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Abstract

Early detection of lung cancer relies on a comprehensive understanding of the progression
of pulmonary nodules. Existing longitudinal modeling approaches are constrained due
to the limited availability of longitudinal datasets and the failure to capture the inter-
nodular relationship. In this study, we present the first application of pseudotime inference,
adapted from single-cell RNA sequencing studies, to reconstruct progression trajectories
of nodules from cross-sectional CT images. We collected 13,626 nodule snapshots from
two screening cohorts and reserved a longitudinal test set for evaluation. We compared a
graph-based pseudotime method, diffusion pseudotime, and an unsupervised deep learning
framework combining a variational autoencoder and a neural ordinary differential equation.
Both approaches demonstrate longitudinal consistency, with malignant nodules showing a
higher correlation between pseudotime and actual time. Pseudotime aligns with clinically
relevant features such as irregular margins and solid consistency. Furthermore, pseudotime
and delta pseudotime effectively stratify nodules into distinct malignancy risk groups and
remain significant independent predictors of malignancy after adjusting for established
semantic biomarkers. Our study highlights pseudotime inference as a promising tool for
dynamic modeling of lesion progression using static imaging data.

Keywords: Pseudotime inference, disease trajectory, lung nodules, diffusion maps, unsu-
pervised learning, medical imaging biomarker

1. Introduction

Lung cancer remains the leading cause of cancer-related mortality, accounting for approxi-
mately 350 deaths per day in the United States (Siegel et al., 2023). Research studies sug-
gest that implementing screening programs with low-dose computed tomography (LDCT)
facilitates early lung cancer detection and results in a significant reduction in lung cancer
mortality. (Team, 2011; Potter et al., 2022). Understanding the progression of pulmonary
nodules is essential for the accurate detection of lung cancer. Multiple prior works have
utilized convolutional neural networks, recurrent neural networks, and transformer models,
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to predict lung cancer risk from longitudinal CT scans (Ardila et al., 2019; Gao et al., 2019;
Li et al., 2023). However, these approaches have two limitations. First, these methods
primarily focus on the local evolution of individual nodules, while ignoring the general pro-
gression patterns shared across different nodules. Therefore, the learned latent space can
lack global structure, making it harder to capture clinically relevant dynamic characteristics
across nodules. Second, longitudinal data are typically small, which limits model training
across diverse samples and increases the risk of overfitting. For instance, the National Lung
Screening Trial (NLST) is the largest publicly available longitudinal dataset for lung cancer
screening, serving as a primary resource for nearly all studies on longitudinal modeling.
Meanwhile, large collections of publicly available cross-sectional “static” CT scans have
been underutilized.

Unlike conventional imaging analyses that treat nodules as isolated observations, pseu-
dotime inference in single-cell RNA sequencing (scRNA-seq) studies has been extensively
studied to learn cell differentiation or progression trajectories from static snapshots (Trap-
nell et al., 2014; Street et al., 2018; Haghverdi et al., 2016). The underlying assumption
is that, although temporal information is lost when cells are sampled from tissue, they
still reside along a latent developmental trajectory. By leveraging gene expression profiles,
pseudotime algorithms reconstruct dynamic processes from these snapshots, ordering cells
along a continuous trajectory that represents biological processes. Traditional algorithms
typically follow two steps: (1) meaningful representations and relationships between cells
are derived using techniques such as manifold learning, clustering, or graph-based methods,
and (2) a root cell is selected, and pseudo-temporal ordering (pseudotime) is assigned to
each cell using approaches such as shortest-path algorithms or diffusion maps (Cannoodt
et al., 2016). More recently, research has been increasingly focused on leveraging deep
learning (DL) models to learn complex, nonlinear relationships, generate batch-normalized,
robust embeddings, and automatically infer pseudotime (Lopez et al., 2018; Li, 2023).

