
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PARASMOE : ENABLING PARALLELISM HOT-SWITCH
FOR LARGE MIXTURE-OF-EXPERTS MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) models has been demonstrated to be an effective
paradigm for scaling Large language Model (LLM) parameters to hundreds of bil-
lions. A key consideration of MoE inference is parallelism strategy, which defines
how parameters are distributed across multiple GPUs, and consequently dictates
the communication pattern across the GPUs during model inference. We make
an key observation that the optimal parallelism configuration is highly dependent
on workload characteristics, which are dynamic in practice, shaped by different
latency requirements in serving and by the decreasing number of active sequences
in rollout phase of reinforcement learning (RL) . We introduce ParaSMoE that
adapts the parallelism strategy to workloads. The core is an efficient “hot-switch”
mechanism that seamlessly transitions between Expert Parallelism (EP) and Ten-
sor Parallelism (TP), unleashing its ability to dynamically select the optimal par-
allelism for any given workloads. Through elaborated multi-level communication
overlapping, Our experiments shows ParaSMoE can convert Qwen3-235B MoE
model from EP to multiple TP instances in 0.7 seconds, with negligible mem-
ory overhead. We further project its potential to speedup batch generation in RL
rollout phase by 1.4–3.7×.

1 Introduction
Mixture-of-Experts (MoE) (Shazeer et al., 2017) have emerged as a promising architecture in Large
Language Models (LLM), achieving state-of-the-art performance by scaling model size to hundreds
of billions parameters, without a proportional increase in computational cost. This is accomplished
by sparsely activating a subset of “expert” sub-networks for each input token. The success of MoE
is evident in its adoption by numerous state-of-the-art models, including Qwen3 (Yang et al., 2025),
DeepSeek-V3 (DeepSeek-AI et al., 2025), and Grok-4 (xAI, 2025).

Efficient inference of MoE models requires careful deign, with model parallelism being a primary
consideration. When the model size exceeds the memory capacity of a single GPU, it is necessary
to distribute the model weights across multiple devices. For MoE inference, the two most prominent
strategies are Tensor Parallelism (TP) which partitions the weights of individual weight matrices
(Shoeybi et al., 2020a), and Expert Parallelism (EP) which distributes distinct experts across differ-
ent GPUs (Rajbhandari et al., 2022; DeepSeek-AI et al., 2025). These two parallelism configurations
present a fundamental trade-off. EP naturally scales to multiple GPUs, enabling it to sustain much
higher batch size and provide better throughput under heavy request concurrency. However, this de-
sign incurs cross-server communication overhead, leading to higher per-token latency at small batch
sizes. In contrast, TP excels in small-batch scenarios where it offers both lower latency and higher
throughput within a single server. But its scalability is fundamentally constrained by limited device
memory and significant communication costs under high request concurrency, making TP less ef-
ficient than EP. Therefore, the optimal parallelism is not static, but depends directly on workload
characteristics.

Our systematic profiling of an industrial MoE inference system reveals two critical applications that
inherently involve dynamic workload characteristics. (1) The first application is MoE serving with
different requirements on per-token latency. Some requests with strict low-latency requirement can-
not be satisfied by an EP serving instance (for example, 10 8xH100 machines for Deepseek V3),
while deploying too many TP units can be wasteful under high request concurrency in general situ-
ations. Facing an influx of high priority requests with low latency requirement, a potential solution
is to dynamically convert an inference unit from EP to TP, which offers lower latency compared to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Comparison of Tensor Parallelism (TP) and Expert Parallelism (EP) on DeepSeek V2.5
236B with 2×8 H200 GPUs. The two plots illustrate their performance trade-off with small- and
large-batch workloads. At a smaller batch size, TP yields better throughput than EP. However, EP
scales linearly with concurrency and surpasses TP, which saturates early due to limited device count.

EP (although at a higher per-request serving cost). (2) The second application is batch generation
for rollout in reinforcement learning (e.g. PPO (Schulman et al., 2017), GRPO (Shao et al., 2024),
DAPO (Yu et al., 2025)). In every rollout step, batched inference begins with a large number of
sequences. As generation progresses, sequences complete at different lengths, causing the effec-
tive batch size to gradually shrink (Hu et al., 2024; Sheng et al., 2025) as illustrated in figure 5 of
Appendix C. Ideally, a batch generation could start in the high-throughput EP configuration, and dy-
namically switch to the configuration of multiple lower-latency TP instances with better aggregated
throughput as the number of active sequences falls below a threshold. It helps to optimize resource
usage for the remaining rollout process.

We introduce ParaSMoE to enable adaptive parallelism for MoE inference, significantly improving
the efficiency of MoE inference system under varying workloads characteristics. The key innovation
is a “hot-switch” mechanism (Ge et al., 2024) that transitions servers between EP and TP at runtime.
This allows the inference framework to adapt its parallelism configuration on-the-fly, selecting the
most efficient strategy for the current workload without the need to restart or reconfigure the infer-
ence system. The parallelism conversion is highly efficient and can complete under 0.7s on Qwen-3
235B model. We designed a sophisticated multi-level communication overlapping scheme, which
carefully orchestrates intra-node (e.g., NVLink) and inter-node (e.g., InfiniBand and Amazon EFA
(AWS, 2025)) communication to minimize system stalls during the conversion.

