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Abstract
Perceiving and understanding non-speech001
sounds and non-verbal speech is essential to002
making decisions that help us interact with003
our surroundings. In this paper, we propose004
GAMA, a novel General-purpose Large Audio-005
Language Model (LALM) with Advanced Au-006
dio Understanding and Complex Reasoning007
Abilities. We build GAMA by integrating an008
LLM with multiple types of audio representa-009
tions, including features from a custom Audio010
Q-Former, a multi-layer aggregator that aggre-011
gates features from multiple layers of an au-012
dio encoder. We fine-tune GAMA on a large-013
scale audio-language dataset, which augments014
it with audio understanding capabilities. Next,015
we propose CompA-R (Instruction-Tuning for016
Complex Audio Reasoning), a synthetically017
generated instruction-tuning (IT) dataset with018
instructions that require the model to perform019
complex reasoning on the input audio. We020
instruction-tune GAMA with CompA-R to en-021
dow it with complex reasoning abilities, where022
we further add a soft prompt as input with023
high-level semantic evidence by leveraging024
event tags of the input audio. Finally, we025
also propose CompA-R-test, a human-labeled026
evaluation dataset for evaluating the capabili-027
ties of LALMs on open-ended audio question-028
answering that requires complex reasoning.029
Through automated and expert human evalua-030
tions, we show that GAMA outperforms all other031
LALMs in literature on diverse audio under-032
standing tasks by margins of 1%-84%. Further,033
GAMA IT-ed on CompA-R proves to be supe-034
rior in its complex reasoning and instruction035
following capabilities 1.036

1 Introduction037

Large Language Models (LLMs) possess impres-038

sive abilities to understand and reason about the039

world through language (Zhao et al., 2023). While040

spoken language understanding tasks, like auto-041

matic speech recognition, have had a long history042

1We will open-source code and data on paper acceptance
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Write an audio caption
describing the sound in detail.

Based on the various sounds,
please infer what the man

might be announcing.

Write an audio caption
describing the sound in detail.

Based on the various sounds,
please infer what the man

might be announcing.

A train horn blows and a
bell rings.

It is not possible to infer what
the man might be announcing

without additional context.

The train is approaching a station, indicated by
the increasing volume of the horn and the bell

ringing, suggesting it's about to stop or arrive at
the station for a passenger pickup or drop off.

The wind noise suggests an open outdoor
environment near the tracks. A man’s voice can

be heard in the background, making an
announcement.

Given the context of the train station, the man
might be announcing arrival/departure schedules,

boarding calls, or safety instructions.

 GAMA 

 Existing LALMs 

Figure 1: Comparison of existing LALMs (LTU by Gong
et al. (2024) here) and GAMA. With improved audio under-
standing abilities (via diverse audio feature integration) and
training on our proposed CompA-R, GAMA can provide more
detailed captions of input audio and is also able to answer
questions regarding it that demand complex reasoning.

of benefiting from language comprehension with 043

(L)LMs (Watanabe et al., 2018; Hu et al., 2024), the 044

ability to improve the perception and understand- 045

ing of non-speech sounds and non-verbal speech 046

through language has been less explored (from 047

hereon we refer to these kinds of audios or sound as 048

“audio” in the paper). Beyond visual and language 049

perception, the ability to understand audio is unar- 050

guably important and necessary for autonomous 051

agents to interact with the world. 052

Contrastive Language Audio Pre-training 053

(CLAP) (Elizalde et al., 2023a) was one of the 054

first Audio-Language Models (ALM) to improve 055

audio understanding through a language interface. 056

Following this, several attempts have been made to 057

improve CLAP and its reasoning abilities (Ghosh 058

et al., 2024b). On the other hand, Deshmukh 059

et al. propose Pengi, a pre-trained decoder-only 060

LLM coupled with an audio-encoder, that can 061

solve all kinds of audio tasks by framing them 062

as open-ended text-generation tasks. Similarly, 063

Large Audio Language Models (LALMs) like 064
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LTU (Gong et al., 2024) and SALMONN (Tang065

et al., 2024) follow a similar architecture and066

attempt to solve audio tasks by empowering the067

model with instruction following capabilities (Wei068

et al., 2022). Specifically, all audio tasks are first069

framed in instruction-response pairs. The model070

is then fine-tuned on these pairs to learn audio071

reasoning and, thereby, instruction following.072

As an emergent ability, these models also show073

remarkable capabilities in open-ended question074

answering by reasoning over the input audio.075

However, two significant problems still persist: (1)076

All these models employ simple connection mod-077

ules between the audio encoder and the language078

decoder to enable the latter with audio under-079

standing capabilities. This hinders comprehensive080

multimodal connection and alignment, thereby081

increasing the risk of hallucinations and leading082

to suboptimal performance (Liu et al., 2023a).083

(2) Complex reasoning with LALMs is still084

under-explored. While these models excel at audio085

event detection (in various forms like captioning,086

event classification, etc.) and information-seeking087

questions (e.g., close-ended audio questions like088

“How many birds are squawking?”), they fail to089

provide a faithful response for questions involving090

complex reasoning like “Identifying the context of091

laughter and its relationship with the automotive092

sounds in the recording. Draw a conclusion on the093

possible scenario occurring.”. We define complex094

reasoning for LALMs in Section 3.2 and show095

examples in Fig. 1 and Fig. 4.096

Main Contributions. Our primary contributions097

are as follows:098

• A Novel LALM. We introduce GAMA, an099

LALM with advanced audio understanding100

and complex reasoning abilities. To improve101

audio perception and understanding abilities,102

we propose integrating an LLM with multi-103

ple types of audio features that encode di-104

verse aspects of information about the input105

audio. Specifically, we couple the output fea-106

tures from an Audio Q-Former and an Audio107

Spectrogram Transformer (AST) (Gong et al.,108

2021), where the AST is further equipped with109

an aggregation module. While the Audio Q-110

Former possesses impressive semantic gener-111

alization capabilities (Li et al., 2023), the AST112

possesses strong knowledge of surface-level113

audio properties. Additionally, inspired by the114

fact that different layers in audio models learn115

audio information at different scales (Singla 116

et al., 2022), the aggregation module aggre- 117

gates the features from multiple layers of 118

AST, which helps encode diverse knowledge. 119

Both representations are passed through MLP 120

layers that connect these features into the 121

word embedding space before adding them 122

as the prefix. As a result, GAMA possesses 123

improved audio understanding capabilities by 124

moving away from the simple coupling of au- 125

dio encoders and linear layers commonly em- 126

ployed as connection modules to align the 127

audio and textual modalities, which generally 128

suffer from comprehensive multimodal align- 129

ment (Liu et al., 2023a). GAMA is first fine- 130

tuned on a large-scale audio-language corpus, 131

and the resulting model outperforms all other 132

models on standard audio and music under- 133

standing benchmarks. 134

• A Novel Instruction Tuning Dataset. To en- 135

dow an LALM with complex reasoning abili- 136

ties, we propose CompA-R, a dataset synthet- 137

ically generated with LLMs with multi-aspect 138

information and human-written in-context ex- 139

amples. Specifically, we prompt GPT to syn- 140

thesize an instruction-response pair by guid- 141

ing it with various metadata related to the au- 142

dio. 143

• A Novel Evaluation Dataset. To evaluate an 144

LALM’s complex reasoning abilities, we de- 145

velop CompA-R-test, a human-labeled bench- 146

mark. Specifically, CompA-R-test evaluates 147

an LALM on open-ended AQA that demands 148

complex reasoning over the audio. GAMA-IT 149

(GAMA fine-tuned on CompA-R) shows sig- 150

nificant improvements on CompA-R-test over 151

all other baselines from literature. 152

2 Related Work 153

Large Multi-Modal and Audio-Language Mod- 154

els. Prior to the exploration of LLMs as effi- 155

cient reasoners, encoder-based multi-modal lan- 156

guage models, trained to learn a shared space be- 157

tween language and other modalities, have shown 158

great promise. For example, CLAP, inspired by 159

CLIP (Radford et al., 2021) in vision, showed state- 160

of-the-art performance on audio-language tasks 161

like retrieval, zero-shot classification, etc. 162

LLMs pre-trained at an incredible scale with 163

the next token prediction objective implicitly com- 164
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Figure 2: Illustration of GAMA. The GAMA architecture involves integrating various audio features with a text-only (pre-trained)
LLM. The audio features are added as a prefix to the text instruction (by the user), and the LLM responds using a text output.
We feed GAMA with 3 different types of audio features: 1⃝ The Multi-Layer Aggregator that takes as input features from the
last and multiple other layers of the AST and calculates cross-attention to output a feature that encodes diverse surface features
from audio. 2⃝ The pre-trained Audio Q-Former takes as input the last layer features of AST and outputs a feature that encodes
the audio into a semantically rich and generalized space. 3⃝ After fine-tuning, we instruction-tune this model on our proposed
CompA-R and further feed the model with a soft prompt with audio tags from AST (with an added classification head). This
additional information serves as high-level semantic knowledge to improve complex reasoning abilities.

press world knowledge in their parameters (Zhao165

et al., 2023). These models learn general-purpose166

representations, which can then be aligned with167

the desired response characteristics (Zhang et al.,168

2023). Instruction Tuning (IT), the process of fine-169

tuning an LLM with instruction-response pairs, has170

proved to be one of the most popular forms of171

alignment. Recent work shows that LLMs can also172

be instruction-tuned for multi-modal alignment.173

LLaVa (Liu et al., 2024), a pioneering work on174

multi-modal vision-language alignment, showed175

that fine-tuning an LLM on visual instruction-176

response pairs with additional vision features as177

prefix can endow the model with visual reasoning178

and understanding abilities. Several works follow-179

ing LLaVa improve aspects of LVLMs and have180

achieved impressive performance on several vision-181

language tasks (Zhang et al., 2024). On the other182

hand, LALMs like LTU and SALMONN showed183

impressive performance on several audio-language184

tasks by reasoning over the audio. Though these185

models extensively evaluate several closed- and186

open-ended tasks, their ability to perform complex187

reasoning is largely under-explored.188

Instruction Tuning and Complex Reasoning. IT-189

based alignment has also shown significant im- 190

provements for LLMs on Natural Language Un- 191

derstanding tasks, unlocking impressive capabil- 192

ities (Bubeck et al., 2023), suggesting that fine- 193

tuning is key to building and improving LLM- 194

based agents. Very recently, (Xu et al., 2024) 195

and (Cui and Wang, 2024) show that well-curated 196

IT data can improve various reasoning capabilities 197

in LLMs, like logical, mathematical, complex rea- 198

soning, etc. More specifically, IT teaches LLMs 199

better and more effective methods to reason about 200

a problem, presented in the input instruction (like 201

step-by-step reasoning (Kojima et al., 2022)). 202

3 Methodology 203

In the next sub-sections, we first describe the 204

GAMA architecture and its components in detail, 205

followed by fine-tuning GAMA on audio-language 206

pairs, CompA-R creation, and instruction-tuning 207

GAMA on CompA-R. 208

3.1 GAMA Architecture 209

Fig. 2 illustrates the architecture of GAMA. GAMA 210

builds on the same base architecture proposed in 211

prior works (Gong et al., 2024) but introduces sev- 212
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eral novel components for improving audio percep-213

