.39, 1.25]	0.22
Consistency (Pure ground glass)	Part-solid	1.03	[0.65, 1.64]	0.90	3.32	[0.65, 16.85]	0.15
	Semiconsolidation	0.79	[0.44, 1.40]	0.42	1.77	[0.24, 12.82]	0.57
	Peri-cystic	1.32	[0.52, 3.33]	0.56	3.61	[0.59, 21.91]	0.16
	Solid	1.26	[0.89, 1.79]	0.19	7.62	[1.53, 38.06]	0.01
Change in consistency (Stable)	Decreased attenuation	0.77	[0.23, 2.53]	0.66	0.00	[0.00, inf]	1.00
	Increased (diffuse)	1.82	[1.06, 3.12]	0.03	1.94	[1.02, 3.72]	0.04
	Increased (focal)	1.37	[0.76, 2.48]	0.29	1.35	[0.62, 2.97]	0.45
Size	Longest axial diameter	1.06	[1.03, 1.08]	<0.005	1.09	[1.06, 1.12]	<0.005
Change in size (Stable)	Decreased	0.88	[0.34, 2.25]	0.79	0.96	[0.13, 7.22]	0.97
	Increased	3.25	[2.30, 4.59]	<0.005	6.64	[3.90, 11.31]	<0.005
Pseudotime	Pseudotime	3.27	[1.32, 8.11]	0.01	2.31	[0.82, 6.49]	0.11
	Delta pseudotime	18.54	[4.06, 84.62]	<0.005	3.00	[1.07, 8.42]	0.04

adjusting for these known lung cancer biomarkers, the graph-based method identifies both pseudotime (Hazard Ratio = 3.27, $p = 0.01$) and delta-pseudotime (HR = 18.54, $p < 0.005$) as statistically significant predictors. Nodules positioned later in the inferred trajectory and those with rapid change along the trajectory are more likely to be diagnosed as lung cancer earlier. In contrast, in the DL-based method, pseudotime was not statistically significant (HR = 2.31, $p = 0.11$), but delta-pseudotime remains significant (HR = 3.00, $p = 0.04$).

4. Discussion

In our study, we introduce pseudotime inference into a novel domain, medical imaging, to learn lesion progression from cross-sectional data. We have utilized two distinct pseudotime

inference approaches. The graph-based approach estimates pseudotime by modeling transitions on a data manifold derived from diffusion maps. In contrast, the DL-based approach employs unsupervised learning to capture dynamic patterns to reconstruct the features. We have validated that pseudotime shows longitudinal consistency in the test set, with malignant nodules displaying a significantly higher correlation between pseudotime and actual timestamp. In addition, pseudotime yields results that are clinically plausible. Nodules typically progress from pure ground glass to solid and from smooth to irregular margins, and this trend is positively correlated with pseudotime.

In our Cox proportional hazards analysis of time to diagnosis, delta-pseudotime shows significance in both graph-based and DL-based approaches, indicating that changes along the predicted trajectory from cross-sectional data provide greater predictive value than absolute position. This finding is also supported by the Kaplan-Meier curves, in which nodule groups stratified by delta-pseudotime exhibit more distinct malignancy profiles. This aligns with clinical intuition, as rapid changes in nodule characteristics often indicate aggressive cancer behavior. In addition, one possible explanation for pseudotime being significant in the graph-based but not in the DL-based approach is that the graph-based trajectory was constructed using both the training and test sets. This likely facilitates more accurate placement of test-set nodules along the trajectory by capturing their global and local interactions with other training nodules.

Overall, the DL-based approach shows greater potential for pseudotime inference in large-scale, heterogeneous datasets than the graph-based method. While the test set must be incorporated with cross-sectional data for modeling in the graph-based method, the DL-based method allows inference on a new dataset without re-modeling, which will be crucial for real-world deployment. Furthermore, the graph-based method requires manual selection of root nodules, which can be subjective and highly variable. On the other hand, the DL-based method automatically ranks nodules in the latent space. However, the DL-based approach primarily delineates a single linear trajectory, limiting its ability to identify branching patterns in lesion progression. In addition, we observe that FMCIB features are highly sensitive to the location of the nodule (Figure A2). In the UMAP visualization for graph-based pseudotime, there is a clearer distinction between central and peripheral nodules. Figure A1b also confirms the issue. Even when the nodule’s morphology changes, its peripheral position dominates the feature representation, resulting in minimal change in pseudotime. Although this problem persists in the DL-based method, it is less severe because the DL method learns to prioritize features relevant to ranking nodules, rather than being influenced by spatial bias. Future work will focus on strategies to prevent shortcut learning driven by peripheral position. In addition, we plan to incorporate more cross-sectional data beyond just screening scans, including nodules at different stages from various CT scan types, to gain a more comprehensive view of all kinds of nodules. Our pseudotime generation approach based on imaging features is broadly generalizable and can be applied to other cancer types to model lesion progression.