To the best of our knowledge, ParaSMoE is the first work that enables practical dynamic parallelism
in MoE inference systems (Kwon et al., 2023; Zheng et al., 2024). We provide a comprehensive
analysis of the switch and an efficient communication overlap strategy in Section 3.3. In Section
4.2, we experiment with our method using Qwen-3-235B on two 8xH200 servers, demonstrating
that ParaSMoE ’s efficacy of switching parallelism configurations at a minimal time cost. Then
we analyze its ability to enhance MoE serving with quality of service requirement and potential to
improve batch inference by 1.4 - 3.7× in rollout phase of reinforcement learning in Section 4.3.

2 Parallelism in MoE Inference
We first briefly describe TP and EP, and compare their pros and cons with regard to the following
key factors that dictate the performance of a MoE inference system.

• Weight Reading Amortization. The model weights have to be loaded from GPU HBM to on-
chip SRAM for one decoding iteration. Such expensive model weight loading cost is amortized
over the entire batch, thus a large batch size could effectively amortize the loading cost and reduce
the overall serving cost.

• Communication Cost. Intra-node communication is through high-speed networsk like NVIDIA
NVLink, but cannot expand to more than 8 GPUs. Inter-node communication (via Infiniband or
Amazon EFA) is significantly slower than intra-node, but can expand to a large number of nodes
and GPUs.

• Device Memory Capacity. Each request generates key-value (KV) cache that resides in GPU
memory. Once device memory is saturated by existing caches, no additional requests can be
admitted. Thus, the maximum batch size that the system can support is ultimately bounded by the
aggregate memory capacity of the devices.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Tensor Parallelism (TP) partitions the weight matrices of each model layer across devices, typically
within a single multi-GPU server. Recent advancements, such as the large HBM volumes on latest
GPUs and quantization techniques like FP8/FP4 (Kuzmin et al., 2024; DeepSeek-AI, 2025a; Wang
et al., 2025), have made it feasible to fit even large MoE models onto a single server with 8 GPUs.
In this setup, the communication cost of TP, which involves All-Reduce operations within each
layer, is minimized by high-speed intra-node connectors like NVLink. Coupled with the fact that
workload is evenly shared across multiple GPUs, TP is highly suitable for latency sensitive small-
batch inference. However, the throughput is bounded by the expensive All-Reduce as batch size
grows large. An important advantage of TP compared to EP is in its uniform distribution of compute,
where each GPUs is doing exact the same amount of computing. EP suffers from the unbalanced
expert issue, where tokens are concentrated to a few experts and the other experts are sitting idle.
On the downside, extending TP across multiple nodes is generally considered impractical due to
the prohibitive cost of All-Reduce operations over the inter-node network. This confines TP to
single-node inference, imposing a ceiling on the batch size with limited device memory, as there is
limited memory space to store the KV cache and intermediate activation values for a larger batch
size. Consequently, the cost of loading the model parameter from HBM to SRAM can only be
amortized over a constrained batch size, fundamentally restricting TP’s throughput and per-token
serving cost.

Expert Parallelism (EP) partitions the model by distributing experts (FFN modules) across differ-
ent GPUs. Once the routing layer selects an expert for a given token, the token is routed to the device
hosting the expert. The tokens routed to a particular expert are batched and processed by the expert
(dispatch), then routed back to each token’s originating GPU (combine) via highly optimized
All-to-All communication (Zhao et al., 2025a; Perplexity-AI, 2025). While the attention mod-
ule is replicated following a data parallel pattern (with optional ), EP unlocks the model’s ability to
deploy at scale. An inference unit can span tens of 8 GPU nodes, leaving plenty of memory space to
hold KV cache of a large batch and amortize the weights loading and other system overheads. This
is in clear contrast to the TP case where an inference unit can not expand over multiple-nodes. This
is among the key reasons for the success of DeepSeek series models. For small batches, however,
the inter-node communication latency bottlenecks the processing time, making EP an inferior choice
and leading to under-utilization of GPUs.

Our experiments further illustrate the complementary strengths of EP and TP with varying workload
regions. As shown in Figure 1, under small-batch, low-concurrency scenarios, two TP instances of
8 GPUs within a single node achieve higher throughput as well as lower latency compared to 16
GPUs using EP. This is due to TP’s low-latency intra-node communication and uniform compute
distribution. EP suffers in this region, as the overhead of inter-node All-to-All communication
dominates when amortized over a small batch. In contrast, EP scales significantly better under high-
concurrency workloads, where large batches amortize EP’s communication overhead and enable
superior throughput. While TP’s throughput saturates early due to its limited device count, EP’s
throughput continues to scale linearly with the number of requests, eventually outperforming TP
by a large margin. These experiments confirm that a static parallelism choice inevitably under-
utilizes resources across fluctuating workloads, and motivate the need for an adaptive system like
ParaSMoE to dynamically switch between EP and TP.

3 Weights Resharding
While model forward process remains almost the same, the primary challenge to achieving fast
parallelism switch lies in the data plane, where the massive weights of the MoE layers must be re-
sharded and re-distributed across devices. ParaSMoE supports bi-directional re-sharding between
EP and TP. Since the two directions are conceptually symmetric, we focus on the more complex
EP-to-TP case as a representative example.

3.1 Cluster and Model
A GPU cluster today generally consists of N servers, each equipped with P devices, for a total of
G = N ×P devices. Within every server, devices are connected by NVLink. Devices communicate
across servers via remote direct memory access (RDMA) network. In practice, EP usually takes the
whole cluster but TP is constrained to a single server. Therefore, we assume a EP degree of G and a
TP degree of P during the switch. All devices in the cluster initially compose a single EP instance.
After the switch, the devices in each server operate synchronously under TP while different servers
work under the data parallelism (DP) pattern. Figure 2 illustrates a cluster of 2 servers (N = 2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Cluster topology and different parallelism configurations. Communication groups are pre-
initialized to enable hot-switching. Left: intra-node Tensor Parallelism (TP) with inter-node Data
Parallelism (DP). Right: global Expert Parallelism (EP) across all devices.

equipped with 4 devices each (P = 4). These two servers can either work together under EP or
separately under TP.