tion. More specifically, we feed the pre-trained214

LLM with features from multiple audio encoders,215

including a pre-trained Audio-Q-Former and a pre-216

trained AST that encode diverse audio knowledge.217

Additionally, unlike prior work, we do not just use218

the last layers of the AST but couple it with a multi-219

layer aggregator that takes features from multiple220

layers as input and outputs a feature that is aware of221

various low-level and high-level properties of the222

input audio. Finally, to endow the model with effec-223

tive complex reasoning abilities, we employ AST224

again to extract high-level semantic knowledge, i.e.,225

audio event tags, as supplementary information.226

3.1.1 Audio Spectrogram Transformer (AST)227

Audio Spectrogram Transformer (AST), was one228

of the first attempts to model audio signals with229

a pure Transformer network. We employ an AST230

model fine-tuned on the AudioSet dataset. AST231

has been employed as an audio encoder and a fea-232

ture extractor in a wealth of prior works due to its233

high informativeness (Gong et al., 2023, 2024). To234

extract the last-layer features, we drop the audio235

classification head and employ it only for event236

classification for soft prompts.237

3.1.2 Audio Q-Former238

Motivation. Our primary goal is to integrate GAMA239

with an audio encoder that possesses strong se-240

mantic generalization capabilities for any input au-241

dio. Prior work has extensively explored CLAP-242

style training for learning audio-language encoders.243

However, other methods and architectures have244

rarely been explored. As a more powerful alter-245

native, we explore the Q-Former architecture pro-246

posed by (Li et al., 2023). We show in Table 1247

that Q-Former outperforms other audio-language248

models and achieves SOTA on audio understanding249

benchmarks.250

Architecture. The architecture of our Audio Q-251

Former is based on the Querying Transformer pro-252

posed in Li et al. (2023), which is initialized from253

BERT (Devlin et al., 2018) and has Q querying254

tokens. We employ AST as the audio encoder (in255

place of the ViT-based vision encoder) and keep256

the rest of the architecture the same. Similar to257

the original implementation, we train the model in258

two stages. For the first stage, we solve three tasks,259

namely the Audio-Text Matching loss, the Audio-260

Grounded Text Generation loss, and the Audio-261

Text Contrastive Learning loss. For the second262

stage, we employ LLaMa-2 7B as the language de- 263

coder and solve the language-modeling loss. For 264

training, we use 2.5M+ audio-caption pairs (de- 265

tailed in Section E.2). For architectural details, we 266

refer our readers to Li et al. (2023). 267

Training with Caption Augmentation. Addition- 268

ally, due to the lack of large-scale audio caption 269

pairs, we adopt a caption-augmentation method- 270

ology to augment the existing audios with diverse 271

additional captions. More specifically, we instruct 272

an LLM to generate k rewrites of the original cap- 273

tion. We employ two different prompts that rewrite 274

the input caption with two different objectives: 275

Prompts. For Prompt 1, our primary aim is that 276

the resultant rewrite should describe each acous- 277

tic event in the caption similarly but more vividly. 278

These augmentations help the model learn various 279

distinctive characteristics of the audio concepts cor- 280

responding to the acoustic events. For Prompt 1, 281

our primary aim is such that the resultant rewrite 282

should describe each acoustic event in the cap- 283

tion differently from the original caption. These 284

augmentations aid the model in understanding the 285

diverse linguistic expressions that can describe a 286

single audio concept. We show examples below: 287

(more examples in Table 13): 288

(1) Original Caption: Someone made a cool
vocal for a dubstep track.
(1) Rewritten Caption by Prompt 1: A capti-
vating vocal performance ignites the dubstep
track, delivering a hypnotic and enthralling
sound that reverberates through the air.
(1) Rewritten Caption by Prompt 2: The dub-
step track features a slick, stylish vocal per-
formance that adds a layer of sophistication
to its heavy beats and basslines.
(2) Original Caption: Someone eating crisps
and talking.
(2) Rewritten Caption by Prompt 1: Crunchy
crisps mingle with the sound of a lively con-
versation, creating a cozy and intimate atmo-
sphere.
(2) Rewritten Caption by Prompt 2: The
crunch of crisps and the rustle of papers cre-
ate a cozy, intimate atmosphere, accompanied
by the gentle hum of a conversation.

During training, for each audio sample, we 289

choose the original caption with a probability p = 290

0.4 or one of the rewritten versions (with a proba- 291

bility 1− p), where each rewritten caption has an 292

equal probability of selection. Both instrcutions 293
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are provided in Appendix B. We employ LLaMa-294

2-13B (Touvron et al., 2023) with human-written295

in-context examples. We randomly sample 5 in-296

context examples from a collection of 50.297

3.1.3 Multi-Layer Aggregator298

Motivation. To extract additional details about299

the input audio, we devise a multi-layer aggrega-300

tor that integrates multi-level hidden features of301

the pre-trained AST. Although AST has a global302

reception field in all layers, different layers learn au-303

ditory information at different scales (Singla et al.,304

2022), i.e., the middle layers encode more generic305

features (e.g., basic sounds, textures), while deeper306

layers capture high-level concepts (e.g., speech307

intonations, complex sound patterns). By aggre-308

gating these features, the multi-layer aggregator309

outputs features that encode a more holistic and310

fine-grained understanding of the audio. Thus, our311

multi-layer aggregator makes fine-grained auditory312

knowledge more likely to be learned while training.313

Architecture. Our multi-layer aggregator is a314

transformer-style network consisting of two trans-315

former layers for aggregating the hidden features316

of the audio encoder. Given the hidden features317

Aj and Ak from the middle layers in the audio en-318

coder, the aggregation module uses two blocks to319

sequentially integrate the former two features with320

the last layer feature Ai. Each block B is composed321

of self-attention, cross-attention, and Feed-forward322

network (FFN) arranged in a sequential manner. Fi-323

nally, the output features Ā is generated as follows,324

Ā = B2 (B1 (Ai;Aj) ;Ak) (1)325

326 B(X;Y ) = FFN(Cross-Attn(Attn(X), Y )). (2)327

In practice, we employ j = 4 and k = 8 from AST328

as our input to the multi-layer aggregator.329

3.1.4 Soft Prompt330

Motivation. Though models like AST and Audio331

Q-Former have shown much promise in audio tasks,332

a major problem still exists: real-world audio gen-333

erally has multiple and overlapping acoustic events,334

and understanding all such events from model fea-335

tures proves to be inherently complex (Ghosh et al.,336

2024b). This eventually leads to sub-optimal per-337

formance for complex reasoning, where the explicit338

knowledge of plausible acoustic events in the au-339

dio can improve model responses. Thus, to im-340

prove fine-grained audio perception capabilities,341

we augment GAMA with high-level semantic under-342

standing of the input audio. To do this, we employ343

an off-the-shelf audio model to extract high-level 344

semantic knowledge, i.e., audio event tags, as sup- 345

plementary information. However, as audio event 346

classification is not a solved problem, errors in tag 347

predictions are inevitable. Thus, to mitigate the 348

potential adverse effects of inaccurate predictions, 349

we are inspired by prompt tuning to introduce a 350

soft prompting technique that enables the model to 351

utilize the embedded tags within the instructions 352

adaptively. 353

Architecture. Fig. 2 shows an example of how 354

we design our soft prompt together with an instruc- 355

tion. Specifically, we construct a fixed instruction 356

template where we add the audio event tags along 357

with the soft prompt, where the soft prompt is a 358

trainable vector. In contrast to standard prompt 359

tuning, where the model activations are generally 360

steered towards completing the task for which the 361

prompt is optimized, in our version the direction is 362

specified by a tailored input sentence, “According 363

to <hint>, you are allowed to use or partially use 364

the following tags:”, and “<hint>” will be replaced 365

by the soft prompt. This design allows us to select 366

valuable information from tags adaptively rather 367

than serving a specific task, as seen in standard 368

prompt tuning methods. We only employ the soft 369

prompt in the instruction tuning for complex rea- 370

soning step and not in the fine-tuning step. We 371

provide a rationale in Appendix C.1. 372

3.1.5 Connection Module 373

We employ a multi-layer perceptron (MLP) to con- 374

nect audio features into the word embedding space. 375

All features are passed through separate MLP lay- 376

ers before being added as prefixes to word embed- 377

dings of the text instruction prompt. 378

3.2 CompA-R 379

Motivation. We define complex reasoning as the 380

capability of an LALM to understand the input 381

audio, every individual acoustic event in the au- 382

dio, and reason the corresponding scene in which 383

the audio might have occurred, such that it can 384

infer nuanced relationships between them and its 385

underlying contexts, thereby enabling it to draw 386

sophisticated conclusions. We design CompA-R 387

with the primary goal of endowing LALMs with 388

complex reasoning abilities. We are motivated by 389

the primary finding that current SOTA LALMs 390

can only perform well in prompts that require de- 391

scribing the audio (e.g., Describe the audio) or 392

reasoning-based prompts where identifying the 393
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acoustic events present in the audio would suffice394

for a faithful response (e.g., What type of video can395

this audio be used for dubbing?). However, when396

posed with complex reasoning questions, these397

models often hallucinate or fail to provide a faithful398

response (see Fig. 4). Inspired by a wealth of prior399

work that shows how IT on well-curated datasets400

can align model behaviors for the execution of401

novel skills like reasoning and complex problem402

solving (Xu et al., 2024), we propose a system-403

atic multi-stage pipeline to synthesize instruction-404

response pairs for CompA-R. CompA-R trains a405

model to engage in complex reasoning by querying406

it with instructions that cannot be directly inferred407

by identifying individual audio events and would408

require analyzing each event and its context in rela-409

tion to other scene elements and world knowledge.410

Synthesis Pipeline. We employ the AudioSet-411

strong subset to synthesize CompA-R. Our data412

synthesis pipeline consists of 3 stages: i) Caption413

Generation. To generate a caption that is aware of414

both the audio and the visual scene, we feed GPT-4415

with multiple types of information about the au-416

dio and its corresponding video. These include417

a caption of the middle frame of the video gener-418

ated using BLIP-2 (Li et al., 2023), objects in the419

frame identified using Grounding DINO (Liu et al.,420

2023c), image labels for the frame using the Ima-421

geNet (Deng et al., 2009) ontology obtained from422

CLIP, environment context using PlaceCNN (Zhou423

et al., 2017), caption of the audio obtained using424

RECAP (Ghosh et al., 2024a) and audio event tags425

using the AudioSet ontology obtained from AST.426

Finally, we prompt GPT-4 to aggregate these de-427

scriptions into a comprehensive caption. ii) Dataset428

Synthesis. We pass the generated caption together429

with the ground-truth acoustic event information430

and their corresponding time slices to GPT-4. We431

prompt GPT-4 with 3 human-written exemplars432

(which are randomly sampled from a pool of 50 ex-433

emplars) to synthesize an instruction-response pair.434

The exemplars and prompt are designed such that435

the synthesized instructions demand complex rea-436

soning. We synthesize a total of 25000 instruction-437

response pairs. iii) Human Verification. We dis-438

card instructions due to untended noise and hal-439

lucinations. We, the authors of this paper, man-440

ually verify a subset of CompA-R corresponding441

to 500 unique audios for creating the test set, i.e.,442

CompA-R-test. The remainder of the synthesized443

dataset is used as the training set. We describe444

Instruction: Analyze the temporal
pattern of the impact sounds in the audio.
How does their frequency, duration, and
intensity contribute to understanding the

intensity or pace of the work in this
workshop setting?

Response: The repeated and consistent
presence of impact sounds of similar

intensity suggests a systematic, ongoing
process, indicating a steady and active

work pace in the workshop.

Instruction: Analyze the temporal
pattern of the impact sounds in the audio.
How does their frequency, duration, and
intensity contribute to understanding the

intensity or pace of the work in this
workshop setting?

Response: The repeated and consistent
presence of impact sounds of similar

intensity suggests a systematic, ongoing
process, indicating a steady and active

work pace in the workshop.

Caption: Metal clanks as a man
speaks in the background, suggesting

a workshop environment with ongoing
hammering and train passing by.

Audio Events: [(Mechanisms-0.0-10.0),
(Male speech, Man speaking-0.02-0.53),
(Generic impact sounds-0.228-0.709),

(Thump, thud-6.307-6.48), ...]

Training Set
Instruction: Analyze the temporal

pattern of the impact sounds in the audio.
How does their frequency, duration, and
intensity contribute to understanding the

intensity or pace of the work in this
workshop setting?

Response: The repeated and consistent
presence of impact sounds of similar

intensity suggests a systematic, ongoing
process, indicating a steady and active

work pace in the workshop.

