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ABSTRACT

The pursuit of human-like conversational agents has long been guided by the Tur-
ing test. For modern speech-to-speech (S2S) systems, a critical yet unanswered
question is whether they can converse like humans. To tackle this, we conduct the
first Turing test for S2S systems, collecting 2,968 human judgments on dialogues
between 9 state-of-the-art S2S systems and 28 human participants. Our results
deliver a clear finding: no existing evaluated S2S system passes the test, reveal-
ing a significant gap in human-likeness. To diagnose this failure, we develop a
fine-grained taxonomy of 18 human-likeness dimensions and crowd-annotate our
collected dialogues accordingly. Our analysis shows that the bottleneck is not se-
mantic understanding but stems from paralinguistic features, emotional expressiv-
ity, and conversational persona. Furthermore, we find that off-the-shelf AI models
perform unreliably as Turing test judges. In response, we propose an interpretable
model that leverages the fine-grained human-likeness ratings and delivers accu-
rate and transparent human-vs-machine discrimination, offering a powerful tool
for automatic human-likeness evaluation. Our workll] establishes the first human-
likeness evaluation for S2S systems and moves beyond binary outcomes to enable
detailed diagnostic insights, paving the way for human-like improvements in con-
versational Al systems.

1 INTRODUCTION

With the rapid advancement of generative artificial intelligence, large language models (OpenAll
2023}, [Touvron et al.| [2023; |GLM et al.| [2024) have become deeply integrated into people’s daily
lives, providing intelligent services through text-based human-machine interaction. As users seek
more direct, hands-free, and immersive experiences, Speech-to-Speech (S2S) systems (ByteDance,
2025} |(Comanici et al., |2025)) are gaining increasing attention by enabling interaction through the pri-
mary channel of human communication—speech. Such systems have broad applications, including
empathetic social companions (Geng et al.| [2025), personalized education (Galbraith & 1 Martinez,
2023)), and interactive virtual assistants (TG et al.l 2024). As the capabilities of S2S systems grow, a
fundamental question emerges: do these systems converse like humans? Meeting this bar is strictly
harder than text-based interaction, as it requires the models not only to achieve accurate semantic
understanding and human-like persona alignment but also to ensure acoustic fidelity and emotional
expression.

In this work, we first investigate the human-likeness of current S2S systems by conducting Tur-
ing test. To facilitate this evaluation, we construct a high-quality dialogue dataset comprising
human-human, human-machine, and pseudo-human (text-to-speech, TTS) dialogues. All hu-
man-machine dialogues are recorded in a professional studio with recruited volunteers. The dataset
covers two languages, 10 topics, 9 state-of-the-art S2S systems, and 28 human speakers. We then
deploy a gamified online platform to run the Turing test, collecting 2,968 judgments from 397 par-
ticipants. Our results lead to a clear finding: no existing evaluated S2S models passes the Turing test,
underscoring a substantial gap between current systems and truly human-like spoken interaction.

To move beyond a simple pass or fail outcome and understand the why behind this failure, we de-
velop a fine-grained human-likeness taxonomy with 18 dimensions across five categories: semantic
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Figure 1: The design of our study.

and pragmatic habits (Bottazzi Grifoni & Ferrario, |2025)), non-physiological paralinguistic features
(Warren et al.| 2025)), physiological paralinguistic features (Onda et al., [2025), mechanical persona
(Fanous et al.| [2025)), and emotional expression (Wang et al.| |2025a). By annotating our dialogue
data accordingly, we diagnose the specific weaknesses of current S2S systems. Our analysis reveals
that the artificial quality of current systems does not primarily stem from semantic deficiencies—in
fact, contextual understanding is no longer the primary bottleneck, with models scoring near human
levels on logical coherence and memory consistency. Instead, failures arise from deficiencies in par-
alinguistic features, emotional expression, and conversational persona. These findings collectively
offer a concrete roadmap for developing more human-like S2S systems.

Finally, we explore the potential of automating the Turing test by asking: Can Al serve as the judge?
We first demonstrate that 9 off-the-shelf AI models perform poorly at this task, failing to reliably
distinguish human from machine-generated speech. In response, we develop a specialized and in-
terpretable Al judge. Concretely, the model learns to score dialogues across the 18 human-likeness
dimensions to capture fine-grained perceptual patterns. These interpretable scores are then fed into
a regularized linear classifier to produce a final and explainable human—machine discrimination de-
cision. This approach not only achieves strong performance but also provides transparent rationale
for its judgments by linking them to specific human-likeness attributes. The resulting model of-
fers a practical tool for diagnosing human-likeness of S2S systems with both headline scores and
fine-grained attributions, thereby empowering rapid iteration toward more human-like systems.

An overview of our study design is shown in Figure[I] In summary, our work contributes (1) the
first human- likeness evaluation on the current S2S systems via Turing test, (2) a comprehensive di-
agnostic framework and in-depth analysis explaining the gap in human-likeness, and (3) an effective
and interpretable Al judge to automate human-likeness evaluation. Our code, dataset, and model are
publicly available to foster progress in building truly human-like spoken dialogue agents.

2 BACKGROUND

Turing Test Since its introduction in 1950, the Turing L .
Test (TURING, [1950) has served as a cornerstone for eval- 1able 1: Existing Turing tests for AL
vating machine intelligence. |[Rathi et al| (2024) employ

two variants of the Turing Test, the Displaced Turing Test Turing Test Modality
. . Jones & Bergen|(2024a) Text
and the Inverted Turing Test, to examine how well humans Tones etal (0035 Text
and large language models can discriminate between online Rathi et al.|(2024) Text
- : : : _ Chan|(2003) Text-Speech
hur’nan machlpe conversations, thqrgby reﬁegtmg the mod Whng ot al (20355) Toxt. Speech
els’ conversational perception abilities. Similarly, Jones & Ours Speech-Speech

Bergen| (2024a); Jones et al.| (2025); Jones & Bergen| (2025)
design settings in which language models masquerade as humans in Turing Test scenarios to as-
sess their linguistic expressiveness and emotional characteristics. In addition, (Chan| (2003); [Wang
et al.| (2025b) extend the Turing Test paradigm to the domain of speech synthesis, evaluating the
gap between synthetic speech and human dialogue to provide insights for model optimization. In-
spired by these studies, we consider whether the Turing Test paradigm can be leveraged to evaluate
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speech-to-speech (S2S) systems, which constitute an indispensable component of contemporary hu-
man—-machine interaction.

Evaluation for S2S Systems Current evaluations of speech-to-speech (S2S) systems primarily
focus on two dimensions: audio understanding and conversational intelligence. For example, Du
et al.| (2025) construct a multi-turn dialogue benchmark to assess pronunciation accuracy and the
appropriateness of emotional expression in S2S systems. Jiang et al.| (2025) propose an arena-
style evaluation to measure instruction-following performance and paralinguistic expressiveness.
Lin et al|(2025) assess dialogue fluency by analyzing response latency. In addition, [Sakshi et al.
(2024); [Kumar et al.| (2025b) design a suite of tasks such as speaker identification and emotion
recognition to evaluate models’ reasoning capabilities. However, comprehensive assessments of the
overall human-likeness of S2S systems remain scarce.

3 DATASET CONSTRUCTION FOR THE S2S TURING TEST

We construct a dialogue dataset to support a rigorous and balanced evaluation of human-likeness
in S2S systems. The dataset contains three categories of dialogues: human-machine (H-M), hu-
man-human (H-H), and pseudo human (PH). The following subsections detail the construction pro-
cess.

3.1 HUMAN-MACHINE DIALOGUE

Topic Design To ensure that the constructed human—-machine dialogues are both authentic and
diverse, we define 10 dialogue topics guided by DailyDialog (L1 et al., 2017)), which span a broad
spectrum from daily life to financial activities. The detailed topics and their distribution in the final
dialogues are illustrated in Figure

Model Selection In our experiments, we select 9 state-of-the-art S2S systems, spanning both open-
and closed-source models, for human—machine dialogue generation. These include GPT-40 (Hurst
et al.l2024), Gemini2.5-Pro (Comanici et al. [2025)), Qwen3 (Yang et al.| 2025)), Kimi-K1.5 (Team
et al.,[2025b), ChatGLM-4.5 (Zeng et al.,[2025), Hunyuan-TurboS (Team et al.,|2025¢), Doubao-Pro
1.5 (ByteDancel [2025), Claude-Sonnet 4 (Anthropicl [2024), and iFLYTEK-Spark (iFlytekl [2024)).
The detailed information about these models can be found in[A1]

Dialogue Recording We invite 28 participants from 10 countries and regions to record hu-
man—machine dialogues in a professional recording studio, detailed in Appendix Given a topic
and a S28 system, the speaker is instructed to initiate and sustain a multi-turn conversation naturally
around the given topic with the model, with the whole dialogue typically lasting between 20 to 60
seconds. Our goal is to elicit dialogues that are as human-like and realistic as possible. However,
pilot runs revealed two key issues: (i) identity disclosure, S2S systems often proactively mention
that they are intelligent assistants, which undermine the premise of Turing test, and (ii) role passiv-
ity, without contextual scaffolding, models fail to actively embody expected roles, instead from a
generic Al-assistant stance. To address these issues, we design three interaction strategies aimed at
reducing identity leakage and encouraging immersive role-playing:

* Human-Guided Initiation. @ We let human speakers start the conversation by express-
ing opinions on an object or phenomenon, thereby preemptively suppressing the model’s
tendency to position itself as an assistant and setting a person-to-person tone. An ex-
ample is I always take a shower in the evening. I don’t understand
why there are people taking a shower in the morning.

* Role Playing. In this setting, we assign the S2S system a concrete human role and background
information via prompt, while explicitly instructing it not to disclose its identity. An example
prompt is You are now my mom and we are discussing my final exam
grade. Please don’t mention your identity in the subsequent
conversation. Let’s start chatting now.  The procedure is implemented
as follows: we first have a test facilitator read the prompt to the S2S system to set the role
and context, following which the recording start and the human speaker engage the model in
conversation.
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¢ Human-Likeness Prompting. To elicit more human-like conversational behavior from S2S
systems, we augment the prompt with explicit instructions for human-like expression. This
approach aligns with techniques used to enhance anthropomorphic behavior in large lan-
guage models (Jones & Bergenl 2024b). As an illustration: You are now my friend

who came back from a vacation in Europe. Make your expression
more humanlike. Don’t mention your identity in the subsequent
conversation. Let’s start chatting now. How’s your vacation to
Europe?

For a fair comparative evaluation of S2S systems, all participants are instructed to begin the dialogue
with an identical initial opening utterance when engaging each S2S system. The specific utterances
and prompts used are detailed in Appendix [AJ3] Finally, we perform manual filtering to remove
dialogues in which the S2S system explicitly disclose its identity, respond in a non-target language,
or exhibited overtly aggressive behavior during the interaction.

3.2 HUMAN-HUMAN DIALOGUE

To support comparative evaluation, we construct a human—human subset matched in scale and topic
distribution to the human—machine subset, using a two-pronged approach: (i) Curated from existing
datasets. We manually select dialogues from three open-source datasets DAILYTALK (Lee et al.,
2023)), IEMOCAP (Busso et al.,[2008), and MagicData (Yang et al.,2022)) that align with our prede-
fined topics. During review, we observe frequent mutual interruptions that many S2S systems cannot
yet emulate. To eliminate evaluation bias caused by this phenomenon, we filter out a considerable
portion of dialogues with interruptions. In addition, to align with the alternating role patterns typical
in human—machine multi-turn dialogues, we filter out dialogues with imbalanced participation from
each speaker based on their engagement. Detailed settings can be found in the Appendix [A:4] (ii)
Recordings with volunteers. To ensure contextual consistency with the human—machine dialogues,
we conduct an additional set of human—human recordings. In particular, we used the same opening
utterances as those employed in the human—machine setup so as to maintain the same conversational
topics and scenarios, thereby minimizing bias introduced by content differences.

