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ABSTRACT

The pursuit of human-like conversational agents has long been guided by the Tur-
ing test. For modern speech-to-speech (S2S) systems, a critical yet unanswered
question is whether they can converse like humans. To tackle this, we conduct the
first Turing test for S2S systems, collecting 2,968 human judgments on dialogues
between 9 state-of-the-art S2S systems and 28 human participants. Our results
deliver a clear finding: no existing evaluated S2S system passes the test, reveal-
ing a significant gap in human-likeness. To diagnose this failure, we develop a
fine-grained taxonomy of 18 human-likeness dimensions and crowd-annotate our
collected dialogues accordingly. Our analysis shows that the bottleneck is not se-
mantic understanding but stems from paralinguistic features, emotional expressiv-
ity, and conversational persona. Furthermore, we find that off-the-shelf AI models
perform unreliably as Turing test judges. In response, we propose an interpretable
model that leverages the fine-grained human-likeness ratings and delivers accu-
rate and transparent human-vs-machine discrimination, offering a powerful tool
for automatic human-likeness evaluation. Our work1 establishes the first human-
likeness evaluation for S2S systems and moves beyond binary outcomes to enable
detailed diagnostic insights, paving the way for human-like improvements in con-
versational AI systems.

1 INTRODUCTION

With the rapid advancement of generative artificial intelligence, large language models (OpenAI,
2023; Touvron et al., 2023; GLM et al., 2024) have become deeply integrated into people’s daily
lives, providing intelligent services through text-based human-machine interaction. As users seek
more direct, hands-free, and immersive experiences, Speech-to-Speech (S2S) systems (ByteDance,
2025; Comanici et al., 2025) are gaining increasing attention by enabling interaction through the pri-
mary channel of human communication—speech. Such systems have broad applications, including
empathetic social companions (Geng et al., 2025), personalized education (Galbraith & i Martı́nez,
2023), and interactive virtual assistants (TG et al., 2024). As the capabilities of S2S systems grow, a
fundamental question emerges: do these systems converse like humans? Meeting this bar is strictly
harder than text-based interaction, as it requires the models not only to achieve accurate semantic
understanding and human-like persona alignment but also to ensure acoustic fidelity and emotional
expression.

In this work, we first investigate the human-likeness of current S2S systems by conducting Tur-
ing test. To facilitate this evaluation, we construct a high-quality dialogue dataset comprising
human–human, human–machine, and pseudo-human (text-to-speech, TTS) dialogues. All hu-
man–machine dialogues are recorded in a professional studio with recruited volunteers. The dataset
covers two languages, 10 topics, 9 state-of-the-art S2S systems, and 28 human speakers. We then
deploy a gamified online platform to run the Turing test, collecting 2,968 judgments from 397 par-
ticipants. Our results lead to a clear finding: no existing evaluated S2S models passes the Turing test,
underscoring a substantial gap between current systems and truly human-like spoken interaction.

To move beyond a simple pass or fail outcome and understand the why behind this failure, we de-
velop a fine-grained human-likeness taxonomy with 18 dimensions across five categories: semantic

1We released code, data, and models at https://anonymous.4open.science/r/kD7f-Q2bN/.
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Figure 1: The design of our study.

and pragmatic habits (Bottazzi Grifoni & Ferrario, 2025), non-physiological paralinguistic features
(Warren et al., 2025), physiological paralinguistic features (Onda et al., 2025), mechanical persona
(Fanous et al., 2025), and emotional expression (Wang et al., 2025a). By annotating our dialogue
data accordingly, we diagnose the specific weaknesses of current S2S systems. Our analysis reveals
that the artificial quality of current systems does not primarily stem from semantic deficiencies—in
fact, contextual understanding is no longer the primary bottleneck, with models scoring near human
levels on logical coherence and memory consistency. Instead, failures arise from deficiencies in par-
alinguistic features, emotional expression, and conversational persona. These findings collectively
offer a concrete roadmap for developing more human-like S2S systems.

Finally, we explore the potential of automating the Turing test by asking: Can AI serve as the judge?
We first demonstrate that 9 off-the-shelf AI models perform poorly at this task, failing to reliably
distinguish human from machine-generated speech. In response, we develop a specialized and in-
terpretable AI judge. Concretely, the model learns to score dialogues across the 18 human-likeness
dimensions to capture fine-grained perceptual patterns. These interpretable scores are then fed into
a regularized linear classifier to produce a final and explainable human–machine discrimination de-
cision. This approach not only achieves strong performance but also provides transparent rationale
for its judgments by linking them to specific human-likeness attributes. The resulting model of-
fers a practical tool for diagnosing human-likeness of S2S systems with both headline scores and
fine-grained attributions, thereby empowering rapid iteration toward more human-like systems.

An overview of our study design is shown in Figure 1. In summary, our work contributes (1) the
first human- likeness evaluation on the current S2S systems via Turing test, (2) a comprehensive di-
agnostic framework and in-depth analysis explaining the gap in human-likeness, and (3) an effective
and interpretable AI judge to automate human-likeness evaluation. Our code, dataset, and model are
publicly available to foster progress in building truly human-like spoken dialogue agents.

2 BACKGROUND

Table 1: Existing Turing tests for AI.

Turing Test Modality
Jones & Bergen (2024a) Text
Jones et al. (2025) Text
Rathi et al. (2024) Text
Chan (2003) Text-Speech
Wang et al. (2025b) Text-Speech
Ours Speech-Speech

Turing Test Since its introduction in 1950, the Turing
Test (TURING, 1950) has served as a cornerstone for eval-
uating machine intelligence. Rathi et al. (2024) employ
two variants of the Turing Test, the Displaced Turing Test
and the Inverted Turing Test, to examine how well humans
and large language models can discriminate between online
human–machine conversations, thereby reflecting the mod-
els’ conversational perception abilities. Similarly, Jones &
Bergen (2024a); Jones et al. (2025); Jones & Bergen (2025)
design settings in which language models masquerade as humans in Turing Test scenarios to as-
sess their linguistic expressiveness and emotional characteristics. In addition, Chan (2003); Wang
et al. (2025b) extend the Turing Test paradigm to the domain of speech synthesis, evaluating the
gap between synthetic speech and human dialogue to provide insights for model optimization. In-
spired by these studies, we consider whether the Turing Test paradigm can be leveraged to evaluate

2
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speech-to-speech (S2S) systems, which constitute an indispensable component of contemporary hu-
man–machine interaction.

Evaluation for S2S Systems Current evaluations of speech-to-speech (S2S) systems primarily
focus on two dimensions: audio understanding and conversational intelligence. For example, Du
et al. (2025) construct a multi-turn dialogue benchmark to assess pronunciation accuracy and the
appropriateness of emotional expression in S2S systems. Jiang et al. (2025) propose an arena-
style evaluation to measure instruction-following performance and paralinguistic expressiveness.
Lin et al. (2025) assess dialogue fluency by analyzing response latency. In addition, Sakshi et al.
(2024); Kumar et al. (2025b) design a suite of tasks such as speaker identification and emotion
recognition to evaluate models’ reasoning capabilities. However, comprehensive assessments of the
overall human-likeness of S2S systems remain scarce.

3 DATASET CONSTRUCTION FOR THE S2S TURING TEST

We construct a dialogue dataset to support a rigorous and balanced evaluation of human-likeness
in S2S systems. The dataset contains three categories of dialogues: human–machine (H-M), hu-
man–human (H-H), and pseudo human (PH). The following subsections detail the construction pro-
cess.

3.1 HUMAN–MACHINE DIALOGUE

Topic Design To ensure that the constructed human–machine dialogues are both authentic and
diverse, we define 10 dialogue topics guided by DailyDialog (Li et al., 2017), which span a broad
spectrum from daily life to financial activities. The detailed topics and their distribution in the final
dialogues are illustrated in Figure 2.

Model Selection In our experiments, we select 9 state-of-the-art S2S systems, spanning both open-
and closed-source models, for human–machine dialogue generation. These include GPT-4o (Hurst
et al., 2024), Gemini2.5-Pro (Comanici et al., 2025), Qwen3 (Yang et al., 2025), Kimi-K1.5 (Team
et al., 2025b), ChatGLM-4.5 (Zeng et al., 2025), Hunyuan-TurboS (Team et al., 2025c), Doubao-Pro
1.5 (ByteDance, 2025), Claude-Sonnet 4 (Anthropic, 2024), and iFLYTEK-Spark (iFlytek, 2024).
The detailed information about these models can be found in A.1.

Dialogue Recording We invite 28 participants from 10 countries and regions to record hu-
man–machine dialogues in a professional recording studio, detailed in Appendix A.2. Given a topic
and a S2S system, the speaker is instructed to initiate and sustain a multi-turn conversation naturally
around the given topic with the model, with the whole dialogue typically lasting between 20 to 60
seconds. Our goal is to elicit dialogues that are as human-like and realistic as possible. However,
pilot runs revealed two key issues: (i) identity disclosure, S2S systems often proactively mention
that they are intelligent assistants, which undermine the premise of Turing test, and (ii) role passiv-
ity, without contextual scaffolding, models fail to actively embody expected roles, instead from a
generic AI-assistant stance. To address these issues, we design three interaction strategies aimed at
reducing identity leakage and encouraging immersive role-playing:

• Human-Guided Initiation. We let human speakers start the conversation by express-
ing opinions on an object or phenomenon, thereby preemptively suppressing the model’s
tendency to position itself as an assistant and setting a person-to-person tone. An ex-
ample is I always take a shower in the evening. I don’t understand
why there are people taking a shower in the morning.