There are conceptual parallels between scRNA-seq data and imaging features extracted
from pulmonary nodules. Similar to cells, nodules from different individuals can also reflect
stages along a continuum of nodule development, from benign to malignant transformation.
Imaging features extracted from CT scans capture the dynamic nature of pulmonary nod-
ules, which undergo gradual changes over time in terms of size, shape, texture, intensity, and
vascularity. This perspective enables us to apply trajectory inference methods to imaging
features, allowing for the reconstruction of developmental or pathological pathways. Sev-
eral studies have explored using pseudotime inference techniques to model the progression
of Alzheimer’s disease (He et al., 2024; Glazman et al., 2025) and the prognosis of rectal
cancer with therapy (Lee et al., 2024) using imaging features.

In this study, we hypothesize that by applying pseudotime inference to imaging features
from cross-sectional imaging data, we can construct a trajectory of nodule progression
stages that captures the collective evolution of nodules, which can improve characterization
of changes in longitudinal data and enhance prediction of lung cancer risk. To the best
of our knowledge, this is the first study to apply pseudotime inference to medical imaging
for modeling the progression of lesions. We also present a comparative analysis of two
approaches, a traditional graph-based method and a DL-based method.
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Figure 1: Pipeline Overview. (a) We collected cross-sectional data from the National Lung
Screening Trial (NLST) and the Duke Lung Cancer Screening (DLCS) for modeling. A subset of
longitudinal data from NLST were used for validation. (b) In graph-based methods, cross-sectional
and longitudinal data were integrated in constructing graphs. However, hyperparameter tuning and
root nodule selection were done based on cross-sectional data only. In contrast, the deep learning
(DL)-based method used cross-sectional data for training and hyperparameter optimization, while
longitudinal data were used during the inference stage to estimate pseudotime and latent embedding.
(c) We evaluated the validity and utility of pseudotime through longitudinal consistency, clinical
plausibility, risk stratification, and Cox Proportional Hazards Modeling.

2. Methods

2.1. Data Preprocessing

We utilized data from the NLST, which includes LDCT scans collected over a period of three
years. We filtered out 6,995 cases with an indeterminate pulmonary nodule at least once
during screening. We applied two pre-trained nodule detection models, MONAI (Cardoso
et al., 2022) and Liao et al. (Liao et al., 2019). To reduce false positives, we matched
the z-axis of the nodule detected by the algorithms to the slice number recorded in the
Abnormality table provided by the NLST organizers. Additionally, we implemented the
MaskedSeg model (Zhuang et al., 2025) to segment the lung and remove nodules that
fall outside the lung region. In addition to the algorithm-detected nodules, we further
incorporated three datasets with manually annotated nodules in NLST, including an in-
house dataset from UCLA, LUNA25 (Peeters et al., 2025), and NLST annotations released
by the developers of the Sybil lung cancer risk model (Mikhael et al., 2023). We obtained a
total of 6,085 cases (19,588 nodules), of which 5,635 have longitudinal CT scans. We tracked
the detected nodules across time points using a registration algorithm that combines affine
and correspondence field registration (Heinrich et al., 2015), and identified 12,604 unique
nodules across 5,636 cases. In total, we have 6,085 cases with 13,514 nodules.

In Figure 1, we summarized the dataset used for modeling and evaluation. We se-
lected 937 cases from NLST to create a longitudinal cohort for the held-out evaluation set.
Among these cases, semantic features such as nodule consistency, shape, and size have been
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annotated for 1,029 nodules. Since our study examines whether cross-sectional data can
help infer nodule trajectory, we included only the nodule at the final timepoint to form a
cross-sectional cohort with 5,148 cases. Additionally, we collected LDCT scans from 1,613
individuals in the Duke Lung Cancer Screening (DLCS) dataset (Wang et al., 2025), which
only contains cross-sectional scans. Combining the cross-sectional NLST and DLCS cohorts,
we obtained 6,761 cases with 13,626 nodules for training.

