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ABSTRACT

In the recent paradigm of Federated Learning (FL), multiple clients train a shared
model while keeping their local data private. Resource constraints of clients and
communication costs pose major problems for training large models in FL. On
the one hand, addressing the resource limitations of the clients, sparse training
has proven to be a powerful tool in the centralized setting. On the other hand,
communication costs in FL can be addressed by local training, where each client
takes multiple gradient steps on its local data. Recent work has shown that lo-
cal training can provably achieve the optimal accelerated communication com-
plexity (Mishchenko et al., 2022). Hence, one would like an accelerated sparse
training algorithm. In this work we show that naive integration of sparse train-
ing and acceleration at the server fails, and how to fix it by letting the clients
perform these tasks appropriately. We introduce Sparse-ProxSkip, our method
developed for the nonconvex setting, inspired by RandProx (Condat & Richtárik,
2022), which provably combines sparse training and acceleration in the convex
setting. We demonstrate the good performance of Sparse-ProxSkip in extensive
experiments.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning approach that enables multiple edge de-
vices to collaboratively train a shared model while keeping their data local (McMahan et al., 2017;
Konečný et al., 2016; Bonawitz et al., 2017). This paradigm addresses significant privacy concerns
by avoiding the need to transfer potentially sensitive data to a central server and thus can enable
access to huge datasets. Instead, local models are trained on each client’s device, and only the
model updates are aggregated at the server to train a shared global model. However, one of the main
challenges in FL is the limited computational and communication resources of edge devices (Caldas
et al., 2018b).

Pruning is a well-known technique in the centralized setting for reducing the computational and
memory costs of model training and inference (Han et al., 2015; Evci et al., 2020; Lee et al., 2024).
There are two major directions: dense-to-sparse or sparse-to-sparse training (Liu & Wang, 2023).
Dense-to-sparse (DTS) training starts with a dense network and proceeds by systematically remov-
ing redundant or less important parameters and reduces the model size without substantially sacrific-
ing performance. Sparse-to-sparse (STS) training starts with a sparse network and usually proceeds
by sparsifying and regrowing weights but keeping the sparsity constant. Both lead to computational
savings at inference time as the final model is sparse (Srinivas et al., 2017). But sparse-to-sparse
training also leads to substantially reduced training costs as the model is sparse throughout the whole
process. Hence, a sparse-to-sparse algorithm for FL would address the resource limitation of edge
devices for efficient training and inference.

However, a key issue during training in FL are communication costs, as for every step of the opti-
mizer the clients have to share the model updates with the server or with each other. Local training
has emerged as the key paradigm for efficient learning which allows the participating clients to take
multiple update steps before communicating with each other. It first appeared in the popular al-
gorithm FedAvg and showed great empirical success in applications (McMahan et al., 2017). In a
recent breakthrough, Mishchenko et al. (2022) introduced ProxSkip, the first algorithm to be prov-
ably more communication-efficient than FedAvg by employing control variates and randomization.
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Figure 1: On the left, test score for regression on the Blog Feedback dataset (Buza, 2013). Our
method performs best in both final score and communication efficiency. On the right, test accuracy
for ResNet18 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009). Our method Sparse-ProxSkip
prevents catastrophic failure occurring when combining acceleration and pruning at the server. The
shaded area in both figures represents the standard error.

In a follow-up work, Condat & Richtárik (2022) were able to generalize the acceleration guaran-
tees of ProxSkip to allow for multiple proxs in an algorithm called RandProx. In the convex setting
with l1 regularization, RandProx allows to obtain a sparse model while employing acceleration, al-
though there is no guarantee on the sparsity level. However, in practice, l1 regularization is usually
outperformed by nonconvex techniques based on the l0 seminorm.

Challenge. To achieve an efficient algorithm for FL, sparse-to-sparse training and the recent the-
oretical advances on acceleration need to be combined. Hence, we address the following research
question:

Is it possible to incorporate acceleration with nonconvex techniques usually found in sparse-to-
sparse training algorithm?

Contributions. A common approach in the FL literature is to apply pruning at the server (Stripelis
et al., 2022; Lee et al., 2024). First, we show that this naive approach fails in the case of ProxSkip.
Then, inspired bt RandProx, we derive a new algorithm, Sparse-ProxSkip, which addresses the
problems by pruning at the clients instead of the server. We show that this is necessary through a
combination of theory and experiments. Finally, we validate our algorithm in extensive experiments.
Figure 1 shows how our proposed algorithm outperforms baselines for convex and deep learning
experiments.

Hence, the paper starts with an overview of the theoretical background of RandProx and its applica-
tion for pruning through l1 regularization in section 3. Section 4.1 then shows the superiority of this
algorithm for regression on the Blog Feedback dataset. Regression was chosen, as the theoretical
guarantees hold only in convex scenarios like this and centralized STS regression is a well estab-
lished field known as Subset Selection (Hastie et al., 2017). Section 4.2 establishes the superiority in
logistic regression on FEMNIST (Caldas et al., 2018a). Finally, Section 4.3 deals with deep learning
experiments.