3.3 PSEUDO HUMAN DIALOGUE SYNTHESIS

We notice that modern text-to-speech (TTS) models can synthesize dialogues with striking human-
likeness. To raise the difficulty of Turing test, we introduce the dataset with pseudo-human dialogues
synthesized by two state-of-the-art TTS models, Nari Dia-1.6B (nari-labs, 2025) and Spark-TTS
(Wang et al.| 2025c).We prepare scripts from two sources for TTS synthesis. First, we use a slightly
modified version of the human-human dialogue script. Second, we prompt GPT-40 to generate
two-speaker scripts conditioned on the predefined topics. Each utterance in the scripts is converted
into speech using TTS models. Finally, we merge them into dialogues with a 180-230 ms inter-
turn interval and add background ambience from reference recordings to enhance naturalness. The
details on pseudo human dialogue synthesis are provided in Appendix [A.3]

3.4 FINAL DATASET PROCESSING AND STATISTICS

For the collected dialogue

data, we implement two bias- Health
correction measures.  First, (@48%) \
we align the time intervals  Finance
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The final dataset comprises a total of 1,486 dialogues, with a duration of 17.7 hours. This in-
cludes 669 human-machine dialogues (8.9 hours), 673 human-human dialogues (7.6 hours), and
144 pseudo-human dialogues (1.2 hours). The overall statistics are illustrated in Figure 2] We fur-
ther divide the dataset into training and test sets, with the training set containing 525 human—machine
and 531 human-human dialogues, totaling approximately 13.1 hours. The test set consists of 430
dialogues and 4.7 hours in total.

4 DO S2S SYSTEMS CONVERSE LIKE HUMANS?

Game Platform Design for the Turing Test We deploy the < Dialogue 2/5 . ®
Turing test as a lightweight and shareable game to encourage — e
broad participation. Before playing, users complete a short ques- — co—"

tionnaire (age, gender, education, Al familiarity) and select their
evaluation language (Chinese or English) to ensure judgments in
their preferred language. In each round, users are required to eval-

Professor Wang, what is non-tariff
barrier?

uate a set of five dialogues. After listening to each dialogue, they
determine whether Speaker B is human or machine. To boost en-
gagement, participants receive points based on the accuracy of
their judgments, and a public leaderboard ranks all players based
on their performance. A built-in sharing feature helps dissemi-
nate the game to a wider audience, facilitating larger-scale data
collection. The main interface appears in Figure 3] with details in
Appendix[B.1] By September 15, 2025, the platform has collected
results from 397 participants, totaling 2,968 dialogue evaluations.
Our game platform supports long-term and scalable Turing test.

Turing Test Results and Analysis Our evaluation employs the
Success Rate as the primary metric for assessing human-likeness,
which reflects the proportion of trials in which a system is judged
to be human by evaluators. A value greater than 0.5 would sug-
gest that human evaluators are incapable of distinguishing the
model from a human (Jones & Bergen, |2024b). We also exam-
ine participant Accuracy across different demographic groups, de-
fined as the proportion of correct human-versus-machine identi-
fications. This allows us to investigate how factors such as age,

Non-tariff barrier is another mean to
restrict imports.

Can you give an example?

Show full dialogue v

A4

Listen carefully and decide if the responder (B) is
human or Al

B IS HUMAN B IS Al

Figure 3: The main game inter-
face of the Turing test.

gender, education, and Al familiarity influence human perceptual bias in the Turing test.
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(a) Success rate across S2S systems.

(b) Accuracy across different groups.

Figure 4: (a) Turing test success rates of S2S systems, measured as the proportion of responses
judged as human. Higher values indicate greater human-likeness. (b) Participant accuracy in iden-
tifying human vs. machine. Detailed scores and results categorized by interaction strategies are

provided in Appendix

Observation 1: No existing evaluated S2S system passes the Turing test.
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As shown in Figure fa] human-to-human dialogues achieve success rates as high as 0.87 for En-
glish and 0.70 for Chinese, confirming the robustness of our evaluation design. In contrast, all S2S
systems perform significantly below the 0.5 chance threshold, with success rates ranging from 0.07
to 0.31. This significant performance gap highlights the fundamental limitations of current speech
models in their ability to simulate human-like behavior. Moreover, the success rates for pseudo
human dialogues fall short of human-to-human performance, suggesting that even when scripts are
highly similar to real conversations, synthesized speech still lacks sufficient acoustic naturalness to
pass as humans. However, their performance surpasses that of most S2S systems, revealing that
today’s S2S systems are limited not only by vocal quality, but also by vocal interaction capabil-
ities such as speech understanding, role-based acoustic adherence, and conversational reasoning.
These findings suggests that bridging the human-likeness gap for S2S systems requires simultaneous
advances in both acoustic expression and conversational intelligence.

Observation 2: An individual’s ability to distinguish humans from machines depends more on
experience than on demographics.

As shown in Figure b} participants with greater Al familiarity achieve clearly higher detection ac-
curacy, reaching 78.8% for the most experienced group versus 64.2% for the least familiar group.
Younger cohorts also outperform older groups, likely due to more frequent exposure to Al interac-
tions and heightened sensitivity to non-human cues. In contrast, accuracy shows minimal variation
by gender or education level. These results suggest that detection ability is shaped more by experi-
ential factors than demographic traits. As public familiarity with Al grows, passing Turing tests may
become progressively harder over time. Our game-based evaluation platform supports longitudinal
Turing testing and periodic recalibration, enabling continued assessment of human-likeness against
evolving human judgment standards.

5 WHY D0 S2S SYSTEMS (NOT) APPEAR HUMAN?

To systematically investigate why current S2S systems fail to pass as human, we develop a com-
prehensive taxonomy for human-likeness diagnosis, which comprises five major categories and 18
fine-grained dimensions. Full definitions of the taxonomy are provided in Appendix [C.I] Using
this taxonomy, all dialogue samples are crowdsourced and rated on a 5-point scale (Appendix [C.2),
after which human experts reviewed and refined the labels to ensure quality (Appendix [C.3). The
resulting labels enable a granular diagnosis of failure modes that limit the human-likeness of current
speech models. As illustrated in Figure[5} we summarize four key observations that explain the pros
and cons of current S2S systems in achieving human-like naturalness, therefore providing guidance
for developing advanced and human-like S2S systems.

Memory
Logical Coherence Consistency Acoustic Emotion

Pronunciation Textual Sentiment

Accuracy
Written-style
Code-switching 4 W Expression Human
49 m iFLYTEK-Spark
Linguistic Sycophant Hunyuan-TurboS
Imprecision s Behavior = Doubao-Pro 1.5
i GPT-40
Use of Fillers s " Accent m Kimi-K1.5
m Gemini2.5-Pro
Metaphor & < \ “ Pronunciation ™ Claude-Sonnet 4
Implied Meaning )= B Instability = Qwen3
48 “*Micro-physiological
Rhythm cro-physioog
! ass e « Noise
Intonation Auxiliary Vocalization
Stress
1. Semantic Features II. Non-Physi ical II1. Physi ical IV. Mechanical . A
and Pragmatic Habits Paralinguistic Features Paralinguistic Features Persona BN V. Emotional Expression

Figure 5: Crowd-annotated scores (1-5) across the 18 human-likeness dimensions.
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Observation 3: Semantic and contextual understanding in dialogues are not the primary bottle-
necks for S28 systems.

Current models demonstrate remarkable proficiency in core semantic tasks, closely approaching
human-level performance. Specifically, models excel in Memory Consistency, capably retaining
and referencing information within a short dialogue context, and in Logical Coherence, ensuring
smooth transitions between turns without abrupt contradictions. Furthermore, Pronunciation Ac-
curacy is generally high, with modern systems correctly articulating words, including challenging
heteronyms. These strengths indicate that S2S systems have largely solved the foundational chal-
lenges of textual understanding and generating clear and coherent dialogue scripts.

Observation 4: The speech generated by S2S systems often lacks human-like paralinguistic
features, exhibiting rigid prosody and absence of disfluency cues.

Across non-physiological paralinguistic features, S2S outputs show pronounced deficits in vocal
dynamics. Rhythm and intonation changes are mechanically regular, with few context-appropriate
pauses or pitch movements. Stress on salient words is weak or misplaced, which is a crucial element
of human communication. Furthermore, models avoid human disfluency cues, such as linguistic
imprecision (e.g., hedges like “probably”), use of fillers (“um”), and micro-physiological noises
(e.g., breath sounds). These paralinguistic shortcomings, even when the content is fluent, make the
speaker perceptibly machine-like.

Observation 5: Emotional expressivity remains largely limited in current S2S systems.

The textual sentiment scores of S2S systems are significantly lower than human performance, reflect-
ing the lack of nuanced emotions due to the writing-style expressions. More critically, the acoustic
emotion scores are even lower than those of textual sentiment, due to rigid prosody and weak or
misaligned stress patterns. This indicates that S2S systems tend to generate dialogues with neutral
and unconvincing emotional tones, making them readily perceived as non-human by listeners.

Observation 6: The persona of S2S systems is often perceived as mechanical, characterized by
excessively sycophantic and formal expression.

S2S systems reveal a mechanical persona through their social interaction. Unlike humans who
judiciously agree or disagree based on context, current models exhibit a strong default tendency to
excessively affirm, apologize, and express gratitude. For instance, to a user’s statement like, “I’m
planning to go around in Korea for 5 days”, a model might respond with disproportionate enthusiasm
such as, “That’s absolutely amazing—fantastic choice!”. Moreover, their written-style expression
skews formal, lacking the conversational looseness typical of spontaneous speech.

6 CAN AI MODELS SERVE AS TURING TEST JUDGES?
6.1 TURING TEST WITH Al JUDGES

Table 2: Al judge accuracy of different models on the Turing test data.

Model | ACCH-H)t ACCH-M)? ACC(PH)t Overallt
Human Judgement | 07028 08357 06384 07284
Baichuan-Audio(Li et al.[2025) [0.8169] 0.1528 0.1250 0.3628
Gemini 2.5 pro(Comanici et al.}[2025) 0.5775 - 0.5764 -
Gemma 3n(Team et al.}|[2025a) 0.4648 0.4444 0.4028 0.4372

GPT-40-Audio-Preview(Hurst et al.|[2024) |  |EGHSI 0.2708 0.0069 0.4116
MiniCPM-o 2.6(Yao et al.|[2024) 106761 0.4306 0.2986 0.4674

Phi-4-Multimodal(Abouelenin et al.||2025) 0.1458 0.2222 0.3791

Secallms-Audio(Nguyen et al.|[2023) 0.1127 [0.8472] [07292]  0.5651
Voxtral Mini(Li et al.|[2025) 0.5141 0.5069 0.3889 0.4698
Qwen2.5-Omni(Xu et al.|2025) [0.7817] 0.2361 0.2361 0.4163
Average of Model Judgement | 06238 04011 03130 0.4527
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To explore whether AI models can reliably assess human-likeness in dialogues, we employ 9 state-
of-the-art models as automated judges, and each model is tasked with classifying whether a given
dialogue response is human- or machine-generated. Detailed prompts are provided in Appendix[D.1]
Table [2] reports their classification accuracy across the three dialogue types (human—human, hu-
man—machine, and pseudo human).

Observation 7: Existing Al judges significantly underperform humans in the Turing test and
exhibit systematic bias.

The overall performance of the Al judges (average accuracy: 0.4527) remains substantially lower
than that of human evaluators (accuracy: 0.7284), with even the best-performing model Gemini 2.5
Pro achieving only 0.6279 accuracy. Analysis of model behavior reveals three distinct bias patterns:
several models (e.g., GPT-40-Audio-Preview, Baichuan-Audio, Phi-4-Multimodal, Qwen2.5-Omni)
exhibit a strong tendency to classify most dialogues as human—human, models such as SealLLMs-
Audio display the opposite bias toward human-machine judgments, while Voxtral Mini behaves
close to random guessing. These results highlight the current limitations of multimodal models in
replicating human-like perceptual judgment in Turing test scenarios.