Instruction Generation

Test Set

Caption
Generation

+
Exemplars

Human
Verification

+

Video

Audio

Figure 3: Pipeline for synthesizing CompA-R. For an audio
in the AudioSet-strong dataset, we first use the audio and
its corresponding video to generate a caption (described in
Section 3.2). This caption is then fed into GPT-4 together
with the ground-truth time slices for each event in the audio
(available for AudioSet-strong). We then instruct GPT-4 to
generate instruction-response pairs where the instruction is
accompanied by human-written exemplars (prompt in Fig. 5).
To generate the test set, we perform expert human verification
for a subset of the generated dataset.

the process and annotation details further in Ap- 445

pendix G.1. This finally led to 200,234 unique 446

pairs in training and 1,561 in testing. 447

3.3 Training 448

Fine-tuning. We fine-tune GAMA on the OpenAQA 449

training set released by Gong et al. (2024). We use 450

a faction of all the instances due to the unavailabil- 451

ity of the entire AudioSet and resource constraints. 452

Dataset details are provided in Appendix H.1. Ad- 453

ditionally, we augmented OpenAQA with 4 more 454

datasets, including MusicCaps, MusicQA, NSynth, 455

and Magna, to improve its music understanding 456

capabilities. For fine-tuning, we follow the ex- 457

act same 4-stage method proposed by Gong et al. 458

(2024) where all parameters of all encoders are 459

trainable, and we train only the LoRA modules of 460

the LLM. We request our readers to refer to Gong 461

et al. (2024) for more details. 462

Instruction Tuning on CompA-R. Post fine- 463

tuning, we instruction-tune GAMA on CompA-R 464

to endow it with complex reasoning abilities. Fol- 465

lowing common conventions (Liu et al., 2023b), 466

we fine-tuned only the LoRA modules. We call 467

the Instruction Tuned GAMA as GAMA-IT. Al- 468

though fine-tuning on AQA also endows GAMA 469

with instruction-following capabilities, CompA-R 470

differs in the nature of training instances (thereby 471

the capabilities it endows) and thus we differentiate 472

with such a naming convention for ease of reading. 473
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Model ESC50#
(Acc)

DCASE#

(Mi-F1)
VS†

(Acc)
TUT†

(Acc)
BJO†

(Acc)
VGG
(Acc)

FSD
(mAP)

NSins.
(ACC)

NSsrc.
(ACC)

GTZAN†

(ACC)
MSD†

(ACC)
AudioSet

(mAP)
Classif.

Avg.
AudioCaps

(SPICE)
Clotho

(SPICE)
Cap.
Avg.

ClothoAQA
(ACC)

Audio-Language encoder-based models. They are generalizable to unseen labels, but a pre-defined label set is required for inference.
AudioCLIP 69.4 - - - - - - - - - - - - - - - -
CLAP (Elizalde et al., 2023a) 82.6 30.0 48.4 29.6 47.5 24.0 30.2 22.7 16.4 25.0 44.0 5.8 29.4 - - - -
CLAP (Wu* et al., 2023a) 89.1 31.3 47.1 35.6 48.0 26.3 30.8 25.2 18.9 26.3 46.9 6.2 36.0 - - - -
CompA-CLAP 90.1 30.6 49.5 35.8 48.2 29.5 31.5 24.9 17.0 26.1 46.2 6.2 36.3 - - - -
Audio Q-Former (w/o rw) (ours) 91.9 31.1 49.9 38.9 50.4 33.2 34.7 27.5 22.0 30.4 48.3 8.2 38.9 - - - -
CLAP (w/ rw) (ours) 90.7 30.9 50.7 36.2 53.4 30.7 37.1 24.1 17.4 27.6 48.1 6.1 37.7 - - - -
Audio Q-Former (w/ rw) (ours) 92.4 32.5 50.2 39.1 51.5 35.1 35.3 29.2 22.3 31.3 47.5 8.9 39.6 - - - -

Audio-Language generation-based models. They directly output label names and do not need a pre-defined label set is needed at inference.
Qwen-Audio-Chat 71.7 32.4 74.2 16.9 50.8 17.5 39.8 30.2 41.3 41.6 69.1 13.4 41.1 14.7 9.8 12.3 32.3
LTU 81.7 37.5 53.3 19.9 67.8 50.3 43.9 28.0 41.8 9.9 74.2 18.3 42.4 16.9 11.7 15.8 25.1
SALMONN 16.4† 18.0† 16.9† 7.8† 25.0† 23.3† 22.1† 16.2† 33.7† 10.1† 28.8† 13.4† 17.9 8.3 7.6 8.0 23.1†

Pengi 80.8† 29.6† 46.4† 18.4† 47.3† 16.6† 35.8 39.2 46.0 11.9 93.0 11.5 39.7 12.7 7.0 9.9 63.6
AudioGPT 41.3 20.9 35.8 14.9 21.6 5.6 18.8 40.9 15.6 11.9 28.5 12.7 22.4 6.9 6.2 6.6 33.4
GAMA (ours) 82.6 38.4 52.4 21.5 69.5 52.2 47.8 63.9 99.5 13.8 85.6 19.2 53.9 18.5 13.5 16.0 71.6

w/o AST & Aggregator 80.5 36.9 51.6 19.2 66.2 50.8 45.3 62.4 89.6 11.6 83.2 17.3 51.2 17.2 12.4 14.8 68.3
w/ Last Layer Features 81.3 37.6 50.2 20.4 68.2 51.7 45.8 62.6 92.3 11.2 81.5 18.1 51.7 17.7 12.8 15.3 69.5
w/o Audio Q-Former 79.7 37.4 51.3 20.2 68.0 51.6 46.4 60.1 90.4 11.6 79.8 18.4 51.2 16.9 11.9 14.4 61.2
w/ CLAP 81.8 38.4 52.2 21.6 69.1 52.0 47.5 58.8 99.5 12.4 77.9 19.0 52.5 17.2 13.1 15.1 66.4

Table 1: Comparison of GAMA with baselines on evaluation datasets described on close-ended general audio and music
understanding benchmarks. GAMA outperforms most ALMs on most settings. † and # indicate zero-shot and weak zero-shot,
respectively. Note: Qwen-Audio-Chat does not provide training details. We also mark baseline values which are zero-shot.

CompA-R-test (GPT-4/Human) OpenAQA Dense Captioning
Models Clarity Correctness Engagement Avg. Clarity Correctness Engagement Avg. AudioCaps Clotho Avg.
Qwen-Audio-Chat 3.5 / 3.4 3.3 / 3.4 3.6 / 3.7 3.5 / 3.5 3.6 3.6 3.5 3.6 3.8 3.6 3.7
LTU 3.5 / 4.0 3.2 / 3.3 3.4 / 3.5 3.4 / 3.6 3.5 3.7 3.5 3.6 3.5 3.6 3.5
SALMONN 2.6 / 2.8 2.4 / 2.3 2.0 / 2.2 2.3 / 2.4 2.4 2.5 2.7 2.5 2.8 3.1 2.9
Pengi 1.8 / 1.6 1.5 / 1.4 1.3 / 1.2 1.5 / 1.4 1.7 1.5 1.4 1.5 2.6 2.8 2.7
AudioGPT 1.3 / 1.4 1.6 / 1.5 1.4 / 1.7 1.4 / 1.5 1.6 1.5 1.5 1.5 2.7 2.9 2.8
LTU w/ CompA-R 3.5 / 4.0 3.2 / 3.3 3.4 / 3.5 3.6 /3.6 3.5 3.7 3.5 3.6 3.7 3.8 3.8
GAMA-IT (ours) 4.3 / 4.5 3.9 / 4.1 3.9 / 4.3 4.0 / 4.3 4.0 4.2 3.8 4.0 4.3 4.1 4.2

w/o Soft Prompt 4.1 / 4.2 3.7 / 3.8 3.6 / 3.4 3.8 / 3.8 3.9 3.8 3.7 3.8 4.1 3.9 4.0
w/o Aggregator 4.0 / 4.2 3.5 / 3.5 3.6 / 3.5 3.7 / 3.7 3.7 3.7 3.5 3.6 3.7 3.8 3.8
w/o Audio Q-Former 3.8 / 3.7 3.4 / 3.6 3.5 / 3.3 3.6 / 3.5 3.4 3.9 3.5 3.6 3.7 3.5 3.6

Table 2: Comparison of GAMAwith other baselines on open-ended AQA on OpenAQA, complex open-ended AQA on CompA-R-
test and Dense Captioning on 500 instances from AudioCaps and Clotho.

3.4 Experimental Setup474

Hyper-parameters. For the fine-tuning stage, we475

follow the exact same hyper-parameter setup pro-476

posed by Gong et al. (2024). However, we scale477

down our batch sizes to 4, 2, 2, and 2 (due to com-478

pute constraints) with an effective batch size of 256479

in all stages. For Instruction Tuning, we employ480

a batch size of 2, an effective batch size of 256,481

and a learning rate of 1e-4. For both training and482

evaluation, we sampled audio at 16kHz.483

Baselines. We compare GAMA with i) generation-484

based LALMs: LTU, Qwen-Audio, SALMONN,485

Pengi and AudioGPT. We only employ the original486

checkpoints open-sourced by the authors and do487

not re-train the models due to compute constraints488

(except LTU, which we retrain on our version of489

OpenAQA, the same batch size as GAMA, and490

with LLaMa-2 as the LLM). We do not compare491

with Audio Flamingo (Kong et al., 2024) as the492

checkpoint was not available at the time of writ-493

ing the paper, and we are constrained by compute494

for training it from scratch. ii) audio-language en-495

coders: CLAP by Wu* et al. (2023b) and Elizalde496

et al. (2023b), CompA-CLAP (Ghosh et al., 2024b),497

AudioCLIP (Guzhov et al., 2021) and Audio Q-498

Former. For dense captioning and close- and open-499

ended AQA, we evaluate using GAMA-IT. For all500

other tasks, we evaluate using the only fine-tuned 501

version of GAMA (rationale in Appendix C). 502

Evaluation Datasets and Metrics. Evaluation 503

metrics used for all evaluation datasets are men- 504

tioned in Table 2 and detailed statistics about each 505

dataset is mentioned in Section H.2. For clas- 506

sification, zero-shot evaluation refers to datasets 507

GAMA that have never been seen during training; 508

weak zero-shot evaluation refers to datasets GAMA 509

that have not been seen in training but are sourced 510

from the same project as part of the training data, 511

and seen datasets refer to datasets GAMA has been 512

trained on. Similar to Deshmukh et al. (2023); 513

Gong et al. (2024), we first caption the audio and 514

retrieve the most similar label using SentenceBERT. 515

We employ either accuracy (Acc), Micro-F1 (Mi- 516

F1), or Mean Average Precision (mAP) for classifi- 517

cation evaluation. For captioning, we also propose 518

dense captioning, which evaluates a model for its 519

capability to identify every event in the audio and 520

the context of its occurrence with respect to other 521

events in the audio (more in Section 4). For evalua- 522

tion, we randomly select a subset of 500 samples 523

from AudioCaps and Clotho. We also employ hu- 524

man evaluation for OpenAQA, CompA-R-test, and 525

dense captioning. For human evaluation, we ask 526

human annotators to score the caption on a scale 527
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It is gasoline.

Question: Based on the given audio, infer the type of environment or
setting. Consider the presence and duration of car sounds.

The audio clip suggests an urban or suburban environment with a mix of
residential and commercial areas. The presence of car sounds suggests that
the environment is a busy one.

The given audio suggests that the environment or setting is a busy city
street with a lot of car traffic. The audio also indicates that the car sounds
are continuous and long-lasting. Therefore, it can be inferred that the audio
is from a busy city street with a lot of car traffic.

It is music.

Question: Considering the correlation of the man's speech and the music, infer his possible connection to the
music playing in the scene.

The male speaker's speech adds a sense of authority and control to the event's atmosphere, as well as a sense
of urgency or importance to the crowd's reactions. The speech also provides a contrast to the music and crowd
reactions, creating a dynamic and engaging soundscape that draws the listener's attention and emotions.

The male speaker is interspersed with the music and crowd reactions to create a dynamic and engaging
atmosphere at the event. His speech adds energy and excitement to the event, keeps the audience engaged and
involved, and helps create a memorable and enjoyable experience for all attendees.

LT
U
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L

M
O

N
N
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ng

i

. . . . . . . .