Corresponding to figure 2, we denote three types of communication groups at different scopes:

• ϵ: the global expert parallel (EP) group, spanning all GPUs in the serving cluster. EP collectives
use AlltoAll over ϵ to route tokens to experts across the entire cluster.

• τ : intra-node tensor parallel (TP) groups. Each group is typically confined to a single node and
executes AllReduce to synchronize partial results.

• δ: cross-node data parallel (DP) groups. These connect GPUs of the same rank across all TP
instances and are used for communication over the inter-node network.

Without loss of generality, a MoE model can be specified by the number of experts E, the hidden
dimension H , and the intermediate dimension I . Under expert parallelism (EP), each GPU hosts
L local experts such that E = G × L, where G is the total number of GPUs and E is assumed
divisible by G. Based on this formulation, we next describe how to transform layer weights during
the transition from EP to TP.

3.2 Weights Transformation
In existing serving systems, weight matrices are typically stored in column-major order to match the
requirements of high-performance BLAS libraries (Goto & Geijn, 2008). This convention places
the output dimension before the input dimension in the memory layout. To align with this practice,
we follow the semantics that each weight matrix is stored with a column-major order when describ-
ing the transformation. Meanwhile, weights fusion (Aminabadi et al., 2022; Kim et al., 2023) is
widely adopted to merge serval weight matrices into one and reduce kernel launch overheads. For
simplicity, we do not expand the fused dimensions as they only introduce another dimension for
permutation without adding additional operations.

We begin by defining the objective of the transformation. After switching from EP to TP, each TP
group must hold a complete copy of the model weights and thus be capable of functioning as an
independent serving instance. Concretely, a GPU with EP rank rϵ transitions to the corresponding
TP rank rτ within its TP group.

Modern MoE architectures follow a unified layer structure, in which each layer consists of an atten-
tion module and an MoE module. To describe the transformation procedure, we focus on a single
layer, noting that the same process applies uniformly across the entire model. The weights within
a layer can be divided into two categories: attention weights and expert weights. Each category
requires a distinct transformation strategy, which we detail in the following subsections. We first
discuss the comparatively simple case of attention weights, before turning to the more complex
transformation of expert weights.

Attention weights. In an attention module, the transformation of projection weights from EP to
TP is comparatively straightforward. Let W qkv and W o denote the QKV projection and output

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

weight matrices, respectively. Under EP, these weights are fully replicated across all devices, so
the transition to TP requires only selecting the slice corresponding to the target TP rank rτ and
discarding the remainder.

In TP, the QKV projection matrix W qkv is column-partitioned. To align with this layout, we first
transpose W qkv so that the partitions assigned to different TP ranks are stored contiguously, after
which the appropriate slice W qkv

rτ is retained. This permutation step is necessary to ensure con-
tiguous memory access and thereby achieve optimal GEMM performance. By contrast, the output
projection W o naturally conforms to TP’s row-partitioned layout. Each slice is already stored con-
tiguously in memory, so no permutation is required during the transformation.

Expert weights. The transformation of expert weights is more intricate than that of attention
weights. Let the weights of a MoE module be denoted by W e, which contains an up-projection ma-
trix U and a down-projection matrix D for each expert. Suppose the model has E experts. We denote
the up- and down-projection matrices of each expert as U0, U1, . . . , UE−1 and D0, D1, . . . , DE−1,
respectively.

With EP, experts are evenly distributed across G devices, so that each device stores L consecutive
experts. For instance, the device with EP rank rϵ holds experts W e

rϵL
, . . . ,W e

(rϵ+1)L−1. On device
rϵ, the up-projection weights can be expressed as a tensor Urϵ of shape [L, I,H], where I and H
denote the input and hidden dimensions. After transforming to tensor parallelism (TP), the device
with TP rank rτ holds a slice of all experts, represented by another tensor Urτ of shape [E, I ′, H],
where I ′ = I

P and P is the TP degree. To make the relationship between the two layouts explicit,
we expand both tensors as:

Urϵ : [L,P, I
′, H] Urτ : [G,L, I ′, H]

Recalling that G = N × P (where N is the number of data-parallel groups), we can further expand
the TP representation as:

Urτ : [N,P,L, I ′, H]

Intuitively, under EP each device stores only a small subset of experts, whereas under TP each device
must hold a slice of all experts. This requires gathering and redistributing weights across devices.
The transformation proceeds in four steps:

1. All-Gather across DP groups. Since each τ -ranked device needs slices from all experts, devices
first perform an all-gather across data-parallel groups. This step increases the number of experts per
device from L to L×N , so that every machine collectively holds all E experts. After the operation,
the weights are:

Urϵ

all-gather−−−−−→ U ′
rϵ , where U ′

rϵ : [N,L, P, I ′, H] (1)

2. Permutation for contiguity. To prepare the tensor for efficient redistribution, we permute U ′
rϵ so

that slices of different experts become contiguous:

U ′
rϵ

permute−−−−→ U ′′
rϵ , where U ′′

rϵ : [P,N,L, I ′, H] (2)

3. All-to-All across TP groups. Next, an all-to-all is performed within each TP group to redistribute
slices across devices. Although the tensor shape is preserved, the weights are reassigned so that each
device rτ now holds the correct TP slice of all experts:

U ′′
rϵ

all-to-all−−−−→ U ′
rτ , where U ′

rτ : [P,N,L, I ′, H] (3)

4. Final Permutation. Finally, we permute the tensor again to restore the canonical order of experts:

U ′
rτ

permute−−−−→ Urτ , where Urτ : [N,P,L, I ′, H] (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 3: The execution pipeline for layer-wise weight re-sharding. The long latency of the inter-
node All-Gather over RDMA is used to hide the execution of the Permute and the intra-node
All-to-All over NVLink for the preceding layer. A MoE module contains U and D projection
weights, where the size of U weights is twice of D.