• Role Playing. In this setting, we assign the S2S system a concrete human role and background
information via prompt, while explicitly instructing it not to disclose its identity. An example
prompt is You are now my mom and we are discussing my final exam
grade. Please don’t mention your identity in the subsequent
conversation. Let’s start chatting now. The procedure is implemented
as follows: we first have a test facilitator read the prompt to the S2S system to set the role
and context, following which the recording start and the human speaker engage the model in
conversation.

3
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• Human-Likeness Prompting. To elicit more human-like conversational behavior from S2S
systems, we augment the prompt with explicit instructions for human-like expression. This
approach aligns with techniques used to enhance anthropomorphic behavior in large lan-
guage models (Jones & Bergen, 2024b). As an illustration: You are now my friend
who came back from a vacation in Europe. Make your expression
more humanlike. Don’t mention your identity in the subsequent
conversation. Let’s start chatting now. How’s your vacation to
Europe?

For a fair comparative evaluation of S2S systems, all participants are instructed to begin the dialogue
with an identical initial opening utterance when engaging each S2S system. The specific utterances
and prompts used are detailed in Appendix A.3. Finally, we perform manual filtering to remove
dialogues in which the S2S system explicitly disclose its identity, respond in a non-target language,
or exhibited overtly aggressive behavior during the interaction.

3.2 HUMAN–HUMAN DIALOGUE

To support comparative evaluation, we construct a human–human subset matched in scale and topic
distribution to the human–machine subset, using a two-pronged approach: (i) Curated from existing
datasets. We manually select dialogues from three open-source datasets DAILYTALK (Lee et al.,
2023), IEMOCAP (Busso et al., 2008), and MagicData (Yang et al., 2022) that align with our prede-
fined topics. During review, we observe frequent mutual interruptions that many S2S systems cannot
yet emulate. To eliminate evaluation bias caused by this phenomenon, we filter out a considerable
portion of dialogues with interruptions. In addition, to align with the alternating role patterns typical
in human–machine multi-turn dialogues, we filter out dialogues with imbalanced participation from
each speaker based on their engagement. Detailed settings can be found in the Appendix A.4. (ii)
Recordings with volunteers. To ensure contextual consistency with the human–machine dialogues,
we conduct an additional set of human–human recordings. In particular, we used the same opening
utterances as those employed in the human–machine setup so as to maintain the same conversational
topics and scenarios, thereby minimizing bias introduced by content differences.

3.3 PSEUDO HUMAN DIALOGUE SYNTHESIS

We notice that modern text-to-speech (TTS) models can synthesize dialogues with striking human-
likeness. To raise the difficulty of Turing test, we introduce the dataset with pseudo-human dialogues
synthesized by two state-of-the-art TTS models, Nari Dia-1.6B (nari-labs, 2025) and Spark-TTS
(Wang et al., 2025c).We prepare scripts from two sources for TTS synthesis. First, we use a slightly
modified version of the human-human dialogue script. Second, we prompt GPT-4o to generate
two-speaker scripts conditioned on the predefined topics. Each utterance in the scripts is converted
into speech using TTS models. Finally, we merge them into dialogues with a 180-230 ms inter-
turn interval and add background ambience from reference recordings to enhance naturalness. The
details on pseudo human dialogue synthesis are provided in Appendix A.5.

3.4 FINAL DATASET PROCESSING AND STATISTICS

Figure 2: Data distribution.

For the collected dialogue
data, we implement two bias-
correction measures. First,
we align the time intervals
between both parties in the
dialogues to avoid significant
discrepancies in human sub-
jective perception caused by
overly long or short pauses,
and to eliminate the impact of
network latency or recording
irregularities. Second, we bal-
ance the audio volume levels of both parties to ensure consistency, minimizing quality discrepancies
introduced during the recording process.
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The final dataset comprises a total of 1,486 dialogues, with a duration of 17.7 hours. This in-
cludes 669 human–machine dialogues (8.9 hours), 673 human–human dialogues (7.6 hours), and
144 pseudo-human dialogues (1.2 hours). The overall statistics are illustrated in Figure 2. We fur-
ther divide the dataset into training and test sets, with the training set containing 525 human–machine
and 531 human–human dialogues, totaling approximately 13.1 hours. The test set consists of 430
dialogues and 4.7 hours in total.

4 DO S2S SYSTEMS CONVERSE LIKE HUMANS?

Figure 3: The main game inter-
face of the Turing test.

Game Platform Design for the Turing Test We deploy the
Turing test as a lightweight and shareable game to encourage
broad participation. Before playing, users complete a short ques-
tionnaire (age, gender, education, AI familiarity) and select their
evaluation language (Chinese or English) to ensure judgments in
their preferred language. In each round, users are required to eval-
uate a set of five dialogues. After listening to each dialogue, they
determine whether Speaker B is human or machine. To boost en-
gagement, participants receive points based on the accuracy of
their judgments, and a public leaderboard ranks all players based
on their performance. A built-in sharing feature helps dissemi-
nate the game to a wider audience, facilitating larger-scale data
collection. The main interface appears in Figure 3, with details in
Appendix B.1. By September 15, 2025, the platform has collected
results from 397 participants, totaling 2,968 dialogue evaluations.
Our game platform supports long-term and scalable Turing test.

Turing Test Results and Analysis Our evaluation employs the
Success Rate as the primary metric for assessing human-likeness,
which reflects the proportion of trials in which a system is judged
to be human by evaluators. A value greater than 0.5 would sug-
gest that human evaluators are incapable of distinguishing the
model from a human (Jones & Bergen, 2024b). We also exam-
ine participant Accuracy across different demographic groups, de-
fined as the proportion of correct human-versus-machine identi-
fications. This allows us to investigate how factors such as age,
gender, education, and AI familiarity influence human perceptual bias in the Turing test.
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Figure 4: (a) Turing test success rates of S2S systems, measured as the proportion of responses
judged as human. Higher values indicate greater human-likeness. (b) Participant accuracy in iden-
tifying human vs. machine. Detailed scores and results categorized by interaction strategies are
provided in Appendix B.2.

Observation 1: No existing evaluated S2S system passes the Turing test.
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As shown in Figure 4a, human-to-human dialogues achieve success rates as high as 0.87 for En-
glish and 0.70 for Chinese, confirming the robustness of our evaluation design. In contrast, all S2S
systems perform significantly below the 0.5 chance threshold, with success rates ranging from 0.07
to 0.31. This significant performance gap highlights the fundamental limitations of current speech
models in their ability to simulate human-like behavior. Moreover, the success rates for pseudo
human dialogues fall short of human-to-human performance, suggesting that even when scripts are
highly similar to real conversations, synthesized speech still lacks sufficient acoustic naturalness to
pass as humans. However, their performance surpasses that of most S2S systems, revealing that
today’s S2S systems are limited not only by vocal quality, but also by vocal interaction capabil-
ities such as speech understanding, role-based acoustic adherence, and conversational reasoning.
These findings suggests that bridging the human-likeness gap for S2S systems requires simultaneous
advances in both acoustic expression and conversational intelligence.

Observation 2: An individual’s ability to distinguish humans from machines depends more on
experience than on demographics.

As shown in Figure 4b, participants with greater AI familiarity achieve clearly higher detection ac-
curacy, reaching 78.8% for the most experienced group versus 64.2% for the least familiar group.
Younger cohorts also outperform older groups, likely due to more frequent exposure to AI interac-
tions and heightened sensitivity to non-human cues. In contrast, accuracy shows minimal variation
by gender or education level. These results suggest that detection ability is shaped more by experi-
ential factors than demographic traits. As public familiarity with AI grows, passing Turing tests may
become progressively harder over time. Our game-based evaluation platform supports longitudinal
Turing testing and periodic recalibration, enabling continued assessment of human-likeness against
evolving human judgment standards.

5 WHY DO S2S SYSTEMS (NOT) APPEAR HUMAN?

To systematically investigate why current S2S systems fail to pass as human, we develop a com-
prehensive taxonomy for human-likeness diagnosis, which comprises five major categories and 18
fine-grained dimensions. Full definitions of the taxonomy are provided in Appendix C.1. Using
this taxonomy, all dialogue samples are crowdsourced and rated on a 5-point scale (Appendix C.2),
after which human experts reviewed and refined the labels to ensure quality (Appendix C.3). The
resulting labels enable a granular diagnosis of failure modes that limit the human-likeness of current
speech models. As illustrated in Figure 5, we summarize four key observations that explain the pros
and cons of current S2S systems in achieving human-like naturalness, therefore providing guidance
for developing advanced and human-like S2S systems.

Figure 5: Crowd-annotated scores (1–5) across the 18 human-likeness dimensions.

6
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Observation 3: Semantic and contextual understanding in dialogues are not the primary bottle-
necks for S2S systems.

Current models demonstrate remarkable proficiency in core semantic tasks, closely approaching
human-level performance. Specifically, models excel in Memory Consistency, capably retaining
and referencing information within a short dialogue context, and in Logical Coherence, ensuring
smooth transitions between turns without abrupt contradictions. Furthermore, Pronunciation Ac-
curacy is generally high, with modern systems correctly articulating words, including challenging
heteronyms. These strengths indicate that S2S systems have largely solved the foundational chal-
lenges of textual understanding and generating clear and coherent dialogue scripts.

Observation 4: The speech generated by S2S systems often lacks human-like paralinguistic
features, exhibiting rigid prosody and absence of disfluency cues.