The environment is likely a race track. The man is likely a guitarist or an instructor who is explaining the process of tuning a guitar

HE : 3
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Figure 4: Qualitative comparison of GAMA with other baselines on instances from CompA-R-test. Both instances challenge
an LALM with a question about the input audio that requires advanced understanding and complex reasoning regarding the
audio and its individual events. GAMA is able to provide faithful and accurate responses through improved audio perception and
reasoning capabilities. HE refers to scores assigned by human evaluators. Note that the video is only provided for illustration
purposes and not provided as input to the LALM. More examples here: https://gamaaudio.github.io/gamaaudio/

of 1-5 and report the score averaged across the 3.528

More details on recruitment and background of an-529

notators can be found in Appendix D. Finally, due530

to human evaluation being prohibitively expensive,531

we also propose an automated evaluation methodol-532

ogy for complex open-ended AQA on CompA-R-533

test. We evaluate model responses using text-only534

GPT-4, where we provide it with the audio caption535

generated in Section 3.2 and the gold-standard au-536

dio event with timestamps (prompt in Appendix B).537

4 Results and Analysis538

Quantitative Results. Table 1 compares GAMA539

with other baselines on classification and cap-540

tioning tasks. For zero-shot classification eval-541

uation on VocalSound (VS) (Gong et al., 2022),542

TUT 2017 (TUT) (Mesaros et al., 2018), Bei-543

jing Opera (BJO) (Tian et al., 2014), GTZAN544

(GTZ) (Park et al., 2022) and Medley-solos-DB545

(MDB) (Lostanlen et al., 2018), GAMA outperforms546

our baselines by 2%-67%. For weak zero-shot eval-547

uation on ESC-50 (Piczak, 2015) and DCASE2017548

Task 4 (DCASE) (Mesaros et al., 2017), GAMA out-549

performs our baselines by 1%-66%. Finally, for550

in-domain evaluation on VGGSound (VGG) (Chen551

et al., 2020), FSD50K (FSD) (Fonseca et al., 2021),552

AudioSet (AS) (Gemmeke et al., 2017) and NSynth553

(NS) (Engel et al., 2017) GAMA outperforms our554

baselines by 1%-84%. GAMA sees the steepest drop555

in performance when the AST and Aggregator are556

removed (i.e., only Auio Q-Former is employed).557

Table 2 compares GAMA with other baselines558

on AQA (open-ended and complex open-ended)559

and dense captioning. GAMA outperforms all our 560

baselines on all settings. GAMA shows absolute im- 561

provement of 4% - 50% on OpenAQA, 8% - 58% 562

on CompA-R-test and 8% - 30% on Dense Caption- 563

ing. Similar to the tasks in Table 1, performance on 564

benchmarks suffers the most when without the Au- 565

dio Q-Former (when only the AST and Aggregator 566

are employed). Audio Q-Former proves to espe- 567

cially effective (over employing CLAP) in AQA. 568

Qualitative Results. Fig. 4 compares GAMA-IT 569

against other LALMs from literature with instances 570

from CompA-R-test. All models compared by de- 571

fault possess audio chat or open-ended AQA capa- 572

bilities. GAMA-IT is able to provide more faithful 573

responses that are both correct and preferred more 574

by humans. We provide additional comparisons in 575

Figs. 8, 9, 10, 11, 12, and our demo page: (where 576

we also show comparisons of dense captioning). 577

5 Conclusion 578

In this paper, we propose GAMA, an LALM with 579

improved audio perception abilities. We integrate 580

an LLM with multiple types of audio representa- 581

tions, which are responsible for providing diverse 582

knowledge about the input audio. GAMA fine-tuned 583

on a mixture of open-source datasets outperforms 584

prior audio-language models by significant margins 585

on 16 datasets spanning 4 tasks. Next, we propose 586

CompA-R, an instruction-tuning dataset that we 587

synthesize using a robust pipeline for endowing an 588

LALM with complex reasoning abilities. GAMA IT- 589

ed on CompA-R outperforms baselines on complex 590

open-ended AQA and dense captioning. 591
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Limitations and Future Work592

GAMA and our experimental setup have several lim-593

itations, including:594

• For the scope of our experiments, we do not595

evaluate and compare music understanding596

extensively. We do not do this as we do not597

train GAMA on diverse and large-scale music598

datasets. We also acknowledge that it is possi-599

ble to employ the GAMA architecture for com-600

prehensive music understanding if trained on601

large-scale music understanding datasets. As602

part of future work, we plan to release a music-603

only version of GAMA, similar to Gardner et al.604

(2024).605

• We do not employ larger LLMs, for exam-606

ple, the 13B versions of the LLaMA family,607

similar to Tang et al. (2024) and Gong et al.608

(2024), due to compute constraints.609

• The audio-encoder(s) in GAMA have more pa-610

rameters than in our baselines. However, we611

also acknowledge that this adds to only a frac-612

tion of the total parameter count of the LALM.613
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A Additional Results921

B Prompts employed for LLMs922

Fig. 5 illustrates the prompt employed for syn-923

thesizing CompA-R. Fig. 6 illustrates the prompt924

employed for evaluating model responses on925

CompA-R. For dense captioning, we just prompt926

the model: Write an audio caption describing the927

sound in detail.928

C GAMA-IT vs GAMA and Evaluation929

Choices.930

GAMA is first fine-tuned on OpenAQA and then931

instruction-tuned on CompA-R for complex rea-932

soning. We call the instruction-tuned version933

GAMA-IT. We do not evaluate GAMA-IT on gen-934

eral tasks like classification and vanilla caption-935

ing 2. GAMA-IT is aligned to generate detailed936

descriptions as part of the complex reasoning stage,937

and we found a lack of metrics and methods that938

can faithfully evaluate such descriptions for classi-939

fication or captioning. For example, the retrieval-940

based classification evaluation method, employed941

extensively in prior work, including ours, uses a942

Sentence-BERT to retrieve the label closest to the943

description for classification evaluation. During944

our preliminary analysis, we found that Sentence-945

BERT, which just performs retrieval using semantic946

matching, is unable to faithfully retrieve the correct947

label despite the caption mentioning the label as948

an audio event. We further investigated CLAP as949

our retrieval model for evaluation and found that950

it suffers from the same limitations. We attribute951

this to the detailed and dense nature of the descrip-952

tions and the fact that these models only focus on953

high-level semantic meaning for retrieval. Our ini-954

tial experiments show that LLM prompting serves955

as a feasible alternative for automatic evaluation956

(beyond human evaluation) using such dense de-957

scriptions, but due to the lack of resources and a958

2Note: Both depend on the description of the input audio
generated by the model

formal framework, we leave this as part of future 959

research. 960

C.1 Soft Prompts 961

We employ the soft prompt only in the instruction 962

tuning stage for learning complex reasoning and 963

not in the fine-tuning step. We do this for 2 rea- 964

sons: (i) Fine-tuned GAMA is only expected to solve 965

generic audio tasks like classification, captioning, 966

etc. Thus, we hypothesize that such high-level 967

semantic cues are not necessary for effective and 968

optimal performance. (ii) Since fine-tuning is done 969

on a large-scale dataset and acoustic event classifi- 970

cation is far from accurate, our soft prompt method 971

might add unwanted noise to the training process, 972

thereby leading to sub-optimal performance. On 973

the contrary, our instruction-tuning stage, which is 974

done on relatively low-resource data and is only 975

responsible for aligning a model for complex rea- 976

soning, is robust to inaccurate audio tags due to our 977

soft-prompting methodology. 978

D Additional Details: Human Study 979

Note. Our institution’s Institutional Review Board 980

(IRB) has granted approval for both human studies 981

presented in the paper. 982

Background and Recruitment for Dense Cap- 983

tioning and CompA-R-test Evaluation. We re- 984

cruit 3 professionals for human evaluation of dense 985

captioning and CompA-R-test evaluation. All 986

these 3 professionals come with at least a Ph.D. 987

in Engineering or Sciences and were asked to use 988

headphones to first analyze the audio and then 989

judge the response quality. The authors of this pa- 990

per gave these annotators 5 examples of responses 991

and the corresponding judgments. The work was 992

done voluntarily and not paid. We refrain from re- 993

cruiting crowd raters as prior research has noticed 994

discrepancies in evaluation by them (Gudibande 995

et al., 2023). More precisely, they have been shown 996

to possess a tendency to rate an answer with a high 997

score only by visualizing the style of answering 998

and not the exact factual information making up 999

the response. 1000

All 3 human annotators score the response be- 1001

tween 1-5 and we report score averaged across the 1002

3. Prior to evaluation all annotators were given at 1003

least 10 examples from the authors of the paper 1004

of generations and their corresponding scores. For 1005

evaluation, only the audio was provided to them 1006

with a software that could play the audio and has 1007
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fields to input the scores.1008

Background and Recruitment for OpenAQA.1009

Since the size of OpenAQA is relatively larger than1010

CompA-R-test, we perform evaluation on Amazon1011

Mechanical Turk similar to Gong et al. (2024).1012

Evaluation was done with a total of 267 unique1013

human evaluators and each generation was scored1014

by 2 evaluators. The same software was used for1015

evaluation as CompA-R-test.1016

E Additional Details: Audio Q-Former1017

E.1 Audio Q-Former Training Details1018

Pre-training Hyper-parameter. For Stage 1 of1019

training, we employ a training batch size of 192,1020

an initial learning rate of 1e-4, a minimum learning1021

rate of 1e-5, and a warm-up learning rate of 1e-6.1022

We do cosine decay as the learning rate scheduling1023

technique. We do warmup for 5000 steps. Stage 11024

was pre-trained on 8 A6000 GPUs for 100 epochs.1025

For Stage 2 of training, we keep the exact same1026

settings as Stage 1 but change the batch size to 128.1027

Fine-tuning. For zero-shot audio classification1028

evaluation, we fine-tune the Audio Q-Former after1029

Stage 1 pre-training on the same corpus presented1030

in Table 3 and using the same Stage 1 objective.1031

The only difference in the fine-tuning step is that1032

we train the AST model, which is otherwise kept1033

frozen in the pre-training stage.1034

Fine-tuning Hyper-parameter. For fine-tuning,1035

we again use the same hyper-parameter setting as1036

Stage 1 pre-training but use a batch size of 64.1037

E.2 Training Dataset Details1038

Table 3 provides dataset statistics of all individual1039

datasets used for training Audio Q-Former. We em-1040

ploy ≈2.2M audio-caption pairs for training with1041

no speech-transcription pairs.1042

Dataset #Audio-Caption Pairs

Audio Set (Gemmeke et al., 2017) 3 1591364
Free Sound (Fonseca et al., 2022) 4 259020
VGGSound (Chen et al., 2020) 5 185161
AudioSet Strong (CompA Version) (Ghosh et al., 2024b) 6 108311
MACS (Morato and Mesaros, 2021) 7 14400
BBC (BBC, 2018) 8 31201
AudioCaps (Kim et al., 2019) 9 48649
Clotho (Drossos et al., 2020) 10 18735
SONISS (Sonniss Limited, 2022) 11 1602
Musical Instrument (Agostinelli et al., 2023) 12 7990
SoundBible (sou, 2023) 13 1232
WavText5K (Deshmukh et al., 2022) 14 4347
MusicCaps (Agostinelli et al., 2023) 15 2645
GTZAN (Tzanetakis et al., 2001) 16 6014
Medley-solos (Lostanlen et al., 2019) 17 732

Table 3: List of open-source datasets used for collating our
final dataset for training ReCLAP with ≈2.2M audio-caption
pairs. All datasets are free to use for research purposes.

E.3 Augmentation Examples 1043

Table 11 illustrates prompt augmentations for two 1044

categories from each dataset. Table 12 illus- 1045

trates caption augmentations for training Audio 1046

Q-Former. 1047

E.4 Hyper-parameter Tuning 1048

E.4.1 Number of the custom prompts N 1049

In this subsection, we show the effect of the num- 1050

ber of custom prompts N on the final zero-shot 1051

audio classification performance. Table 4 com- 1052

pares performance across N={1,2,3,4,5}. As we 1053

see, the optimal performance is achieved at N=2, 1054

and model performance decreases with an increase 1055

in N . This decline is hypothesized to be due to the 1056

introduction of more noise into the process with 1057

each additional caption. 1058

N 1 2 3 4 5
Score 38.1 39.6 39.0 39.4 36.5

Table 4: Impact of N on ZSAC with ReCLAP.

E.4.2 Probability of choosing rewritten 1059

captions 1060

In this subsection, we show the effect of proba- 1061

bility p on the final zero-shot audio classification 1062

performance. 1063

p 0.2 0.4 0.6 0.8
Score 35.1 39.6 38.4 37.0

Table 5: Impact of p on ZSAC with ReCLAP.