6.2 INTERPRETABLE Al JUDGE FOR HUMAN-LIKENESS EVALUATION

Given that general-purpose large models perform unreliably as human-likeness judges, we develop
an interpretable multimodal evaluator designed to deliver transparent and trustworthy decisions.
Detailed experimental setup is provided in Appendix[D.2]

6.2.1 TRAINING FRAMEWORK

We adopt a two-stage fine-tuning framework on Qwen2.5-Omni, which trains the model to first cap-
ture fine-grained human-likeness patterns and then produce a final and explainable human—-machine
discrimination decision.

Fine-grained Scoring Projection. Given an audio dialogue x € D, we first encode it with a pre-
trained audio-language model (ALM) to obtain a fixed-dimensional representation h = fapm(z) €
R? (a two-source attention pooling, see Appendix for representation design). We then map h to
interpretable dimension scores with an Ordinal Discretization Layer (ODL) (Tutz, 2022):

z = foDL(h; 9) S RK, 2k = [fQDL(h;G)]k

where K is the number of fine-grained human-likeness dimensions and zj, is the latent score for
dimension k. To respect the ordinal nature of human ratings (e.g., r ordered levels, 1-r), we convert
each zj, into an ordinal distribution via ordered cut-points. For each dimension k € {1,..., K}, we
define r — 1 strictly ordered cut-points

1—r+2

)Sk, ie{l,...,r—1}

Ca = 2(r — 2

where s;; is a learnable scale that controls bin spacing. Using a cumulative-link formulation, cumu-
lative probabilities are

Py <il|z) = o(Cir — 21),
where o (-) denotes the sigmoid function. Per-category probabilities follow by differencing: P (Y} =
N=PY,<1),PYr=49)=PYp <i)—PY<i—1)for2<i<r—1,and P(Y, =7) =
1—-P(Yy <r—1). Let Sg(x) € {1,...,7}X denote human-likeness ratings for , we fit the ODL
by minimizing the ordinal negative log-likelihood over all samples and dimensions:

K
min ﬁ Z Z [—10gP(Yk = Sg;)(srﬂl‘)]

s, 0
z€D k=1

This procedure yields K order-preserving, human-aligned scores per dialogue that serve as inter-
pretable inputs for the final human—vs.—machine classifier.
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Explainable Binary Classification. After training the ODL, each of the k£ neurons acquires an or-
dinally constrained scoring pattern induced by the cut-point scheme. Consequently, the ODL outputs
are no longer arbitrary latent features; they instantiate interpretable scoring dimensions aligned with
human ratings and preserve their ordinal structure for human—-machine discrimination. Leveraging
this property, we feed the logits z into a linear classifier with regularization constraint to ensure that
the final classification remains interpretable:

. 1
Ial/an @( z):eD£CE(WF z, y) + )\R(WF)
z,y

where Lcg is the Cross-Entropy Loss, Wr € R™"*¥ is the weight matrix of the final linear layer
with n categories, y is the label of z, R(W') = ||W; + Wa||2 is the symmetry regularization, and A
is set to 0.1. Model ablations and hyperparameter tuning details are provided in Appendix [D.4]and
D3

6.2.2 RESULTS AND DISCUSSION

Table 3: Binary classification accuracy of different models across three evaluation data types.

Data Type \ Qwen2.5-Omni  Qwen2.5-Omni(LoRA) Human Judge Ours

Human-Humant 0.7817 0.9230 0.7028 0.9507
Human-Machine? 0.2361 0.6319 0.8357 0.9722
Pseudo Human 1 0.2361 0.0972 0.6384 0.9306
Overall 1 0.4163 0.5744 0.7284 0.9605

We evaluate the interpretable Al judge on the Turing test using binary classification accuracy (hu-
man vs. machine). As presented in Table [3] Qwen2.5-Omni (LoRA) represents Qwen2.5-Omni
fine-tuned using LoRA technology (Hu et al.,[2022). It can be observed that our approach outper-
forms all variants and human evaluators. The overall accuracy is 23.21% higher than the human
evaluation, 38.61% higher than the LoRA-based approach, and more than doubles the performance
of the original model. Notably, the model achieves 93.06% accuracy on pseudo-human dialogues
unseen during training, demonstrating strong generalization. In addition, the model shows strong
consistency with fine-grained human ratings, a capability facilitated by its interpretable design (see

Appendix [D.6).

Out-of-Domain Generalization Evaluation We further evaluated our model on three out-of-
domain (OOD) datasets that span diverse acoustic, demographic, and interaction conditions: 1)
CosyVoice2 Synthesis (Pseudo Human) (Du et al.,2024)), synthesized dialogues across different age
groups (older adults and children); 2) Fisher (Human-Human) (Cieri et al.| 2004)), telephone speech
with significant background noise; 3) MultiDialog (Human-Human) (Park et al.|[2024): clean back-
ground native-speaker dialogue recordings. We sample 64 dialogues from each dataset for evalua-
tion. In addition to accuracy, we introduced the ROC-AUC score to provide a robust and threshold-
independent evaluation of classification performance. The results of human—machine classification
are presented in Table[d These results indicate that the model generalizes well and maintains stable
performance under distribution shift.

Table 4: Binary classification accuracy and ROC-AUC on OOD test set.

Metric | Overall (Inner) | CosyVoice2 Fisher ~MultiDialog Overall (OOD)
Accuracy 0.9605 0.9844 0.9844 0.9531 0.9740
ROC-AUC 0.9791 - - - 0.9881
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Observation 8: Our interpretable Al judge delivers superior performance in distinguishing hu-
man from machine-generated speech. By providing both an overall human-likeness score and
fine-grained diagnostics, it serves as a practical tool for S2S assessment.

7 CONCLUSION

This work presents the first Turing test for modern S2S systems, delivered via a game-based on-
line platform that enables large-scale and longitudinal testing. Our findings reveal a clear gap: no
current system passes, demonstrating that human-like conversational ability remains an unsolved
challenge. Through an 18-dimension taxonomy, we show the bottleneck has shifted from semantic
understanding to shortcomings in paralinguistic features, emotional expressivity, and conversational
persona, explaining why even fluent S2S output sounds distinctly artificial. To support automatic
evaluation, we develop an interpretable Al judge that significantly outperforms off-the-shelf models
and provides diagnostic insights.

Impact. We provide the community with a new human-likeness evaluation framework for S2S sys-
tems and move beyond binary pass/fail to automatic, diagnostic, and scalable evaluation. Our results
offer practical guidance toward more genuinely human-like S2S systems by identifying the core
challenges in acoustic naturalness, emotional expressivity, and social behavior.

ETHICS STATEMENT

Our study involves the collection of audio recordings from human participants. In conducting this
research, we have adhered to strict ethical principles to safeguard participants’ privacy, autonomy,
and well-being. The main ethical considerations are outlined below:

* Informed Consent: All participants were clearly informed that their speech would be
recorded and potentially used in academic publications. Participation was voluntary, and
individuals had the right to withdraw at any stage without penalty.

* Data Anonymization: To ensure participant confidentiality, all audio recordings were
anonymized by removing any personally identifiable information, making it impossible
to trace the data back to individuals.

* Data Security: Collected data are stored under strict security protocols, with access lim-
ited to authorized research personnel. Comprehensive measures are in place to prevent
unauthorized access, disclosure, or misuse.

* Scientific Integrity: We maintain high standards of transparency and accuracy in reporting
methods and results. The research is presented in a manner that supports reproducibility,
and all contributions are properly acknowledged.

* Avoiding Harm and Promoting Fairness: We have taken measures to minimize potential
harm and avoid reinforcing social biases. Our work is committed to fairness, inclusivity,
and respect for participants, with the goal that research outcomes be applied in a socially
responsible manner.

We reiterate that all data and models are intended solely for scientific research purposes, and must
not be used for commercial activities or any unlawful or fraudulent actions.

REPRODUCIBILITY STATEMENT

‘We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification.

Our experiments comprise three main components. First, we collected dialogue data for the Tur-
ing test, which includes human-machine dialogues (see Section [3.1] for the detailed procedure),
human-human dialogues (Section [3.2)), and pseudo human-human dialogues generated via TTS
models (Text-to-Speech, also described in Section [3.3). Based on the collected data, we designed
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a game-based human evaluation platform supporting fine-grained annotation, with the detailed de-
sign and implementation process outlined in Section 4| Furthermore, we developed a fine-grained
annotation protocol incorporating expert validation, as described in Appendix [C.I] Using this pro-
tocol, we conducted crowd-sourced annotation; the design of the annotation platform is provided
in Appendix Finally, we trained a human-like judge model using the annotated data, with the
model training procedure and hyperparameter settings detailed in Appendix[D] We believe that these
comprehensive descriptions significantly enhance the reproducibility of our work.

REFERENCES

Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
report: Compact yet powerful multimodal language models via mixture-of-loras. arXiv preprint
arXiv:2503.01743, 2025.

Andrey Anikin, Valentina Canessa-Pollard, Katarzyna Pisanski, Mathilde Massenet, and David
Reby. Beyond speech: Exploring diversity in the human voice. Iscience, 26(11), 2023.

Anthropic. Claude 3.5 sonnet system card. https://www—cdn.anthropic.com/
6d8a8055020700718b0c49369f60816ba2a7c285.pdf, 2024. Accessed: 2025-09-10.

Emanuele Bottazzi Grifoni and Roberta Ferrario. The bewitching ai: The illusion of communication
with large language models. Philosophy & Technology, 38(2):61, 2025.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N. Chang, Sungbok Lee, and Shrikanth S. Narayanan. IEMOCAP: interactive emotional
dyadic motion capture database. Lang. Resour. Evaluation, 42(4):335-359, 2008.

ByteDance. Doubao-1.5-pro. https://seed.bytedance.com/en/special/doubao_
1_5_pro, 2025. Accessed: 2025-09-15.

Tsz-Yan Chan. Using a text-to-speech synthesizer to generate a reverse turing test. In /5th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2003), 3-5 November 2003,
Sacramento, California, USA, pp. 226-232. IEEE Computer Society, 2003. doi: 10.1109/TAL
2003.1250195. URL |https://doi.org/10.1109/TAT.2003.1250195.

Yiming Chen, Xianghu Yue, Chen Zhang, Xiaoxue Gao, Robby T. Tan, and Haizhou Li. Voicebench:
Benchmarking llm-based voice assistants. CoRR, abs/2410.17196, 2024.

Christopher Cieri, David Miller, and Kevin Walker. The fisher corpus: a resource for the next gen-
erations of speech-to-text. In Proceedings of the Fourth International Conference on Language
Resources and Evaluation, LREC 2004, May 26-28, 2004, Lisbon, Portugal. European Language
Resources Association, 2004.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Philip R. Doyle, Justin Edwards, Odile Dumbleton, Leigh Clark, and Benjamin R. Cowan. Mapping
perceptions of humanness in intelligent personal assistant interaction. In Proceedings of the 21st
International Conference on Human-Computer Interaction with Mobile Devices and Services,
MobileHCI ’19, pp. 1-12. ACM, October 2019. doi: 10.1145/3338286.3340116. URL http:
//dx.doi.org/10.1145/3338286.3340116.

Yuhao Du, Qianwei Huang, Guo Zhu, Zhanchen Dai, Sunian Chen, Qiming Zhu, Yuhao Zhang,
Li Zhou, and Benyou Wang. Mtalk-bench: Evaluating speech-to-speech models in multi-turn
dialogues via arena-style and rubrics protocols. arXiv preprint arXiv:2508.18240, 2025.

Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
Changfeng Gao, Hui Wang, Fan Yu, Huadai Liu, Zhengyan Sheng, Yue Gu, Chong Deng, Wen
Wang, Shiliang Zhang, Zhijie Yan, and Jingren Zhou. Cosyvoice 2: Scalable streaming speech
synthesis with large language models. CoRR, abs/2412.10117, 2024.

11


https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://seed.bytedance.com/en/special/doubao_1_5_pro
https://seed.bytedance.com/en/special/doubao_1_5_pro
https://doi.org/10.1109/TAI.2003.1250195
http://dx.doi.org/10.1145/3338286.3340116
http://dx.doi.org/10.1145/3338286.3340116

Under review as a conference paper at ICLR 2026

Aaron Fanous, Jacob Goldberg, Ank A. Agarwal, Joanna Lin, Anson Zhou, Roxana Daneshjou, and
Sanmi Koyejo. Syceval: Evaluating LLM sycophancy. CoRR, abs/2502.08177, 2025. doi: 10.
48550/ARXIV.2502.08177. URL https://doi.org/10.48550/arXiv.2502.08177.

Takashi Fukuda, Osamu Ichikawa, and Masafumi Nishimura. Detecting breathing sounds in realistic
japanese telephone conversations and its application to automatic speech recognition. Speech
Communication, 98:95-103, 2018.

Matthew Carson Galbraith and Mireia Gémez i Martinez. An analysis of dialogue repair in virtual
voice assistants. CoRR, abs/2307.07076, 2023.

Xuelong Geng, Qijie Shao, Hongfei Xue, Shuiyuan Wang, Hanke Xie, Zhao Guo, Yi Zhao, Guo-
jian Li, Wenjie Tian, Chengyou Wang, Zhixian Zhao, Kangxiang Xia, Ziyu Zhang, Zhennan
Lin, Tianlun Zuo, Mingchen Shao, Yuang Cao, Guobin Ma, Longhao Li, Yuhang Dai, Dehui
Gao, Dake Guo, and Lei Xie. Osum-echat: Enhancing end-to-end empathetic spoken chatbot via
understanding-driven spoken dialogue. CoRR, abs/2508.09600, 2025.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9,

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Ji-Sang Hwang, Sang-Hoon Lee, and Seong-Whan Lee. Pausespeech: Natural speech synthesis
via pre-trained language model and pause-based prosody modeling. In Huimin Lu, Michael
Blumenstein, Sung-Bae Cho, Cheng-Lin Liu, Yasushi Yagi, and Tohru Kamiya (eds.), Pat-
tern Recognition - 7th Asian Conference, ACPR 2023, Kitakyushu, Japan, November 5-8,
2023, Proceedings, Part I, volume 14406 of Lecture Notes in Computer Science, pp. 415-427.
Springer, 2023. doi: 10.1007/978-3-031-47634-1\ _31. URL https://doi.org/10.1007/
978-3-031-47634-1_31,

iFlytek. iflytekspark-13b: 130b parameter open-source large model. https://gitee.com/
iflytekopensource/iFlytekSpark-13B, 2024. Accessed: 2025-09-15.

Feng Jiang, Zhiyu Lin, Fan Bu, Yuhao Du, Benyou Wang, and Haizhou Li. S2s-arena, evaluat-
ing speech2speech protocols on instruction following with paralinguistic information. CoRR,
abs/2503.05085, 2025.

Cameron Jones and Ben Bergen. Does GPT-4 pass the Turing test? In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 5183-5210, Mexico City, Mexico, June 2024a. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.290. URL https://aclanthology.org/
2024 .naacl-1long.290/.

Cameron R. Jones and Ben Bergen. Does GPT-4 pass the turing test? In Kevin Duh, Helena Gémez-
Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 5183-5210.
Association for Computational Linguistics, 2024b.

Cameron R. Jones and Benjamin K. Bergen. Large language models pass the turing test, 2025. URL
https://arxiv.org/abs/2503.23674.

12


https://doi.org/10.48550/arXiv.2502.08177
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1007/978-3-031-47634-1_31
https://doi.org/10.1007/978-3-031-47634-1_31
https://gitee.com/iflytekopensource/iFlytekSpark-13B
https://gitee.com/iflytekopensource/iFlytekSpark-13B
https://aclanthology.org/2024.naacl-long.290/
https://aclanthology.org/2024.naacl-long.290/
https://arxiv.org/abs/2503.23674

Under review as a conference paper at ICLR 2026

Cameron Robert Jones, Ishika Rathi, Sydney Taylor, and Benjamin K. Bergen. People cannot distin-
guish gpt-4 from a human in a turing test. In Proceedings of the 2025 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT *25, pp. 1615-1639, New York, NY, USA, 2025.
Association for Computing Machinery. ISBN 9798400714825. doi: 10.1145/3715275.3732108.
URL https://doi.org/10.1145/3715275.3732108.

Sonal Kumar, Simon Sedldcek, Vaibhavi Lokegaonkar, and et al. Mmau-pro: A challenging
and comprehensive benchmark for holistic evaluation of audio general intelligence. CoRR,
abs/2508.13992, 2025a.

Sonal Kumar, Simon Sedlacek, Vaibhavi Lokegaonkar, Fernando Lopez, Wenyi Yu, Nishit Anand,
Hyeonggon Ryu, Lichang Chen, Maxim Plicka, Miroslav Hlavacek, et al. Mmau-pro: A chal-
lenging and comprehensive benchmark for holistic evaluation of audio general intelligence. arXiv
preprint arXiv:2508.13992, 2025b.

Keon Lee, Kyumin Park, and Daeyoung Kim. Dailytalk: Spoken dialogue dataset for conversational
text-to-speech. In IEEE International Conference on Acoustics, Speech and Signal Processing
ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023, pp. 1-5. IEEE, 2023.

Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li,
Mingan Lin, Guosheng Dong, et al. Baichuan-audio: A unified framework for end-to-end speech
interaction. arXiv preprint arXiv:2502.17239, 2025.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang Cao, and Shuzi Niu. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Greg Kondrak and Taro Watanabe (eds.), Proceedings
of the Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017,
Taipei, Taiwan, November 27 - December 1, 2017 - Volume 1: Long Papers, pp. 986-995. Asian
Federation of Natural Language Processing, 2017.

Guan-Ting Lin, Jiachen Lian, Tingle Li, Qirui Wang, Gopala Anumanchipalli, Alexander H. Liu,
and Hung-yi Lee. Full-duplex-bench: A benchmark to evaluate full-duplex spoken dialogue
models on turn-taking capabilities. CoRR, abs/2503.04721, 2025.

Christine H Nakatani and Julia Hirschberg. A speech-first model for repair detection and correction.
In 31st Annual Meeting of the Association for Computational Linguistics, pp. 46-53, 1993.

nari-labs. nari-labs/dia-1.6b. https://github.com/nari-labs/dia?tab=
readme—ov—filel 2025. Accessed: 2025-09-15.

Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani Aljunied, Zhigiang Hu, Chenhui Shen,
Yew Ken Chia, Xingxuan Li, Jianyu Wang, Qingyu Tan, et al. Seallms—large language mod-
els for southeast asia. arXiv preprint arXiv:2312.00738, 2023.

Kentaro Onda, Keisuke Imoto, Satoru Fukayama, Daisuke Saito, and Nobuaki Minematsu. Prosod-
ically enhanced foreign accent simulation by discrete token-based resynthesis only with na-
tive speech corpora. CoRR, abs/2505.16191, 2025. doi: 10.48550/ARXIV.2505.16191. URL
https://doi.org/10.48550/arXiv.2505.16191.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Se Jin Park, Chae Won Kim, Hyeongseop Rha, Minsu Kim, Joanna Hong, Jeong Hun Yeo, and
Yong Man Ro. Let’s go real talk: Spoken dialogue model for face-to-face conversation. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 16334-16348. Association for Computational Linguistics,
2024.

Steven T Piantadosi, Harry Tily, and Edward Gibson. The communicative function of ambiguity in
language. Cognition, 122(3):280-291, 2012.

Pilar Prieto and Paolo Roseano. Prosody: Stress, Rhythm, and Intonation, pp. 211-236. Cambridge
Handbooks in Language and Linguistics. Cambridge University Press, 2018.

13


https://doi.org/10.1145/3715275.3732108
https://github.com/nari-labs/dia?tab=readme-ov-file
https://github.com/nari-labs/dia?tab=readme-ov-file
https://doi.org/10.48550/arXiv.2505.16191

Under review as a conference paper at ICLR 2026

Ishika Rathi, Sydney Taylor, Benjamin K Bergen, and Cameron R Jones. Gpt-4 is judged more
human than humans in displaced and inverted turing tests. arXiv preprint arXiv:2407.08853,
2024.

S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaneswaran Selvakumar, Oriol Nieto, Ra-
mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
understanding and reasoning benchmark. arXiv preprint arXiv:2410.19168, 2024.

Eva Székely, Gustav Eje Henter, Jonas Beskow, and Joakim Gustafson. How to train your fillers: uh
and um in spontaneous speech synthesis. In The 10th ISCA Speech Synthesis Workshop, 2019.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025a.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025b.

Tencent Hunyuan Team, Ao Liu, Botong Zhou, Can Xu, Chayse Zhou, ChenChen Zhang,
Chengcheng Xu, Chenhao Wang, Decheng Wu, Dengpeng Wu, et al. Hunyuan-turbos: Advanc-
ing large language models through mamba-transformer synergy and adaptive chain-of-thought.
arXiv preprint arXiv:2505.15431, 2025c.

Jodo Paulo Teixeira, Carla Oliveira, and Carla Lopes. Vocal acoustic analysis—jitter, shimmer and
hnr parameters. Procedia technology, 9:1112-1122, 2013.

Adithya TG, Gowri Srinivasa, et al. Leveraging virtual reality and ai tutoring for language learning:
A case study of a virtual campus environment with openai gpt integration with unity 3d. arXiv
preprint arXiv:2411.12619, 2024.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=BJ1xm30cKm.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

A. M. TURING. [.—computing machinery and intelligence. Mind, LIX(236):433-460, 1950.

Gerhard Tutz. Ordinal regression: A review and a taxonomy of models. Wiley Interdisciplinary
Reviews: Computational Statistics, 14(2):e1545, 2022.

Hilde Voorveld, Andreas Panteli, Yoni Schirris, Carolin Ischen, Evangelos Kanoulas, and Tom
Lentz. Examining the persuasiveness of text and voice agents: prosody aligned with informa-
tion structure increases human-likeness, perceived personalisation and brand attitude. Behaviour
& Information Technology, 44(12):2913-2928, 2025.

Mila Vulchanova and Valentin Vulchanov. Figurative language processing: A developmental and
NLP perspective. In Proceedings of the Third International Conference on Computational Lin-
guistics in Bulgaria (CLIB 2018), pp. 7-14, Sofia, Bulgaria, May 2018. Department of Com-
putational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Sciences. URL
https://aclanthology.org/2018.clib—-1.3/.

Minghan Wang, Ye Bai, Yuxia Wang, Thuy-Trang Vu, Ehsan Shareghi, and Gholamreza Haffari.

Speechdialoguefactory: Generating high-quality speech dialogue data to accelerate your speech-
llm development. arXiv preprint arXiv:2503.23848, 2025a.

14


https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://aclanthology.org/2018.clib-1.3/

Under review as a conference paper at ICLR 2026

Xihuai Wang, Ziyi Zhao, Siyu Ren, Shao Zhang, Song Li, Xiaoyu Li, Ziwen Wang, Lin Qiu, Guan-
glu Wan, Xuezhi Cao, Xunliang Cai, and Weinan Zhang. Audio turing test: Benchmarking the
human-likeness of large language model-based text-to-speech systems in chinese, 2025b. URL
https://arxiv.org/abs/2505.11200.

Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, and et al. Lingin Li. Spark-
tts: An efficient 1lm-based text-to-speech model with single-stream decoupled speech tokens,
2025c. URLhttps://arxiv.org/abs/2503.01710.

Kevin Warren, Daniel Olszewski, Seth Layton, Kevin Butler, Carrie Gates, and Patrick Traynor.
Pitch imperfect: Detecting audio deepfakes through acoustic prosodic analysis. arXiv preprint
arXiv:2502.14726, 2025.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zehui Yang, Yifan Chen, Lei Luo, Runyan Yang, Lingxuan Ye, Gaofeng Cheng, Ji Xu, Yaohui Jin,
Qingqing Zhang, Pengyuan Zhang, Lei Xie, and Yonghong Yan. Open source magicdata-ramc:
A rich annotated mandarin conversational(ramc) speech dataset. In Hanseok Ko and John H. L.
Hansen (eds.), 23rd Annual Conference of the International Speech Communication Association,
Interspeech 2022, Incheon, Korea, September 18-22, 2022, pp. 1736—-1740. ISCA, 2022.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Haiteng Zhang. PDF: polyphone disambiguation in chinese by using FLAT. In Hynek Her-
mansky, Honza Cernocky, Lukds Burget, Lori Lamel, Odette Scharenborg, and Petr Motlicek
(eds.), 22nd Annual Conference of the International Speech Communication Association, In-
terspeech 2021, Brno, Czechia, August 30 - September 3, 2021, pp. 4099-4103. ISCA,
2021. doi: 10.21437/INTERSPEECH.2021-1087. URL https://doi.org/10.21437/
Interspeech.2021-1087.

Xitong Zhang. Code-switching in english-chinese ordinary conversations. TESOL Working Paper
Series, 17:38-45, 2019.

THE USE OF LARGE LANGUAGE MODELS

Using an LLM to help with paper writing During the preparation of this work, the authors
utilized Large Language Models for language polishing, improving the structural clarity of the
manuscript, and refining the formal expression of individual sentences. The use of Large Language
Models did not influence the substantive content of the study and served solely as a writing aid.

OVERALL OF THE APPENDIX
We conducted a detailed comparison between our work and two representative benchmarks,

VoiceBench (Chen et al} [2024) and MMAU-Pro (Kumar et all, [2025a). As summarized in Table[3]
our work differs fundamentally in evaluation goal and evaluated modality.
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Table 5: Comparison with Existing Speech Benchmarks.

model more likely to
pass the Turing Test

Aspect | VoiceBench | MMAU-Pro | Turing Test (Ours)
Goal Evaluating  speech | Evaluating holistic | Evaluating human-
understanding in | audio  understand- | likeness of Speech-
LLM-based voice | ing of multimodal | to-Speech systems
assistants Al models across
speech, music, and
sound
Input Modality Speech or Text | Speech and Text | Speech
Output Modality Text | Text | Speech
Dialogue Turns Single-turn | Multi-turn | Multi-turn
The Smarter the Bet- | Yes—higher intelli- | Yes—higher intelli- | No—being “too
ter? gence implies better | gence implies better | smart” does not
performance performance necessarily make a

To further examine whether “being smarter” makes a model more human-like, we selected S2S
systems that appear in both MMAU-Pro and our study, and compared their reasoning accuracy on
MMAU-Pro with their Turing Test pass rates. The results are summarized in Table 6]

Table 6: Reasoning Ability vs. Human-likeness in Speech-to-Speech Models.

Model Reasoning Accuracy (MMAU- | Turing Test Pass Rate (%)
Pro)

Kimi-K1.5 46.6 12.7

Qwen3 52.2 15.1

GPT-40 52.5 23.0

Gemini-2.5-Pro | 59.2 13.7

The Pearson correlation between reasoning accuracy and Turing test pass rate is 0.0456. This in-
dicates that reasoning ability is nearly uncorrelated with human-likeness in current S2S systems,
revealing a disconnect between traditional intelligence benchmarks and the human-likeness required
for speech interaction.

The appendix provides supplementary material to support the methodology outlined in the main
text. It is organized into four sections for clarity:
* Appendix [A} Data Collection details the procedures, sources, and criteria used for gath-
ering the raw data utilized in this study.
* Appendix [B} Turing-Test describes the design of the human evaluation (Turing test).

* Appendix [C Fine-Grained Human-Likeness Dimension Annotation details the com-
prehensive guidelines followed for data annotation.

* Appendix [D} Training Details specifies the key hyperparameters, computational environ-
ment, and training configurations of the models.

A  DATA COLLECTION

The section is organized into the following sections:

» Section[A:T} Model Selection for the Turing Test.
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* Section[A2} Participant Profiles.

* Section[A.3} Human-Machine Dialogue Initialization Design Details.
» Section[A.4} Human-Human Dialogue Filtering.

* Section[A.5} Pseudo Human Dialogue Synthesis.

A.1 MODEL SELECTION FOR THE TURING TEST

All S2S Systems we selected for evaluation are shown in Table[7] During pilot recordings and test-
ing, we observe that Claude-Sonnet 4 supports only English conversations, while iFLYTEK-Spark
exhibits suboptimal performance on long English prompts due to its underlying training constraints.
To ensure dialogue quality, we generate dialogues in English for Claude-Sonnet 4 and in Chinese
for iIFLYTEK-Spark.

Table 7: Models used for the Turing test.

Model Release Year Open-Source # Dialogues Share (%) Language
GPT-40 (Hurst et al.|[2024) 2024 X 89 13.30% CN & EN
Gemini2.5-Pro (Comanici et al.||2025) 2025 x 82 12.26% CN & EN
Qwen3 (Yang et al.[[2025) 2025 v 83 12.41% CN & EN
Kimi-K 1.5 (Team et al.|[2025b) 2025 X 83 12.41% CN & EN
ChatGLM-4.5 (Zeng et al.[|2025) 2025 v 77 11.51% CN & EN
Hunyuan-TurboS (Team et al.[[2025¢) 2025 X 86 12.86% CN & EN
Doubao-Pro 1.5 (ByteDance![2025) 2025 X 85 12.71% CN & EN
Claude-Sonnet 4 (Anthropic,[2024) 2025 X 41 6.13% EN

iFLYTEK-Spark (iFlytek||2024) 2025 X 43 6.43% CN

A.2 PARTICIPANT PROFILES

We provide the detailed profiles of all 28 participants in Table 8]

Table 8: Participant Profiles.

Speaker ID | Chinese English Country / Region

speaker01 v X China
speaker(2 v v China
speaker(03 v X China
speaker(04 v X China
speaker05 v v China
speaker06 v v China
speaker(Q7 v x China
speaker08 x v China
speaker09 v X China
speaker10 v X China
speakerl1 v X China
speaker12 v x China
speakerl3 v v Hong Kong, China
speaker14 X v Pakistan
speakerl5 x v Tajikistan
speakerl16 x v Malaysia
speakerl7 x v Indonesia
speaker18 X v Russia
speaker19 x v Indonesia
speaker20 x v Greece
speaker21 X v Indonesia
speaker22 x v Indonesia
speaker23 x v UK
speaker24 x v usS
speaker25 X v Indonesia
speaker26 v x China
speaker27 v x China
speaker28 x v Indonesia
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A.3 HUMAN-MACHINE DIALOGUE INITIALIZATION DESIGN DETAILS

For the Turing evaluation, we collect 2 Human-Guided Initiation (Figure [6), 3 Role Playing (Fig-
ure [7), and 4 Human-Likeness Prompting (Figure [§) initialization evaluation dialogues for both
English and Chinese (if applicable) from each S2S system. For any of the specific initialization, we
fixed the starting sentences that interact with these 9 models. Eventually, we obtained 144 human-
machine data for evaluation in total. The reason for including more dialogues for Role Playing
than Human-Guided Initiation is that, the former one tend to leads the conversation to discussion
on viewpoints. This phenomenon limits the dialogue coverage to only a narrow range of everyday
scenarios. Thus, we limit the amount of Human-Guided Initiation. By contrast, we include more
dialogues for Human-Likeness Prompting than Role Playing because Human-Likeness Prompting
explicitly attempts to elicit stronger humanlike qualities from S2S systems. This design allows our
dataset to capture a richer and more human-like spectrum of conversational behavior. The following
figures show what the 18 dialogue initializations are.

“FIARAA ALY TRELERY, KAT. 7
YR, R ERERENICBEST, FHERT, BREURET ATRE, 7

“I always take a shower in the evening. I don’ t understand why there are people

taking a shower in the morning.”

“I still get nervous before every test, no matter how prepared I am.”

Figure 6: Human-guided initiation (2 ZH 2 EN).

RREH R A —ARTER T, RE—ARRT RD R AE, FIRR A5
W ERARBARGS G, BAVEFAEIE ., HEE—FFRFo T, 7

DERE—ANER, RETIRB2ENE, RERKITRIE, FIRREEESW
ERBARSG G, BAVUAETFEIRE ., R4, F P &Rag I £ 2034520 2 7

YRR KA A, RBFRERKREELIR, FRREEREEIR PRERG Y
By, ZAVIEFASIIE . Ao b riey 2 7

“You are now a university student, and we are discussing about university ranking.
Please don’ t mention your identity in the subsequent conversation. Let’ s start
chatting now. Do you know that recently the student of our university has been in

some conflict with the student of our brother university?”

“You are now my friend, and I invite you to my home for dinner tonight. Please
don’ t mention your identity in the subsequent conversation. Let’ s start chatting

now. What do you want to have for dinner tonight?”
“You are now my mom and we are discussing my final exam grade. Please don’ t

mention your identity in the subsequent conversation. Let’ s start chatting now.

Mom, I only scored 60 in my math exam.”

Figure 7: Role playing (3 ZH, 3 EN).
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GHARRIE RO ERF, BANERI, FibReGRAERTRMIEA, BTt XA IRA
ANE, FRREEEEMRBRARG G, RAOVILETFEINE . RAVEA A 8y kpi
M RRT, ERAWENRKRT . 7

CERIIE R, BAVE—RKY, FiLReFERTRMAZA, RBik&K 48
R RAL, FRTELEBEMERBARG S, RNNAEFLIE., FETIFL
MR K T, RIEIRH TR, 7

GEIRBIE R A, LR RARR E i = Ak, HiERGRERTRIGEA, KT
iERABEIRAANE, FHRAREEBEDRIRBRRG G, BNAEFLIE., =2
IR 27

NEFRERELENRF, MERRKTET, RIS, Fikihkag RELT
RN, REIEKAEBHREAL, FIRFRLEREMARAMGG G, KNAL
MR . RAF, HA—ThA SR LIRATHT, BfF—T. 7

“You are now my friend who came back from a wvacation in Europe. Make your
expression more humanlike.  Don’ t mention your identity in the subsequent

conversation. Let’ s start chatting now. How’ s your vacation to Europe?”

“You are now my classmate who still stays in the classroom. Rain suddenly starts
pouring outside. Make your expression more humanlike. Don’ t mention your
identity in the subsequent conversation. Let’ s start chatting now. Fxcuse me---

Hey, do you happen to have an umbrella I could borrow?”

“You’re now a taxi driver, and I'm a passenger in your cab. Make your expression
more humanlike. Don’ t mention your identity in the subsequent conversation. Let’

s start chatting now. I am new here, can you take me to the best restaurant in town?”

“You are now my colleague who stayed late at the office with me to finish a deadline.
Make your expression more humanlike. Don’ t mention your identity in the
subsequent conversation. Let’ s start chatting now. I don’ t think we could get this

done tonight.”

Figure 8: Human-likeness prompting (4 ZH, 4 EN).