2 RELATED WORK

Despite some existing studies on deriving sparse models in federated learning, the topic remains in-
sufficiently understood. The most similar STS approach is given by Tong et al. (2020), who combine
FedAvg and TopK to yield FedHT and FedIHT. Their approach does not integrate acceleration or
control variates. Hence, this will be considered a baseline for our work. Furthermore, only FedIHT
prunes the model before sending it to the server and thus uses the major communication efficiency
of training a sparse model instead of a dense one (Yi et al., 2024). Subsequent works do not incor-
porate acceleration or address client drift either (Lin et al., 2022; Bibikar et al., 2022; Horvath et al.,
2021; Isik et al., 2022; Tian et al., 2024; Huang et al., 2022), or they are not fully STS (Jiang et al.,
2022; Qiu et al., 2022; Munir et al., 2021; Li et al., 2021).
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In the DTS regime, the most simple approach is given by FedSparsify, which applies Gradual Magni-
tude Pruning in FedAvg at the server (Stripelis et al., 2022). The main difference between FedHT and
FedSparsify is that the latter starts with a dense model and ramps up the sparsity by a cubic schedule
during the training as is usual in centralized pruning. Another recent DTS work takes the approach
of applying further centralized training approaches at the server (Lee et al., 2024). Here, one gathers
up the local updates (usually with a fixed learning rate) and treats them as the gradient at the server.
Then one can apply both centralized optimizers and centralized pruning techniques. In particular,
Lee et al. (2024) apply the DTS techniques of random pruning, saliency pruning (Molchanov et al.,
2016), GMP (Zhu & Gupta, 2017) and Straight Through Estimation (Bengio et al., 2013) and for
STS they apply static sparse training, dynamic sparse training (Mocanu et al., 2018) and RigL (Evci
et al., 2020). We will show that acceleration and pruning at the server fail and need to be applied
at the clients instead. Hence, our work enables integrating all of the aforementioned centralized
pruning techniques with ProxSkip or Scaffold (Karimireddy et al., 2020).

3 PROPOSED METHOD

Our algorithm is based on the recent progress in understanding local training made in Mishchenko
et al. (2022). Their algorithm ProxSkip can optimize functions of the form

min
w∈Rd

f(w) + ψ(w), (1)

where f is L-smooth and µ-strongly convex and ψ is proper, closed and convex (Bauschke & Com-
bettes, 2017). It corresponds to Algorithm 1 with the pruning options disabled. Under these as-
sumptions, the optimum w∗ exists and is unique. Hence, one can look at convergence against this
optimum w∗. Let w0 be the initial model estimate and wt be the iterate of their algorithm after t
steps. They proved that to be ϵ close to the optimum, i.e. ∥wt − w∗∥ ≤ ϵ

∥∥w0 − w∗∥∥, one needs to

evaluate the proximity operator (prox) of ψ only
√

L
µ log 1

ϵ times, while the best known bounds for

Gradient Descent (and thus especially FedAvg) is L
µ log 1

ϵ . One main application of ProxSkip to FL
is

min
w∈Rd

{
f(w) :=

1

N

N∑

i=1

fi(w)

}
,

where fi : Rd → R is the loss function of each client and N is the total number of clients. This
approach is closely related to empirical-risk minimization (Shalev-Shwartz & Ben-David, 2014),
the dominant approach in supervised machine learning. In practice, fi is the individual loss function
of Client i, based on their private and local data. This problem is a particular case of (1), using a
consensus formulation (Parikh & Boyd, 2014). That is, the model w ∈ Rd is duplicated into N
independent copies w1, w2, . . . , wN and the objective is changed to

min
w1,...,wN∈Rd

1

N

n∑

i=1

fi (wi) + ψ (w1, . . . , wN ) ,

where ψ : (w1, . . . , wN ) 7→ {0 if w1 = · · · = wN , +∞ otherwise}. The proper closed convex
function ψ encodes the consensus constraint and the theory of ProxSkip applies. The prox of ψ is
proxγψ (w1, . . . , wN ) = (w̄, . . . , w̄) ∈ RNd, where w̄ is the average of the wi. Thus, evaluating
the prox boils down to communicating all local models w1, w2, . . . , wN to a central server and
averaging them. Hence, one prox evaluation corresponds exactly to one communication round, the
main bottleneck in in FL (McMahan et al., 2017). Thus, reducing the number of prox evaluations is
crucial to accelerate FL, which is why ProxSkip is such an important achievement for FL.

3.1 BASELINE METHODS

Additionally to FedHT and FedIHT discussed in the Section 2, we consider the following simple
baselines of how to address the research question of incorporating pruning, acceleration and tackling
client drift. A simple approach is to employ an accelerated algorithm like ProxSkip to obtain the
dense solution w∗ and then take TopK(w∗) of it for the desired sparsity, where the TopK operator
keeps the K largest elements of a vector unchanged and sets the other ones to zero. This approach

3
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does not address resource constraints of the clients or take advantage of training a sparse model to
reduce communication cost. We will call this approach Final-TopK. The experiments will show that
Sparse-ProxSkip addresses client resources and outperforms this method, showing that it provides a
valuable contribution.