Across non-physiological paralinguistic features, S2S outputs show pronounced deficits in vocal
dynamics. Rhythm and intonation changes are mechanically regular, with few context-appropriate
pauses or pitch movements. Stress on salient words is weak or misplaced, which is a crucial element
of human communication. Furthermore, models avoid human disfluency cues, such as linguistic
imprecision (e.g., hedges like “probably”), use of fillers (“um”), and micro-physiological noises
(e.g., breath sounds). These paralinguistic shortcomings, even when the content is fluent, make the
speaker perceptibly machine-like.

Observation 5: Emotional expressivity remains largely limited in current S2S systems.

The textual sentiment scores of S2S systems are significantly lower than human performance, reflect-
ing the lack of nuanced emotions due to the writing-style expressions. More critically, the acoustic
emotion scores are even lower than those of textual sentiment, due to rigid prosody and weak or
misaligned stress patterns. This indicates that S2S systems tend to generate dialogues with neutral
and unconvincing emotional tones, making them readily perceived as non-human by listeners.

Observation 6: The persona of S2S systems is often perceived as mechanical, characterized by
excessively sycophantic and formal expression.

S2S systems reveal a mechanical persona through their social interaction. Unlike humans who
judiciously agree or disagree based on context, current models exhibit a strong default tendency to
excessively affirm, apologize, and express gratitude. For instance, to a user’s statement like, “I’m
planning to go around in Korea for 5 days”, a model might respond with disproportionate enthusiasm
such as, “That’s absolutely amazing—fantastic choice!”. Moreover, their written-style expression
skews formal, lacking the conversational looseness typical of spontaneous speech.

6 CAN AI MODELS SERVE AS TURING TEST JUDGES?

6.1 TURING TEST WITH AI JUDGES

Table 2: AI judge accuracy of different models on the Turing test data.

Model ACC(H-H)↑ ACC(H-M)↑ ACC(PH)↑ Overall↑
Human Judgement 0.7028 0.8357 0.6384 0.7284

Baichuan-Audio(Li et al., 2025) 0.8169 0.1528 0.1250 0.3628
Gemini 2.5 pro(Comanici et al., 2025) 0.5775 0.7292 0.5764 0.6279
Gemma 3n(Team et al., 2025a) 0.4648 0.4444 0.4028 0.4372
GPT-4o-Audio-Preview(Hurst et al., 2024) 0.9648 0.2708 0.0069 0.4116
MiniCPM-o 2.6(Yao et al., 2024) 0.6761 0.4306 0.2986 0.4674
Phi-4-Multimodal(Abouelenin et al., 2025) 0.7746 0.1458 0.2222 0.3791
Seallms-Audio(Nguyen et al., 2023) 0.1127 0.8472 0.7292 0.5651
Voxtral Mini(Li et al., 2025) 0.5141 0.5069 0.3889 0.4698
Qwen2.5-Omni(Xu et al., 2025) 0.7817 0.2361 0.2361 0.4163

Average of Model Judgement 0.6238 0.4011 0.3130 0.4527

7
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To explore whether AI models can reliably assess human-likeness in dialogues, we employ 9 state-
of-the-art models as automated judges, and each model is tasked with classifying whether a given
dialogue response is human- or machine-generated. Detailed prompts are provided in Appendix D.1.
Table 2 reports their classification accuracy across the three dialogue types (human–human, hu-
man–machine, and pseudo human).

Observation 7: Existing AI judges significantly underperform humans in the Turing test and
exhibit systematic bias.

The overall performance of the AI judges (average accuracy: 0.4527) remains substantially lower
than that of human evaluators (accuracy: 0.7284), with even the best-performing model Gemini 2.5
Pro achieving only 0.6279 accuracy. Analysis of model behavior reveals three distinct bias patterns:
several models (e.g., GPT-4o-Audio-Preview, Baichuan-Audio, Phi-4-Multimodal, Qwen2.5-Omni)
exhibit a strong tendency to classify most dialogues as human–human, models such as SeaLLMs-
Audio display the opposite bias toward human–machine judgments, while Voxtral Mini behaves
close to random guessing. These results highlight the current limitations of multimodal models in
replicating human-like perceptual judgment in Turing test scenarios.

6.2 INTERPRETABLE AI JUDGE FOR HUMAN-LIKENESS EVALUATION

Given that general-purpose large models perform unreliably as human-likeness judges, we develop
an interpretable multimodal evaluator designed to deliver transparent and trustworthy decisions.
Detailed experimental setup is provided in Appendix D.2.

6.2.1 TRAINING FRAMEWORK

We adopt a two-stage fine-tuning framework on Qwen2.5-Omni, which trains the model to first cap-
ture fine-grained human-likeness patterns and then produce a final and explainable human–machine
discrimination decision.

Fine-grained Scoring Projection. Given an audio dialogue x ∈ D, we first encode it with a pre-
trained audio–language model (ALM) to obtain a fixed-dimensional representation h = fALM(x) ∈
Rd (a two-source attention pooling, see Appendix D.3 for representation design). We then map h to
interpretable dimension scores with an Ordinal Discretization Layer (ODL) (Tutz, 2022):

z = fODL(h; θ) ∈ RK , zk =
[
fODL(h; θ)

]
k

where K is the number of fine-grained human-likeness dimensions and zk is the latent score for
dimension k. To respect the ordinal nature of human ratings (e.g., r ordered levels, 1–r), we convert
each zk into an ordinal distribution via ordered cut-points. For each dimension k ∈ {1, . . . ,K}, we
define r − 1 strictly ordered cut-points

Cik =
i− r + 2

2(r − 2)
sk, i ∈ {1, . . . , r − 1}

where sk is a learnable scale that controls bin spacing. Using a cumulative-link formulation, cumu-
lative probabilities are

P (Yk ≤ i | x) = σ
(
Cik − zk

)
,

where σ(·) denotes the sigmoid function. Per-category probabilities follow by differencing: P (Yk =
1) = P (Yk ≤ 1), P (Yk = i) = P (Yk ≤ i)− P (Yk ≤ i− 1) for 2 ≤ i ≤ r − 1, and P (Yk = r) =
1−P (Yk ≤ r− 1). Let SH(x) ∈ {1, . . . , r}K denote human-likeness ratings for x, we fit the ODL
by minimizing the ordinal negative log-likelihood over all samples and dimensions:

min
s, θ

1

|D|
∑
x∈D

K∑
k=1

[
− logP

(
Yk = S

(k)
H (x)

∣∣x)]
This procedure yields K order-preserving, human-aligned scores per dialogue that serve as inter-
pretable inputs for the final human–vs.–machine classifier.
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Explainable Binary Classification. After training the ODL, each of the k neurons acquires an or-
dinally constrained scoring pattern induced by the cut-point scheme. Consequently, the ODL outputs
are no longer arbitrary latent features; they instantiate interpretable scoring dimensions aligned with
human ratings and preserve their ordinal structure for human–machine discrimination. Leveraging
this property, we feed the logits z into a linear classifier with regularization constraint to ensure that
the final classification remains interpretable:

min
WF

1

|D|
∑

(x,y)∈D

LCE

(
WF z, y

)
+ λR(WF )

where LCE is the Cross-Entropy Loss, WF ∈ Rn×K is the weight matrix of the final linear layer
with n categories, y is the label of x, R(W ) = ||W1 +W2||2 is the symmetry regularization, and λ
is set to 0.1. Model ablations and hyperparameter tuning details are provided in Appendix D.4 and
D.5.

6.2.2 RESULTS AND DISCUSSION

Table 3: Binary classification accuracy of different models across three evaluation data types.

Data Type Qwen2.5-Omni Qwen2.5-Omni(LoRA) Human Judge Ours
Human-Human↑ 0.7817 0.9230 0.7028 0.9507
Human-Machine↑ 0.2361 0.6319 0.8357 0.9722
Pseudo Human ↑ 0.2361 0.0972 0.6384 0.9306
Overall ↑ 0.4163 0.5744 0.7284 0.9605

We evaluate the interpretable AI judge on the Turing test using binary classification accuracy (hu-
man vs. machine). As presented in Table 3, Qwen2.5-Omni (LoRA) represents Qwen2.5-Omni
fine-tuned using LoRA technology (Hu et al., 2022). It can be observed that our approach outper-
forms all variants and human evaluators. The overall accuracy is 23.21% higher than the human
evaluation, 38.61% higher than the LoRA-based approach, and more than doubles the performance
of the original model. Notably, the model achieves 93.06% accuracy on pseudo-human dialogues
unseen during training, demonstrating strong generalization. In addition, the model shows strong
consistency with fine-grained human ratings, a capability facilitated by its interpretable design (see
Appendix D.6).

Out-of-Domain Generalization Evaluation We further evaluated our model on three out-of-
domain (OOD) datasets that span diverse acoustic, demographic, and interaction conditions: 1)
CosyVoice2 Synthesis (Pseudo Human) (Du et al., 2024), synthesized dialogues across different age
groups (older adults and children); 2) Fisher (Human-Human) (Cieri et al., 2004), telephone speech
with significant background noise; 3) MultiDialog (Human-Human) (Park et al., 2024): clean back-
ground native-speaker dialogue recordings. We sample 64 dialogues from each dataset for evalua-
tion. In addition to accuracy, we introduced the ROC-AUC score to provide a robust and threshold-
independent evaluation of classification performance. The results of human–machine classification
are presented in Table 4. These results indicate that the model generalizes well and maintains stable
performance under distribution shift.

Table 4: Binary classification accuracy and ROC-AUC on OOD test set.

Metric Overall (Inner) CosyVoice2 Fisher MultiDialog Overall (OOD)
Accuracy 0.9605 0.9844 0.9844 0.9531 0.9740
ROC-AUC 0.9791 – – – 0.9881

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Observation 8: Our interpretable AI judge delivers superior performance in distinguishing hu-
man from machine-generated speech. By providing both an overall human-likeness score and
fine-grained diagnostics, it serves as a practical tool for S2S assessment.