In conclusion, pseudotime inference offers a dynamic framework for understanding lung nodule progression from cross-sectional CT imaging. Both pseudotime and delta-pseudotime identify clinically relevant patterns and can function as independent predictors of malignancy risk. These metrics can facilitate patient stratification, guide personalized follow-up strategies, and support earlier detection of lung cancer.

Acknowledgments

This work is supported by NIH/National Cancer Institute U2C CA271898 (to L.T., A.P., W.H.), U01 CA233370 (to L.Z., A.P., W.H.), the V Foundation (to W.H.), and the Department of Veterans Affairs Merit Review I01BX005721 (to L.T.).

References

Diego Ardila, Atilla P Kiraly, Sujeeth Bharadwaj, Bokyung Choi, Joshua J Reicher, Lily Peng, Daniel Tse, Mozziyar Etemadi, Wenxing Ye, Greg Corrado, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. *Nature medicine*, 25(6):954–961, 2019.

Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. Computational methods for trajectory inference from single-cell transcriptomics. *European journal of immunology*, 46(11):2496–2506, 2016.

M Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Andriy Myronenko, Can Zhao, Dong Yang, et al. Monai: An open-source framework for deep learning in healthcare. *arXiv preprint arXiv:2211.02701*, 2022.

Riqiang Gao, Yuankai Huo, Shunxing Bao, Yucheng Tang, Sanja L Antic, Emily S Epstein, Aneri B Balar, Steve Deppen, Alexis B Paulson, Kim L Sandler, et al. Distanced lstm: time-distanced gates in long short-term memory models for lung cancer detection. In *International Workshop on Machine Learning in Medical Imaging*, pages 310–318. Springer, 2019.

Natalia Glazman, Jyoti Mangal, Pedro Borges, Sebastien Ourselin, and M Jorge Cardoso. Dynamic causal discovery in alzheimer’s disease through latent pseudotime modelling. *arXiv preprint arXiv:2511.04619*, 2025.

Laleh Haghverdi, Maren Büttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis. Diffusion pseudotime robustly reconstructs lineage branching. *Nature methods*, 13(10):845–848, 2016.

Bing He, Shu Zhang, Shannon L Risacher, Andrew J Saykin, and Jingwen Yan. Multi-modal imaging-based pseudotime analysis of alzheimer progression. In *Biocomputing 2025: Proceedings of the Pacific Symposium*, pages 664–674. World Scientific, 2024.

Mattias P Heinrich, Heinz Handels, and Ivor JA Simpson. Estimating large lung motion in copd patients by symmetric regularised correspondence fields. In *International conference on medical image computing and computer-assisted intervention*, pages 338–345. Springer, 2015.

Hyunjong Lee, Seung Hyup Hyun, Yong Beom Cho, Hee Cheol Kim, Hee Chul Park, Young Suk Park, and Joon Young Choi. Prognostic value of pseudotime from texture parameters of fdg pet/ct in locally advanced rectal cancer with neoadjuvant concurrent chemoradiotherapy. *Scientific Reports*, 14(1):31437, 2024.

Qian Li. sctour: a deep learning architecture for robust inference and accurate prediction of cellular dynamics. *Genome Biology*, 24(1):149, 2023.

Thomas Z Li, Kaiwen Xu, Riqiang Gao, Yucheng Tang, Thomas A Lasko, Fabien Maldonado, Kim L Sandler, and Bennett A Landman. Time-distance vision transformers in lung cancer diagnosis from longitudinal computed tomography. In *Medical Imaging 2023: Image Processing*, volume 12464, pages 229–238. SPIE, 2023.

Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu, and Sen Song. Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network. *IEEE transactions on neural networks and learning systems*, 30(11):3484–3495, 2019.

Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative modeling for single-cell transcriptomics. *Nature methods*, 15(12):1053–1058, 2018.

Peter G Mikhael, Jeremy Wohlwend, Adam Yala, Ludvig Karstens, Justin Xiang, Angelo K Takigami, Patrick P Bourgouin, PuiYee Chan, Sofiane Mrah, Wael Amayri, et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. *Journal of Clinical Oncology*, 41(12):2191–2200, 2023.