Another approach would be to consider pruning at the server, i.e. applying TopK after averaging the
model and before sending it back to the clients. Applying optimization techniques at the server is a
common approach in FL (Lee et al., 2024; Lin et al., 2022; Stripelis et al., 2022). When applied to
ProxSkip, we refer to this variant as Accelerated-Server-Pruning and it can be found in Algorithm 1.
A major drawback is that this method does not benefit from compression for saving on uplink com-
munication costs. As pruning is done before downlink communication, the models uploaded to
the server are dense, incurring full communication cost. Furthermore, we show in the experiments
that Accelerated-Server-Pruning violates a key invariant of control variates, so that it is essentially
inappropriate for FL.

3.2 ACCELERATED PRUNING METHOD FOR FL WITH l1 REGULARIZATION

Recently, Condat & Richtárik (2022) extended the framework of ProxSkip to allow for several proxs
while keeping acceleration. In FL this means their algorithm RandProx can optimize problems of
the form

min
w1,...,wN∈Rd

1

N

N∑

i=1

fi (wi) + ψ (w1, . . . , wN ) + h(w1, . . . , wN ),

for h proper, closed and convex. One interesting case is to set h(w) = ∥w∥1, which comes down
to federated lasso (Barik & Honorio, 2023). This model is known practically and theoretically to
perform some sort of pruning, since it reduces the number of nonzero parameters (Barik & Honorio,
2023). Furthermore, the l1 norm is convex, so that for convex loss functions fi the accelerated
convergence guarantees of RandProx hold. We refer to this sparse training method as RandProx-l1.

3.3 NONCONVEX MODIFICATIONS: CARDINALITY CONSTRAINTS

In practice however, it is well known that magnitude-based pruning methods have proven to out-
perform l1 regularization, because of the bias it introduces. Cardinality constraints do not have this
drawback and the algorithm can obtain the optimal solution on the subspace of the nonzero variables.
Cardinality constraints can be represented in RandProx. One can set

h (w) :=

{
0, if ∥w∥0 ≤ K

+∞, otherwise,

where ∥w∥0 counts the number of nonzero components of w. RandProx makes calls to the prox of
h, which is the hard-thresholding operator TopK (Blumensath & Davies, 2009). The major caveat
here is that this function h is nonconvex, so that the proven acceleration guarantees of Condat &
Richtárik (2022) do not hold. Empirically though, algorithms designed for the convex case have
been proven powerful in the nonconvex case as well. So, we use the theoretical guarantees in the
convex case as a strong guidance toward a powerful practical algorithm for the nonconvex case. The
resulting algorithm is Sparse-ProxSkip-Local and it can be found in Algorithm 1.

3.4 FURTHER MODIFICATIONS AND PROPOSED ALGORITHM

A further improvement comes from the insight that one does not need to sparsify every step to
gain a pruned model. The major beneficial sparsification happens before communication, as this
reduces the communication cost similar to compression in FL algorithms (Condat et al., 2023; Yi
et al., 2024). Hence, one could take the perspective of the models being pruned locally only due to
the limited resources at the clients. To investigate the potential gains we consider a variant of the
algorithm which only prunes before communication. The resulting algorithm is Sparse-ProxSkip
found in Algorithm 1.

Here one has to take a choice where to place the TopK operator. For the control variates hi to work
properly, we show theoretically and empirically that it is crucial that

∑
i hi = 0 always holds. For

4
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Algorithm 1 Meta Sparse-ProxSkip

1: stepsize γ > 0, probability p > 0, initial iteratew1,0 = · · · = wN,0 ∈ Rd, initial control variates
h1,0, . . . , hn,0 ∈ Rd on each client such that

∑N
i=1 hi,0 = 0, number of iterations T ≥ 1

2: server: flip a coin, θt ∈ {0, 1}, T times, where Prob(θt = 1) = p
3: send the sequence θ0, . . . , θT−1 to all workers
4: for t = 0, 1, . . . , T − 1 do
5: in parallel on all workers i ∈ [N ] do
6: ŵi,t+1 = wi,t − γ(∇fi(wi,t)− hi,t) ⋄ SGD step adjusted by control variate hi,t

7: Option Sparse-ProxSkip-Local: ŵi,t+1 = TopK(ŵi,t+1)
8: if θt = 1 then
9: Option Sparse-ProxSkip: ŵi,t+1 = TopK(ŵi,t+1)

10: wi,t+1 = 1
N

N∑
j=1

ŵj,t+1 ⋄ Communication with the server

11: Option Accelerated-Server-Pruning: wi,t+1 = TopK(wi,t+1)
12: hi,t+1 = hi,t +

p
γ (wi,t+1 − ŵi,t+1) ⋄ Update the local control variate hi,t

13: else
14: wi,t+1 = ŵi,t+1 ⋄ Skip communication!
15: hi,t+1 = hi,t
16: end if
17: end local updates
18: end for
19: wi,T = TopK(wi,T )

ProxSkip, one can now decide whether to apply TopK before or after saving ŵ at the clients. The
change in Algorithm 1 is subtle. One takes Line 7 of Algorithm 1 to be either

ŵi,t+1 = TopK(ŵi,t+1) or wi,t+1 = TopK(ŵi,t+1).