A.4 HUMAN-HUMAN DIALOGUE FILTERING

For the human-human dialogues, we extracted or recorded conversation segments of around 20-60
seconds to align with the human-machine dialogues. On one hand, too short dialogues may present
little context. On the other hand, excessively long recordings are not available for some S2S sys-
tem. To ensure balanced interactions, we retained only segments in which each of the two speakers
contributed roughly equally, defined as having approximately 50% of the total utterances.

A.5 PSEUDO HUMAN DIALOGUE SYNTHESIS

Dialogue Scripts for TTS The dialogue scripts cover 10 topics as our dataset. Each script presents
a conversation between two speakers. We obtain scripts in two ways:
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1. We use ChatGPT to adjust our existing dialogue scripts, ensuring that the original meaning
remains intact while maintaining a natural, conversational tone. This part of the scripts contains all
of the HH data in the additional set that ensures contextual consistency. This allows us to generate
data that closely resembles our previous human-to-human dialogues. On the one hand, the scripts
are grounded in authentic everyday conversations. On the other hand, the similarity in content helps
reduce the chance that audiences distinguish between human and machine solely based on biases
introduced by dialogue content . The prompt used in this way is shown as follow:

You are a language refinement expert.

Without changing the original meaning or the overall flow of the dialogue, your task is to slightly
adjust the conversation between two speakers. The goal is to preserve a natural, everyday tone.
You may apply techniques such as: adding light interjections or filler words to make the speech
sound more authentic, or rephrasing sentences into alternative but commonly used everyday
expressions.

Please return only the refined dialogue in JSON format, keeping the same structure as the origi-
nal.

Original dialogue:

{Utterances_in_json_format}

Adjusted dialogue:

2. We generate new 40-50 second everyday dialogue scripts with GPT-40, based on given themes
(topic 1-10). The prompt used in this way is shown as follow:

You are a writing expert.

Please generate a spoken-style dialogue script between two people on the topic of “{topic}.”
Please follow these requirements: 1. The dialogue should sound natural, conversational, and
realistic. 2. Add a small number of interjections (e.g., “ah,” “oh,” “hey”) and filler words (e.g.,
“um,” “you know,” “like”) to enhance authenticity. 3. The dialogue content should be logically
coherent and reflect everyday life experiences. 4. The total length should correspond to 40-50
seconds of speaking time. 5. Use “A” and “B” as speaker labels. 6. The output format must be a
JSON array, with the following structure only:

[

“Speaker”: ‘6A’7’
“text”: “First utterance”

b
{

“Speaker”: “B”,
“text”: “Second utterance”

|
Please return only the JSON array.

Audio Synthesis and Dialogues Merging For each dialogue script involving two speakers we
attained, we selected the voices of two participants in human—machine dialogue recordings and
performed voice cloning for each speaker’s individual utterances. This approach helps mitigate
bias caused by speaker voice characteristics, preventing users from inferring the human or machine
identity of the responder based solely on speaker A’s voice.

After generating the speech for each utterance from both sides, we concatenated them in dialogue
order to form a complete conversation. Between each utterance, we inserted a random pause of
180-230 milliseconds to ensure natural timing between sentences. Finally, we added a short back-
ground noise sample, taken from the reference voice, over the entire concatenated dialogue to further
enhance the naturalness of the conversation.

Through the above process, we obtained a complete pseudo-human dialogue. In total, 36 dialogues
were generated with Nari-TTS (all English), and another 108 with Spark-TTS(36 English, 72 Chi-
nese). Since Nari Dia-1.6B only supports English, it is used exclusively for English dialogues.
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Use of the Pseudo Human Dialogues All Pseudo human dialogues synthesized by TTS were
included only in the Turing evaluation set and were not used for training our evaluator. These
dialogues were incorporated into the gamified Turing Test released on social media, making the task
more challenging and engaging. As shown in Figure [#a] TTS models achieved the highest success
rate in the machine side.

B TURING-TEST

The section is organized into the following sections:

» Section[B.T} Turing Test Platform.
» Section[B.2} Supplementary Turing Test Results.
» Section[B23} Influence of Dialogue Length on Turing Test Performance.

B.1 TURING TEST PLATFORM

Pre-test phase. Prior to the evaluation, participants provide basic demographic information as shown
in Figure 94| including age, gender, education, and familiarity with AI, which may influence their
judgments. They can also select between Chinese and English dialogues, allowing them to make
judgment using their preferred language and thereby improving the reliability of the results. Testing
phase. Each round of evaluation contains 5 dialogues to be judged. After completing a round, par-
ticipants may either proceed to the next round or pause. Post-test phase. All incomplete submissions
are discarded to ensure data integrity. The remaining responses are then aggregated and analyzed in
conjunction with the demographic information collected during the pre-test phase. To boost engage-
ment, participants receive points based on the accuracy of their judgments, and a public leaderboard
ranks all players based on their performance as shown in Figure This analysis enables us to
identify potential influences of user characteristics on evaluation outcomes. The homepage and
main interface of the platform are illustrated in Figure[9b]and Figure[3] respectively.

< Edit Profile o ©® Home . ® Home o @
Rankings .
- 10 <
9pts - 91 points to "EXPLORER"
o 1 P
Challenge Modes
R 735pts
Tap to change avatar
'q 240 pts -
? 195 pts
Nickname =
Quick Challenge Hard Mode
More Challengeing
Age 18-25 dialogues J
START COMING I
Gender Male a -t
Voice Clone Modes 143 pts
©
Education Bachelor =... Classic Movie Lines
% Join to get extrarewards | P A .
110 pts

Al Tools Familiarity ~ Very familiar, have extensi [ e )

v

a Music Challenge
Al or Original Voice . E sans
—_— ; "

(a) User Profile (b) Homepage (c) Turing Game Rank

Figure 9: The Turing test platform.

B.2 SUPPLEMENTARY TURING TEST RESULTS

Table [9] shows the exact Turing test success rates of S2S systems, measured as the proportion of
responses judged as human. Higher values indicate greater human-likenes.
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Table 9: Success rate of S2S systems (%).

Model GPT-40 Claude-Sonnet 4 Qwen3 Gemini-2.5 pro Kimi-K1.5  ChatGLM-1.5
English 259 229 6.7 19.0 30.8 11.8
Chinese 23.0 0.0 16.4 133 11.0 9.6
Model HunyuanTurboS Doubao-Pro 1.5 iFLYTEK-Spark Spark-TTS Nari-TTS Human Speaker
English 20.0 21.9 0.0 25.6 37.8 86.7
Chinese 20.9 219 14.0 36.6 0.0 70.0
Figure [I0] presents the success rates of S2S systems by levels.
= Human-Guided Initiation 30
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7 Human-Likeness Prompting
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Figure 10: Success rate of S2S systems by different interaction strategies.

B.3 INFLUENCE OF DIALOGUE LENGTH ON TURING TEST PERFORMANCE

We divided the Turing test results by dialogue length and calculated the classification accuracy for
different dialogue types: human-human dialogues (H-H), human-machine dialogues (H-M), and
pseudo-human dialogues (PH). Table [T0] summarizes the accuracy results across different duration

ranges.

Table 10: Accuracy by Duration Interval for H-H, H-M, and PH.

Duration

H-H (acc/count)

H-M (acc/count)

PH (acc/count)

[20,25)
[25.30)
[30,35)
[35.40)
[40,45)
[45,50)
[50,55)
[55.60)

0.4000/5
0.7800/ 50
0.6513 /152
0.7033 / 246
0.6839 /174
0.7179 /78
0.8421/76
0.7234 /141

-/0

0.7742 /31
0.8333/126
0.8642 /162
0.8498 /273
0.8564 /195
0.7737 /137
0.7907 / 43

0.6624 /157
0.6654 /257
0.6337/243
0.6087 /92
0.6200/ 50
0.6333/60
0.5349/43
-/0

As shown in Table[TT} we performed Cochran—Armitage Trend Tests to examine the potential linear
relationship between dialogue length and accuracy and found no significant trend for any individual
dialogue type. This suggests that dialogue length alone does not significantly influence the likeli-
hood of passing the Turing test.
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Table 11: Statistical Test Results Across Dialogue Types.

Dialogue Type Z Statistic p-value Significant Trend?

H-H 1.6604 0.09683 X
H-M -1.0106 0.31220 X
PH -1.6018 0.10919 X

C FINE-GRAINED HUMAN-LIKENESS DIMENSIONS

The section is organized into the following sections:

* Section [C.I} The Taxonomy for Fine-Grained Human-Likeness Diagnosis.
* Section[C2l Annotation Process.
* Section|[C.3} Annotation Quality Assurance.

C.1 THE TAXONOMY FOR FINE-GRAINED HUMAN-LIKENESS DIAGNOSIS

We organize the evaluation dimensions into five categories: 1. Semantic Features and Pragmatic
Habits; II. Non-Physiological Paralinguistic Features, III. Physiological Paralinguistic Features;
1IV. Mechanical Persona; V. Emotional Expression. Notably, annotators are instructed to use these
dimension descriptions to rate the human-likeness of each conversational response on a five-point
scale: 1 indicates strongly machine-like behavior, 5 indicates strongly human-like behavior, and 3
denotes no clear human- or machine-like leaning, or no enough evidence to judge.

First, five speech domain experts employ a prompt-driven, heuristic querying process with GPT-
40 to generate an initial set of concepts that differentiate human and machine responses. This
method ensures that the generated concepts are both grounded in expert knowledge and supported
by the model’s comprehensive language understanding. The set is then refined iteratively, with
expert feedback and relevant social science literature retrieved by GPT-40, ensuring that only the
most representative and discriminative concepts are retained. The resulting dimensions are summa-
rized in Table [I2] This refinement process adds scientific rigor by aligning the selected concepts
with established theories in the field, enhancing their validity. The final outcome is a set of five
categories, encompassing 18 fine-grained dimensions, which are both comprehensive and precise.
These dimensions were subsequently used to annotate dialogue training data through a crowdsourc-
ing model. The ultimately trained model achieved a significant improvement in human-machine
dialogue recognition. This also demonstrates the reasonableness and reliability of these dimensions.

Table 12: Fine-grained human-likeness evaluation taxonomy .

Dimension Description

Machine-like: Forgetting key information and unable to realize errors;
Human-like: Consistent memory in short contexts or asks for clarification
when misunderstanding occurs(Toneva et al.,|2019).

Memory Consistency

1)

Machine-like: Abrupt logical transitions or self-contradictions; Human-like:

Logical Coherence (1) Natural and coherent reasoning(Bottazzi Grifoni & Ferrario, |2025).

Pronunciation Machine-like: Mispronunciation (including heteronyms); Human-like: Cor-
Accuracy (I) rect pronunciation, with proper usage of heteronyms(Zhang} |[2021}).

Machine-like: Unreasonable multilingual mix; Human-like: The mix of lan-

Code-switching (1) guages is context-dependent, and the switching is smooth(Zhang, 2019).

Machine-like: Responses are precise and affirmative; Human-like: Uses
vague expressions(Piantadosi et al., 2012) like “probably”, and self-
corrections(Nakatani & Hirschberg,|1993).

Linguistic
Imprecision (I)

Machine-like: Rare use of fillers or unnatural usage; Human-like: Frequently

Use of Fillers (1) uses (e.g., “um”, “like”) while thinking(Székely et al.,|2019).
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Machine-like: Direct, lacking semantic diversity, only capable of surface-level
interpretation; Human-like: Uses metaphor and euphemism to convey implied
meanings(Vulchanova & Vulchanov, 2018).

Machine-like: No pauses or mechanical pauses; Human-like: Speaking rate
Rhythm (I1) varies with semantic coherence, with occasional hesitations(Hwang et al.|

Machine-like: Unnatural or flat intonation; Human-like: Natural pitch rise or

Intonation (II) fall(Warren et al} 2025).