7 CONCLUSION

This work presents the first Turing test for modern S2S systems, delivered via a game-based on-
line platform that enables large-scale and longitudinal testing. Our findings reveal a clear gap: no
current system passes, demonstrating that human-like conversational ability remains an unsolved
challenge. Through an 18-dimension taxonomy, we show the bottleneck has shifted from semantic
understanding to shortcomings in paralinguistic features, emotional expressivity, and conversational
persona, explaining why even fluent S2S output sounds distinctly artificial. To support automatic
evaluation, we develop an interpretable AI judge that significantly outperforms off-the-shelf models
and provides diagnostic insights.

Impact. We provide the community with a new human-likeness evaluation framework for S2S sys-
tems and move beyond binary pass/fail to automatic, diagnostic, and scalable evaluation. Our results
offer practical guidance toward more genuinely human-like S2S systems by identifying the core
challenges in acoustic naturalness, emotional expressivity, and social behavior.

ETHICS STATEMENT

Our study involves the collection of audio recordings from human participants. In conducting this
research, we have adhered to strict ethical principles to safeguard participants’ privacy, autonomy,
and well-being. The main ethical considerations are outlined below:
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We have made every effort to ensure that the results presented in this paper are reproducible. All code
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Our experiments comprise three main components. First, we collected dialogue data for the Tur-
ing test, which includes human–machine dialogues (see Section 3.1 for the detailed procedure),
human–human dialogues (Section 3.2), and pseudo human–human dialogues generated via TTS
models (Text-to-Speech, also described in Section 3.3). Based on the collected data, we designed
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a game-based human evaluation platform supporting fine-grained annotation, with the detailed de-
sign and implementation process outlined in Section 4. Furthermore, we developed a fine-grained
annotation protocol incorporating expert validation, as described in Appendix C.1. Using this pro-
tocol, we conducted crowd-sourced annotation; the design of the annotation platform is provided
in Appendix C.2. Finally, we trained a human-like judge model using the annotated data, with the
model training procedure and hyperparameter settings detailed in Appendix D. We believe that these
comprehensive descriptions significantly enhance the reproducibility of our work.
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Sonal Kumar, Simon Sedlácek, Vaibhavi Lokegaonkar, and et al. Mmau-pro: A challenging
and comprehensive benchmark for holistic evaluation of audio general intelligence. CoRR,
abs/2508.13992, 2025a.
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THE USE OF LARGE LANGUAGE MODELS

Using an LLM to help with paper writing During the preparation of this work, the authors
utilized Large Language Models for language polishing, improving the structural clarity of the
manuscript, and refining the formal expression of individual sentences. The use of Large Language
Models did not influence the substantive content of the study and served solely as a writing aid.

OVERALL OF THE APPENDIX

We conducted a detailed comparison between our work and two representative benchmarks,
VoiceBench (Chen et al., 2024) and MMAU-Pro (Kumar et al., 2025a). As summarized in Table 5,
our work differs fundamentally in evaluation goal and evaluated modality.
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Table 5: Comparison with Existing Speech Benchmarks.

Aspect VoiceBench MMAU-Pro Turing Test (Ours)
Goal Evaluating speech

understanding in
LLM-based voice
assistants

Evaluating holistic
audio understand-
ing of multimodal
AI models across
speech, music, and
sound

Evaluating human-
likeness of Speech-
to-Speech systems

Input Modality Speech or Text Speech and Text Speech

Output Modality Text Text Speech

Dialogue Turns Single-turn Multi-turn Multi-turn

The Smarter the Bet-
ter?

Yes—higher intelli-
gence implies better
performance

Yes—higher intelli-
gence implies better
performance

No—being “too
smart” does not
necessarily make a
model more likely to
pass the Turing Test

To further examine whether “being smarter” makes a model more human-like, we selected S2S
systems that appear in both MMAU-Pro and our study, and compared their reasoning accuracy on
MMAU-Pro with their Turing Test pass rates. The results are summarized in Table 6.

Table 6: Reasoning Ability vs. Human-likeness in Speech-to-Speech Models.

Model Reasoning Accuracy (MMAU-
Pro)

Turing Test Pass Rate (%)

Kimi-K1.5 46.6 12.7
Qwen3 52.2 15.1
GPT-4o 52.5 23.0
Gemini-2.5-Pro 59.2 13.7

The Pearson correlation between reasoning accuracy and Turing test pass rate is 0.0456. This in-
dicates that reasoning ability is nearly uncorrelated with human-likeness in current S2S systems,
revealing a disconnect between traditional intelligence benchmarks and the human-likeness required
for speech interaction.

The appendix provides supplementary material to support the methodology outlined in the main
text. It is organized into four sections for clarity:

• Appendix A: Data Collection details the procedures, sources, and criteria used for gath-
ering the raw data utilized in this study.

• Appendix B: Turing-Test describes the design of the human evaluation (Turing test).

• Appendix C: Fine-Grained Human-Likeness Dimension Annotation details the com-
prehensive guidelines followed for data annotation.

• Appendix D: Training Details specifies the key hyperparameters, computational environ-
ment, and training configurations of the models.

A DATA COLLECTION

The section is organized into the following sections:

• Section A.1: Model Selection for the Turing Test.
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• Section A.2: Participant Profiles.

• Section A.3: Human-Machine Dialogue Initialization Design Details.

• Section A.4: Human-Human Dialogue Filtering.

• Section A.5: Pseudo Human Dialogue Synthesis.

A.1 MODEL SELECTION FOR THE TURING TEST

All S2S Systems we selected for evaluation are shown in Table 7. During pilot recordings and test-
ing, we observe that Claude-Sonnet 4 supports only English conversations, while iFLYTEK-Spark
exhibits suboptimal performance on long English prompts due to its underlying training constraints.
To ensure dialogue quality, we generate dialogues in English for Claude-Sonnet 4 and in Chinese
for iFLYTEK-Spark.

Table 7: Models used for the Turing test.

Model Release Year Open-Source # Dialogues Share (%) Language
GPT-4o (Hurst et al., 2024) 2024 × 89 13.30% CN & EN
Gemini2.5-Pro (Comanici et al., 2025) 2025 × 82 12.26% CN & EN
Qwen3 (Yang et al., 2025) 2025 ✓ 83 12.41% CN & EN
Kimi-K1.5 (Team et al., 2025b) 2025 × 83 12.41% CN & EN
ChatGLM-4.5 (Zeng et al., 2025) 2025 ✓ 77 11.51% CN & EN
Hunyuan-TurboS (Team et al., 2025c) 2025 × 86 12.86% CN & EN
Doubao-Pro 1.5 (ByteDance, 2025) 2025 × 85 12.71% CN & EN
Claude-Sonnet 4 (Anthropic, 2024) 2025 × 41 06.13% EN
iFLYTEK-Spark (iFlytek, 2024) 2025 × 43 06.43% CN

A.2 PARTICIPANT PROFILES

We provide the detailed profiles of all 28 participants in Table 8.

Table 8: Participant Profiles.

Speaker ID Chinese English Country / Region
speaker01 ✓ × China
speaker02 ✓ ✓ China
speaker03 ✓ × China
speaker04 ✓ × China
speaker05 ✓ ✓ China
speaker06 ✓ ✓ China
speaker07 ✓ × China
speaker08 × ✓ China
speaker09 ✓ × China
speaker10 ✓ × China
speaker11 ✓ × China
speaker12 ✓ × China
speaker13 ✓ ✓ Hong Kong, China
speaker14 × ✓ Pakistan
speaker15 × ✓ Tajikistan
speaker16 × ✓ Malaysia
speaker17 × ✓ Indonesia
speaker18 × ✓ Russia
speaker19 × ✓ Indonesia
speaker20 × ✓ Greece
speaker21 × ✓ Indonesia
speaker22 × ✓ Indonesia
speaker23 × ✓ UK
speaker24 × ✓ US
speaker25 × ✓ Indonesia
speaker26 ✓ × China
speaker27 ✓ × China
speaker28 × ✓ Indonesia

17
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A.3 HUMAN-MACHINE DIALOGUE INITIALIZATION DESIGN DETAILS

For the Turing evaluation, we collect 2 Human-Guided Initiation (Figure 6), 3 Role Playing (Fig-
ure 7), and 4 Human-Likeness Prompting (Figure 8) initialization evaluation dialogues for both
English and Chinese (if applicable) from each S2S system. For any of the specific initialization, we
fixed the starting sentences that interact with these 9 models. Eventually, we obtained 144 human-
machine data for evaluation in total. The reason for including more dialogues for Role Playing
than Human-Guided Initiation is that, the former one tend to leads the conversation to discussion
on viewpoints. This phenomenon limits the dialogue coverage to only a narrow range of everyday
scenarios. Thus, we limit the amount of Human-Guided Initiation. By contrast, we include more
dialogues for Human-Likeness Prompting than Role Playing because Human-Likeness Prompting
explicitly attempts to elicit stronger humanlike qualities from S2S systems. This design allows our
dataset to capture a richer and more human-like spectrum of conversational behavior. The following
figures show what the 18 dialogue initializations are.

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

“You are now my friend who came back from a vacation in Europe. Make
your expression more humanlike. Don’t mention your identity in the sub-
sequent conversation. Let’s start chatting now. How was your vacation in
Europe?”

Level1:

“到冬天就是真的不想去澡堂，太冷了。”

“诶，我上周末考的托福出分了，考的挺不好，感觉又浪费了两千块钱。”

“I always take a shower in the evening. I don’t understand why there are people
taking a shower in the morning.”