1https://research.google.com/audioset/download.html
2https://huggingface.co/datasets/cvssp/WavCaps
3https://www.robots.ox.ac.uk/ vgg/data/vggsound/
4https://research.google.com/audioset/download.html
5https://zenodo.org/records/5114771
6https://sound-effects.bbcrewind.co.uk/
7https://research.google.com/audioset/download.html
8https://zenodo.org/records/4783391
9https://labs.freesound.org/datasets/

10https://www.kaggle.com/datasets/soumendraprasad/musical-
instruments-sound-dataset

11https://soundbible.com/
12https://github.com/microsoft/WavText5K
13https://github.com/seungheondoh/music_caps_dl
14https://www.kaggle.com/datasets/andradaolteanu/gtzan-

dataset-music-genre-classification
15https://zenodo.org/records/1344103
16https://zenodo.org/records/1344103

13



F Baseline Details1064

AudioCLIP. (Guzhov et al., 2022) AudioCLIP is1065

an extension of the CLIP model that can handle au-1066

dio in addition to text and images by incorporating1067

the ESResNeXt audio model in the CLIP frame-1068

work. It was trained on the AudioSet dataset, which1069

contains millions of audio clips with corresponding1070

labels.1071

CLAP. (Elizalde et al., 2023a) CLAP (Contrastive1072

Language-Audio Pre-training), similar to CLIP, is1073

an audio-language model trained with contrastive1074

learning between audio data and their correspond-1075

ing natural language descriptions. Representations1076

are obtained from audio encoders and text encoders.1077

Wu* et al. (2023b) further extend this using a fea-1078

ture fusion mechanism and keyword-to-caption1079

augmentation into the model design to further en-1080

able the model to process audio inputs of variable1081

lengths and enhance performance.1082

CompA-CLAP. (Elizalde et al., 2023a) CompA-1083

CLAP, an extension to CLAP, is trained on com-1084

pletely open-sourced datasets and further fine-1085

tuned using specific algorithms and datasets to im-1086

prove compositional reasoning.1087

Pengi. (Deshmukh et al., 2023) Pengi was one of1088

the first efforts to achieve general-purpose audio un-1089

derstanding through free-form language generation1090

with transfer learning. Precisely, Pengi integrates1091

an audio encoder with a decoder-only pre-trained1092

language model (LM) where the audio features1093

serve as a prefixes for the LM during response gen-1094

eration. Following this, similar to our evaluation1095

strategy, they prompt the model to caption the input1096

audio and calculate the similarity between the cap-1097

tion and the ground-truth audio label for zero-shot1098

classification.1099

LTU. (Gong et al., 2024) As a concurrent work to1100

Pengi, took a step forward and showed that substi-1101

tuting the pre-trained language model with an LLM1102

can induce an LALM with reasoning capabilities.1103

Precisely, they achieved this by integrating an audio1104

encoder to LLaMA (Touvron et al., 2023) and fine-1105

tuning the model on close-ended and open-ended1106

instruction-tuning datasets. Finally, beyond just1107

close-ended tasks, they also evaluate their models1108

on open-ended reasoning tasks and show superior1109

performance compared to baselines.1110

AudioGPT. (Huang et al., 2024) Different from1111

Pengi and LTU, AudioGPT differs in how the au-1112

dio models and LLMs are integrated for complet-1113

ing audio tasks. More specifically, different from 1114

end-to-end training and alignment, they integrate a 1115

closed-source model (ChatGPT) with a pre-trained 1116

audio model, already capable of completing the re- 1117

quired task, using a modality-transfer transformer 1118

τ . The integration or interaction between the two 1119

models is accomplished using the prompts. Ad- 1120

ditionally, AudioGPT is capable of solving more 1121

tasks, which include human verbal speech, beyond 1122

just non-verbal speech like Pengi and LTU. 1123

SALMONN. (Tang et al., 2024) SALMONN fol- 1124

lows a similar architecture to LTU and Pengi and 1125

does prefix conditioning with an LLM. However, 1126

in addition to an audio encoder, they also integrate 1127

a speech encoder for speech or verbal audio under- 1128

standing. Precisely, the audio and speech features 1129

are concatenated before feeding them as prefixes 1130

to the LLM. SALMONN shows unique reasoning 1131

capabilities over speech inputs overlayed with non- 1132

verbal audio. 1133

Qwen-Audio. (Chu et al., 2023) Qwen fol- 1134

lows a similar architecture to LTU, Pengi, and 1135

SALMONN, i.e., adding audio features as prefix 1136

to the model, and additionally employs a novel 1137

multi-task learning formulation for pre-training. 1138

More specifically, they append specific tags to spe- 1139

cific parts of the instruction-response text pairs and 1140

train the model on diverse speech, non-speech, and 1141

music tasks. Post-pre-training, similar to GAMA, 1142

employs an instruction-tuning stage for alignment. 1143

The resultant model, Qwen-Audio-Chat, is able 1144

to respond to respond to diverse queries about the 1145

input speech and audio. 1146

G Additional Details: CompA-R 1147

G.1 Annotation and Annotator Details 1148

As mentioned earlier, CompA-R was cleaned and 1149

CompA-R-test was verified by the paper authors 1150

themselves. To preserve anonymity, we briefly pro- 1151

vide some details about the authors. All authors 1152

of the paper are either enrolled in or have gradu- 1153

ated from a graduate degree (MS and/or Ph.D.). 1154

All authors have at least 2 years of professional 1155

research experience at a academic or industry lab. 1156

Their research experience spans across speech, au- 1157

dio and language processing. This provides them 1158

with adequate knowledge to faithfully complete the 1159

process. 1160

For CompA-R-test verification, after at least 3 1161

authors verified the test set, with proper rationales 1162

(which they were also asked to provide) the lead 1163
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author cross-verified all instances. The verification1164

was done manually on local laptops and no kind of1165

application was used which was made specifically1166

for this. More details will be provided on camera-1167

ready.1168

H Additional Details: General1169

H.1 GAMA Training Dataset Details1170

Table 6 shows statistics of all datasets used for fine-1171

tuning and instruction-tuning GAMA. Table 7 shows1172

statistics of CompA-R, which is sourced entirely1173

from the AudioSet-Strong dataset.1174

Dataset # Audio Samples # QA Pairs

AudioSet-Strong 102K 636K
AudioSet 500K 441K
VGGSound 184K 336K
FSD50K 41K 82K
AudioCaps 46K 90K
FreeSound 91K 91K
Clotho 5K 32K
Sound Bible 1.2K 12K
NSynth(Instrument+Source) 301K 602K
Clotho AQA 1.5K 4.2K
MusicCaps 5.5K 2.8K
MusicQA 13.1K 118k
Magna 51.7K 51.7K
Sum (Closed-Ended) 1,217K 2,555K

AudioSet-Strong (Open-Ended) 91K 901K
AudioSet-20K 19K 184K
VGGSound (Open-Ended) 184K 907K
FSD50K (Open-Ended) 41K 403K
AudioCaps (Open-Ended) 46K 478K
Freesound (Open-Ended) 91K 791K
Clotho (Open-Ended) 5K 89K
Sound Bible (Open-Ended) 1.2K 10K
Sum (Open-Ended) 453K 3,764K

Total 1,670K 6,319K

Table 6: The statistics of the OpenAQA dataset.

Dataset # Audio Samples # QA Pairs

AudioSet-Strong 62613 200234

Total 62613 200234

Table 7: The statistics of the CompA-R dataset.

H.2 GAMA Evaluation Dataset Details1175

Table 8 shows statistics of all datasets used for1176

evaluating GAMA. Table 10 shows statistics of1177

CompA-R-test, which is sourced entirely from the1178

AudioSet-Strong dataset.1179

1https://www.kaggle.com/datasets/modaresimr/sound-
event-detection-audioset-strong

2https://zenodo.org/records/4060432
3https://www.tensorflow.org/datasets/catalog/nsynth
4https://zenodo.org/records/6473207

Dataset # Instances

AudioSet-Strong 18 102K
AudioSet 500K
VGGSound 184K
FSD50K 19 41K
AudioCaps 46K
FreeSound 91K
Clotho 5K
Sound Bible 1.2K
NSynthinstrument

20 4K
NSynthsource

21 4K
Clotho AQA 22 1.3K
GTZAN 3K
Medley-solos-DB 12.2K

Table 8: The statistics of the datasets used for evaluation
of GAMA.

Dataset Evaluation Metric

Classification (zero-shot)
VocalSound (VS) (Gong et al., 2022) Acc.
TUT 2017 (TUT) (Mesaros et al., 2018) Acc.
Beijing Opera (BJO) (Tian et al., 2014) Acc.
GTZAN (GTZ) (Park et al., 2022) Acc.
Medley-solos-DB (MDB) (Lostanlen et al., 2018) Acc.
Classification (weak zero-shot)
DCASE2017 Task 4 (DCASE) (Mesaros et al., 2017) Mi-F1
ESC-50 (Piczak, 2015) Acc.
Classification (seen)
VGGSound (VGG) (Chen et al., 2020) Acc.
FSD50K (FSD) (Fonseca et al., 2021) mAP
AudioSet (AS) (Gemmeke et al., 2017) mAP
NSynth (NS) (Engel et al., 2017) Acc.
Captioning (vanilla & dense)
AudioCaps (Kim et al., 2019) SPICE & Human
Clotho (Drossos et al., 2020) SPICE & Human
AQA (close-ended)
Clotho AQA (Lipping et al., 2022) Acc.
AQA (open-ended)
OpenAQA (Gong et al., 2024) Human
AQA (complex open-ended)
CompA-R-test (ours) GPT-4 & Human

Table 9: List of evaluation datasets and their corresponding
evaluation metrics for GAMA.

H.3 Other Details 1180

Model Parameters: GAMA has a total of ≈7B 1181

parameters. Out of this, LLaMA-2-7B has 32 1182

transformer-encoder layers and ≈6.7B parameters, 1183

the Audio Q-Former has ≈280M parameters, and 1184

our LoRA modules introduce 4.2 M learnable pa- 1185

rameters for fine-tuning. The AST used in our 1186

experiments (audio-encoder of CAV-MAE (Gong 1187

et al., 2023)) has ≈ 85M parameters with 12 1188

transformer-encoder layers, 768-hidden-state, and 1189

12 attention-heads. 1190

Compute Infrastructure: All our experiments are 1191

conducted on four NVIDIA A6000 GPUs. Training 1192

GAMA required four days of continuous training. 1193

Training GAMA-IT requires 4 hours of training. 1194

Pre-training Audio Q-Former requires 7 days each 1195

for stages 1 and 2. 1196
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Dataset # Audio Samples # QA Pairs

CompA-R-test 500 1561

Total 500 1561

Table 10: The statistics of the CompA-R-test dataset.

Implementation Software and Packages: We im-1197

plement all our models in PyTorch 23 and use the1198

HuggingFace 24 implementations of T5large and the1199

original implementation of HTSATtiny
25.1200

For our baselines, we use the original1201

GitHub repository provided by the authors:1202

LAION-CLAP 26, CompA-CLAP 27, CLAP 28,1203

Wav2CLIP 29, AudioCLIP 30, MMT 31, ML-1204

ACT 32, Pengi 33, LTU 34, AudioGPT 35,1205

SALMONN 36, Qwen-Audio 37.1206

Potential Risks. GAMA might encode biases from1207

the pre-trained LLM or during its fine-tuning stage.1208

Additionally, Audio Q-Former used as a backbone1209

for audio-to-text/music generation, might generate1210

synthetic audio that is misused.1211

23https://pytorch.org/
24https://huggingface.co/
25https://github.com/RetroCirce/HTS-Audio-Transformer
26https://github.com/LAION-AI/CLAP/tree/main
27https://github.com/Sreyan88/CompA
28https://github.com/microsoft/CLAP
29https://github.com/descriptinc/lyrebird-wav2clip
30https://github.com/AndreyGuzhov/AudioCLIP
31https://github.com/akoepke/audio-retrieval-benchmark
32https://github.com/akoepke/audio-retrieval-benchmark
33https://github.com/microsoft/pengi
34https://github.com/YuanGongND/ltu
35https://github.com/aigc-audio/audiogpt
36https://github.com/bytedance/salmonn
37https://github.com/QwenLM/Qwen-Audio
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# Prompt 1

I will provide you with 2 different types of information about a 10-second audio clip:

1. A list where each comma-separated element indicates the individual events occurring in the audio at various time segments. For example, '(Speech-
0.0-0.64)' would mean human speech between 0.0 second to 0.64 second.
2. A caption of the audio describing in a brief and abstract manner the scene in which the audio takes place.

I want you to act as a Prompt Generator. According to the event information and the caption, design some instructions and corresponding responses. The
instruction should be designed in a way such that it can be answered only from the audio without the caption and any other detail provided. The
instruction should involve one or more hops of complex knowledge and complex reasoning based on the scene created by the audio and the correspnding
caption. Ensure that the knowledge and reasoning chains in the instructions are precise and sufficiently challenging, to the extent that only well-
educated people and experts in the respective field can provide adequate responses.