2.2. Feature Extraction

We extracted imaging features from each nodule, similar to how gene expression profiles
are derived in scRNA-seq analysis. We opted to extract imaging features using a lesion
foundation model called the Foundation Model for Cancer Imaging Biomarkers (FMCIB)
(Pai et al., 2024). FMCIB was trained with contrastive learning to distinguish volumes
with and without lesions. The CT scans were resampled to a voxel spacing of 1× 1× 1mm,
and boxes measuring 50 × 50 × 50 voxels were cropped around the nodule’s centroid. We
fed each nodule crop into the model to generate a 1,024-dimensional feature embedding.

2.3. Experimental Setup

2.3.1. Pseudotime Inference

We investigated two pseudotime analysis methods used for scRNA-seq data: a traditional
graph-based method and a DL-based method.

Graph-Based Trajectory Inference. In Figure 2a, we illustrate the pipeline of
leveraging a graph-based pseudotime method with diffusion pseudotime (Haghverdi et al.,
2016). First, FMCIB features were used to construct a k-nearest neighbor (KNN) graph.
We utilized the Leiden community detection algorithm (Traag et al., 2019) on the graph to
obtain clusters of nodules. In most cases, the root nodule was randomly selected from the
cluster with the lowest malignancy percentage. However, we observed that trajectories often
originate from multiple starting points but converge toward a single destination. To better
capture this progression, we randomly selected the root nodule from the cluster with the
highest malignancy percentage in the cross-sectional data. Pseudotime was then computed
starting from this root; the final pseudotime score was defined as 1− pseudotime.

Diffusion pseudotime first computed diffusion maps, which rely on the Markov transition
matrix P to model random walks on the graph. Nodules that were similar to each other
exhibited similar transition probabilities of reaching other cells in the graph. Diffusion maps
are particularly effective at capturing the global structure of high-dimensional data and are
robust to noise. The pseudotime of nodule i was then derived by calculating the Euclidean
distance from the root nodule r within the diffusion space. Specifically, let P t represent the
t-step transition matrix and ϕ0(k) the stationary distribution. The pseudotime for nodule
i, the diffusion distance between nodule i and root nodule r is defined as:

Pseudotimei = D2
t (r, i) =

n∑
k=1

[
(P t)rk − (P t)ik

]2
ϕ0(k)

DL-Based Trajectory Inference. We implemented the scTour framework (Li, 2023)
to infer pseudotime trajectories in our dataset (Figure 2b). scTour is a DL-based pseudotime
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analysis algorithm that uses self-supervised learning, combining a variational autoencoder
(VAE) and neural ordinary differential equations (NODE). In VAE, the encoder mapped
FMCIB features into two outputs, the mean (µ) and the standard deviation (σ) of a Gaus-
sian distribution. The latent embedding (z) was randomly sampled from the distribution
and fed into the decoder to reconstruct the nodule’s deep features. At the same time, an
additional linear layer was attached to the encoder to predict pseudotime (t) for each of the
nodules. Starting from the latent embedding of the nodule with the smallest pseudotime
(zt0) and the set of predicted timepoints, the NODE module generated a continuous tra-
jectory of latent states (ht). Each latent representation was then passed through the same
decoder to reconstruct the features. This design enforced that the latent dynamics inferred
at each timepoint remain consistent with the observed data, thereby enabling the model to
learn a meaningful pseudotime ordering. The latent embeddings z and h were combined to
form a mixed representation for downstream analysis.

The model was optimized with four loss functions. First, two reconstruction losses were
computed using latent embedding z and h with mean-squared error. Second, we minimized
Kullback–Leibler (KL) divergence to prompt a well-structured latent space that follows a
Gaussian prior. Finally, a consistency loss was used to enforce similarity between latent
embeddings z and h. We set α to be 0.5.