“I still get nervous before every test, no matter how prepared I am.”

Level2:

“你现在扮演一个一个超市售货员，我是一个来超市买东�的顾客，请你不要在后续
聊天提及你的身份，我们现在开始聊天。帮我拿一斤苹果和桃子。”

“现在你扮演一个外卖员，我点了你要送的餐，你在跟我打电话，请你不要在后续聊
天提及你的身份，我们现在开始聊天。你好，请问我的外卖什么时候到啊？”

“你现在扮演我的朋友，我邀请你来我家吃饭，请你不要在后续聊天中提及你的身
份，我们现在开始聊天。今晚有啥想吃的？”

“You are now a university student, and we are discussing about university ranking.
Please don’t mention your identity in the subsequent conversation. Let’s start
chatting now. Do you know that recently the student of our university has been in
some conflict with the student of our brother university?”

“You are now my friend, and I invite you to my home for dinner tonight. Please
don’t mention your identity in the subsequent conversation. Let’s start chatting
now. What do you want to have for dinner tonight?”

“You are now my mom and we are discussing my final exam grade. Please don’t
mention your identity in the subsequent conversation. Let’s start chatting now.
Mom, I only scored 60 in my math exam.”

12

Figure 6: Human-guided initiation (2 ZH 2 EN).
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“You are now my friend who came back from a vacation in Europe. Make
your expression more humanlike. Don’t mention your identity in the sub-
sequent conversation. Let’s start chatting now. How was your vacation in
Europe?”

Level1:

“到冬天就是真的不想去澡堂，太冷了。”

“诶，我上周末考的托福出分了，考的挺不好，感觉又浪费了两千块钱。”

“I always take a shower in the evening. I don’t understand why there are people
taking a shower in the morning.”

“I still get nervous before every test, no matter how prepared I am.”

Level2:

“你现在扮演一个一个超市售货员，我是一个来超市买物品的顾客，请你不要在后续
聊天提及你的身份，我们现在开始聊天。帮我拿一斤苹果和桃子。”

“现在你扮演一个外卖员，我点了你要送的餐，你在跟我打电话，请你不要在后续聊
天提及你的身份，我们现在开始聊天。你好，请问我的外卖什么时候到啊？”

“你现在扮演我的朋友，我邀请你来我家吃饭，请你不要在后续聊天中提及你的身
份，我们现在开始聊天。今晚有啥想吃的？”

“You are now a university student, and we are discussing about university ranking.
Please don’t mention your identity in the subsequent conversation. Let’s start
chatting now. Do you know that recently the student of our university has been in
some conflict with the student of our brother university?”

“You are now my friend, and I invite you to my home for dinner tonight. Please
don’t mention your identity in the subsequent conversation. Let’s start chatting
now. What do you want to have for dinner tonight?”

“You are now my mom and we are discussing my final exam grade. Please don’t
mention your identity in the subsequent conversation. Let’s start chatting now.
Mom, I only scored 60 in my math exam.”

12
Figure 7: Role playing (3 ZH, 3 EN).
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Level3

“请你扮演我的同事，我们在闲聊，请让你的表达尽可能地像人，尽量让我相信你是
人类，请你不要在后续聊天提及你的身份，我们现在开始聊天。我们这个月的 kpi
快完不成了，老板给的压力太大了。”

“请你扮演我的女朋友，我们在一起散步，请让你的表达尽可能地像人，尽量让我相
信你是人类，请你不要在后续聊天提及你的身份，我们现在开始聊天。我在工作上
的时间太多了，最近没有能好好陪你。”

“请你扮演我的朋友，上周末你刚去过三亚旅游，请让你的表达尽可能地像人，尽量
让我相信你是人类，请你不要在后续聊天提及你的身份，我们现在开始聊天。三亚
好玩不？”

“现在你扮演呆在教室的同学，现在突然下雨了，我来找你借伞，请让你的表达尽可
能地像人，尽量让我相信你是人类，请你不要在后续聊天提及你的身份，我们现在
开始聊天。诶同学，请问一下你有多余的伞吗？突然下雨了，想借一下。”

“You are now my friend who came back from a vacation in Europe. Make your
expression more humanlike. Don’t mention your identity in the subsequent
conversation. Let’s start chatting now. How’s your vacation to Europe?”

“You are now my classmate who still stays in the classroom. Rain suddenly starts
pouring outside. Make your expression more humanlike. Don’t mention your
identity in the subsequent conversation. Let’s start chatting now. Excuse me⋯
Hey, do you happen to have an umbrella I could borrow?”

“You’re now a taxi driver, and I’m a passenger in your cab. Make your expression
more humanlike. Don’t mention your identity in the subsequent conversation. Let’
s start chatting now. I am new here, can you take me to the best restaurant in town?”

“You are now my colleague who stayed late at the office with me to finish a deadline.
Make your expression more humanlike. Don’t mention your identity in the
subsequent conversation. Let’s start chatting now. I don’t think we could get this
done tonight.”

See Table 3.

13

Figure 8: Human-likeness prompting (4 ZH, 4 EN).

A.4 HUMAN-HUMAN DIALOGUE FILTERING

For the human-human dialogues, we extracted or recorded conversation segments of around 20–60
seconds to align with the human-machine dialogues. On one hand, too short dialogues may present
little context. On the other hand, excessively long recordings are not available for some S2S sys-
tem. To ensure balanced interactions, we retained only segments in which each of the two speakers
contributed roughly equally, defined as having approximately 50% of the total utterances.

A.5 PSEUDO HUMAN DIALOGUE SYNTHESIS

Dialogue Scripts for TTS The dialogue scripts cover 10 topics as our dataset. Each script presents
a conversation between two speakers. We obtain scripts in two ways:
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1. We use ChatGPT to adjust our existing dialogue scripts, ensuring that the original meaning
remains intact while maintaining a natural, conversational tone. This part of the scripts contains all
of the HH data in the additional set that ensures contextual consistency. This allows us to generate
data that closely resembles our previous human-to-human dialogues. On the one hand, the scripts
are grounded in authentic everyday conversations. On the other hand, the similarity in content helps
reduce the chance that audiences distinguish between human and machine solely based on biases
introduced by dialogue content . The prompt used in this way is shown as follow:

You are a language refinement expert.
Without changing the original meaning or the overall flow of the dialogue, your task is to slightly
adjust the conversation between two speakers. The goal is to preserve a natural, everyday tone.
You may apply techniques such as: adding light interjections or filler words to make the speech
sound more authentic, or rephrasing sentences into alternative but commonly used everyday
expressions.
Please return only the refined dialogue in JSON format, keeping the same structure as the origi-
nal.
Original dialogue:
{Utterances in json format}
Adjusted dialogue:

2. We generate new 40–50 second everyday dialogue scripts with GPT-4o, based on given themes
(topic 1–10). The prompt used in this way is shown as follow:

You are a writing expert.
Please generate a spoken-style dialogue script between two people on the topic of “{topic}.”
Please follow these requirements: 1. The dialogue should sound natural, conversational, and
realistic. 2. Add a small number of interjections (e.g., “ah,” “oh,” “hey”) and filler words (e.g.,
“um,” “you know,” “like”) to enhance authenticity. 3. The dialogue content should be logically
coherent and reflect everyday life experiences. 4. The total length should correspond to 40–50
seconds of speaking time. 5. Use “A” and “B” as speaker labels. 6. The output format must be a
JSON array, with the following structure only:
[
{

“speaker”: “A”,
“text”: “First utterance”

},
{

“speaker”: “B”,
“text”: “Second utterance”

}...
]
Please return only the JSON array.

Audio Synthesis and Dialogues Merging For each dialogue script involving two speakers we
attained, we selected the voices of two participants in human–machine dialogue recordings and
performed voice cloning for each speaker’s individual utterances. This approach helps mitigate
bias caused by speaker voice characteristics, preventing users from inferring the human or machine
identity of the responder based solely on speaker A’s voice.

After generating the speech for each utterance from both sides, we concatenated them in dialogue
order to form a complete conversation. Between each utterance, we inserted a random pause of
180–230 milliseconds to ensure natural timing between sentences. Finally, we added a short back-
ground noise sample, taken from the reference voice, over the entire concatenated dialogue to further
enhance the naturalness of the conversation.

Through the above process, we obtained a complete pseudo-human dialogue. In total, 36 dialogues
were generated with Nari-TTS (all English), and another 108 with Spark-TTS(36 English, 72 Chi-
nese). Since Nari Dia-1.6B only supports English, it is used exclusively for English dialogues.
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Use of the Pseudo Human Dialogues All Pseudo human dialogues synthesized by TTS were
included only in the Turing evaluation set and were not used for training our evaluator. These
dialogues were incorporated into the gamified Turing Test released on social media, making the task
more challenging and engaging. As shown in Figure 4a, TTS models achieved the highest success
rate in the machine side.

B TURING-TEST

The section is organized into the following sections:

• Section B.1: Turing Test Platform.
• Section B.2: Supplementary Turing Test Results.
• Section B.3: Influence of Dialogue Length on Turing Test Performance.

B.1 TURING TEST PLATFORM

Pre-test phase. Prior to the evaluation, participants provide basic demographic information as shown
in Figure 9a, including age, gender, education, and familiarity with AI, which may influence their
judgments. They can also select between Chinese and English dialogues, allowing them to make
judgment using their preferred language and thereby improving the reliability of the results. Testing
phase. Each round of evaluation contains 5 dialogues to be judged. After completing a round, par-
ticipants may either proceed to the next round or pause. Post-test phase. All incomplete submissions
are discarded to ensure data integrity. The remaining responses are then aggregated and analyzed in
conjunction with the demographic information collected during the pre-test phase. To boost engage-
ment, participants receive points based on the accuracy of their judgments, and a public leaderboard
ranks all players based on their performance as shown in Figure 9c. This analysis enables us to
identify potential influences of user characteristics on evaluation outcomes. The homepage and
main interface of the platform are illustrated in Figure 9b and Figure 3, respectively.