One can verify that our proposed variant, Sparse-ProxSkip, keeps the guarantee of
∑
i hi = 0.

Going back to ProxSkip, if this condition does not hold, one can show that the algorithm diverges.
To see this, let us look at the simple case of p = 1 and wi,0 = w∗ for all i, i.e. just taking one local
step located at the optimum. If

∑
i hi ̸= 0 then one gets at the aggregation step on the server

1

N

N∑

i=1

w∗ − γ(gi(w
∗)− hi) = w∗ +

1

N

N∑

i=1

γ(gi(w
∗)− hi) = w∗ +

1

N

N∑

i=1

hi ̸= w∗.

The equality holds because
∑N
i=1 gi(w

∗) = 0 by first-order optimality conditions. Hence, w∗ is
not a fixed-point and the algorithm diverges instead. We confirmed this hypothesis empirically for
regression and logistic regression and provide a detailed analysis for logistic regression in Sec-
tion 4.2.1.

4 EXPERIMENTS

We start with convex experiments for the following reasons. First, the convex setting is well un-
derstood and the theoretical guarantees of ProxSkip and RandProx hold only in this case. From a
theory point of view, TopK is not nonexpansive and hence might lead to divergence. Hence, we
start with the convex setting to clearly investigate the effects of the mechanisms. Second, convex
models are still surprisingly widespread in industrial applications. Third, many successful methods
for the nonconvex case were designed for the convex case and then adapted to the nonconvex case.
And lastly, ProxSkip and related accelerated methods are even without pruning still underexplored in
the deep learning case. Hence, adapting these methods for sparse deep learning is challenging, but
we provide experiments and general insights for this setting as well. General experimental details
can be found in Appendix A.

5
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Figure 2: Test Score (R2) on the left and train loss on the right for regression on the Blog Feedback
dataset (Buza, 2013). Baseline methods are dashed while our methods are solid. One can observe
that both RandProx-l1 and our proposed methods converge to a better solution in a substantially more
communication-efficient way. The shaded area in the figures represents the standard error. Error bars
for all experiments are included but are sometimes not visible, due to deterministic initialization at
wi,0 = 0.

Table 1: Multiple linear regression results. Sparse-ProxSkip shows an increase in R2 due to ad-
dressing client drift. Table 5 (in the Appendix) additionally reports the final train loss. Results were
obtained running a random search for γ and p for all algorithms.

Sparsity 80 % 90 % 95 %

Test R2 Test R2 Test R2

E
xi

st
in

g

Final-TopK 26.4 % 23.8 % 16.4 %
FedHT 18.0 % 21.9 % 12.8 %
FedIHT 16.5 % 22.4 % 12.3 %
Accelerated-Server-Pruning 25.9 % 20.4 % 16.3 %

RandProx-l1 26.3 % 24.1 % 18.8 %

O
ur

s Sparse-ProxSkip-Local 27.0 % 26.8 % 23.9 %
Sparse-ProxSkip 26.7 % 27.1 % 26.7 %

4.1 MULTIPLE LINEAR REGRESSION ON BLOGFEEDBACK

Setup. The first experiments tackle multiple linear regression on the BlogFeedback dataset Buza
(2013). We chose this dataset for providing a realistic example of a regression problem with a natural
but challenging FL split. Previously, it has been used by Barik & Honorio (2023) to investigate
federated lasso, which also addresses the challenge of feature selection in a federated regression
problem. The total number of data points is n = 47157 split in a very heterogenous way across 554
clients. Furthermore, all results have been obtained by running a random search to tune the number
of local steps 1

p and the learning rate γ. Error bars are obtained by running the same combinations 5
times for the same parameters with different random initialization if applicable. More details on the
dataset and the experimental setup can be found in Appendix B.

Experimental Results. Our methods improves both in R2 (quality of the solution) and in com-
munication efficiency over the baselines. Training trajectories for a sparsity of 90% detailing the
gains in communication cost and accuracy at the same time can be found in Figure 2. Table 1 re-
ports the final R2 (solution quality) for different target sparsity values. At 90% sparsity, we see that
Sparse-ProxSkip improves by 3.2% over the best baseline Final-TopK and 6.6% over the best non
client drift addressing variant. Furthermore, the advantage grows with increased sparsity at 95%.
Table 2 reports the gains in communication efficiency. We can observe that Sparse-ProxSkip is
roughly 10× more communication-efficient as the best baseline Final-TopK and roughly 20× more
communication-efficient than the best non-accelerated baseline.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Communication cost to reach a certain test R2 score for multiple linear regression at 90%
sparsity. All speedup comparisons are with respect to Final-TopK as it is an accelerated method
outperforming FedIHT and is the only baseline reaching a test score of 0.225.