L = −α · log p(x | z)− (1− α) · log p(x | h)︸ ︷︷ ︸
Reconstruction Loss on z and h

+DKL

(
q(z | x) ∥ p(z)

)︸ ︷︷ ︸
VAE KL divergence

+ ∥z − h∥22︸ ︷︷ ︸
Consistency Loss

2.3.2. Hyperparameter Tuning

Hyperparameters for diffusion pseudotime were tuned via grid search to maximize the align-
ment between inferred pseudotime and malignancy label in the cross-sectional cohort. The
search space included the number of neighbors in KNN (30,50,100,150,200,300) and the
number of diffusion map components (5,10,15) used for computing pseudotime. Spearman
correlation was used to assess the alignment. The optimal configuration with the highest
correlation was 50 nearest neighbors and 10 diffusion map components. Similarly, for the
VAE-NODE model, we performed hyperparameter tuning for latent embedding dimensions
(16,64,128), batch sizes (256,512,4096), and learning rates (1e-3, 5e-4). Based on the highest
Spearman correlation, we selected the model trained with a latent embedding dimension of
128, a batch size of 512, and a learning rate of 5e-4. The model was trained for 400 epochs.

2.4. Evaluation

To assess the validity and utility of pseudotime, we conducted four evaluations. (1) Tempo-
ral validity: In the longitudinal NLST set, we computed the Pearson correlation between
pseudotime and actual time for benign and malignant nodules separately. (2) Clinical
Plausibility: To evaluate clinical plausibility, we compared pseudotime across nodules
with different semantic features, including nodule margins, shape, consistency, and size.
Hypothesis testing was performed using the Mann-Whitney U test with a significance level
of 0.05. We corrected multiple testing using Benjamini-Hochberg. (3) Risk Stratification:
We also stratified nodules into three groups with equal width in pseudotime and delta pseu-
dotime, separately, and plotted Kaplan-Meier curves to show the cumulative probability of
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Figure 2: Pseudotime Inference Algorithms. (a) Graph-based method. A k-nearest neighbor
(KNN) graph is constructed from imaging features. The Leiden algorithm is applied to identify
communities within the graph. After selecting a root nodule, diffusion pseudotime is computed
to assign a temporal ordering to all nodules. (b) Deep learning-based method. A variational
autoencoder architecture with an encoder–decoder framework is employed. In the green subsection,
the encoder estimates the mean (µ) and standard deviation (σ) of a Gaussian distribution, from
which latent embeddings (z) are sampled. In the orange branch, the encoder predicts pseudotime
(t) for each nodule. Based on the smallest pseudotime value, the corresponding embedding zt0 is
selected as the initial state. A neural ordinary differential equation (NODE) model then integrates
zt0 and t to produce a transformed latent representation (h). Both z and h are passed to the decoder
for feature reconstruction.

remaining benign over time for each group. The log-rank test was performed to evaluate
whether there is a statistically significant difference in the time-to-diagnosis distributions
between groups. (4) Independent Predictive Value: To assess whether pseudotime acts
as an independent biomarker, we fitted a Cox proportional hazards model to analyze time to
lung cancer diagnosis, incorporating semantic features (size, change in size, margin, shape,
consistency, and change in consistency), pseudotime, and delta-pseudotime, and reported
the associated p-values for each variable.

3. Results

3.1. Increasing pseudotime over time in malignant nodules validates its
longitudinal consistency

We visualize FMCIB feature embeddings in Uniform Manifold Approximation and Projec-
tion (UMAP) for the graph-based method, colored by pseudotime in Figure 3a, and Leiden
clusters in Figure 3b-c. In contrast, the mixed latent embeddings were used for computing
UMAP for the DL-based method (Figure 3d). We display the trajectory of nodules that
progress to lung cancer (Figure 3b and e) and those that remain as benign nodules (Figure 3c
and f) in blue arrows. Most malignant nodules have arrows pointing toward higher pseu-
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Figure 3: Visualizations on UMAP. Pseuotime is colored on UMAP on subplots a and b. In the
graph-based method, the UMAP is constructed using FMCIB features, whereas in the deep learning-
based method, it is built on a mixed latent embedding. Panels b and e illustrate the trajectory of
malignant nodules, and panels c and f depict the trajectory of benign nodules. Each arrow in the
graph represents the change observed in a single nodule over approximately a one-year period.