(a) User Profile (b) Homepage (c) Turing Game Rank

Figure 9: The Turing test platform.

B.2 SUPPLEMENTARY TURING TEST RESULTS

Table 9 shows the exact Turing test success rates of S2S systems, measured as the proportion of
responses judged as human. Higher values indicate greater human-likenes.
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Table 9: Success rate of S2S systems (%).

Model GPT-4o Claude-Sonnet 4 Qwen3 Gemini-2.5 pro Kimi-K1.5 ChatGLM-1.5
English 25.9 22.9 6.7 19.0 30.8 11.8
Chinese 23.0 0.0 16.4 13.3 11.0 9.6

Model HunyuanTurboS Doubao-Pro 1.5 iFLYTEK-Spark Spark-TTS Nari-TTS Human Speaker
English 20.0 21.9 0.0 25.6 37.8 86.7
Chinese 20.9 21.9 14.0 36.6 0.0 70.0

Figure 10 presents the success rates of S2S systems by levels.
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Figure 10: Success rate of S2S systems by different interaction strategies.

B.3 INFLUENCE OF DIALOGUE LENGTH ON TURING TEST PERFORMANCE

We divided the Turing test results by dialogue length and calculated the classification accuracy for
different dialogue types: human-human dialogues (H-H), human-machine dialogues (H-M), and
pseudo-human dialogues (PH). Table 10 summarizes the accuracy results across different duration
ranges.

Table 10: Accuracy by Duration Interval for H-H, H-M, and PH.

Duration H-H (acc/count) H-M (acc/count) PH (acc/count)
[20,25) 0.4000 / 5 – / 0 0.6624 / 157
[25,30) 0.7800 / 50 0.7742 / 31 0.6654 / 257
[30,35) 0.6513 / 152 0.8333 / 126 0.6337 / 243
[35,40) 0.7033 / 246 0.8642 / 162 0.6087 / 92
[40,45) 0.6839 / 174 0.8498 / 273 0.6200 / 50
[45,50) 0.7179 / 78 0.8564 / 195 0.6333 / 60
[50,55) 0.8421 / 76 0.7737 / 137 0.5349 / 43
[55,60) 0.7234 / 141 0.7907 / 43 – / 0

As shown in Table 11, we performed Cochran–Armitage Trend Tests to examine the potential linear
relationship between dialogue length and accuracy and found no significant trend for any individual
dialogue type. This suggests that dialogue length alone does not significantly influence the likeli-
hood of passing the Turing test.
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Table 11: Statistical Test Results Across Dialogue Types.

Dialogue Type Z Statistic p-value Significant Trend?
H-H 1.6604 0.09683 ×
H-M -1.0106 0.31220 ×
PH -1.6018 0.10919 ×

C FINE-GRAINED HUMAN-LIKENESS DIMENSIONS

The section is organized into the following sections:

• Section C.1: The Taxonomy for Fine-Grained Human-Likeness Diagnosis.
• Section C.2: Annotation Process.
• Section C.3: Annotation Quality Assurance.

C.1 THE TAXONOMY FOR FINE-GRAINED HUMAN-LIKENESS DIAGNOSIS

We organize the evaluation dimensions into five categories: I. Semantic Features and Pragmatic
Habits; II. Non-Physiological Paralinguistic Features; III. Physiological Paralinguistic Features;
IV. Mechanical Persona; V. Emotional Expression. Notably, annotators are instructed to use these
dimension descriptions to rate the human-likeness of each conversational response on a five-point
scale: 1 indicates strongly machine-like behavior, 5 indicates strongly human-like behavior, and 3
denotes no clear human- or machine-like leaning, or no enough evidence to judge.

First, five speech domain experts employ a prompt-driven, heuristic querying process with GPT-
4o to generate an initial set of concepts that differentiate human and machine responses. This
method ensures that the generated concepts are both grounded in expert knowledge and supported
by the model’s comprehensive language understanding. The set is then refined iteratively, with
expert feedback and relevant social science literature retrieved by GPT-4o, ensuring that only the
most representative and discriminative concepts are retained. The resulting dimensions are summa-
rized in Table 12. This refinement process adds scientific rigor by aligning the selected concepts
with established theories in the field, enhancing their validity. The final outcome is a set of five
categories, encompassing 18 fine-grained dimensions, which are both comprehensive and precise.
These dimensions were subsequently used to annotate dialogue training data through a crowdsourc-
ing model. The ultimately trained model achieved a significant improvement in human-machine
dialogue recognition. This also demonstrates the reasonableness and reliability of these dimensions.

Table 12: Fine-grained human-likeness evaluation taxonomy .

Dimension Description

Memory Consistency
(I)

Machine-like: Forgetting key information and unable to realize errors;
Human-like: Consistent memory in short contexts or asks for clarification
when misunderstanding occurs(Toneva et al., 2019).

Logical Coherence (I) Machine-like: Abrupt logical transitions or self-contradictions; Human-like:
Natural and coherent reasoning(Bottazzi Grifoni & Ferrario, 2025).

Pronunciation
Accuracy (I)

Machine-like: Mispronunciation (including heteronyms); Human-like: Cor-
rect pronunciation, with proper usage of heteronyms(Zhang, 2021).

Code-switching (I) Machine-like: Unreasonable multilingual mix; Human-like: The mix of lan-
guages is context-dependent, and the switching is smooth(Zhang, 2019).

Linguistic
Imprecision (I)

Machine-like: Responses are precise and affirmative; Human-like: Uses
vague expressions(Piantadosi et al., 2012) like “probably”, and self-
corrections(Nakatani & Hirschberg, 1993).

Use of Fillers (I) Machine-like: Rare use of fillers or unnatural usage; Human-like: Frequently
uses (e.g., “um”, “like”) while thinking(Székely et al., 2019).
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Metaphor & Implied
Meaning (I)

Machine-like: Direct, lacking semantic diversity, only capable of surface-level
interpretation; Human-like: Uses metaphor and euphemism to convey implied
meanings(Vulchanova & Vulchanov, 2018).

Rhythm (II)
Machine-like: No pauses or mechanical pauses; Human-like: Speaking rate
varies with semantic coherence, with occasional hesitations(Hwang et al.,
2023).

Intonation (II) Machine-like: Unnatural or flat intonation; Human-like: Natural pitch rise or
fall(Warren et al., 2025).

Stress (II) Machine-like: No emphasis on words or abnormal emphasis placement;
Human-like: Consciously emphasizes key words(Prieto & Roseano, 2018).

Auxiliary
Vocalizations (II)

Machine-like: Contextually incorrect or mechanical auxiliary sounds;
Human-like: Produces appropriate non-verbal sounds to express emo-
tion(Anikin et al., 2023).

Micro-physiological
Noise (III)

Machine-like: Speech is overly clean or emits unnatural sound; Human-like:
Humans produces breathing sounds, saliva sounds, etc(Fukuda et al., 2018).

Pronunciation
Instability (III)

Machine-like: Pronunciation is overly clear; Human-like: Some irregularities
in pronunciation (e.g., tremolo, slurred speech, nasal sounds)(Teixeira et al.,
2013).

Accent (III) Machine-like: Stiff and unnatural accent; Human-like: Natural regional ac-
cent or vocal traits(Onda et al., 2025).

Sycophant Behavior
(IV)

Machine-like: Excessively agrees, thanks, and apologizes; Human-like:
Judges whether to agree based on context(Fanous et al., 2025).

Written-style
Expression (IV)

Machine-like: Responses are well-structured and formal. frequent listing;
Human-like: Conversational, flexible, and varied expression(Doyle et al.,
2019).

Textual Sentiment (V)
Machine-like: Emotion conveyed in text may appear mismatched with natural
human sentiment. Human-like: Emotion in text feels authentic and resonates
naturally with human emotional expression.(Wang et al., 2025a).

Acoustic Emotion (V)
Machine-like: Prosody or tone may sound inconsistent with the intended emo-
tion expression of the text. Human-like: Vocal delivery conveys context-
appropriate emotional cues that align with the text(Voorveld et al., 2025).

C.2 ANNOTATION PROCESS

A total of 36 annotators participated in our study. They are master’s and Ph.D. students with back-
grounds in AI, and have strong proficiency in both English and Chinese. Before beginning the
scoring task, each annotator was required to read the detailed annotation guidelines, as shown in
Figure 11. They subsequently completed several trial batches, each containing 5 items and requiring
approximately 20–30 minutes to finish. Annotators were compensated at a rate of 30 units/hour
(local currency), with a total cost equivalent to approximately 5,250 units.

Annotators are instructed to use these dimension descriptions to rate the human-likeness of each
conversational response on a five-point scale: 1 indicates strongly machine-like behavior, 5 indi-
cates strongly human-like behavior, and 3 denotes no clear human- or machine-like leaning, or no
enough evidence to judge. In line with the setup of Turing Test, they only evaluated the responder’s
performance in each dialogue.

To ensure the reliability of annotations, we implemented the following:

• We created a questionnaire webpage where the crowdsourced annotators could access.
Screenshots of the web are provided as figure11 and figure12. Annotators’ submissions
are stored in our private Hugging Face dataset. Each submission contains 5 dialogues. For
each dialogue, 18 ratings based on the 18 dimensions are associated with it. After grading
each dialogue, the annotators also needed to indicate their judgment of the identity of the
responder (final choice).
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• We provided reference descriptions as mentioned in the previous section for each dimen-
sion.