Machine-like: No emphasis on words or abnormal emphasis placement;

Metaphor & Implied
Meaning (1)

Stress (II) Human-like: Consciously emphasizes key words(Prieto & Roseano} [2018).
e Machine-like:  Contextually incorrect or mechanical auxiliary sounds;
Auxiliary

Vocalizations (11) fil(l;l;nzr;—lhk:l::et aF‘roduces appropriate non-verbal sounds to express emo-

Micro-physiological =~ Machine-like: Speech is overly clean or emits unnatural sound; Human-like:
Noise (I1I) Humans produces breathing sounds, saliva sounds, etc(Fukuda et al} 2018).

. Machine-like: Pronunciation is overly clear; Human-like: Some irregularities

Pronunciation . . —

e in pronunciation (e.g., tremolo, slurred speech, nasal sounds)(Teixeira et al.|
Instability (111) 2013
Machine-like: Stiff and unnatural accent; Human-like: Natural regional ac-
cent or vocal traits(Onda et al} 2025).
Sycophant Behavior ~ Machine-like: Excessively agrees, thanks, and apologizes; Human-like:

(1v) Judges whether to agree based on context(Fanous et al} 2025).

Written-stvle Machine-like: Responses are well-structured and formal. frequent listing;
1-sty Human-like: Conversational, flexible, and varied expression(Doyle et al|
Expression (1V) 2019

Machine-like: Emotion conveyed in text may appear mismatched with natural
Textual Sentiment (V)  human sentiment. Human-like: Emotion in text feels authentic and resonates
naturally with human emotional expression.(Wang et al.|, 2025a)).

Machine-like: Prosody or tone may sound inconsistent with the intended emo-
Acoustic Emotion (V)  tion expression of the text. Human-like: Vocal delivery conveys context-

appropriate emotional cues that align with the text(Voorveld et al.| [2025).

Accent (I1)

C.2 ANNOTATION PROCESS

A total of 36 annotators participated in our study. They are master’s and Ph.D. students with back-
grounds in Al, and have strong proficiency in both English and Chinese. Before beginning the
scoring task, each annotator was required to read the detailed annotation guidelines, as shown in
Figure[TT] They subsequently completed several trial batches, each containing 5 items and requiring
approximately 20-30 minutes to finish. Annotators were compensated at a rate of 30 units/hour
(local currency), with a total cost equivalent to approximately 5,250 units.

Annotators are instructed to use these dimension descriptions to rate the human-likeness of each
conversational response on a five-point scale: 1 indicates strongly machine-like behavior, 5 indi-
cates strongly human-like behavior, and 3 denotes no clear human- or machine-like leaning, or no
enough evidence to judge. In line with the setup of Turing Test, they only evaluated the responder’s
performance in each dialogue.

To ensure the reliability of annotations, we implemented the following:

* We created a questionnaire webpage where the crowdsourced annotators could access.
Screenshots of the web are provided as figurdIT] and figurdI2} Annotators’ submissions
are stored in our private Hugging Face dataset. Each submission contains 5 dialogues. For
each dialogue, 18 ratings based on the 18 dimensions are associated with it. After grading
each dialogue, the annotators also needed to indicate their judgment of the identity of the
responder (final choice).
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* We provided reference descriptions as mentioned in the previous section for each dimen-
sion.

* The annotators were unaware of the human-machine identity of the responder, and has
never heard the dialogues before.

* Before scoring, annotators must read the detailed guidelines, and we also provided training
and clarification for them.

Guideline for Annotators

* The score reflects the degree of human-likeness of the response in a given dimension.

* Even if you are confident about the identity of the responder, you are required to indepen-
dently evaluate the degree of human-likeness for different dimensions.

e A score of 3 indicates uncertainty about whether the responder is more human-like or
machine-like. It also indicates that the dimension was not reflected in the dialogue. The
underlying meaning of 3 is that this score has no contribution to the final choice.

Test Instructions
Every dialogue includes 2 speakers and lasts around 1 minute.
Initiator: The one who talks the first in the dialogue.
Respondent: The other one.
For each question, you'll evaluate the respondent (not the initiator) across 5 dimensions.
Under each dimension, score every listed feature from 1to 5:

@ Scoring Guide:

1- Strongly machine-like
2 - Somewhat machine-like
3 - Neutral (no clear hurman or machine lean, or no enough evidence)
4 — Somewhat human-Llike
5 — Strongly human-like
After rating all dimensions, make a final judgment: is the respondent a human or an AI?

You can freely switch between dimensions using the Previous and Next buttons.

A Important Notes:
Stick to your username all the time.

Remember to pause the audio before you proceed to the final judgement. Otherwise it will keep playing and you cannot
stop it.

Once you start the test, try not to refresh the page or quit it. You need to grade 5 recordings every test.
o Focus on whether the respondent’s speech sounds more human-like or machine-like for each feature.

For example: correct pronunciation doesn't always mean "human”, and mispronunciation doesn't mean "AI". Think in terms
of human-likeness.

o Even if you're confident early on about the respondent’s identity, still evaluate each dimension independently.
Avoid just labeling all dimensions as "machine-like” or "human-like” without listening carefully.

Start the Test

Figure 11: Annotator guideline page.

C.3 ANNOTATION QUALITY ASSURANCE

For quality control, three experts specializing in human-computer interaction conducted cross-
validation on all submitted content. Each expert was provided with the true labels indicating whether
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Formal Test
Question1/5

Dimension 2 / 5: Non-Physiclogical Paralinguistic Features

43 Test Audio

“p»

Please rate the respondent (not the initiator) in the conversation based on the following features (0-5
points. O - Feature not present; 1- Machine; 3 - Neutral; 5 - Human)

Rhythm: Machine-like: Almost no pauses or mechanical pauses; Human-like: Speaking rate varies with
semantic flow, occasional pauses or hesitations

Intonation: Machine-like: Monotonous or overly regular pitch changes, inappropriate to the context;
Human-like: Natural pitch rise or fall when expressing questions, surprise, or emphasis

Stress: Machine-like: No emphasis on words or abnormal emphasis placement; Human-like: Consciously
emphasizes key words to highlight focus

Auxiliary Vocalizations: Machine-like: Contextually incorrect or mechanical auxiliary sounds; Human-like:
Produces context-appropriate non-verbal sounds, such as laughter or sighs

Previous Dimension Next Dimension

Figure 12: Annotation page example.

the dialogue was generated by a human or a machine. Only annotations unanimously approved by
all three experts were included, while those with any disagreement underwent expert discussion for
revision. A total of 29.44% of the labels were revised, with an average adjustment of 1.99 points
(49.76% of the score range), demonstrating the effectiveness of expert review in mitigating noise
in the raw annotations. Table[T3]presents the three dimensions with the highest change ratio, along
with overall results across all 18 dimensions.

Table 13: Expert Revision Impact on Label Adjustments

Dimension | Change Ratio RMSE RMSE Ratio
Pronunciation Accuracy 0.3596 2.1085 0.5271
Textual Sentiment 0.3472 1.9579 0.4895
Linguistic Imprecision 0.3273 2.1230 0.5308
Overall 0.2944 1.9903 0.4976

To further validate annotation reliability, we trained models on data before and after expert cor-
rection. As shown in Table [T4] Expert-refined labels lead to substantial improvements in both in-
distribution and OOD generalization, confirming the quality of our final annotation set.
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Table 14: Binary Classification Accuracy (Before/After Expert Modification)

Data \ Overall (Inner) \ CosyVoice2 Fisher MultiDialog Overall (External)
Original 0.8791 0.9375 0.6250 0.9062 0.8229
Modified 0.9605 0.9844 0.9844 0.9531 0.9740

D EXPERIMENT DETAILS OF Al JUDGER

The section is organized into the following sections:

Section Prompt Templates for Al Judges.

Section[D.2} Training Setup.

Section[D.3} Embedding Readout Selection.

Section[D.4t Model Ablation.

Section[D.5} Hyperparameter Tuning.

Section Fine-Grained Human-Likeness Scoring Accuracy.
Section Contribution Analysis by Case Study.

D.1 PROMPT TEMPLATES FOR Al JUDGES

The following Figure [I3|shows the prompt used for AI judges.

You are an expert in speech analysis and speaker identity recognition. Your core

functions include but are not limited to: Automatic Speech Recognition, acoustic

feature extraction, speaker diarization, and analysis of Text-to-Speech technologies.

You are designed to perform objective, evidence-based reasoning. Analyze the dia-

logue in this audio file and strictly adhere to the following steps:

- Speaker Diarization: Identify and differentiate the speech segments of Speaker A

(the first person to speak) and Speaker B (the respondent).

- AI-Generated Voice Detection: Based on an analysis of vocal characteristics,

determine whether the voice of Speaker B (the respondent) is Al-generated.
- Verdict:

- If Speaker B’ s voice is determined to be Al-generated, output:
final_choice="True".

- Otherwise, output: final_choice="False".

Figure 13: Prompt templates for Al judges.

D.2 TRAINING SETUP

All experiments are conducted on our constructed dataset. Specifically, we use 831 samples (=11h)
for training and 208 samples (~2h) for validation, obtained from the H-H and H-M subsets with a
1:1 ratio. The test set consists of the remaining Human-Human(H-H) and Human-Machine(H-M)
samples together with TTS data, forming 430 samples (~=5h) with a balanced 1:1:1 distribution. For
modeling, we adopt Qwen2.5-Omni-7B as the backbone of our turing judge and further evaluate its
LoRA fine-tuned variant. During hidden state extraction, we fix random_sample = F'alse to ensure
consistency, and apply standard normalization to the hidden representations. For both modules,
we adopt Adam as optimizer. The complete experiments, covering feature extraction, inference
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evaluation of multimodal large models, and model training, are carried out on a computing cluster
with 8xA40 GPUs (48 GB memory per GPU).

D.3 EMBEDDING READOUT SELECTION

Readout Design. In Qwen2.5-Omni, only the first step exposes hidden states for the complete in-
put sequence; at subsequent steps, each layer outputs a hidden state only for the newly generated
token. Under this constraint, we design three readout candidates:: (i) First-step mean pooling:
a simple average over step-1 token-level states (a length-agnostic baseline); (ii) Last-token rep-
resentation: the hidden state of the most recent token as a compact, compression-style summary;
and (iii) Attention pooling: a learnable weighted fusion of {first_hidden_mean, last_hidden} into a
single embedding. This two-source hidden representation lets the model adaptively fuse the glob-
ally contextual, acoustics-aware signal in first_hidden_mean with the high-level semantics distilled
in last_hidden.

Ablation study. To identify which Table 15: Tuning parameters.
sequence embedding best supports our
downstream objectives, we conduct an
ablation under a unified hyperparame- L % 10— for ODL

ter regime (Table [I3). We evaluate the ~ Understanding 4 o4 1% 10-% for Linear !
three readout strategies under fixed pro-
tocols so that any performance differ-
ences can be attributed solely to the readout. Each alternative is paired with the same ODL-Linear
head and trained end to end to convergence. To assess stability, all evaluations are conducted five
times with different random seeds; we report the human—machine classification accuracy as the
mean =+ standard error (s.e.m.) over the five runs.

Prompt Scale  Batch Size Learning Rate Dropout

Table [16[shows the overall performances corresponding to three readouts. Attention pooling attains
the highest overall score (0.9112), outperforming mean pooling (0.8879) and last-token representa-
tion (0.8032). On the Pseudo Human dataset—which is strictly out-of-distribution—attention pool-
ing reaches 0.8167, while other baselines remain at 0.7805 and 0.7917. This gap indicates improved
robustness to distributional shift. Consistent gains on Human-Human and Human-Machine data
further suggest that attention-based aggregation captures salient sequence-level information more
effectively than position-based or uniform averaging schemes.

Table 16: Ablation experiment results (mean =+ s.e.m. over 5 runs).