Test R2 Threshold 0.2 0.225 0.25

Upload Communication Cost Bits Speedup Bits Speedup Bits Speedup

E
xi

st
in

g

Final-TopK 1.16 M 1.00× 1.44 M 1.00× ✗ ✗
FedHT 14.8 M 0.08× ✗ ✗ ✗ ✗
FedIHT 2.49 M 0.47× ✗ ✗ ✗ ✗
Accelerated-Server-Pruning 0.73 M 1.59× ✗ ✗ ✗ ✗

RandProx-l1 0.18 M 6.44× 0.25 M 5.76× ✗ ✗

O
ur

s Sparse-ProxSkip-Local 0.13 M 8.90× 0.21 M 6.86× 0.76 M -
Sparse-ProxSkip 0.10 M 11.6× 0.14 M 10.3× 0.19 M -
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Figure 3: Results for logistic regression on FEMNIST at 99% sparsity. Sparse-ProxSkip and Sparse-
ProxSkip-Local outperform all baselines both in communication costs and final accuracy. The shaded
area in the figures represents the standard error.

RandProx-l1 Beats Simple Baselines. We see that RandProx-l1, as described in Section 3.2, out-
performs the simple baselines in terms of both communication efficiency and R2.

Noticeably, this supports our hypothesis in that: 1) Acceleration (through RandProx-l1) leads to
a communication cost decrease of ≥ 6× compared to FedIHT. 2) Addressing client drift (through
RandProx-l1) leads to an increase in final test score of up to 2.4% compared to FedIHT. 3) RandProx-
l1 outperforms naive baselines like pruning at the server or pruning at the end, showing the need for
a properly designed accelerated STS method.

Failure of Accelerated Server Pruning. From Figure 2 one can observe that Accelerated-Server-
Pruning performs worst from all tested baselines. In particular, it performs worse than FedIHT which
does neither address client drift nor is accelerated. As we discussed in Section 3.4 we hypothesized
this because the property

∑
i hi ̸= 0 is violated in Accelerated-Server-Pruning. We confirmed this

hypothesis empirically for logistic regression and provide a detailed analysis in Section 4.2.1.

Sparse ProxSkip-Local beats RandProx-l1. We finally note that Sparse-ProxSkip outperforms
RandProx-l1 and the other baselines. We make the following observations: 1) RandProx-l1 reaches
the desired sparsity only gradually. The theory only guarantees convergence to a sparse solution, but
there is no guarantee during the training. Hence, the communication costs it occurs are larger than
when applying TopK directly to sparsify locally. 2) One can notice an accuracy gain of Sparse-
ProxSkip-Local compared to RandProx l1. We attribute this to the bias induced by l1 regularization.
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Table 3: Communication costs to reach a certain test accuracy at 90% sparsity on FEMNIST. Note
that although the final accuracy for Accelerated-Server-Pruning is below 80% as seen in Table 4, it
peaks at 84 % early on. The same holds for Final-TopK and 85 %.

Test Accuracy Threshold 80 % 82.5 % 85 %

Upload Communication Cost Bits Speedup Bits Speedup Bits Speedup

E
xi

st
in

g

Final-TopK 6.0 M 0.1× 16.6 M 0.1× 92.4 M 0.1×
FedHT 4.0 M 0.2× 8.54 M 0.2× 45.7 M 0.3×
FedIHT 0.8 M 1.0× 1.61 M 1.0× 13.0 M 1.0×
Accelerated-Server-Pruning 2.0 M 0.4× 3.57 M 0.5× ✗ ✗

O
ur

s Sparse-ProxSkip-Local 0.5 M 1.8× 0.55 M 2.9× 2.52 M 5.2×
Sparse-ProxSkip 0.2 M 4.0× 0.35 M 4.6× 0.65 M 19×

Table 4: Test accuracy of logistic regression on FEMNIST for different sparsity levels. The best
accuracy for each sparsity level is highlighted in bold.

Sparsity 80 % 90 % 95 % 98 % 99 %

E
xi

st
in

g Final-TopK 84.7 % 79.9 % 69.6 % 40.1 % 25.5 %
FedHT 86.6 % 85.7 % 84.7 % 76.6 % 66.4 %
FedIHT 86.8 % 85.6 % 82.7 % 74.6 % 65.4 %
Accelerated-Server-Pruning 77.9 % 77.5 % 76.8 % 72.2 % 64.7 %

O
ur

s Sparse-ProxSkip-Local 86.7 % 86.1 % 84.7 % 78.9 % 72.9 %
Sparse-ProxSkip 87.0 % 86.4 % 85.3 % 80.5 % 72.8 %

4.2 MULTIPLE LOGISTIC REGRESSION ON FEMNIST

Setup. A more challenging but still convex setting is multiple logistic regression on the FEMNIST
dataset (Caldas et al., 2018a). We take the naturally-occurring federated split but limit the number
of clients to N = 100. A similar approach was taken by Jiang et al. (2022) for N = 193. The
reasoning and further details can be found in Appendix C.

Results. The general results are shown in Figure 3. Results on communication efficiency are re-
ported in Table 3. As only FedIHT enjoys communication speedup from compression, it is taken as
the baseline so that the reported speedup is solely due to acceleration. We see that Sparse-ProxSkip-
Local is 1.78–5.18× more communication-efficient and Accelerated-Server-Pruning is 4–20× more
communication-efficient than FedIHT. If FedHT is taken as the baseline, which would be a usual ap-
proach for obtaining pruned models in FL (Lee et al., 2024), then Sparse-ProxSkip-Local is 9–18×
and Accelerated-Server-Pruning is 20–70× more communication-efficient than FedHT.