Suraj Pai, Dennis Bontempi, Ibrahim Hadzic, Vasco Prudente, Mateo Sokač, Tafadzwa L Chaunzwa, Simon Bernatz, Ahmed Hosny, Raymond H Mak, Nicolai J Birkbak, et al. Foundation model for cancer imaging biomarkers. *Nature machine intelligence*, 6(3):354–367, 2024.

D. Peeters, B. Obreja, N. Antonissen, and C. Jacobs. The luna25 challenge: Public training and development set - annotation data. Zenodo, February 2025.

Alexandra L Potter, Allison L Rosenstein, Mathew V Kiang, Shivani A Shah, Henning A Gaissert, David C Chang, Florian J Fintelmann, and Chi-Fu Jeffrey Yang. Association of computed tomography screening with lung cancer stage shift and survival in the united states: quasi-experimental study. *Bmj*, 376, 2022.

Rebecca L Siegel, Kimberly D Miller, Nikita Sandeep Wagle, and Ahmedin Jemal. Cancer statistics, 2023. *CA: a cancer journal for clinicians*, 73(1), 2023.

Kelly Street, Davide Risso, Russell B Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth Purdom, and Sandrine Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. *BMC genomics*, 19(1):477, 2018.

National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. *New England Journal of Medicine*, 365(5):395–409, 2011.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing well-connected communities. *Scientific reports*, 9(1):1–12, 2019.

Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and John L Rinn. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. *Nature biotechnology*, 32(4):381–386, 2014.

Avivah J Wang, Fakrul Islam Tushar, Michael R Harowicz, Betty C Tong, Kyle J Lafata, Tina D Tailor, and Joseph Y Lo. The duke lung cancer screening (dlcs) dataset: a reference dataset of annotated low-dose screening thoracic ct. *Radiology: Artificial Intelligence*, 7(4):e240248, 2025.

Luoting Zhuang, Seyed Mohammad Hossein Tabatabaei, Ashley E Prosper, and William Hsu. Enhancing lung segmentation algorithms to ensure inclusion of juxtapleural nodules. In *2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI)*, pages 1–5. IEEE, 2025.