Through these four steps, each device transitions from storing a small consecutive block of experts
(EP layout) to storing a partial slice of all experts (TP layout). Importantly, all devices perform the
same sequence of operations in parallel under a single-program multiple-data (SPMD) execution
model, ensuring symmetry and scalability.

The transformation of down-projection weights D largely mirrors the procedure described for the
up-projection U , involving the same sequence of all-gather, permutation, all-to-all, and final permu-
tation operations. However, the key difference lies in the tensor layout: D has an initial shape of
[L,H, I], and under TP it is row-partitioned along the output dimension I . As a result, all redistri-
bution operations must slice along the I dimension, rather than the H dimension as in the case of U .
Consequently, the permutation order differs to guarantee that each TP slice of D remains contiguous
in memory and compatible with GEMM execution. To avoid redundancy in the main text, we defer
the detailed derivation and equations for D to Appendix B.

3.3 Pipelined Execution
For the EP-to-TP transition, the re-sharding process for each MoE layer is decomposed into three
hardware-specific operations which are detailed in Section 3.2:

• Inter-Node All-Gather: All expert weights are first collected onto each node using an
All-Gather operation over DP groups. Since DP groups span across nodes, this collective
leverages the inter-node RDMA network to exchange parameters, resulting in each node obtain-
ing a full replica of all experts.

• Weight Permutation: Once the weights are locally available, they must be rearranged from the EP
layout into the TP-compatible layout. This permutation, which reorganizes the memory layout of
weight tensors, is executed by the GPU’s streaming multiprocessors (SMs).

• Intra-Node All-to-All: After permutation, the weights are partitioned into TP slices and dis-
tributed to the target devices within each TP group using an All-to-All communication over
NVLink. After this step, each GPU holds exactly its TP-responsible shard of all experts.

A key design choice in ParaSMoE is to avoid executing these steps sequentially. Instead, we pipeline
them across layers to maximize utilization of the interconnects and compute resources. As shown in
Figure 3, the high-latency inter-node All-Gather provides a natural window to overlap the lower-
latency permutation and All-to-All of preceding layers. For instance, while the RDMA transfer
for layer i is still in progress, the GPU’s SMs and NVLink fabric are simultaneously finalizing the
re-sharding of layer i − 1. This staggered schedule ensures that communication and computation
resources are continuously occupied without long idle phases.

Beyond MoE experts, attention modules also require transformation during EP-to-TP switching, but
their structure simplifies the process. Each attention block contains W qkv and W o, which are not
sharded across experts but do require a layout change. For these weights, only one permutation is
needed. We therefore schedule attention weight permutations at the start of each layer, preceding
the permutation of U . This ensures that attention parameters are always ready in TP layout by the
time token processing resumes, without introducing additional synchronization points.

Finally, we also pipeline within the MoE layers themselves. Each MoE block contains both Up and
Down projection weights; the Up projections are twice the size of Down. To better utilize NVLink
bandwidth and SM compute cycles, we overlap the permutation and intra-node All-to-All for
these two weight matrices. This fine-grained scheduling strategy not only minimizes end-to-end

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

transition latency but also achieves balanced utilization across RDMA, NVLink, and GPU compute,
leading to the sub-second hot-switch performance demonstrated in Section 4.2.

Theoretical cost. We analyze the end-to-end switching cost under the communication-bound re-
gion where the inter-node All-Gather dominates and all other steps can be fully overlapped as illus-
trated in figure 3. Assume N nodes, each with P GPUs; the model has M parameters stored in data
type of size β bytes. During the EP-to-TP transformation, each node needs to gather the remaining
(N − 1) replicas of its shard. Since the effective shard per node is M/(NP ), the volume a node
must receive is Mβ

NP (N − 1). Under the bandwidth-bound assumption (unit bandwidth normalized
for clarity), the switching time is therefore

Tswitch =
Mβ

NP
(N − 1). (5)

If we account for an explicit inter-node network bandwidth Binter, this becomes

Tswitch =
Mβ

NP Binter
(N − 1) =

Mβ

P Binter

(
1− 1

N

)
(6)

which shows that the cost has an upper bound of Mβ
P . Intuitively, adding nodes shrinks each node’s

shard size by a factor of 1/N , while the All-Gather fan-in grows only linearly with (N−1); these
effects nearly cancel, yielding a cost that does not grow substantially with cluster size. Under our
overlapped schedule, permutation and intra-node collectives remain hidden behind the inter-node
All-Gather, so the parallelism transition time is invariant with cluster size. This is a surprising and
high desirable result, ensuring our method can be scaled to inference unit with very large number of
nodes and GPUs.
3.4 Memory Overhead
We analyze the memory overhead of expert weights during the EP-to-TP transition, as expert pa-
rameters dominate the overall model size. The analysis is conducted per device and applies sym-
metrically to all devices in the cluster. Consider a MoE model with K layers, each containing E
experts. For each expert, the feed-forward block consists of an Up projection of size 2H × I and
a Down projection of size H × I , yielding a total of 3HI parameters per expert. Let β denote the
number of bytes per parameter (e.g., β=2 for BFloat16).