Results on the final accuracy for different sparsity levels are reported in Table 4. One can observe
that the advantage of our method is significant only with high sparsity levels. That is, at 80 % there
is just a 0.2% advantage, while at 99 % the gap has widened to 7.4 %. On the other hand, for sparsity
80 % and 90 % the performance of Final-TopK is competitive with the other methods. This suggests
that achieving these sparsity levels is not challenging on FEMNIST.

4.2.1 ZERO-SUM CONTROL VARIATES

In Section 3.4 we have demonstrated that if
∑
i hi ̸= 0, the algorithm diverges. This crucial obser-

vation is at the basis of our proposed method. We empirically confirmed on logistic regression for
FEMNIST that this condition is violated for Accelerated-Server-Pruning and that this property leads
to impaired performance on real world datasets. Details are found in Appendix D. To summarize,
first, one can see that ∥∑i hi∥ > 1

N

∑
i ∥hi∥ showing that the sum is substantially far away from

0. Second, one can see that the algorithm converges to a substantially different solution as ∥w∥
differs substantially between Accelerated-Server-Pruning and all other algorithms. The same holds
for the norm of the gradient. To furthermore test the affect for real world test accuracy of FEMNIST,
we can come up with a modified variant of Accelerated-Server-Pruning which keeps this conditions

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2G 5G 8G 10G 12G 15G

Uploaded Bits per client

0.2

0.4

0.6

0.8

T
e
st

A
c
c
u
ra

c
y

(H
ig

h
e
r

is
b

e
tt

e
r)

Linear Scaling

Final TopK

FedHT

FedIHT

Accelerated Server Pruning

Sparse ProxSkip-Local

Sparse ProxSkip

10M 100M 1G 10G

Uploaded Bits per client

Logarithmic Scaling
Test Accuracy, 99 % Sparse

10M 100M 1G 10G

Uploaded Bits per client

10−2

10−1

100

101

T
ra

in
L

o
ss

(L
o
w

e
r

is
b

e
tt

e
r)

Double Logarithmic Scaling
Train Loss, 99 % Sparse

Figure 4: Results for ResNet18 (He et al., 2016) on CIFAR10 (Krizhevsky, 2009) at 90% sparsity.
Sparse-ProxSkip is still able to outperform the baselines, although to a lesser degree. The main
observation is that Accelerated-Server-Pruning fails completely in accuracy and loss because of
|∑hi| ≫ 0 and that the proposed fixes of Sparse-ProxSkip address this problem. The shaded area
in the figures represents the standard error.

(as Accelerated-Server-Pruning does not) and Sparse-ProxSkip which violates this condition (as it
always holds for Sparse-ProxSkip). We can see in Figure 6 that in both cases, the variant that keeps∑
i hi = 0 outperforms its counterpart substantially.

4.3 DEEP LEARNING EXPERIMENTS

Further nonconvex experiments were conducted on CIFAR10 (Krizhevsky, 2009) using
ResNet18 (He et al., 2016). Further details can be found in Appendix E.

One can observe the results for 90% sparsity in Figure 4. Mainly, we note that Accelerated-Server-
Pruning fails completely both in accuracy and in the loss increasing instead of decreasing. The
algorithm does not head towards a minimum of the loss. This is because early on, the sum of the
control variates

∑
hi grows quickly and shifts all subsequent local gradients. Hence, one can see

that keeping
∑
hi = 0 is particularly important for large models. Furthermore, one can see that the

proposed variant Sparse-ProxSkip performs best and gives the highest final accuracy. We attribute
the higher final accuracy to the control variates counteracting client drift. On the other hand, in
this scenario we do not see a benefit from acceleration. This aligns with earlier observations that
acceleration faces challenges in deep learning (Defazio & Bottou, 2019) and that addressing client
drift proves beneficial for final accuracy nonetheless (Li et al., 2023). However, Li et al. (2023) found
that control variates also benefit to the communication cost in highly heterogenous settings. We thus
hypothesize that our setting was not heterogenous enough. While we applied the same federation
process as Li et al. (2023), the different observation might be due to full client participation and a
small number of clients in our experiments. In this setting, the amount of data per client is large and
the heterogeneity of the Dirichlet distribution with parameter α might not lead to the same level of
heterogeneity.

5 CONCLUSION

We investigated whether it is possible in FL to combine the recent theoretical advances of accelera-
tion and client drift mitigation via local training, with sparse training. We showed that 1) the naive
combination of these techniques fails; 2) it is theoretically and empirically crucial to keep the sum
of the control variates to zero; 3) pruning should be done at the clients, not the server. Based on
these important findings, we developed a theoretically-motivated method, Sparse-ProxSkip, which
integrates the successful mechanism of TopK for sparse training in FL. Our experiments confirm
its efficiency.

9
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Table 5: Blog Feedback Dataset results. Results were tuned for γ and p and hence show the improved
scores due to addressing client drift.

