
Published as a conference paper at ICLR 2023

MIN-MAX MULTI-OBJECTIVE BILEVEL OPTIMIZATION
WITH APPLICATIONS IN ROBUST MACHINE LEARNING

Alex Gu†, Songtao Lu‡, Parikshit Ram‡, Tsui-Wei Weng*
†MIT CSAIL, ‡IBM Research, *UCSD
†gua@mit.edu, ‡{songtao, parikshit.ram}@ibm.com, *lweng@ucsd.edu

ABSTRACT

We consider a generic min-max multi-objective bilevel optimization problem with
applications in robust machine learning such as representation learning and hyper-
parameter optimization. We design MORBiT, a novel single-loop gradient descent-
ascent bilevel optimization algorithm, to solve the generic problem and present a
novel analysis showing that MORBiT converges to the first-order stationary point
at a rate of Õ(n1/2K−2/5) for a class of weakly convex problems with n objectives
upon K iterations of the algorithm. Our analysis utilizes novel results to handle the
non-smooth min-max multi-objective setup and to obtain a sublinear dependence in
the number of objectives n. Experimental results on robust representation learning
and robust hyperparameter optimization showcase (i) the advantages of considering
the min-max multi-objective setup, and (ii) convergence properties of the proposed
MORBiT. Our code is at https://github.com/minimario/MORBiT.

1 INTRODUCTION

We begin by examining the classic bilevel optimization (BLO) problem as follows:

min
x∈X⊆Rdx

f(x, y⋆(x)) subject to y⋆(x) ∈ argmin
y∈Y=Rdy

g(x, y) (1)

where f : X × Y → R is the upper-level (UL) objective function and g : X × Y → R is the
lower-level (LL) objective function. X and Y , respectively, denote the domains for the UL and LL
optimization variables x and y, incorporating any respective constraints. Equation 1 is called BLO
because the UL objective f depends on both x and the solution y⋆(x) of the LL objective g. BLO
is well-studied in the optimization literature (Bard, 2013; Dempe, 2002). Recently, stochastic BLO
has found various applications in machine learning (Liu et al., 2021; Chen et al., 2022a), such as
hyperparameter optimization (Franceschi et al., 2018), reinforcement learning or RL (Hong et al.,
2020), multi-task representation learning (Arora et al., 2020), model compression (Zhang et al., 2022),
adversarial attack generation (Zhao et al., 2022) and invariant risk minimization (Zhang et al., 2023).

In this work, we focus on a robust generalization of equation 1 to the multi-objective setting, where
there are n different objective function pairs (fi, gi). Let [n] ≜ {1, 2, · · · , n} and fi : X × Yi → R,
gi : X × Yi → R denote the ith UL and LL objectives respectively. We study the following problem:

min
x∈X⊆Rdx

max
i∈[n]

fi(x, y
⋆
i (x)) subject to y⋆i (x) ∈ argmin

yi∈Yi=Rdyi

gi(x, yi), ∀i ∈ [n]. (2)

Here, the optimization variable x is shared across all objectives fi, gi, i ∈ [n], while the variables
yi, i ∈ [n] are only involved in their corresponding objectives fi, gi. The goal is to find a robust
solution x ∈ X , such that, the worst-case across all objectives is minimized. This is a generic
problem which reduces to equation 1 if we have a single objective pair, that is n = 1. Such a robust
optimization problem is useful in various applications, and especially necessary in any safety-critical
ones. For example, in decision optimization, the different objectives (fi, gi) can correspond to
different “scenarios” (such as plans for different scenarios), with x being the shared decision variable
and yi’s being scenario-specific decision variables. The goal of equation 2 is to find the robust
shared decision x which provides robust performance across all the n considered scenarios, so that
such a robust assignment of decision variables will generalize well on other scenarios. In machine

1

https://github.com/minimario/MORBiT

Published as a conference paper at ICLR 2023

learning, robust representation learning is important in object recognition and facial recognition where
we desire robust worst-case performance across different groups of objects or different population
demographics. In RL applications with multiple agents (Busoniu et al., 2006; Li et al., 2019; Gronauer
& Diepold, 2022), our robust formulation in equation 2 would generate a shared model of the world –
the UL variable x – such that the worst-case utility, maxi fi(x, y

⋆
i (x)), of the agent-specific optimal

action – the LL variable y⋆i (x) – is optimized, ensuring robust performance across all agents.