Steady-State Memory Overhead. The per-layer memory footprint under Expert Parallelism (EP)
and Tensor Parallelism (TP) is:

M layer
EP = β · E

G
· 3HI = β · E

NP
· 3HI M layer

TP = β · E
P

· 3HI

Aggregated across K layers, the memory consumption sums up to be:

Mmodel
EP = Kβ · 3HI · E

G
Mmodel

TP = Kβ · 3HI · E
P

Intermediate Buffers and Transition Overhead. During the transition, additional buffers are
required. Two alternating buffers suffice for the current layer i’s re-sharding, and one more is needed
to pre-fetch layer i+1, each of size β · E

P · 3HI . At step i, layers {0, . . . , i−1} have already
been transformed into TP, while layers {i+1, . . . ,K−1} remain in EP. The instantaneous memory
overhead is therefore:

M(i) = β · 3HI

[
E

P
(i+ 3) +

E

G
(K − i− 1)

]
= β · 3HI · E

P

[
(i+ 3) +

K − i− 1

N

]
(7)

As i increases, M(i) grows monotonically, reaching its maximum at i=K−1. The peak memory
overhead during transformation is thus:

Mmax = β · 3HI · E
P

(K + 2)

Comparing with the steady-state TP memory overhead:

Mmax

Mmodel
TP

=
K + 2

K
= 1 +

2

K
(8)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Latency of hot-switching across single-node (8×A100) and dual-node (two 8×H200)
deployments. While service restart and parameter offloading incur tens of seconds of overhead,
ParaSMoE reduces the cost to the sub-second regime, enabling practical adaptive parallelism.

showing that the maximum memory overhead is only marginally larger than the TP steady state, with
an overhead that diminishes as number of layers increases. Large MoE models such as DeepSeek
V3 (DeepSeek-AI et al., 2025), Qwen3 (Yang et al., 2025) and Kimi K2 (Team et al., 2025) typically
have more than 50 layers, making the additional memory footprint less than 5% of model memory.
If we include the KV cache and intermediate activation memory into consideration, the memory
overhead is even more negligible.

4 Evaluation
4.1 Experimental Settings
We evaluate ParaSMoE on two hardware environments representative of single-node and dual-nodes
inference deployments. All experiments use BFloat16 precision for model parameters.

Single-node (8×A100). Our first set of experiments is conducted on a single server equipped with
eight NVIDIA A100 GPUs, each with 40 GB of memory, connected through NVLink. We deploy
the Qwen3-MoE-30B model and configure it initially under an expert parallelism (EP) layout with
8-way partitioning (EP8). We then perform a hot-switch to a hybrid configuration combining tensor
parallelism (TP4) with data parallelism (DP2). All collective communications in this setup are intra-
node and utilize NVLink.

Dual-nodes (2×8 H200). We further evaluate ParaSMoE at larger scale on a distributed setting
with two servers, each containing eight NVIDIA H200 GPUs. The servers are interconnected with
a high-speed 3,200 Gbps RDMA-capable network, while intra-node communication is supported
by NVLink. On this system, we deploy the significantly larger Qwen3-MoE-235B model. The
baseline configuration uses EP16 across the 16 GPUs, and we perform a hot-switch to a hybrid DP2–
TP8 layout. This transformation involves both intra-node and inter-node collectives, thus stressing
system’s ability to overlap communication and computation.

Baselines. We compare ParaSMoE against two baseline approaches commonly used in practice.
The first baseline, service restart, switches parallelism by terminating the current process and reini-
tializing the system with a new parallelism configuration. To avoid a completely cold start, we
ensure that the model weights remain hot-cached in the file system. This method is simple to im-
plement but incurs long delays since all parameters must be reloaded from disk and communication
groups reconstructed. The second baseline, parameter offloading, avoids a full restart by temporar-
ily offloading model parameters to host memory, reconfiguring the communication groups, and then
reloading parameters back to the GPUs. While faster than a full restart, this approach still requires
moving massive amounts of data across the PCIe bus, which can introduce substantial latency.
4.2 Cost of Switch
Figure 4 presents the latency of hot-switching across both single-node and dual-node deployments.
Restarting the service and parameter offloading incur prohibitive overheads that span tens of sec-
onds. In contrast, ParaSMoE consistently drives the transition cost down to the sub-second regime,
making dynamic adaptation feasible in practice.

On the single-node setup, the model is relatively small and thus cannot fully exploit the available
NVLink bandwidth. Since all communication (All-Gather and All-to-All) is confined within the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

NVLink fabric, the traffic competes for the same resources, limiting the benefit of overlapping
communication and computation. Consequently, the overlapped pipeline offers worse latency than
the sequential approach in this setting. By contrast, the dual-node experiment involves a much
larger model and introduces inter-node communication across a high-bandwidth network. Here, the
larger data volume fully utilizes the network bandwidth, and the fine-grained pipelined scheduling
of ParaSMoE is able to hide much of the latency. According to the analytical model in section 3.3,
the theoretic switch cost is around 0.6 seconds. ParaSMoE can achieve above 80% of the optimal
performance, showcasing that overlap is highly effective, yielding significant additional speedup.
4.3 Benefit of ParaSMoE in practical MoE serving
MoE Serving with Varying Traffic In real-world serving, requests often differ in both latency
sensitivity and arrival rate. Enterprise customers may demand strict latency guarantees, while gen-
eral user traffic benefits more from high throughput. Moreover, request rates fluctuate over time,
making a fixed parallelism strategy ineffective at service level. ParaSMoE enables sub-second hot-
switching between TP and EP, allowing the system to adapt its execution mode to current workload
conditions. This flexibility ensures low latency for critical queries while sustaining high through-
put during traffic surges, providing an effective mechanism to meet diverse quality-of-service (QoS)
requirements.