Figure 4: Longitudinal Consistency. Boxplots present Pearson correlations between inferred
pseudotime and actual time for benign and malignant nodules. Line plots depict pseudotime trajec-
tories over time for randomly selected nodules.

dotime, while benign nodules remain mostly local and occasionally display back-and-forth
movements. Visualizations of selected nodules are shown in Figure A1.

In Figure 4, we show boxplots of Pearson correlations between inferred pseudotime and
actual time for malignant and benign nodules. Nodules that later progress to malignancy
exhibit significantly higher correlations across both methods. A similar pattern is observed
in the line plots, where malignant cases exhibit a consistent upward trend in the final year,
whereas most benign cases maintain a stable pseudotime throughout the screening period.

3.2. Pseudotime shows clinical relevance through semantic feature associations

To validate whether pseudotime preserves any clinical relevance, we present boxplots of
pseudotime across different subtypes in semantic features, including nodule margin, con-
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Figure 5: Clinical Plausibility. Boxplots illustrate differences in pseudotime across subtypes
of nodule margin (a), consistency (b), and shape (c). Statistical significance was indicated by
asterisks (*) based on the Mann–Whitney U test. Additionally, a scatter plot was presented to show
the relationship between pseudotime and the longest axial diameter (in millimeters), with a locally
weighted curve overlaid to suggest the general trend.

sistency, shape, and longest axial diameter, as depicted in Figure 5. In both graph-based
and DL methods (Figure 5a), nodules exhibiting suspicious margins, such as notched, spic-
ulated, and lobulated, demonstrate significantly higher pseudotime than those with smooth
margins. Furthermore, in Figure 5b, pseudotime for pure ground glass and semiconsolida-
tion nodules is markedly lower than that for part-solid and solid nodules. In Figure 5c,
pseudotime in both methods consistently increases from polygonal to ovoid, then to com-
plex and round nodules. While we observe an increasing trend in pseudotime when the
longest axial diameter of nodules increases, the variation is quite large (Figure 5d).

3.3. Pseudotime and delta-pseudotime demonstrate distinct malignancy risk
stratification and serve as independent predictors

Figure 6 shows Kaplan-Meier curves for three groups stratified by pseudotime and delta-
pseudotime, respectively. We define delta-pseudotime as the change in pseudotime from
the prior timepoint. All curves demonstrate statistically significant separation between
the three groups, regardless of whether pseudotime or delta-pseudotime was used or which
method was applied. Notably, the separation is more obvious when groups are stratified
by delta-pseudotime. Pseudotime derived from the graph-based method shows a greater
differentiation than that from the DL-based method.

As shown in Table 1, nodule margin, consistency, change in consistency, size, and change
in size reveal significant p-values in the Cox model in predicting lung cancer risk. Despite
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Figure 6: Kaplan-Meier curves. Kaplan-Meier curves shows the proportion of benign cases across
three groups defined by equal-width intervals of pseudotime and delta-pseudotime. P-values from
the log-rank test are shown in the lower right corner.

Table 1: Cox Proportional Hazards Model Result. Pseudotime and delta pseudotime were
jointly modeled with other semantic features. Reported values include hazard ratios (HR) with 95%
confidence intervals (CI) and p-values.