• The annotators were unaware of the human-machine identity of the responder, and has
never heard the dialogues before.

• Before scoring, annotators must read the detailed guidelines, and we also provided training
and clarification for them.

Guideline for Annotators

• The score reflects the degree of human-likeness of the response in a given dimension.
• Even if you are confident about the identity of the responder, you are required to indepen-

dently evaluate the degree of human-likeness for different dimensions.
• A score of 3 indicates uncertainty about whether the responder is more human-like or

machine-like. It also indicates that the dimension was not reflected in the dialogue. The
underlying meaning of 3 is that this score has no contribution to the final choice.

Figure 11: Annotator guideline page.

C.3 ANNOTATION QUALITY ASSURANCE

For quality control, three experts specializing in human-computer interaction conducted cross-
validation on all submitted content. Each expert was provided with the true labels indicating whether
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Figure 12: Annotation page example.

the dialogue was generated by a human or a machine. Only annotations unanimously approved by
all three experts were included, while those with any disagreement underwent expert discussion for
revision. A total of 29.44% of the labels were revised, with an average adjustment of 1.99 points
(49.76% of the score range), demonstrating the effectiveness of expert review in mitigating noise
in the raw annotations. Table 13 presents the three dimensions with the highest change ratio, along
with overall results across all 18 dimensions.

Table 13: Expert Revision Impact on Label Adjustments

Dimension Change Ratio RMSE RMSE Ratio
Pronunciation Accuracy 0.3596 2.1085 0.5271
Textual Sentiment 0.3472 1.9579 0.4895
Linguistic Imprecision 0.3273 2.1230 0.5308
Overall 0.2944 1.9903 0.4976

To further validate annotation reliability, we trained models on data before and after expert cor-
rection. As shown in Table 14 Expert-refined labels lead to substantial improvements in both in-
distribution and OOD generalization, confirming the quality of our final annotation set.
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Table 14: Binary Classification Accuracy (Before/After Expert Modification)

Data Overall (Inner) CosyVoice2 Fisher MultiDialog Overall (External)
Original 0.8791 0.9375 0.6250 0.9062 0.8229
Modified 0.9605 0.9844 0.9844 0.9531 0.9740

D EXPERIMENT DETAILS OF AI JUDGER

The section is organized into the following sections:

• Section D.1: Prompt Templates for AI Judges.
• Section D.2: Training Setup.
• Section D.3: Embedding Readout Selection.
• Section D.4: Model Ablation.
• Section D.5: Hyperparameter Tuning.
• Section D.6: Fine-Grained Human-Likeness Scoring Accuracy.
• Section D.7: Contribution Analysis by Case Study.

D.1 PROMPT TEMPLATES FOR AI JUDGES

The following Figure 13 shows the prompt used for AI judges.
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You are an expert in speech analysis and speaker identity recognition. Your core
functions include but are not limited to: Automatic Speech Recognition, acoustic
feature extraction, speaker diarization, and analysis of Text-to-Speech technologies.
You are designed to perform objective, evidence-based reasoning. Analyze the dia-
logue in this audio file and strictly adhere to the following steps:
- Speaker Diarization: Identify and differentiate the speech segments of Speaker A

(the first person to speak) and Speaker B (the respondent).
- AI-Generated Voice Detection: Based on an analysis of vocal characteristics,

determine whether the voice of Speaker B (the respondent) is AI-generated.
- Verdict:

- If Speaker B’s voice is determined to be AI-generated, output:
final_choice="True".

- Otherwise, output: final_choice="False".

See Table 3.

Place one line space before the table title, one line space after the table title, and one
line space after the table. The table title must be lower case (except for first word and
proper nouns); tables are numbered consecutively.

表 2: Performance of multimodal LLMs on Turing test–style evaluations

Model Human-Human↑ Human-Machine↑ TTS↑ Overall↑

baichuan_audio 0.8169(±0.0325) 0.1528(±0.0300) 0.1250(±0.0276) 0.3628(±0.0232)
gemini 0.5775(±0.0415) 0.7292(±0.0370) 0.5764(±0.0412) 0.6279(±0.0233)
gemma3n 0.4648(±0.0419) 0.4444(±0.0414) 0.4028(±0.0409) 0.4372(±0.0239)
gpt4o 0.9648(±0.0155) 0.2708(±0.0370) 0.0069(±0.0069) 0.4116(±0.0237)
minicpm 0.6761(±0.0393) 0.4306(±0.0413) 0.2986(±0.0381) 0.4674(±0.0241)
phi4 0.7746(±0.0351) 0.1458(±0.0294) 0.2222(±0.0346) 0.3791(±0.0234)
seallms 0.1127(±0.0265) 0.8472(±0.0300) 0.7292(±0.0370) 0.5651(±0.0239)
voxtral 0.5141(±0.0419) 0.5069(±0.0417) 0.3889(±0.0406) 0.4698(±0.0241)
Qwen2.5-Omni 0.7817(±0.0347) 0.2361(±0.0354) 0.2361(±0.0354) 0.4163(±0.0238)

Qwen_LoRA 1.0000(±0.0000) 0.6319(±0.0402) 0.0972(±0.0247) 0.5744(±0.0238)

Ours 0.9507(±0.0182) 0.9236(±0.0221) 0.6667(±0.0393) 0.8465(±0.0174)

See Table 3.

Place one line space before the table title, one line space after the table title, and one
line space after the table. The table title must be lower case (except for first word and
proper nouns); tables are numbered consecutively.

14

Figure 13: Prompt templates for AI judges.

D.2 TRAINING SETUP

All experiments are conducted on our constructed dataset. Specifically, we use 831 samples (≈11h)
for training and 208 samples (≈2h) for validation, obtained from the H-H and H-M subsets with a
1:1 ratio. The test set consists of the remaining Human-Human(H-H) and Human-Machine(H-M)
samples together with TTS data, forming 430 samples (≈5h) with a balanced 1:1:1 distribution. For
modeling, we adopt Qwen2.5-Omni-7B as the backbone of our turing judge and further evaluate its
LoRA fine-tuned variant. During hidden state extraction, we fix random sample = False to ensure
consistency, and apply standard normalization to the hidden representations. For both modules,
we adopt Adam as optimizer. The complete experiments, covering feature extraction, inference
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evaluation of multimodal large models, and model training, are carried out on a computing cluster
with 8×A40 GPUs (48 GB memory per GPU).

D.3 EMBEDDING READOUT SELECTION

Readout Design. In Qwen2.5-Omni, only the first step exposes hidden states for the complete in-
put sequence; at subsequent steps, each layer outputs a hidden state only for the newly generated
token. Under this constraint, we design three readout candidates:: (i) First-step mean pooling:
a simple average over step-1 token-level states (a length-agnostic baseline); (ii) Last-token rep-
resentation: the hidden state of the most recent token as a compact, compression-style summary;
and (iii) Attention pooling: a learnable weighted fusion of {first hidden mean, last hidden} into a
single embedding. This two-source hidden representation lets the model adaptively fuse the glob-
ally contextual, acoustics-aware signal in first hidden mean with the high-level semantics distilled
in last hidden.

Table 15: Tuning parameters.

Prompt Scale Batch Size Learning Rate Dropout

Understanding 4 64 1 × 10−4 for ODL
1 × 10−3 for Linear

0.1

Ablation study. To identify which
sequence embedding best supports our
downstream objectives, we conduct an
ablation under a unified hyperparame-
ter regime (Table 15). We evaluate the
three readout strategies under fixed pro-
tocols so that any performance differ-
ences can be attributed solely to the readout. Each alternative is paired with the same ODL-Linear
head and trained end to end to convergence. To assess stability, all evaluations are conducted five
times with different random seeds; we report the human–machine classification accuracy as the
mean ± standard error (s.e.m.) over the five runs.

Table 16 shows the overall performances corresponding to three readouts. Attention pooling attains
the highest overall score (0.9112), outperforming mean pooling (0.8879) and last-token representa-
tion (0.8032). On the Pseudo Human dataset—which is strictly out-of-distribution—attention pool-
ing reaches 0.8167, while other baselines remain at 0.7805 and 0.7917. This gap indicates improved
robustness to distributional shift. Consistent gains on Human-Human and Human-Machine data
further suggest that attention-based aggregation captures salient sequence-level information more
effectively than position-based or uniform averaging schemes.

Table 16: Ablation experiment results (mean ± s.e.m. over 5 runs).

Data Type First-step Mean Pooling Last-token Representation Attention Pooling
Human-Human↑ 0.9409(±0.0017) 0.7380(±0.0047) 0.9493(±0.0014)
Human-Machine↑ 0.9430(±0.0051) 0.8791(±0.0028) 0.9306(±0.0017)
Pseudo Human ↑ 0.7805(±0.0100) 0.7917(±0.0022) 0.8167(±0.0061)
Overall ↑ 0.8879(±0.0044) 0.8032(±0.0012) 0.9112(±0.0020)

Overall, these findings show that the choice of readout materially impacts downstream performance.
Attention pooling provides consistent improvements across all settings, including out-of-distribution
evaluation, and therefore constitutes a reliable default for sequence-level embedding utilization.