Batch generation in Reinforcement Learning Current reinforcement learning training frame-
works employs a static parallelism configuration for the batch inference in the rollout phase. Every
batch features both numerous decoding tokens and long tail problems, which makes traditional mul-
tiple TP deployment suffer in the beginning and EP suffer towards the end of rollout for large MoE
models. However by bridging the gap between TP and EP, ParaSMoE is able to combine their ad-
vantages and consistently retain a relatively high throughput in any situation with a minimal switch
cost. Through estimation detailed in appendix C, it is able to reduce the rollout time by 1.4 to 3.7x
compared with TP or EP deployment alone while the final speedup eventually depends on workloads
and cluster specifications.

5 Related Works
Research on Mixture-of-Experts (MoE) spans model design, parallelism strategies, and inference
optimizations. The sparsely-gated MoE layer(Shazeer et al., 2017) enabled large-scale models such
as DeepSeek-V3 (DeepSeek-AI et al., 2025) and Qwen3 (Yang et al., 2025) that scale efficiently,
but their massive size complicates inference.

Parallelism methods are central to MoE deployment. Tensor parallelism (TP) (Shoeybi et al., 2020b)
offers an optimal latency within multiple parallel devices, whereas expert parallelism (EP) (Rajb-
handari et al., 2022) provides higher throughput at scale. Recent works (Liu et al., 2025; Singh et al.,
2023) explore a hybrid parallelism configuration. ParaSMoE builds on these by enabling dynamic
hot-switch between them.

Recent works address adaptivity and system efficiency. Some explore hot-switching during training
(Ge et al., 2024), while Tutel (Hwang et al., 2023), HAP (Lin et al., 2025) investigate adaptive or
hybrid strategies. Additional efforts target inference optimization through communication reduction
(Zhao et al., 2025b; Perplexity-AI, 2025), load balancing (DeepSeek-AI, 2025b), expert buffering
(Huang et al., 2024), and kernel specialization (DeepSeek-AI, 2025a). These approaches improve
efficiency under fixed layouts, while ParaSMoE uniquely contributes sub-second, workload-aware
switching between EP and TP for dynamic inference.

6 Conclusion
We presented ParaSMoE , a novel method that dynamically converts parallelism configurations for
MoE inference. We identified a series of operations that efficiently achieves parallelism conversions,
and carefully orchestrated the intra-node and inter-node communications to minimize the stall time.
We demonstrated the parallelism flexibility enabled by our method could be greatly improve in-
ference efficiency and hardware utilization in real world inference tasks, namely inference with
Quality-of-Service requirement, and batched inference for reinforcement learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References
Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton

Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, and Yuxiong He. Deepspeed-
inference: enabling efficient inference of transformer models at unprecedented scale. In Proceed-
ings of the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’22. IEEE Press, 2022. ISBN 9784665454445.

AWS. Elastic fabric adapter (efa). https://aws.amazon.com/hpc/efa/, 2025. High-
performance network interface for tightly coupled HPC and ML workloads.

DeepSeek-AI. Deepgemm: Clean and efficient fp8 gemm kernels with fine-grained scaling.
https://github.com/deepseek-ai/DeepGEMM, 2025a. FP8 GEMM kernels opti-
mized for efficiency and scalability.

DeepSeek-AI. Eplb: Expert parallelism load balancer. https://github.com/
deepseek-ai/EPLB, 2025b. Load balancing algorithm for expert parallelism in large MoE
models.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Hao Ge, Fangcheng Fu, Haoyang Li, Xuanyu Wang, Sheng Lin, Yujie Wang, Xiaonan Nie, Hailin
Zhang, Xupeng Miao, and Bin Cui. Enabling parallelism hot switching for efficient training
of large language models. In Proceedings of the ACM SIGOPS 30th Symposium on Oper-
ating Systems Principles, SOSP ’24, pp. 178–194, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400712517. doi: 10.1145/3694715.3695969. URL
https://doi.org/10.1145/3694715.3695969.

Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw., 34(3), May 2008. ISSN 0098-3500. doi: 10.1145/1356052.1356053.
URL https://doi.org/10.1145/1356052.1356053.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,
2024.

10

https://aws.amazon.com/hpc/efa/
https://github.com/deepseek-ai/DeepGEMM
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://arxiv.org/abs/2412.19437
https://doi.org/10.1145/3694715.3695969
https://doi.org/10.1145/1356052.1356053


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Hsien-Hsin S. Lee, Shruti Bhosale, Carole-
Jean Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 84033–84059. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/98bf3b8505c611ac21055dd9d355c66e-Paper-Conference.pdf.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael
Salas, Jithin Jose, Prabhat Ram, HoYuen Chau, Peng Cheng, Fan Yang, Mao Yang, and
Yongqiang Xiong. Tutel: Adaptive mixture-of-experts at scale. In D. Song, M. Carbin, and
T. Chen (eds.), Proceedings of Machine Learning and Systems, volume 5, pp. 269–287. Cu-
ran, 2023. URL https://proceedings.mlsys.org/paper_files/paper/2023/
file/5616d34cf8ff73942cfd5aa922842556-Paper-mlsys2023.pdf.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W. Mahoney, Yakun Sophia Shao, and Amir
Gholami. Full stack optimization of transformer inference: a survey, 2023. URL https://
arxiv.org/abs/2302.14017.