The instructions must meet the following conditions:
1. Do NOT use phrases like 'according to the caption' in both the questions and answers; you should ask and answer as if you were observing the image
by yourself.
2. The questions and answers should be as diverse as possible.
3. Please don't ask some simple questions about the intensity of the audio or the gender speaking the utterance; your questions must involve some
knowledge.
4. Your instructions should not be answered directly based on the image and your instructions. Instead, it requires the test-taker to carefully observe
the image and have a deep knowledge of the content within the image in order to answer correctly.
5. If a question cannot be answered, please do not ask.

Come up with 3 diverse instructions for the knowledge topics above with different language styles and accurate answers. The instructions should contain
interrogative sentences and declarative sentences. The answers should be less than 30 words.

Output format, which is a list of jsons:

[{'Instruction': instruction example, 'Answer': answer example, 'Knowledge topic': The specific knowledge topic}, {'Instruction': instruction example,
'Answer': answer example, 'Knowledge topic': The specific knowledge topic}, …]
Here are some examples of inputs and outputs:

Input list of audio events: ['(Speech-0.0-0.64)', '(Mechanisms-0.0-10.0)', '(Dog-0.221-0.547)', '(Dog-0.803-0.966)', '(Generic impact sounds-0.885-
1.129)', '(Tick-0.99-1.083)', '(Dog-1.432-1.665)', '(Speech-1.537-4.901)', '(Dog-1.921-2.119)', '(Dog-2.456-3.202)', '(Dog-3.434-3.597)', '(Dog-4.016-
4.121)', '(Dog-4.936-5.39)', '(Generic impact sounds-5.204-5.611)', '(Dog-5.774-5.972)', '(Speech-5.984-6.787)', '(Tick-6.508-6.636)', '(Dog-6.717-
8.266)', '(Generic impact sounds-7.649-8.277)', '(Laughter-8.347-9.488)', '(Dog-9.767-10.0)']
Caption: A baby cries while a woman laughs, creating a joyful and lively atmosphere in a domestic setting.

Output list of jsons: [{'Instruction': 'Analyze the sounds in the audio and determine the most likely cause of the laughter heard towards the end of
the recording. Consider the potential interactions between the different sound sources and their temporal overlaps.' , 'Answer': 'The laughter likely
results from the playful interaction between the dogs and the baby, as indicated by the overlapping sounds of dogs and the baby's presence.',
'Knowledge topic': 'Human and Animal Behavior Interpretation'}, {'Instruction': 'From the given audio, infer the type of domestic setting depicted in
the scene. Base your inference on the variety and sequence of sounds, particularly focusing on the interaction between the human speaking, the dog
barking, and other background noises that may be there.', 'Answer': 'The setting is likely a home with an active family environment, evidenced by the
continuous presence of dogs, speech, and everyday household sounds.', 'Knowledge topic': 'Environmental Acoustics and Domestic Soundscapes'},
{'Instruction': 'Considering the duration and placement of speech and laughter in the audio, infer the possible emotional dynamics between the
speakers. How do these elements interact to shape the scene's atmosphere?', 'Answer': 'The scene likely transitions from a more chaotic or lively mood
and finally to a more joyful and relaxed atmosphere.'}]

Input list of audio events: ['(Insect-0.0-0.724)', '(Mechanisms-0.0-9.777)', '(Female speech, woman speaking-0.737-1.434)', '(Bird vocalization, bird
call, bird song-1.243-1.775)', '(Insect-2.376-3.182)', '(Female speech, woman speaking-3.386-3.509)', '(Insect-4.397-5.23)', '(Dog-7.906-8.78)',
'(Surface contact-8.603-9.654)']
Caption: 'Birds chirp in the distance as a dog barks, creating a lively atmosphere in a peaceful outdoor setting.'
Output list of jsons: [{'Instruction': 'What time of day this scene is likely set in?.' , 'Answer': 'The concurrent presence of insect and bird sounds
suggests a natural, outdoor environment, possibly during early morning or evening when such wildlife is typically active.', 'Knowledge topic':
'Environmental Sound Analysis and Wildlife Behavior'}, {'Instruction': 'Analyze the presence and timing of the dog's barking in the latter part of the
audio. Considering the preceding sounds and infer the dog's possible reaction or behavior in this context.', 'Answer': 'The dog's barking following the
peaceful nature sounds and speech could indicate a response to a new stimulus, possibly a visitor or an animal in the area.', 'Knowledge topic':
'Animal Behavior Analysis in Diverse Sound Environments'}, {'Instruction': 'Deduce the woman's likely activity or purpose in this setting.', 'Answer':
'The woman might be engaging in an outdoor activity like gardening or bird-watching.','Knowledge topic': 'Human activity recognition through scene
analysis' }]

Input list of audio events: ['(Music-0.0-10.0)', '(Male singing-0.0-10.0)', '(Male speech, man speaking-0.354-1.364)', '(Male speech, man speaking-
7.674-10.0)', '(Crowd-7.681-10.0)']
Caption: 'A basketball bounces while music plays, and a man speaks in an indoor stage environment.'
Output list of jsons:  [{'Instruction': 'Considering the presence of crowd sounds towards the end of the audio, deduce the nature of the event taking
place. How do the elements of music, singing, and speech suggest the type of event and audience involvement?', 'Answer': 'The event seems to be a live
performance or concert, with the crowd's reaction indicating an engaged and responsive audience, typical in such settings.', 'Knowledge topic': 'Event
Atmosphere Analysis'}, {'Instruction': 'Given the continuous presence of music and male singing throughout the audio, analyze the role of the man's
speech in shaping the atmosphere of the scene. How does his speech, interspersed with music and singing, contribute to the overall environment?',
'Answer': 'The man's speech likely serves as commentary or narration, adding a personal or interactive element to the musical performance, enhancing
the audience's engagement.', 'Knowledge topic': 'Music and Speech Dynamics'}, {'Instruction': 'Identify the genre of music being played and explain how
it complements the atmosphere of the indoor stage environment.', 'Answer': 'The genre is likely upbeat or energetic, enhancing the lively ambiance of a
sports or performance event in an indoor setting.','Knowledge topic': 'Music Genre Detection and Scene Analysis'}]

Input list of audio events: {timestamp events}
Caption: {caption}
Output list of jsons:

Figure 5: Prompts/Instructions used for caption augmentation with LLaMa-7B. Prompts are indexed according to the description
in Section 3.2.
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Complex AQA Evaluation Prompt

Please act as an impartial judge and evaluate the quality of the response provided with respect
to the details provided. You will rate the quality of the response on multiple aspects, such as
Helpfulness, Clarity, Factuality, Depth and Engagement. The response has been provided by an AI
agent for a query related to an input audio, which the agent can perceive. You will be provided
with 4 kinds of information for evaluating the response:
1. A list where each comma-separated element indicates the individual events occurring in the
audio at various time segments. For example, '(Speech-0.0-0.64)' would mean human speech
between 0.0 second to 0.64 second.
2. A caption of the audio describing in a brief and abstract manner the scene in which the
audio takes place.
3. The question asked to the AI agent related to the audio.
4.An answer provided by an expert judge which you can consider as a reference.
5. An answer by the AI agent. 

##Query: {query}

## Evaluate
### Aspects  
- Helpfulness: Rate the response based on how well it addresses the users query about the audio
and provides a relevant answer. A score of 5 indicates the answer fully aids the user, while a
1 suggests it offers little to no help. 
- Clarity: Rate the response based on how well-structured it is, with ideas presented in a
clear and coherent manner. A high score of 5 means the answer is clear and logically
structured, while a 1 suggests a disjointed or confusing reply.
 - Correctness: Evaluate the correctness or accuracy of the response provided with respect to
the information provided to you. A perfect 5 indicates the response is entirely correct and
accurate, while a 1 suggests it has significant errors or has not provided an answer to the
question asked at all.
 - Depth: Determine the level of detail and thoroughness in the response. A score of 5 means
the answer delves deeply into the aspects of the input image for answering the question, while
a 1 indicates it barely scratches the surface. 

### Format
### Given the query and the extra information about the audio provided (the caption and comma-
separated list of individual individual events), please rate the quality of the output by
scoring it from 1 to 5, individually on **each aspect**. You are allowed to use all 3
information provided to you about the audio, in any way you want, to judge the response. 

Now, please output your scores in the following json format by filling in the placeholders in
[]. 
  { 'helpfulness': { 'reason': '[your rationale]', 'score': '[score from 1 to 5]' }, 'clarity':
{ 'reason': '[your rationale]', 'score': '[score from 1 to 5]' }, 'correctness': { 'reason':
'[your rationale]', 'score': '[score from 1 to 5]' }, 'depth': { 'reason': '[your rationale]',
'score': '[score from 1 to 5]' }, 'engagement': { 'reason': '[your rationale]', 'score':
'[score from 1 to 5]' } } 

Only return the json and nothing else."

Figure 6: Prompts/Instructions used for evaluating the answers of models on CompA-R benchmark with GPT-4 as a judge.

Caption Evaluation Prompt

I want you to act as a Caption Evaluator. I will provide you with an audio caption generated by
an AI agent. The agent was asked to generate a dense and detailed caption of the audio. To
evaluate the caption, I will provide you with 2 different types of information about the 10-
second audio clip:

1. A list where each comma-separated element indicates the individual events occurring in the
audio at various time segments. For example, '(Speech-0.0-0.64)' would mean human speech
between 0.0 second to 0.64 second.
2. A scene caption of the audio describing in a brief and abstract manner the scene in which
the audio takes place. Using these two pieces of information, assign a score of 1-10 to the
caption, where 1 is the lowest score and 10 is the highest score. Your evaluation should be
based on the detailedness, correctness, and bluntness of the caption. Return a JSON with a
single key 'score', where the value of the key is the score. Here are the details: {query}

Figure 7: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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The man is likely giving instructions to passengers or announcing a station stop. He may also be explaining the
train's route or destination.

Question: Based on the combination of subway sounds and male speech, suggest the actions the man might
be performing at this time.

The man may be giving a lecture or presentation in the subway car while people are moving around him,
possibly taking notes.

It is difficult to determine the exact actions the man might be performing based solely on the combination of
subway sounds and male speech. However, it is possible that the man is giving a public announcement or
warning to the passengers on the subway.

LT
U

SA
L

M
O

N
N

. . . . . .

It is a man.

Pe
ng

i

HE : 1

HE : 5

HE : 1

HE : 3

Figure 8: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.

The woman is likely bathing her child, as indicated by the sound of a bathtub filling up with water.

Question: Given the variety of sounds including mechanisms, generic impact sounds, and water splashes,
determine the most probable activity occurring during the audio clip. Consider the presence of baby laughter
in your analysis.

The most probable activity occurring during the audio clip is a family or group of people having fun together,
possibly playing with babies or toddlers. The mechanical sounds could be from a playground or other outdoor
equipment.

Based on the variety of sounds including mechanisms, generic impact sounds, and water splashes, as well as
the presence of baby laughter, the most probable activity occurring during the audio clip is likely a bath or a
water-related activity.
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Figure 9: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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The tap dancing is likely performed by a professional or an expert. The rhythm and tempo are consistent
throughout the entire duration of the clip.

Question: Inferring from the nature and arrangement of sounds, what can be said about the skill level of the
tap dancer?

The skill level of the tap dancer cannot be inferred from the audio clip.

The skill level of the tap dancer can be inferred from the nature and arrangement of sounds. If the sounds are
complex and intricate, it suggests that the dancer is highly skilled. On the other hand, if the sounds are simple
and repetitive, it suggests that the dancer may not be as skilled.
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Figure 10: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.

The sound is a drill, which is usually used for woodwork.

Question: Determine the type of power tool being used in this woodworking process based on the available
sounds. Consider the mechanisms sounds.

Based on the available sounds, it is difficult to determine the exact type of power tool being used. However,
the sharp and metallic sound suggests that a circular saw or a hand drill might be present in the scene.

Based on the available sounds, it is likely that a circular saw is being used in this woodworking process. The
circular saw is a power tool that uses a spinning circular blade to cut wood, and the sound of the blade cutting
through the wood can be heard in the audio. Additionally, the sound of the motor and other mechanisms of
the circular saw can also be heard in the audio.
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Figure 11: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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The truck is probably a diesel, as indicated by the heavy engine sounds and the absence of a typical gasoline
engine's characteristic high-pitched whine at idle.