Feature Feature Subgroups Graph-based DL-based
HR HR 95% CI p-value HR HR 95% CI p-value

Margins (Smooth)

Lobulated 2.23 [1.47, 3.38] <0.005 5.47 [2.75, 10.85] <0.005
Ill-defined 1.01 [0.66, 1.55] 0.96 4.08 [1.48, 11.21] 0.01
Notched 0.72 [0.03, 16.16] 0.84 0.00 [0.00, inf] 1.00
Spiculated 2.19 [1.45, 3.30] <0.005 4.75 [2.39, 9.43] <0.005

Shape (Ovoid)
Polygonal 0.75 [0.45, 1.27] 0.29 0.00 [0.00, inf] 1.00
Round 1.23 [0.84, 1.78] 0.29 1.34 [0.70, 2.56] 0.38
Complex 1.03 [0.75, 1.41] 0.88 0.69 [0.39, 1.25] 0.22

Consistency (Pure
ground glass)

Part-solid 1.03 [0.65, 1.64] 0.90 3.32 [0.65, 16.85] 0.15
Semiconsolidation 0.79 [0.44, 1.40] 0.42 1.77 [0.24, 12.82] 0.57
Peri-cystic 1.32 [0.52, 3.33] 0.56 3.61 [0.59, 21.91] 0.16
Solid 1.26 [0.89, 1.79] 0.19 7.62 [1.53, 38.06] 0.01

Change in consistency
(Stable)

Decreased attenuation 0.77 [0.23, 2.53] 0.66 0.00 [0.00, inf] 1.00
Increased (diffuse) 1.82 [1.06, 3.12] 0.03 1.94 [1.02, 3.72] 0.04
Increased (focal) 1.37 [0.76, 2.48] 0.29 1.35 [0.62, 2.97] 0.45

Size Longest axial diameter 1.06 [1.03, 1.08] <0.005 1.09 [1.06, 1.12] <0.005

Change in size
(Stable)

Decreased 0.88 [0.34, 2.25] 0.79 0.96 [0.13, 7.22] 0.97
Increased 3.25 [2.30, 4.59] <0.005 6.64 [3.90, 11.31] <0.005

Pseudotime
Pseudotime 3.27 [1.32, 8.11] 0.01 2.31 [0.82, 6.49] 0.11
Delta pseudotime 18.54 [4.06, 84.62] <0.005 3.00 [1.07, 8.42] 0.04

adjusting for these known lung cancer biomarkers, the graph-based method identifies both
pseudotime (Hazard Ratio = 3.27, p = 0.01) and delta-pseudotime (HR = 18.54, p < 0.005)
as statistically significant predictors. Nodules positioned later in the inferred trajectory and
those with rapid change along the trajectory are more likely to be diagnosed as lung cancer
earlier. In contrast, in the DL-based method, pseudotime was not statistically significant
(HR = 2.31, p = 0.11), but delta-pseudotime remains significant (HR = 3.00, p = 0.04).

4. Discussion

In our study, we introduce pseudotime inference into a novel domain, medical imaging, to
learn lesion progression from cross-sectional data. We have utilized two distinct pseudotime
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inference approaches. The graph-based approach estimates pseudotime by modeling transi-
tions on a data manifold derived from diffusion maps. In contrast, the DL-based approach
employs unsupervised learning to capture dynamic patterns to reconstruct the features. We
have validated that pseudotime shows longitudinal consistency in the test set, with malig-
nant nodules displaying a significantly higher correlation between pseudotime and actual
timestamp. In addition, pseudotime yields results that are clinically plausible. Nodules
typically progress from pure ground glass to solid and from smooth to irregular margins,
and this trend is positively correlated with pseudotime.

In our Cox proportional hazards analysis of time to diagnosis, delta-pseudotime shows
significance in both graph-based and DL-based approaches, indicating that changes along
the predicted trajectory from cross-sectional data provide greater predictive value than ab-
solute position. This finding is also supported by the Kaplan-Meier curves, in which nodule
groups stratified by delta-pseudotime exhibit more distinct malignancy profiles. This aligns
with clinical intuition, as rapid changes in nodule characteristics often indicate aggressive
cancer behavior. In addition, one possible explanation for pseudotime being significant in
the graph-based but not in the DL-based approach is that the graph-based trajectory was
constructed using both the training and test sets. This likely facilitates more accurate place-
ment of test-set nodules along the trajectory by capturing their global and local interactions
with other training nodules.