Andrey Kuzmin, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters, and Tijmen Blankevoort.
Fp8 quantization: The power of the exponent, 2024. URL https://arxiv.org/abs/
2208.09225.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Haoran Lin, Xianzhi Yu, Kang Zhao, Han Bao, Zongyuan Zhan, Ting Hu, Wulong Liu, Zekun
Yin, Xin Li, and Weiguo Liu. Hap: Hybrid adaptive parallelism for efficient mixture-of-experts
inference, 2025. URL https://arxiv.org/abs/2508.19373.

Dennis Liu, Zijie Yan, Xin Yao, Tong Liu, Vijay Korthikanti, Evan Wu, Shiqing Fan, Gao Deng,
Hongxiao Bai, Jianbin Chang, Ashwath Aithal, Michael Andersch, Mohammad Shoeybi, Jiajie
Yao, Chandler Zhou, David Wu, Xipeng Li, and June Yang. Moe parallel folding: Heterogeneous
parallelism mappings for efficient large-scale moe model training with megatron core, 2025. URL
https://arxiv.org/abs/2504.14960.

Perplexity-AI. Efficient and portable mixture-of-experts communication, 2025. URL https:
//github.com/perplexityai/pplx-kernels.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale, 2022. URL https://arxiv.org/
abs/2201.05596.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Team SGLang. Deploying DeepSeek with PD disaggregation and large-scale expert parallelism on
96 h100 gpus. https://lmsys.org/blog/2025-05-05-large-scale-ep/, May
2025. Accessed: YYYY-MM-DD.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

11

https://proceedings.neurips.cc/paper_files/paper/2024/file/98bf3b8505c611ac21055dd9d355c66e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/98bf3b8505c611ac21055dd9d355c66e-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/5616d34cf8ff73942cfd5aa922842556-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/5616d34cf8ff73942cfd5aa922842556-Paper-mlsys2023.pdf
https://arxiv.org/abs/2302.14017
https://arxiv.org/abs/2302.14017
https://arxiv.org/abs/2208.09225
https://arxiv.org/abs/2208.09225
https://arxiv.org/abs/2508.19373
https://arxiv.org/abs/2504.14960
https://github.com/perplexityai/pplx-kernels
https://github.com/perplexityai/pplx-kernels
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/1707.06347
https://lmsys.org/blog/2025-05-05-large-scale-ep/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1701.06538


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, pp. 1279–1297. ACM, March
2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/3689031.
3696075.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism, 2020a. URL https://arxiv.org/abs/1909.08053.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism, 2020b. URL https://arxiv.org/abs/1909.08053.

Siddharth Singh, Olatunji Ruwase, Ammar Ahmad Awan, Samyam Rajbhandari, Yuxiong He,
and Abhinav Bhatele. A hybrid tensor-expert-data parallelism approach to optimize mixture-
of-experts training. In Proceedings of the 37th International Conference on Supercomput-
ing, ICS ’23, pp. 203–214. ACM, June 2023. doi: 10.1145/3577193.3593704. URL http:
//dx.doi.org/10.1145/3577193.3593704.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025. URL https://arxiv.org/abs/2507.20534.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha,
and Peng Cheng. Optimizing large language model training using fp4 quantization, 2025. URL
https://arxiv.org/abs/2501.17116.

xAI. Grok 4, July 2025. URL https://x.ai/news/grok-4. Accessed: 2025-09-20.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

12

http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
http://dx.doi.org/10.1145/3577193.3593704
http://dx.doi.org/10.1145/3577193.3593704
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2501.17116
https://x.ai/news/grok-4
https://arxiv.org/abs/2505.09388


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Chenggang Zhao, Shangyan Zhou, Liyue Zhang, Chengqi Deng, Zhean Xu, Yuxuan Liu, Kuai Yu,
Jiashi Li, and Liang Zhao. Deepep: an efficient expert-parallel communication library, 2025a.
URL https://github.com/deepseek-ai/DeepEP.

Chenggang Zhao, Shangyan Zhou, Liyue Zhang, Chengqi Deng, Zhean Xu, Yuxuan Liu, Kuai Yu,
Jiashi Li, and Liang Zhao. Deepep: an efficient expert-parallel communication library. https:
//github.com/deepseek-ai/DeepEP, 2025b.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.
org/abs/2312.07104.

13

https://arxiv.org/abs/2503.14476
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A The Use of Large Language Models (LLMs)
In preparing this submission, we made limited use of large language models (LLMs) as assistive
tools. Specifically:

• Writing and Editing: LLMs were used to aid in polishing the writing, including rephrasing
sentences for clarity, improving grammar, and refining overall readability. All technical content,
research contributions, and core ideas originated from the authors.

• Retrieval and Discovery: LLMs were used to assist in retrieving relevant literature and dis-
covering related work. The final selection, interpretation, and integration of related work were
conducted solely by the authors.

LLMs did not contribute to research ideation, system design, experiments, or analysis. The authors
take full responsibility for all content presented in this paper.

B Transformation of Down-Projection Weights
For completeness, we detail the EP-to-TP transformation for the down-projection weights D. The
overall sequence of operations mirrors that of the up-projection U , but differs in the slicing dimen-
sion due to the memory layout.