Sparsity 80 % 90 % 95 %

Train Loss Test R2 Train Loss Test R2 Train Loss Test R2

E
xi

st
in

g

Final-TopK 2.817e7 26.4% 2.877e7 23.8% 3.113e7 16.4%
FedHT 3.056e7 18.0 % 2.951e7 21.9 % 3.288e7 12.8 %
FedIHT 3.143e7 16.5 % 2.937e7 22.4 % 3.267e7 12.3 %
Accelerated-Server-Pruning 2.872e7 25.9 % 2.991e7 20.4 % 3.217e7 16.3 %

RandProx-l1 2.823e7 26.3 % 2.894e7 24.1 % 3.073e7 18.8 %

O
ur

s Sparse-ProxSkip-Local 2.818e7 27.0 % 2.856e7 26.8 % 2.938e7 23.9 %
Sparse-ProxSkip 2.810e7 26.7 % 2.831e7 27.1 % 2.897e7 26.7 %

A GENERAL EXPERIMENTAL DETAILS

Our experiments were implemented in Python using Pytorch. We will release the code publicly
upon acceptance of this paper. The experiments were conducted on our local workstations equipped
with Intel(R) Xeon(R) Gold 6226R CPUs (2.90 GHz), 1 TB of RAM, and four Nvidia A100 GPUs,
each with 40 GB of VRAM, although much less is required to reproduce these results. Each single
training run of the experiments took no more than 20 hours of compute time. Some methods do not
produce models at the desired sparsity, e.g. FedIHT usually yields a model of 70− 90% when given
a target sparsity of 90%. Hence, before any evaluation of any method the models are pruned to the
target sparsity by applying TopK.

B EXPERIMENTAL DETAILS: LINEAR REGRESSION

Blog Feedback Dataset Details. The dataset contains a number of blog posts with their respective
number of comments so far and the goal is to predict the number of comments over the following
24h time window. For federating the dataset, it has a natural split by considering the source page
where a particular blog post appeared, i.e. the website domain where it was published. For each
domain, we create one client.1 Furthermore, before federating we scale all attributes to be in the
range [0, 1] to make the computations more amenable. This results in a dataset with 554 clients. A
histogram of the client size can be found in Figure 5 in the appendix. To add a bias term, which is
usual for regression, we modify every sample to have an additional entry 1.

Objective Function. We optimize the objective function

f(w) =
1

N

N∑

i=1

fi(w) =
1

N

N∑

i=1

(
1

2
∥Aiw − bi∥22 +

α

4
∥w∥22

)
+

1

2N
ϕ(w).

Here ϕ encodes our sparsity constraint, i.e. either ∥·∥1 or cardinality constraints resulting in TopK(·)
and Ai is the local data matrix. α = 103 in our experiments and was empirically chosen to give
good R2 on a validation set.

Evaluation Metrics. In addition to reporting the loss, the BlogFeedback dataset Buza (2013) con-
tains a train and a test split. The test split is out-of-distribution which in this case means that the test
data was recorded at least 1 month up to a year later compared to the training dataset. To measure
the error for regression it is usual to report the R2 metric which lies between 0 and 1 for favorable
predictors. A R2 value of 0 does not explain the dataset at all while a values of 1 would explain the
dataset fully. Hence, a higher R2 is better.

Initialization. Regression is a convex scenario, so that for RandProx convergence is guaranteed
from any starting point. Thus, to induce sparsity from the beginning, the initial model is chosen as
wi,0 = 0 for every i.

1In practice this means grouping by the first 50 columns as these are attributes of the source website and
creating a client for each unique combination of values in these columns
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Figure 5: Distribution of the client sizes in the Federated version of the Blog Feedback dataset (Buza,
2013).

Hyperparameters. The hyperparameters, which are the learning rate γ and average number of local
steps 1

p were tuned by a random search. First a suitable range for these parameters was identified,
then in a second random search the best parameters in this range were taken for the final experiments.
Then, the average of 5 runs was taken to obtain the presented results. All algorithms were run for
104 communication rounds ensuring convergence to their respective solutions.

Full Experimental Results. The results for the sparsity comparison including the loss function can
be found in Table 5. From the loss one can see that the optimizer is not only better at increasing R2,
but also at decreasing the objective function.

C EXPERIMENTAL DETAILS: LOGISTIC REGRESSION

Dataset. We run the experiments on the FEMNIST dataset (Caldas et al., 2018a), a common bench-
mark of the FL community that possesses a natural federated partition. We only consider N = 100
clients out of the 3220 naturally occurring in FEMNIST for the following reasons. A similar ap-
proach was taken by Jiang et al. (2022) for N = 193. On the one hand, ProxSkip requires modifi-
cations to support partial client participation (Condat et al., 2023; Grudzień et al., 2023), but in the
setup chosen here only allows for full client participation. A high number of clients participating in
each round is unrealistic (Charles et al., 2021). The goal of this work is to benchmark the advantage
of control variates for client drift, hence providing a benchmark on natural federated splits is crucial.
Merging clients would diminish the advantage of having a realistic federated split.

On the other hand, too few clients result in too little data. Hence, 100 was chosen as a tradeoff
between these aspects resulting in a dataset of n = 11152 images. We employed the standard
unrestricted test dataset. The performance tradeoff for this choice is that our centralized dense
estimator achieves an accuracy of 89.4% when trained on the full FEMNIST dataset, compared to
85.4% when trained on our restricted dataset.