Overall, the DL-based approach shows greater potential for pseudotime inference in
large-scale, heterogeneous datasets than the graph-based method. While the test set must
be incorporated with cross-sectional data for modeling in the graph-based method, the
DL-based method allows inference on a new dataset without re-modeling, which will be
crucial for real-world deployment. Furthermore, the graph-based method requires manual
selection of root nodules, which can be subjective and highly variable. On the other hand,
the DL-based method automatically ranks nodules in the latent space. However, the DL-
based approach primarily delineates a single linear trajectory, limiting its ability to identify
branching patterns in lesion progression. In addition, we observe that FMCIB features
are highly sensitive to the location of the nodule (Figure A2). In the UMAP visualization
for graph-based pseudotime, there is a clearer distinction between central and peripheral
nodules. Figure A1b also confirms the issue. Even when the nodule’s morphology changes,
its peripheral position dominates the feature representation, resulting in minimal change
in pseudotime. Although this problem persists in the DL-based method, it is less severe
because the DL method learns to prioritize features relevant to ranking nodules, rather
than being influenced by spatial bias. Future work will focus on strategies to prevent
shortcut learning driven by peripheral position. In addition, we plan to incorporate more
cross-sectional data beyond just screening scans, including nodules at different stages from
various CT scan types, to gain a more comprehensive view of all kinds of nodules. Our
pseudotime generation approach based on imaging features is broadly generalizable and
can be applied to other cancer types to model lesion progression.

In conclusion, pseudotime inference offers a dynamic framework for understanding lung
nodule progression from cross-sectional CT imaging. Both pseudotime and delta-pseudotime
identify clinically relevant patterns and can function as independent predictors of malig-
nancy risk. These metrics can facilitate patient stratification, guide personalized follow-up
strategies, and support earlier detection of lung cancer.
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Appendix A. Example Trajectories

Figure A1: Examples. a–b show malignant nodules, and c–d show benign nodules. For each case,
the CT slice containing the nodule is displayed with a magnified view in the top-right corner. Rows
correspond to sequential timepoints from top to bottom, each with a one-year interval. The right
side illustrates trajectories on UMAP from both methods, with pseudotime values annotated on the
plots. The identifiers at the top correspond to the patient IDs (PID) from the NLST dataset.

Figure A1a-b depict two nodules that ultimately progress to lung cancer. Figure A1a
illustrates a nodule that initially appears small, gradually enlarges, and eventually becomes
significantly larger with spiculated margins. Pseudotime from both methods aligns with this
progression, remaining relatively stable in the first two timepoints and showing a drastic
increase at the final timepoint. In Figure A1b, we observe a gradually appearing nodule that
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develops into a spiculated and irregular solid nodule. While the graph-based pseudotime
remains the same, the DL-based pseudotime better reflects the progression, showing an
increasing trend in pseudotime. Figure A1c-d display two nodules that remain benign.
Nodule in Figure A1c shows minimal change across three timepoints, and the pseudotime
is stable. In Figure A1d, a large nodule starts to emerge in the second timepoint but
subsequently decreases in size in the final year, which is also mirrored by an increase followed
by a decrease in pseudotime.

Appendix B. Batch Effect in Features

Figure A2: Effect of Axial Locations on Features. For a subset of nodules, axial location (central or
peripheral) was annotated by radiologists and color-coded on the UMAP visualization.

15


	Introduction
	Methods
	Data Preprocessing
	Feature Extraction
	Experimental Setup
	Pseudotime Inference
	Hyperparameter Tuning

	Evaluation

	Results
	Increasing pseudotime over time in malignant nodules validates its longitudinal consistency
	Pseudotime shows clinical relevance through semantic feature associations
	Pseudotime and delta-pseudotime demonstrate distinct malignancy risk stratification and serve as independent predictors

	Discussion
	Example Trajectories
	Batch Effect in Features