Question: Analyze the audio and infer the likely engine type based on the sound of acceleration and revving.

Based on the sound of acceleration and revving, it is likely that the engine type is a high-performance or
sports car engine.

The audio contains the sound of an engine revving and accelerating. Based on this, it is likely that the engine
type is a high-performance gasoline engine, such as a V8 or a turbocharged four-cylinder. The sound of the
engine revving and accelerating is a common characteristic of high-performance engines, which are designed
to produce a lot of power and torque. The sound of the engine can vary depending on the specific make and
model of the vehicle, but the general characteristics of a high-performance engine can be identified by the
sound of the engine revving and accelerating.
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Figure 12: Prompts/Instructions used for evaluating the captions generated by models Clotho and AudioCaps with GPT-4 as a
judge.
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Dataset Category Acoustic Property Captions

AudioSet Baby cry,
infant cry

1: "a high-pitched, piercing wail"
2: "a persistent, rhythmic sobbing"

1. A tiny voice pierced the stillness of the night, demanding attention with its high-pitched piercing wail.
1. In the midst of the bustling market, a high-pitched wail rose above the chatter, signaling a tiny dissenter among
us.
2. The persistent, rhythmic sobbing of a newborn punctuates the night’s silence.
2. Amidst the rustling leaves, a baby’s rhythmic sobs weave an unexpected lullaby.

Stomach
rumble

1: "a low, gurgling growl"
2: "a grumbling undercurrent"

1. As she leaned in for the kiss, a low, gurgling growl betrayed her pre-date fasting.
1. In the midst of the exam, a low, gurgling growl echoed from her stomach, punctuating the tension.
2. As the classroom fell into a hushed anticipation of the next lecture, a grumbling undercurrent betrayed the
student’s skipped breakfast.
2. Amidst the solemnity of the library, a grumbling undercurrent served as a comical reminder of lunchtime’s
approach.

ESCC50 siren 1: "Continuous, shrill alarm"
2: "Ear-splitting, cyclic blare"

1. The night was pierced by the continuous, shrill alarm of the siren, signaling an urgency that couldn’t be ignored.
1. The relentless, shrill alarm of the siren wove through the corridors of the hospital, prompting swift movements
from the staff.
2. The ear-splitting, cyclic blare cut through the night as the ambulance raced down the street.
2. The ear-splitting, cyclic blare of the air raid siren cast a shadow of dread over the city.

sheep 1: "bleating",
2: "baaing"

1. In the tranquil meadow, a chorus of woolly creatures serenaded the dawn with their gentle bleating.
1. The shepherd smiled as the flock’s bleating echoed through the valley, signaling a return to the fold.
2. A chorus of baaing accompanied the farmer as he made his morning rounds in the misty fields.
2. Under the starry sky, the gentle baaing of the flock blended with the whispers of the night.

NSynth flute

1: "Melodious and silvery, carrying a
light, airy tune that seems to float on
the breeze.",
2: "Clear and resonant, with a pure
tone that sings above the orchestra like
a bird in the morning sky.

1. The flute’s melody weaved through the garden, mingling with the rustle of leaves.
1. Amidst the hustle of the market, the silvery flute tune danced above the clamor, a ribbon of tranquility.
2. The flute’s crystalline melody soared above the orchestra, a lark greeting the dawn.
2. Amidst the rustle of the forest, the flute’s song danced through the leaves, pure and high.

bass

1: "Thumping, providing a rhythmic
pulse that can drive the beat of mu-
sic.",
2: "Booming, with a powerful, per-
vasive quality that can reverberate
through a space."

1. The bass pulsated through the dance floor, a heartbeat synchronizing every dancer’s move.
1. Amidst the serene silence of the night, the bass from the distant festival throbbed like a gentle earthquake.
2. The bass pulsated like a second heartbeat, filling the room with its unyielding presence.
2. As the bassline dropped, it seemed to command the very air, a force unseen yet unforgotten.

FSD50K Slam

1: "an abrupt, resonant boom that star-
tles anyone nearby"
2: "a sharp, impactful smack as two
hard surfaces collide with force"

1. The mailbox lid clapped shut, a resonant signal marking the departure of the day’s correspondence.
1. The oven door’s heavy thud resonated in the kitchen, a prelude to the aroma of freshly baked bread.
2. The kitchen was filled with the aroma of spices and the sharp smack of dough being forcefully thrown onto the
countertop.
2. In the crisp morning air, the sharp smack of the newspaper hitting the doorstep announced the arrival of daily
news.

Dishes,
pots, and
pans

1: "Clanging and clattering"
2: "Metallic clinking and clunking"

1. A symphony of clanging and clattering announces the busy bustle of a restaurant kitchen in full swing.
1. The rhythmic clanging and clattering of pots and pans punctuate the air as grandma orchestrates her holiday feast.
2. The metallic clinking and clunking heralded the start of the dinner rush in the bustling restaurant kitchen.
2. A symphony of metallic clinking and clunking rose from the sink as grandma washed up after the family feast.

TUT Ur-
ban

bus 1: "a deep, rumbling engine", "2": "the
low, steady hum of the diesel motor"

1.The city pulse beats with a deep, rumbling engine, heralding the arrival of the morning commute.
1. A gentle giant purrs in the stillness of dawn, its deep, rumbling engine announcing the start of a journey.
2. Market stalls buzz with life, their vibrant colors and smells underscored by the bus’s diesel hum rolling down the
avenue.
2. Leaves rustle in the autumn breeze, a natural chorus to the bus’s diesel motor humming along the cobblestone
path.

residential
area

1: "The symphony of children’s laugh-
ter and chatter fills the air, punctuated
by the occasional bark of a dog and the
hum of lawn mowers in the distance."
2: "A serene hush blankets the neigh-
borhood, broken occasionally by the
soft whoosh of passing cars and the
rustle of leaves stirred by a gentle
breeze.",

1. The neighborhood comes alive with the melody of playful banter and the sporadic chorus of canines.
1. Amidst the gentle drone of distant lawn mowers, the air vibrates with juvenile mirth and convivial exchanges.
2. The neighborhood rests under a tranquil silence, punctuated now and then by the whisper of tires on asphalt and
the soft dance of leaves in the wind.
2. Calmness envelops the streets, save for the faint hum of vehicles gliding by and the tender shuffling of foliage in
the zephyr’s caress.

Urban-
Sound
8K

air condi-
tioner

1: "a steady humming"
2: "a low, monotonous droning"

1. The room filled with the steady humming of the air conditioner as they focused intently on their chess match.
1. A steady humming enveloped the library, where pages turned almost in rhythm with the air conditioning’s
constant song.
2. The air conditioner’s low, monotonous droning became the unlikely lullaby for a midsummer’s nap.
2. Amid the quiet study hall, the air conditioner’s low, monotonous droning was a steady companion to the students’
focused brows.

gun shot

1: "A loud, sharp crack that echoes
through the air.
2: "A thunderous boom that startles
and reverberates."

1. The night’s silence shattered with a loud, sharp crack echoing through the air.
1. A burst of sudden, sharp noise split the tranquil afternoon, reverberating off the canyon walls.
2. A thunderous boom startles a flock of birds into the sky, their wings flapping frantically against the silence that
had just been.
2. The night’s silence was shattered by a boom, reverberating through the alleyways and causing stray cats to scurry.

VGG
Sound

mouse
squeak-
ing

1: "a high-pitched, sharp chirp"
2: "a soft, repetitive squeal"

1. In the moonlit barn, a tiny silhouette pauses to release its high-pitched, sharp chirp, disturbing the stillness of the
hay-strewn loft.
2. Amidst the rustling leaves, a diminutive creature contributes its sharp chirp to the dusk chorus, a minuscule
soloist in nature’s vast orchestra.
3. A soft, repetitive squeal punctuated the silence of the old attic.
4. The cheese plate on the kitchen counter became the stage for a soft, repetitive squeal.

typing
on type-
writer

1: "a rhythmic series of sharp clicks"
2: "a steady clatter of keys striking
paper"

1. Fingers dance across keys, a rhythmic series of sharp clicks punctuating the silence of the library.
1. In the attic, a story unfolds to the staccato beat of a rhythmic series of sharp clicks.
2. Each steady clatter of keys striking paper weaves a tapestry of words, painting stories on the blank canvas.
2. In the dimly lit corner of the library, the rhythmic dance of metallic hammers against the page composes a silent
symphony.

Table 11: Examples of prompt augmentations.

22



Original Caption Augmented caption

A man speaks followed by the sound of shuffling cards in a small
room.

1. A deep, resonant voice fills the small room, accompanied by the soft shuffle of cards as they change hands, creating an
intimate and deliberate atmosphere.
2. The sound of a man’s voice echoes through the small space, punctuated by the subtle rustle of cards as they are shuffled
and arranged, invoking a sense of purposeful deliberation.
3. A deep voice speaks, followed by the subtle shuffle of cards, creating an intimate and anticipatory atmosphere in the small
room.
4. The gentle rustle of cards breaks the silence, punctuated by a man’s voice, evoking a sense of anticipation and private
reflection in the cozy space.

A person strums an acoustic guitar, creating melodic music with the
sound of a bell ringing in the background.

1. Soothing melodies flow from the acoustic guitar, harmonizing with the soft chime of a distant bell, crafting a peaceful
ambiance.
2. The acoustic guitar’s strings vibrate with grace, weaving a melodic tapestry that intertwines with the gentle ring of a bell,
transporting the listener to a serene realm.
3. The gentle strumming of an acoustic guitar weaves a melodic tapestry, intertwined with the soft chime of a background
bell, creating a soothing and harmonious atmosphere.
4. The rhythmic plucking of an acoustic guitar crafts a lively and uplifting melody, complemented by the delicate ringing of a
background bell, transporting the listener to a serene and joyful realm.

Dogs bark while people talk in the background, creating a lively
atmosphere in a field.

1. Lively chatter and joyful barks fill the air, capturing the playful spirit of a sunny day in a field.
2. The rhythmic sounds of dogs barking and people talking blend together, creating a vibrant and lively ambiance in the open
field.
3. The chatter of people and the joyful barks of dogs fill the air, creating a vibrant and lively atmosphere in the field.
4. The sound of playful dogs and lively conversation fills the field, evoking a sense of happiness and energy.

A man’s voice is heard speaking over a radio as a vehicle passes by
in the background.

1. A clear, crisp voice pierces the airwaves, intertwining with the distant hum of a vehicle, creating an engaging audio
experience.
2. The man’s voice on the radio blends seamlessly with the subtle rumble of a passing vehicle, forming a captivating auditory
tapestry.
3. A voiceover speaks over a radio, complemented by the distant hum of a vehicle passing by, creating a dynamic and
engaging audio experience.
4. A man’s voice broadcasts over the radio, intertwining with the subtle rumble of a vehicle in the background, forming a
captivating audio landscape.

A woman speaks while a bird chirps in the background, creating a
tranquil atmosphere in a natural setting.

1. A gentle voice echoes through the forest, harmonizing with the chirping of birds, creating a soothing ambiance.
2. The sound of a gentle voice blends seamlessly with the melodic chirping of birds, transporting the listener to a serene
natural setting.
3. The woman’s gentle voice blends with the soothing chirps of a bird, creating a serene ambiance reminiscent of a peaceful
afternoon in nature.
4. The woman’s words are accompanied by the melodic chirping of a bird, transporting the listener to a calming and
picturesque outdoor setting.

Water rushes as people talk in the background near a hot spring,
creating a serene ambiance.

1. Soothing waters create a peaceful ambiance, punctuated by the gentle chatter of people nearby, as if they are harmonizing
with the soothing sounds of the hot spring.
2. The calm trickle of water creates an intimate atmosphere, with the soft murmur of voices in the background adding a sense
of connection and tranquility to the space.
3. A soothing, babbling sound fills the air as people converse near a steaming hot spring, creating a tranquil atmosphere.
4. The gentle gurgling of water intertwines with the chatter of people in the background, crafting a peaceful and relaxing
ambiance.

Soft music plays in the background as a speech is heard faintly,
creating a calm and peaceful atmosphere.