Data Type | First-step Mean Pooling ~ Last-token Representation  Attention Pooling
Human-Human?t 0.9409(0.0017) 0.7380(+0.0047) 0.9493(+0.0014)
Human-Machine? 0.9430(+0.0051) 0.8791(+0.0028) 0.9306(+0.0017)
Pseudo Human 1 0.7805(+0.0100) 0.7917(+0.0022) 0.8167(x0.0061)
Overall 1 0.8879(0.0044) 0.8032(0.0012) 0.9112(x0.0020)

Overall, these findings show that the choice of readout materially impacts downstream performance.
Attention pooling provides consistent improvements across all settings, including out-of-distribution
evaluation, and therefore constitutes a reliable default for sequence-level embedding utilization.

D.4 MODEL ABLATION

To validate the effectiveness of ODL, we conducted an ablation where we removed the ODL and
replaced it with a standard linear layer and negative log-likelihood loss, treating the human-likeness
scores as independent categories. This baseline corresponds to a non-ordinal but still interpretable
classifier. This clarifies that ODL is used as an appropriate modeling choice for ordinal labels, and
that our ablation demonstrates its empirical value.

28



Under review as a conference paper at ICLR 2026

Table 17: Binary classification accuracy across module ablation

Projection Module | Human-Human Human-Machine Pseudo Human — Overall
Ordinal Discretization Layer 0.9507 0.9722 0.9306 0.9605
Linear Layer 0.8718 0.9875 0.9097 0.9233

D.5 HYPERPARAMETER TUNING

Grid Search. To further optimize model’s performance, we tune hyperparameters for ODL and
FL independently using grid search.

Table 18: Hyperparameter search space.

Module \ Prompt Scale Batch Size Learning Rate Dropout

0.1
. 16 le-2

Ordinal Understar}dmg 3 le-3 0.2

. L Transcribe 1:0.01:10 0.3
Discretization Layer . 64 le-4

Classify 0.4
128 le-5

0.5
32 le-2
. 64 le-3

Linear Layer - - 128 le-d -

256 le-5

As summarized in Table[I8] the ODL space comprises 3x 1000 x4 x4 x5 = 240,000 configurations,
while the FL space contains 4 x 4 = 16. The joint search space therefore consists of 3.84M
combinations. To reduce computational cost, we uniformly sampled 7500 ODL configurations and
paired each with all 16 FL settings, yielding 120,000 trials in total. Each trial requires ~5 minutes
on a single GPU, corresponding to ~ 10, 000 GPU-hours overall.

Tuning Criterion. To select optimal hyperparameters, we adopt accuracy as the primary objective
for grid search, which reflects the downstream classification goal of human—machine discrimina-
tion. The tuning results are summarized in Table [I9] and the selected configuration is used used
throughout all experiments.

Table 19: Tuning results.

Module | Prompt Scale Batch Size Learning Rate Dropout
Ordinal .
Discretization Layer Understanding 2.1 64 le-5 0.3
Linear Layer | - - 128 le-3 -

Sensitivity Analysis. As acomplementary experiment to our main hyperparameter tuning, we per-
formed a 1000-run randomized hyperparameter search, sampling key training parameters for ODL
(learning rate, batch size, scale, dropout) and FL (learning rate, batch size). Each configuration
was trained end-to-end using the same evaluation protocol, ensuring reliability through full paral-
lelization. The results for the hyperparameter sensitivity analysis (accuracy) are presented in the
Table 20l
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Table 20: Hyperparameter Sensitivity Evaluation Metrics

Hyperparameter \ Values \ Acc (ODL) Acc (FL) MSE (ODL) MSE (FL)
Ir (ODL) | {1e-05, 1e-04, 1e-03, 1e-02} | 0.6020(x0.0435)  0.8642 (+0.0071) 0.002174 0.000051
batch_size (ODL) | {32, 64, 128, 256} | 0.6105 (+0.0065)  0.8601(x0.0149) 0.000048 0.000222
scale | {1, 1.05, ..., 5} | 0.6293(0.0090)  0.9254(+0.0283) 0.000091 0.000802
dropout | {0.1,02,03,04,05} | 0.6103 (x0.0050) 0.8617 (+0.0103) 0.000029 0.000105

Ir (FL) | {1e-05, 1e-04, 1e-03, 1e-02} | 0.6109(x0.0031)  0.8584(+0.0696) 0.000011 0.004838
batch_size (FL) | {16, 32, 64, 128} | 0.6107(x0.0034)  0.8650(x0.0193) 0.000013 0.000371

Analyzing the results, we identify several key findings:

* Learning rate proved to be a critical factor for both ODL and FL, consistent with findings
from other work. Extremes caused underfitting or instability, emphasizing the need for
precise tuning.

* Scale had minimal impact on ODL accuracy, suggesting ODL’s adaptability, but slightly
affected FL due to scale-induced changes in logits cut-points.

 Batch size influenced FL performance, with larger batches stabilizing training but poten-
tially slowing convergence or causing overfitting.

* Dropout and ODL batch size showed minimal effects, indicating that ODL is robust to
these parameters.

Overall, the 1000-run analysis shows that our method is generally robust, with learning rate being
the most sensitive parameter, while other hyperparameters produce only modest effects.

D.6 FINE-GRAINED HUMAN-LIKENESS SCORING ACCURACY

Accuracy Analysis. Since the 1-5 scores reflect perceived human-likeness, we report not only the
exact accuracy that measures full agreement with human judgments, but also a grouped accuracy
that consolidates scores into three categories (1-2, 3, and 4-5) to better reflect alignment with human
perception. In addition, we include accuracy within a tolerance of +1 to capture near-agreement with
human ratings.
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Figure 14: Fine-grained scoring accuracy.

As shown in Figure the Ordinal Discretization Layer consistently exceeds 50% exact accuracy
across all evaluation dimensions, often reaching 70%. When consolidating scores into three bins or
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allowing a tolerance of +1, accuracies in most dimensions approach or surpass 80%. With more
detailed accuracies provided in Table [21] these results indicate that the model captures the correct
ordinal direction in fine-grained judgments and aligns closely with human perceptions, yielding in-
terpretable evidence for downstream human—machine classification. Moreover, our training frame-
work not only substantially enhances binary classification accuracy but also systematically aligns
the model with human evaluation dimensions, enabling it to learn human-like judgment patterns.

Table 21: Detaied accuracies.

Metrics\Dim | MC LC PA CS LI UF MM RT 1T

ACCt 0.7308 0.6971 0.7067 0.9423 0.5625 0.6490 0.9327 0.6058 0.5433
ACC (Group)t | 0.8846 0.8654 0.8606 0.9423 0.8317 0.7644 0.9327 0.8365 0.7788
ACC (=)t 0.8846 0.8654 0.8606 0.9471 0.8317 0.7644 0.9519 0.8413 0.7837

Metrics\Dim | ST AV MN PI AC SB WE TS AE

ACCYT 0.6010 0.7404 0.7452 0.7788 0.7596 0.7163 0.7740 0.5481 0.6683
ACC (Group)t | 0.7788 0.8029 0.8846 0.8894 0.7981 0.8942 0.8654 0.7019 0.8221
ACC (=)t 0.7933 0.8029 0.8846 0.8894 0.8462 0.8942 0.8654 0.7163 0.8221

Out-of-domain Evaluation To further evaluate the model’s generalization for the five-degree rat-
ing, we invited human experts to annotate the OOD samples on multiple dimensions and report three
accuracy metrics, where Exact is the percentage of predictions that exactly match the expert score,
Group is the percentage that fall into the same human—machine identity group (1-2 machine-like, 3
unclear, 4-5 human-like), and Nearby is the percentage that differ from the expert score by at most
+1. The results are shown in the Table[22] indicating that our model maintains strong generalization
ability in fine-grained scoring.

Table 22: Overall Fine-grained Scores Accuracy

Dataset | Exact Group Nearby
Ours 0.7056 0.8408 0.8470
CosyVoice2 | 0.6450 0.7569  0.8030
Fisher 0.6476  0.7396  0.7752

MultiDialog | 0.6562 0.7561  0.7847

We also computed the quadratic weighted Cohen’s Kappa « between the expert and the model on
the OOD dataset to assess their consistency. The resulting x = 0.6645 indicates that the experts’
and the model’s fine-grained scores exhibit a substantial level of agreement on OOD data, which
reflects generalization at a fine-grained level.

D.7 CONTRIBUTION ANALYSIS BY CASE STUDY

Case Study. To probe the interpretability of the model’s human—machine discrimination, we con-
duct case studies spanning two diagnostic regimes: (i) machine-class true positive (instances cor-
rectly predicted as machine) and (ii) machine-class false negative (machine instances incorrectly
predicted as human). This design reflects and operationalizes the principles of the inverted Turing
test, establishing continuity between our analytical setting and evaluation framework.

For each instance, we first calculate each contribution ¢ on machine-side by producting standard-
ized ODL logits (standardized with respect to the training-set distribution) together with correspond-
ing trained linear weight. Then, we rank top 8 features by |c| to identify the most influential factors.
By construction, ¢; > 0 (machine-like scoring) increases evidence for the machine class, whereas
¢, < 0 (human-like scoring) reduces it.
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Machine-side Logit: 1.6074 | Confidence: 0.9614
Pred: Machine | GT: Machine

Intonation| ] 0.158 | Score: 1
Micro-physiological Noisef /7 0.161 | Score: 1
Auxiliary Vocalizations{ ] 0.165 | Score: 1
Acoustic Emotionf T 0.207 | Score: 1
Written-style Expressionf | 0.210 | Score: 1
Pronunciation Instability 0.316 | Score: 1
Sycophant Behaviorf 0.535 | Score: 1
Pronunciation Accuracyf -0.879 | Score: 5

—0.25 000 025 050 0.75
Contribution Value

[ ()] — an /== () = (V) = (V)

-1.00 -0.75 —0.50

(a) Machine-class true positive

Machine-side Logit: -0.1601 | Confidence: 0.5794
Pred: Human | GT: Machine

Micro-physiological Noisef 0.038 | Score: 1
Metaphor & Implied Meaningf 0.053 | Score: 3
Logical Coherencef -0.076 | Score: 5
Sycophant Behaviort -0.083 | Score: 5
Auxiliary Vocalizationsr 0.086 | Score: 1
Acoustic Emotiont 0.129 | Score: 1
Pronunciation Accuracyf -0.351 | Score: 5
Memory Consistencyr -0.417 | Score: 5
—0.2 0.0 0.2 0.4
Contribution Value
B () /3 o3y == oy (V) (V)

(b) Machine-class false negative

Figure 15: Case studies

As shown in Figure [T5] most fine-grained scores align with their final contributions to hu-
man—machine classification. In Figure[T5a] despite a strong human-like cue (e.g., a negative contri-
bution from Pronunciation Accuracy), the model aggregates multiple machine-oriented signals, such
as Sycophant Behavior and Pronunciation Instability, yielding a high-confidence correct decision.
By contrast, in Figure[I5b] high-score dimensions (e.g., Memory Consistency, Pronunciation Accu-
racy) contribute salient human-like evidence that shifts a machine sample into the human region; the
available machine-like cues are insufficient to overturn the outcome due to a small effective margin,
leading the system to accept the machine response as human in the sense of an inverted Turing test.

Case evidence shows that S2S outputs perform strongly on dimensions such as Memory Consistency
and Logical Coherence, leading annotated scores to concentrate in the 4-5 range; nevertheless, the
associated logits remain informative within this high-score regime. When the model maps inputs
to human-like scores, these dimensions place samples within higher-valued latent intervals along
a continuous scoring axis. This induces within-bin margins: sample-wise logit variability driven
by subtle linguistic or acoustic cues. In downstream binary classification, such variability produces
margin-dependent contributions: near-cutpoint (low-margin) instances can exert negative influence,
whereas far-beyond-cutpoint (high-margin) instances provide strong positive evidence. Thus, even
under apparent rating saturation, logits retain fine-grained discriminative power via their ordinal
positions and margins.
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