D.4 MODEL ABLATION

To validate the effectiveness of ODL, we conducted an ablation where we removed the ODL and
replaced it with a standard linear layer and negative log-likelihood loss, treating the human-likeness
scores as independent categories. This baseline corresponds to a non-ordinal but still interpretable
classifier. This clarifies that ODL is used as an appropriate modeling choice for ordinal labels, and
that our ablation demonstrates its empirical value.
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Table 17: Binary classification accuracy across module ablation

Projection Module Human-Human Human-Machine Pseudo Human Overall
Ordinal Discretization Layer 0.9507 0.9722 0.9306 0.9605
Linear Layer 0.8718 0.9875 0.9097 0.9233

D.5 HYPERPARAMETER TUNING

Grid Search. To further optimize model’s performance, we tune hyperparameters for ODL and
FL independently using grid search.

Table 18: Hyperparameter search space.

Module Prompt Scale Batch Size Learning Rate Dropout

Ordinal
Discretization Layer

Understanding
Transcribe
Classify

1: 0.01: 10

16
32
64

128

1e-2
1e-3
1e-4
1e-5

0.1
0.2
0.3
0.4
0.5

Linear Layer – –

32
64

128
256

1e-2
1e-3
1e-4
1e-5

–

As summarized in Table 18, the ODL space comprises 3×1000×4×4×5 = 240,000 configurations,
while the FL space contains 4 × 4 = 16. The joint search space therefore consists of 3.84M
combinations. To reduce computational cost, we uniformly sampled 7500 ODL configurations and
paired each with all 16 FL settings, yielding 120,000 trials in total. Each trial requires ∼5 minutes
on a single GPU, corresponding to ∼ 10, 000 GPU-hours overall.

Tuning Criterion. To select optimal hyperparameters, we adopt accuracy as the primary objective
for grid search, which reflects the downstream classification goal of human–machine discrimina-
tion. The tuning results are summarized in Table 19, and the selected configuration is used used
throughout all experiments.

Table 19: Tuning results.

Module Prompt Scale Batch Size Learning Rate Dropout
Ordinal

Discretization Layer Understanding 2.1 64 1e-5 0.3

Linear Layer – – 128 1e-3 –

Sensitivity Analysis. As a complementary experiment to our main hyperparameter tuning, we per-
formed a 1000-run randomized hyperparameter search, sampling key training parameters for ODL
(learning rate, batch size, scale, dropout) and FL (learning rate, batch size). Each configuration
was trained end-to-end using the same evaluation protocol, ensuring reliability through full paral-
lelization. The results for the hyperparameter sensitivity analysis (accuracy) are presented in the
Table 20.
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Table 20: Hyperparameter Sensitivity Evaluation Metrics

Hyperparameter Values Acc (ODL) Acc (FL) MSE (ODL) MSE (FL)
lr (ODL) {1e-05, 1e-04, 1e-03, 1e-02} 0.6020(±0.0435) 0.8642 (±0.0071) 0.002174 0.000051

batch size (ODL) {32, 64, 128, 256} 0.6105 (±0.0065) 0.8601(±0.0149) 0.000048 0.000222

scale {1, 1.05, . . . , 5} 0.6293(±0.0090) 0.9254(±0.0283) 0.000091 0.000802

dropout {0.1, 0.2, 0.3, 0.4, 0.5} 0.6103 (±0.0050) 0.8617 (±0.0103) 0.000029 0.000105

lr (FL) {1e-05, 1e-04, 1e-03, 1e-02} 0.6109(±0.0031) 0.8584(±0.0696) 0.000011 0.004838

batch size (FL) {16, 32, 64, 128} 0.6107(±0.0034) 0.8650(±0.0193) 0.000013 0.000371

Analyzing the results, we identify several key findings:

• Learning rate proved to be a critical factor for both ODL and FL, consistent with findings
from other work. Extremes caused underfitting or instability, emphasizing the need for
precise tuning.

• Scale had minimal impact on ODL accuracy, suggesting ODL’s adaptability, but slightly
affected FL due to scale-induced changes in logits cut-points.

• Batch size influenced FL performance, with larger batches stabilizing training but poten-
tially slowing convergence or causing overfitting.

• Dropout and ODL batch size showed minimal effects, indicating that ODL is robust to
these parameters.

Overall, the 1000-run analysis shows that our method is generally robust, with learning rate being
the most sensitive parameter, while other hyperparameters produce only modest effects.

D.6 FINE-GRAINED HUMAN-LIKENESS SCORING ACCURACY

Accuracy Analysis. Since the 1–5 scores reflect perceived human-likeness, we report not only the
exact accuracy that measures full agreement with human judgments, but also a grouped accuracy
that consolidates scores into three categories (1–2, 3, and 4–5) to better reflect alignment with human
perception. In addition, we include accuracy within a tolerance of ±1 to capture near-agreement with
human ratings.
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Figure 14: Fine-grained scoring accuracy.

As shown in Figure 14, the Ordinal Discretization Layer consistently exceeds 50% exact accuracy
across all evaluation dimensions, often reaching 70%. When consolidating scores into three bins or
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allowing a tolerance of ±1, accuracies in most dimensions approach or surpass 80%. With more
detailed accuracies provided in Table 21, these results indicate that the model captures the correct
ordinal direction in fine-grained judgments and aligns closely with human perceptions, yielding in-
terpretable evidence for downstream human–machine classification. Moreover, our training frame-
work not only substantially enhances binary classification accuracy but also systematically aligns
the model with human evaluation dimensions, enabling it to learn human-like judgment patterns.

Table 21: Detaied accuracies.

Metrics\Dim MC LC PA CS LI UF MM RT IT
ACC↑ 0.7308 0.6971 0.7067 0.9423 0.5625 0.6490 0.9327 0.6058 0.5433
ACC (Group)↑ 0.8846 0.8654 0.8606 0.9423 0.8317 0.7644 0.9327 0.8365 0.7788
ACC (±1)↑ 0.8846 0.8654 0.8606 0.9471 0.8317 0.7644 0.9519 0.8413 0.7837

Metrics\Dim ST AV MN PI AC SB WE TS AE
ACC↑ 0.6010 0.7404 0.7452 0.7788 0.7596 0.7163 0.7740 0.5481 0.6683
ACC (Group)↑ 0.7788 0.8029 0.8846 0.8894 0.7981 0.8942 0.8654 0.7019 0.8221
ACC (±1)↑ 0.7933 0.8029 0.8846 0.8894 0.8462 0.8942 0.8654 0.7163 0.8221

Out-of-domain Evaluation To further evaluate the model’s generalization for the five-degree rat-
ing, we invited human experts to annotate the OOD samples on multiple dimensions and report three
accuracy metrics, where Exact is the percentage of predictions that exactly match the expert score,
Group is the percentage that fall into the same human–machine identity group (1–2 machine-like, 3
unclear, 4–5 human-like), and Nearby is the percentage that differ from the expert score by at most
±1. The results are shown in the Table 22, indicating that our model maintains strong generalization
ability in fine-grained scoring.

Table 22: Overall Fine-grained Scores Accuracy

Dataset Exact Group Nearby
Ours 0.7056 0.8408 0.8470
CosyVoice2 0.6450 0.7569 0.8030
Fisher 0.6476 0.7396 0.7752
MultiDialog 0.6562 0.7561 0.7847

We also computed the quadratic weighted Cohen’s Kappa κ between the expert and the model on
the OOD dataset to assess their consistency. The resulting κ = 0.6645 indicates that the experts’
and the model’s fine-grained scores exhibit a substantial level of agreement on OOD data, which
reflects generalization at a fine-grained level.

D.7 CONTRIBUTION ANALYSIS BY CASE STUDY

Case Study. To probe the interpretability of the model’s human–machine discrimination, we con-
duct case studies spanning two diagnostic regimes: (i) machine-class true positive (instances cor-
rectly predicted as machine) and (ii) machine-class false negative (machine instances incorrectly
predicted as human). This design reflects and operationalizes the principles of the inverted Turing
test, establishing continuity between our analytical setting and evaluation framework.

For each instance, we first calculate each contribution ck on machine-side by producting standard-
ized ODL logits (standardized with respect to the training-set distribution) together with correspond-
ing trained linear weight. Then, we rank top 8 features by |ck| to identify the most influential factors.
By construction, ck > 0 (machine-like scoring) increases evidence for the machine class, whereas
ck < 0 (human-like scoring) reduces it.
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Figure 15: Case studies

As shown in Figure 15, most fine-grained scores align with their final contributions to hu-
man–machine classification. In Figure 15a, despite a strong human-like cue (e.g., a negative contri-
bution from Pronunciation Accuracy), the model aggregates multiple machine-oriented signals, such
as Sycophant Behavior and Pronunciation Instability, yielding a high-confidence correct decision.
By contrast, in Figure 15b, high-score dimensions (e.g., Memory Consistency, Pronunciation Accu-
racy) contribute salient human-like evidence that shifts a machine sample into the human region; the
available machine-like cues are insufficient to overturn the outcome due to a small effective margin,
leading the system to accept the machine response as human in the sense of an inverted Turing test.

Case evidence shows that S2S outputs perform strongly on dimensions such as Memory Consistency
and Logical Coherence, leading annotated scores to concentrate in the 4–5 range; nevertheless, the
associated logits remain informative within this high-score regime. When the model maps inputs
to human-like scores, these dimensions place samples within higher-valued latent intervals along
a continuous scoring axis. This induces within-bin margins: sample-wise logit variability driven
by subtle linguistic or acoustic cues. In downstream binary classification, such variability produces
margin-dependent contributions: near-cutpoint (low-margin) instances can exert negative influence,
whereas far-beyond-cutpoint (high-margin) instances provide strong positive evidence. Thus, even
under apparent rating saturation, logits retain fine-grained discriminative power via their ordinal
positions and margins.
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