Appendix A. Example Trajectories

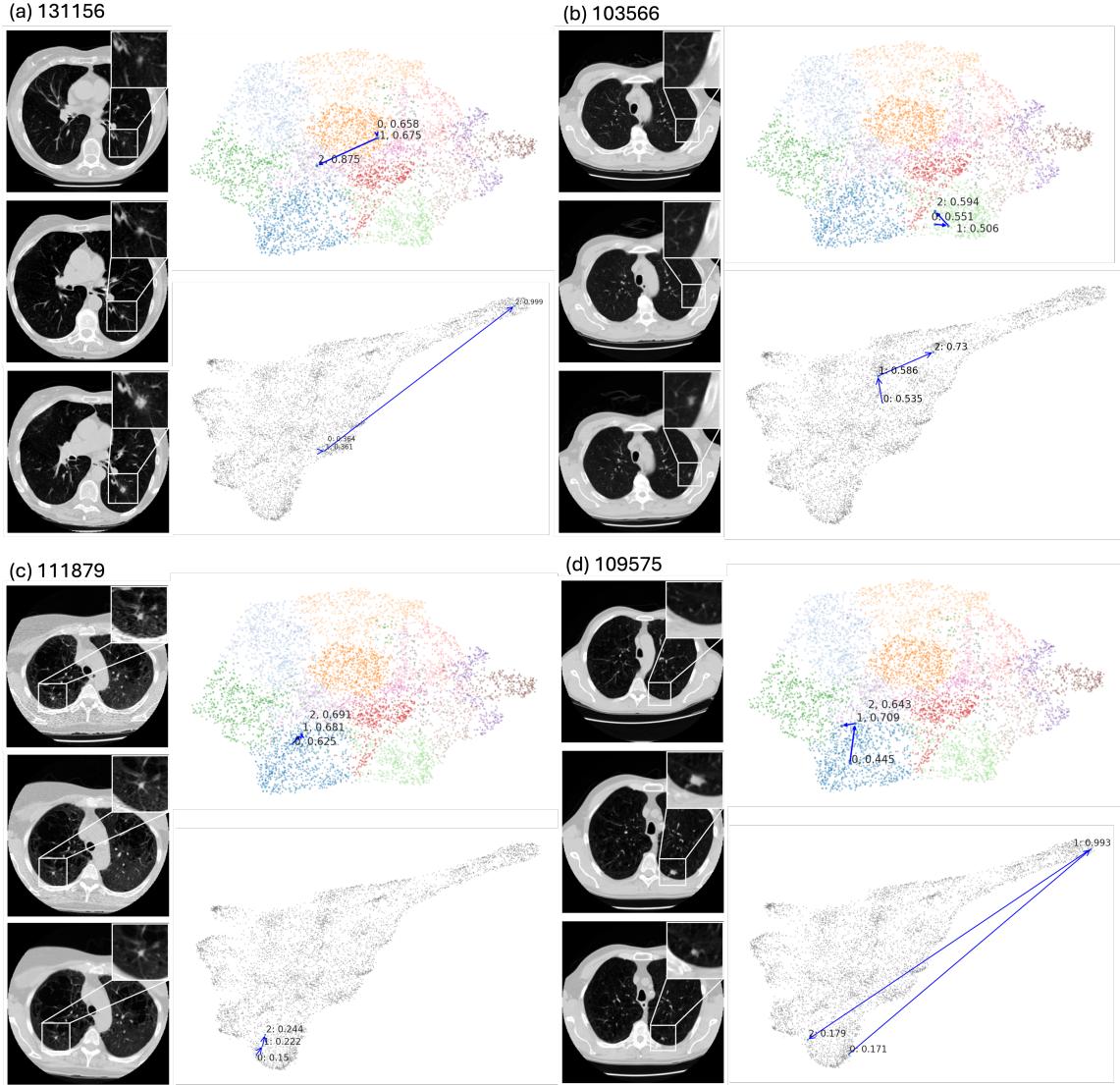


Figure A1: Examples. a–b show malignant nodules, and c–d show benign nodules. For each case, the CT slice containing the nodule is displayed with a magnified view in the top-right corner. Rows correspond to sequential timepoints from top to bottom, each with a one-year interval. The right side illustrates trajectories on UMAP from both methods, with pseudotime values annotated on the plots. The identifiers at the top correspond to the patient IDs (PID) from the NLST dataset.

Figure A1a-b depict two nodules that ultimately progress to lung cancer. Figure A1a illustrates a nodule that initially appears small, gradually enlarges, and eventually becomes significantly larger with spiculated margins. Pseudotime from both methods aligns with this progression, remaining relatively stable in the first two timepoints and showing a drastic increase at the final timepoint. In Figure A1b, we observe a gradually appearing nodule that

develops into a spiculated and irregular solid nodule. While the graph-based pseudotime remains the same, the DL-based pseudotime better reflects the progression, showing an increasing trend in pseudotime. Figure A1c-d display two nodules that remain benign. Nodule in Figure A1c shows minimal change across three timepoints, and the pseudotime is stable. In Figure A1d, a large nodule starts to emerge in the second timepoint but subsequently decreases in size in the final year, which is also mirrored by an increase followed by a decrease in pseudotime.

Appendix B. Batch Effect in Features

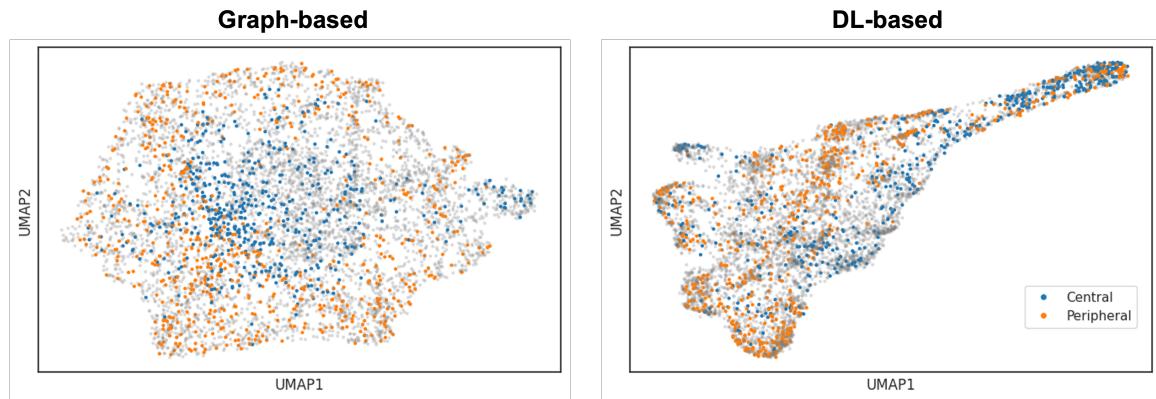


Figure A2: Effect of Axial Locations on Features. For a subset of nodules, axial location (central or peripheral) was annotated by radiologists and color-coded on the UMAP visualization.