1. A soothing melody floats in the background, complementing the faint speech, creating a tranquil ambiance.
2. The soft strains of music blend with the subtle speech, fostering a sense of serenity and calmness in the atmosphere.
3. Soothing tunes fill the air, complemented by a gentle speech, creating an atmosphere of tranquility and serenity.
4. Mellow music and soft speech blend together, crafting a calming environment that soothes the senses.’

A car engine revs up and then slows down, creating a vroom sound,
as the vehicle accelerates in the audio.

1. The car’s engine purrs and then decelerates, emitting a smooth and powerful vroom sound as it shifts gears, creating a
dynamic and energizing atmosphere.
2. The vehicle’s engine roars to life, producing a bold and intense vroom sound as it speeds up, then gradually slows down,
immersing the listener in a thrilling and exhilarating experience.
3. The car’s engine purrs powerfully, then decelerates, creating a smooth and steady vroom sound as the vehicle gains speed.
4. The car’s engine roars to life, building momentum with a series of sharp vroom sounds before shifting gears and slowing
down.

Background music plays softly as the theme music gradually fades
in, creating a melodic ambiance in an arena/performance setting.

1. The arena comes alive with a subtle, soothing melody that gradually builds in intensity, creating an electrifying ambiance.
2. The soft strains of background music fill the air, setting the tone for an exhilarating performance in a vibrant arena setting.
3. Soft, melodic strains fill the air as the theme music subtly builds, establishing a harmonious ambiance in the arena.
4. The arena comes alive with a gentle, orchestral tune that gradually gains momentum, creating an uplifting and energetic
atmosphere.

Table 12: Examples of caption augmentations.
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Instruction-Response Pairs AudioSet ID Caption Timestamp Events
Instruction:Analyze the audio to
understand the potential emotional
state or mood of the man. How
does the progression from typing to
speech to chewing reflect his tran-
sition through different phases of
work or activity? Output:The man
initially seems engaged and fo-
cused during the typing and speak-
ing portion, which might then tran-
sition into relaxation during the
break, suggested by the chewing
sound.

YCecEf0abd4Y A man speaks
while typing on
a keyboard in
a small room,
followed by the
sound of chew-
ing.

’(Generic impact sounds-0.0-1.037)’,
’(Background noise-0.0-10.0)’,
’(Generic impact sounds-1.191-
1.421)’, ’(Generic impact sounds-
2.01-2.202)’, ’(Generic impact
sounds-2.343-2.574)’, ’(Male
speech, man speaking-2.727-3.393)’,
’(Generic impact sounds-3.163-
3.406)’, ’(Generic impact sounds-
3.585-3.905)’, ’(Generic impact
sounds-4.136-4.379)’, ’(Breathing-
4.405-4.917)’, ’(Generic impact
sounds-4.93-5.288)’, ’(Generic im-
pact sounds-5.442-5.608)’, ’(Generic
impact sounds-5.736-6.12)’,
’(Generic impact sounds-6.274-
6.569)’, ’(Breathing-6.825-7.26)’,
’(Generic impact sounds-6.863-
7.042)’, ’(Male speech, man
speaking-7.81-8.873)’, ’(Generic
impact sounds-8.041-8.348)’,
’(Breathing-9.001-9.36)’, ’(Human
sounds-9.014-9.181)’, ’(Generic
impact sounds-9.309-9.565)’,
’(Scrape-9.449-10.0)’

Instruction:Considering the di-
verse array of sounds present in the
audio, from insects to birds to a
dog, infer the type of ecosystem
this outdoor setting might repre-
sent. What does the combination
of these sounds tell us about the
biodiversity and potential human
impact in this area? Output:The
ecosystem is likely a suburban or
rural area with a mix of wildlife
and human habitation, indicated by
the variety of animal sounds and
intermittent female speech.

YcQiEI7HLGJg Birds chirp in
the distance as
a dog barks, cre-
ating a lively
atmosphere in
a peaceful out-
door setting.

’(Insect-0.0-0.724)’, ’(Mechanisms-
0.0-9.777)’, ’(Female speech,
woman speaking-0.737-1.434)’,
’(Bird vocalization, bird call, bird
song-1.243-1.775)’, ’(Insect-2.376-
3.182)’, ’(Female speech, woman
speaking-3.386-3.509)’, ’(Insect-
4.397-5.23)’, ’(Dog-7.906-8.78)’,
’(Surface contact-8.603-9.654)’

Instruction:Given the presence of
mechanisms throughout the audio
and the interspersed generic impact
sounds, infer the type of machinery
that is likely operating in the back-
ground and its commonality in an
office environment. Output:The
continuous mechanism sound sug-
gests a printer or copier, which are
common in office settings.

YXQ2XAXx7mKs A printer hums
while people
converse in the
background,
creating a
typical office
ambiance.

’(Generic impact sounds-0.0-0.622)’,
’(Mechanisms-0.0-10.0)’, ’(Generic
impact sounds-0.815-1.227)’,
’(Generic impact sounds-1.632-
2.134)’, ’(Child speech, kid
speaking-3.591-6.684)’, ’(Squeal-
7.385-7.612)’, ’(Child speech, kid
speaking-8.437-10.0)’

Table 13: Examples of CompA-R
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Instruction-Response Pairs AudioSet ID Caption Timestamp Events
Instruction:From the sequencing
and overlapping of different sound
events, infer the likely cause and
process of the dripping sounds
heard intermittently throughout
the audio. Output:The dripping
sounds may be a result of wa-
ter overflowing from a filled sink
or bath, supported by the earlier
sounds of splashing and liquid gur-
gling.

YCU9A5xL3TVc Water splashes
and gurgles as
it drips inside a
small room, cre-
ating a soothing
ambiance
reminiscent
of a tranquil
bathroom.

’(Background noise-0.0-10.0)’,
’(Generic impact sounds-0.083-
0.331)’, ’(Splash, splatter-0.67-
1.174)’, ’(Liquid-1.385-1.956)’,
’(Splash, splatter-2.325-3.138)’,
’(Liquid-3.085-4.131)’, ’(Liquid-
4.372-5.5)’, ’(Drip-4.949-5.047)’,
’(Drip-5.279-5.458)’, ’(Generic
impact sounds-8.819-9.142)’, ’(Drip-
9.511-9.649)’

Instruction:Assess the style and
elements of the rapping and mu-
sic in this audio clip. Based on
this, what genre of music might
the DJ be playing on stage? Out-
put: Given the presence of rap-
ping and electronic music, the DJ
is likely playing Hip Hop or Elec-
tronic Dance Music (EDM).

YRjUZjMPP-nA Electronic
music plays
as a whoosh
sound follows,
creating a lively
atmosphere
for the DJ
performing on
stage.

’(Rapping-0.0-0.376)’, ’(Music-0.0-
10.0)’, ’(Rapping-0.685-1.663)’,
’(Rapping-2.295-2.837)’, ’(Sound
effect-2.423-5.222)’, ’(Sound effect-
7.427-10.0)’

Table 14: Examples of CompA-R

Instruction-Response Pairs AudioSet ID Caption Timestamp Events
Instruction:Identify the role of
the crowd’s continuous conversa-
tion during the woman’s speech.
How does it contribute to the at-
mosphere of the scene? Output:
The crowd’s constant chatter indi-
cates an informal or relaxed envi-
ronment, suggesting that while the
woman’s speech is central, other
conversations are also ongoing in
the background.

Y6fRYeClf5U4 A woman de-
livers a speech
while a crowd
of people en-
gage in conver-
sation in an ur-
ban setting.

’(Crowd-0.0-10.0)’, ’(Wind-0.008-
10.0)’, ’(Female speech, woman
speaking-0.074-1.65)’, ’(Female
speech, woman speaking-2.879-
5.427)’, ’(Female speech, woman
speaking-5.604-6.083)’, ’(Female
speech, woman speaking-6.9-10.0)’

Instruction:Considering the pres-
ence of bird sounds and chainsaw
noise, identify the probable loca-
tion where this sound sequence is
occurring. Output:The location
is likely an outdoor area, possibly
in a woodland or suburban setting
where birds can be heard alongside
human activity and power tools.

YbkG4M4TiXZg A man speaks
while a power
tool revs up,
indicating a
speech event
followed by
the sound of a
chainsaw.

’(Male speech, man speaking-0.0-
0.268)’, ’(Chainsaw-0.0-10.0)’,
’(Male speech, man speaking-
1.772-4.425)’, ’(Male speech, man
speaking-5.008-8.118)’, ’(Bird
vocalization, bird call, bird song-
5.362-7.512)’, ’(Bird vocalization,
bird call, bird song-8.244-8.709)’,
’(Bird vocalization, bird call, bird
song-8.937-9.283)’, ’(Male speech,
man speaking-9.661-10.0)’

Table 15: Examples of CompA-R-test
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Instruction-Response Pairs AudioSet ID Caption Timestamp Events
Instruction:Analyze the fre-
quency and consistency of the
ticking sound. What is the likely
source of this sound, and what
implication might it have on the
depicted setting? Output:The
steady ticking likely comes from a
clock, which coupled with the soft
music, suggests a relaxed, cozy
domestic setting, perhaps aimed at
unwinding or relaxation.

YCoBAR5Mbjys The clock ticks
steadily as soft
music plays in
the background,
creating a calm-
ing atmosphere
in a cozy living
room.

’(Mechanisms-0.0-10.0)’, ’(Alarm
clock-0.008-10.0)’, ’(Tick-0.386-
0.583)’, ’(Tick-1.071-1.22)’,
’(Tick-1.764-1.906)’, ’(Tick-2.465-
2.638)’, ’(Tick-3.197-3.331)’,
’(Tick-3.772-3.976)’, ’(Tick-4.346-
4.48)’, ’(Tick-4.646-4.787)’, ’(Tick-
5.087-5.22)’, ’(Tick-5.669-5.795)’,
’(Tick-6.031-6.15)’, ’(Tick-6.37-
6.528)’, ’(Tick-6.724-6.795)’,
’(Tick-6.969-7.118)’, ’(Tick-7.386-
7.614)’, ’(Tick-8.134-8.354)’,
’(Tick-8.882-9.094)’, ’(Tick-9.315-
9.425)’, ’(Tick-9.575-9.685)’

Instruction:Identify the type of vo-
cal music that is being depicted
in the audio based on the pres-
ence of singing and beatboxing.
Output:This audio resembles A
Capella, where voices imperson-
ate the sounds of instruments, in-
cluding rhythms often mimicked
through beatboxing.

Y6SvDRiIG2NY A group of peo-
ple sing and har-
monize, creat-
ing vocal music
with occasional
beatboxing, in a
room with a pi-
ano.

’(Male singing-0.0-6.594)’, ’(Music-
0.0-10.0)’, ’(Mechanisms-0.0-
10.0)’, ’(Breathing-7.064-8.314)’,
’(Breathing-8.911-10.0)’, ’(Male
singing-9.713-10.0)’

Instruction:Based on the audio,
ascertain the possible relationship
between the gunfire sounds, ar-
tillery fire, and music. How does
the sequencing and manner of
these sounds contribute to the at-
mosphere of the scene? Output:
The gunfire and artillery sounds
likely serve as a ceremonial dis-
play, with the music adding to the
grandeur and solemnity of a mili-
tary parade.

YbJvOp4gmHBg Gunshots and
artillery fire
echo through
the air as music
plays during a
military parade
at a raceway.

’(Music-0.0-10.0)’, ’(Generic
impact sounds-0.166-0.307)’, ’(Ar-
tillery fire-0.32-0.704)’, ’(Generic
impact sounds-0.781-0.948)’,
’(Generic impact sounds-1.063-
1.165)’, ’(Generic impact sounds-
1.524-1.677)’, ’(Generic impact
sounds-2.625-2.881)’, ’(Artillery
fire-3.035-3.521)’, ’(Generic impact
sounds-3.611-3.777)’, ’(Generic im-
pact sounds-4.213-4.43)’, ’(Generic
impact sounds-5.096-5.262)’,
’(Artillery fire-5.288-5.762)’,
’(Generic impact sounds-5.89-
6.095)’, ’(Generic impact sounds-
6.479-6.812)’, ’(Generic impact
sounds-6.94-7.106)’, ’(Artillery
fire-7.222-7.606)’, ’(Generic impact
sounds-8.207-8.425)’, ’(Artillery
fire-8.476-8.988)’, ’(Generic impact
sounds-9.206-9.385)’, ’(Generic
impact sounds-9.654-9.795)’

Table 16: Examples of CompA-R-test
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