Objective Function. We align our objective function with the one from scikit-learn which
uses the softmax formulation; that is, we define

p̂k(xi) =
exp(xiwk + w0,k)∑K−1
l=0 exp(xiwl + w0,l)

and minimize

min
w
f(w) =

1

N

N∑

i=1

fi(w) =
1

N

N∑

i=1

(
−N
n

ni∑

i=1

K−1∑

k=0

[yi = k] log(p̂k(xi)) +
α

2
∥w∥22

)
+

1

2N
ϕ(w).

N is the number of clients, n is the total number of samples and ni is the number of samples of
Client i. Furthermore, xi refers to a single datapoint and yi is its label.
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Figure 6: Test accuracy of our method and server pruning. The modified variants keep
∑
i hi = 0.

We can clearly see that this improves accuracy.

Hyperparameters. The hyperparameters of the learning rate γ and local steps 1
p were tuned by a

random search. First a suitable range for these parameters was identified, then in a second random
search the best parameters in this range were taken for the final experiments. Then, the average of
5 runs was taken to obtain these results. The default initialization for a linear layer of Pytorch was
taken.

D ZERO-SUM OF THE CONTROL VARIATES

This section provides empirical insights on why the property ∥∑i hi∥ = 0 is crucial and its violation
in Accelerated-Server-Pruning on logistic regression with FEMNIST and 90% sparsity. This refers
to the setting and reasoning of Section 4.2.1.

First, Figure 6 shows the observation that Sparse-ProxSkip outperforms Accelerated-Server-Pruning.
As a first step we introduce the following modified variants of these two algorithms. Sparse-
ProxSkip-modified changes Line 9 of Algorithm 1 to be

wi,t+1 = TopK(ŵi,t+1)

instead of
ŵi,t+1 = TopK(ŵi,t+1).

This has the effect of potentially violating
∑
i hi = 0. Furthermore, Accelerated-Server-Pruning-

modified just switches Line 11 with Line 12 of Algorithm 1. This has the effect of fixing
Accelerated-Server-Pruning to guarantee

∑
i hi = 0. Figure 6 shows that the latter is a competi-

tive variant and fixes the issue with Accelerated-Server-Pruning. Practically though, it is not very
useful. It would require the full model to be sent to the models before they prune it locally. This
saves neither on uplink nor downlink communication through compression.

First, on the left in Figure 7 one can see that
∑
i hi is far from 0, and combined with the plot on

the right on the average norm of hi, one can draw the conclusion that the size of
∑
i hi dominates

the control variables themselves. Hence, with the proof from Section 3.4 one can conclude that
the algorithm diverges by shifting the gradient by

∑
i hi. To see this empirically, one can look at

the norm of the parameters in Figure 8. Both Sparse-ProxSkip and Accelerated-Server-Pruning-
modified converge to roughly the same parameters norm. The other variants though, for which∑
i hi ̸= 0 holds, seem to move far away from this parameter combination. The plot on the left in

Figure 8 confirms this in the loss: instead of minimizing the loss, the methods diverge significantly.

E EXPERIMENTAL DETAILS: DEEP LEARNING ON CIFAR10

Experimental Details. The experiments were run on CIFAR10 (Krizhevsky, 2009) using
ResNet18 (He et al., 2016). The number of clients was N = 10 with full client participation.
The data was distributed through a Dirichlet distribution with parameter α = 0.3. The number of
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Figure 7: Norm of
∑
i hi on the left vs average norm of hi on the right.
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Figure 8: Norm of the model w and loss value.

samples per client is distributed according to a lognormal distribution with variance 0.3. We used
FedLab for producing the federated data split (Dun Zeng & Xu, 2021). A random search was con-
ducted to find the best parameters among learning rate, local steps, batch size and gradient clipping
value. The experiments were run for 500 rounds for. The number of local steps was chosen from
the range {8, 16, 32, 64, 128, 256}. For ProxSkip, p = 1

#local steps is taken. The batch size was chosen
from the range {32, 64}. The gradients were clipped by a value chosen log-uniformly between 10
and 200. Without gradient clipping, ProxSkip would run into NaN errors. We used a weight decay
of 10−4 and applied common transforms on the training data of flipping, cropping and normalizing.

F OUTLOOK AND LIMITATIONS

Sparse training might prove crucial for training large models in FL, which offer architectural benefits
over small models. Here, sparse training enables larger models to respect the resource requirements
of edge devices. Furthermore, these findings might be invaluable for combining centralized sparse
training and pruning methods with acceleration. We provided a general invariant that pruning has to
take place at the clients but future work might address the details of this integration. Additionally, in
its current form, the method provides inference benefits and communication cost savings but would
need further development for reducing the computational costs during training. In particular, our
current gradients and control variables are dense, requiring further modification before yielding a
sparse-to-sparse training method with the computational and memory footprint of a small model. In
the pruning literature, masking is usually employed for this aspect. Here, one could apply masking to
the control variates as well and combine gradient calculation and pruning as to decrease the memory
cost of the full gradients.
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