Initially, on an EP rank rϵ, the down-projection weights are stored as:

Drϵ : [L,H, I]

where L = E
G is the number of experts per device, H is the hidden dimension, and I is the input

dimension. After transforming to TP, the target tensor for TP rank rτ should have the shape:

Drτ : [E,H, I ′], where I ′ = I
P

We expand these tensors to make the correspondence explicit:

Drϵ : [L,H, P, I ′], Drτ : [G,L,H, I ′]

Since G = N × P , we further expand the TP layout as:

Drτ : [N,P,L,H, I ′]

The transformation proceeds in four steps:

1. All-Gather across DP groups Devices gather all expert weights across data-parallel groups,
increasing the number of experts per device from L to L×N :

Drϵ

all-gather−−−−−→ D′
rϵ , D′

rϵ : [N,L,H, P, I ′]. (9)

2. Permutation for contiguity We permute the tensor so that slices along the I dimension are
contiguous, enabling efficient redistribution:

D′
rϵ

permute−−−−→ D′′
rϵ , D′′

rϵ : [P,N,L,H, I ′]. (10)

3. All-to-All across TP groups An all-to-all communication redistributes slices across TP ranks.
Although the shape remains unchanged, the contents are reassigned so that each TP rank rτ obtains
the correct slice of all experts:

D′′
rϵ

all-to-all−−−−→ D′
rτ , D′

rτ : [P,N,L,H, I ′]. (11)

4. Final Permutation Finally, the tensor is permuted to restore the canonical ordering of experts:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 5: Distribution of output length in a batch. The curve presents the shrinking batch size
over output length. The batch contains 16,382 decoding requests in total, where most sequences
terminate within 2k tokens, while a small fraction extends up to 16k tokens, creating a long-tail
workload imbalance.

D′
rτ

permute−−−−→ Drτ , Drτ : [N,P,L,H, I ′]. (12)

Through these steps, each device transitions from storing a small consecutive subset of experts (EP
layout) to storing a partial slice of all experts along the I dimension (TP layout).

C Estimated Improvement for Rollout in Reinforcement Learning
To approximate the speedup of ParaSMoE relative to static Expert Parallelism (EP) and Tensor
Parallelism (TP), we construct a cost model based on reported throughput and latency characteristics.

High-Concurrency Throughput. For large-scale Mixture-of-Experts (MoE) reinforcement learn-
ing, clusters with a few hundred devices enable high EP degrees (e.g., EP 64). Under such condi-
tions, SGLang’s report (SGLang, 2025) on DeepSeek V3 shows that EP achieves 5× higher through-
put (around 22k tokens/s) than TP (around 4.5k tokens/s). We denote the measured throughput of
EP and TP under high concurrency as TEP and TTP, respectively (in tokens/s).

Low-Concurrency Latency. When the batch size shrinks after most requests have finished, the
system transitions into a latency-dominated regime. Based on public reports, we approximate the
per-token latency of TP as ℓTP = 20ms and that of EP as ℓEP = 50ms.

Workload Characterization. A workload is described by:

• N : total number of requests in the batch,
• Lmaj: major length where most requests terminate,
• Lmax: maximum length among all requests.

Figure 5 illustrates an example from the DAPO dataset containing N=16k requests. The distribution
shows that most of sequences finish before Lmaj≈2k tokens, while only a small fraction continues
toward the long tail with Lmax=16k. This heavy skew leads to a rapid decrease in active batch size
as decoding progresses, posing challenges for efficient parallelism due to the mismatch between
early-stage and tail-stage workloads.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 6: Estimated rollout time under different major and maximum lengths. ParaSMoE consis-
tently outperforms static EP and DP×TP by adapting between throughput-dominated and latency-
dominated phases.

Cost Model. The total serving cost is modeled as the sum of a throughput-bounded component
(before Lmaj) and a latency-bounded component (after Lmaj):

Ctotal = Cthroughput + Clatency.

The throughput-bounded cost is

Cthroughput =
N · Lmaj

T
,

where T ∈ {TEP, TTP} is the effective throughput under high concurrency.

The latency-bounded cost is
Clatency = (Lmax − Lmaj) · ℓ,

where ℓ ∈ {ℓEP, ℓTP} is the per-token decoding latency.

Batch Size Assumption. Unless otherwise specified, we assume N = 8192, consistent with large-
batch inference configurations reported in recent MoE serving studies.

This refined two-phase model enables a consistent estimation of total cost under static EP, static TP,
and our adaptive approach, which combines both modes depending on the stage of execution.

Estimated Results The estimated results in Figure 6 demonstrate that our adaptive approach
(ParaSMoE) consistently reduces rollout cost compared to static EP or DP×TP across a wide range
of workload configurations. The improvement is particularly pronounced when the major length is
much smaller than the maximum length, where ParaSMoE achieves up to 3.75× speedup by ex-
ploiting EP’s high throughput before the major length and TP’s lower latency in the tail. Even in
less favorable cases with relatively balanced lengths, ParaSMoE still provides a minimum of 1.41×
speedup over static baselines. These results highlight that adaptively switching parallelism is ef-
fective not only in extreme long-tail scenarios but also in moderate ones, ensuring robust efficiency
gains. More generally, when both the major length and the maximum length are long, EP tends to
be the most effective due to its throughput advantage; when both are short, TP is preferred due to its
lower latency; and when there is a large gap between the two, ParaSMoE achieves the best trade-off
by combining the strengths of both strategies.

16


	Introduction
	Parallelism in MoE Inference
	Weights Resharding
	Cluster and Model
	Weights Transformation
	Pipelined Execution
	Memory Overhead

	Evaluation
	Experimental Settings
	Cost of Switch
	Benefit of ParaSMoE in practical MoE serving

	Related Works
	Conclusion
	The Use of Large Language Models (LLMs)
	Transformation of Down-Projection Weights
	Estimated Improvement for Rollout in Reinforcement Learning