An additional technical advantage of the general multi-objective problem in equation 2 is that it allows
the objective-specific variables yi ∈ Yi to come from different domains, that is, Yi ̸= Yj , i, j ∈ [n];
as stated in equation 2, this implies that the dimensionality dyi

for the per-objective yi need not be
the same across all objectives. This allows for a larger class of problems where each objective can
then have different number of objective specific variables but we still require a robust shared variable
x. For example, in multi-agent RL, different agents can have different action spaces because they
need to operate in different mediums (land, water, air, etc).

Focusing on stochastic objectives common in ML, the main contributions of this work are as follows:

▶ (New algorithm design) We present a single loop Multi-Objective Robust Bilevel Two-timescale
optimization algorithm, MORBiT, which uses (i) SGD for the unconstrained strongly convex LL
problem, and (ii) projected SGD for the constrained weakly convex UL problem.

▶ (Theoretical convergence guarantees) We demonstrate that, under standard smoothness and
regularity conditions, MORBiT with n objectives converges to a Õ(n1/2K−5/2)-stationary point
with K iterations, matching the best convergence rate for single-loop single-objective (n = 1)
BLO algorithms with the constrained UL problem while using vanilla SGD for the LL problem,
and providing a sublinear n1/2-dependence on the number of objective pairs n.

▶ (Two sets of applications) We present two applications involving min-max multi-objective bilevel
problems, robust representation learning and robust hyperparameter optimization (HPO), and
demonstrate the effectiveness of our proposed algorithm MORBiT.

Paper Outline. In the following section 2, we further discuss the different aspects of the problem
in equation 2 and compare that to the problems and solutions considered in existing literature. We
present our novel algorithm, MORBiT, and analyse its convergence properties in section 3, and
empirically evaluate it in section 4. We conclude with future directions in section 5.

2 PROBLEM AND RELATED WORK

We first discuss the different aspects of the robust multi-objective BLO problem with constrained
UL in equation 2. While BLO is used in machine learning (Liu et al., 2021; Chen et al., 2022a),
multi-objective BLO has not received much attention. In multi-task learning (MTL), the optimization
problem is a multi-objective problem in nature, but is usually solved by summing the objectives
and using a single-objective solver, that is, optimizing the objective

∑
i fi. The robust min-max

extension of MTL (Mehta et al., 2012; Collins et al., 2020) and RL (Li et al., 2019) have been shown
to improve generalization performance, supporting the need for a more complex multi-objective
optimization problem that replaces the objective

∑
i fi with the objective maxi fi.

For SGD-based solutions to stochastic BLO, one critical aspect is whether the algorithm is single-loop
(a single update for both x and y in each iteration) or double-loop (multiple updates for the LL y
between each update of the UL x). Double-loop algorithms can have faster empirical convergence,
but are more computationally intensive, and their performance is extremely sensitive to the step-sizes
and termination criterion for the LL updates. Double-loop algorithms are not applicable when the
(stochastic) gradients of the LL and UL problems are only provided sequentially, such as in logistics,
motion planning and RL problems. Hence, we develop and analyse a single-loop algorithm.

A final aspect of BLO is the constrained UL problem. When the UL variable x corresponds to some
decision variable in a decision optimization problem or a hyperparameter in HPO, we must consider
a constrained form, x ∈ X ⊂ Rdx . To capture a more general form of the bilevel problem, we
focus on the constrained UL setup. In the remainder of this section, we will review existing literature
on single-objective and multi-objective BLO and robust optimization, especially in the context of
machine learning. Table 1 provides a snapshot of the properties of the problems and algorithms (with
rigorous convergence analysis) studied in recent machine learning literature.

2

Published as a conference paper at ICLR 2023

Table 1: The problem studied here relative to representative related work. If the studied problem is not a
BLO, the notion of single-loop or constrained UL (X ⊂ Rdx) is not applicable. The 1st row block lists general
problems. The 2nd block lists algorithms with analyses. The final row is MORBiT. †: This problem has been
viewed both as single-level and bilevel. □: The problem can be multi-objective but is treated as single-objective
by summing the objectives. △: In bilevel adversarial learning, the UL is unconstrained but the LL is constrained.

Problem/Method Bilevel Multi-objective Min-max Single-loop X ⊂ Rdx

Distributionally Robust Learning † ✗ ✓ - -
Adversarially Robust Learning † ✗ ✓ - △
Multi-task Learning (MTL) † □ ✗ - -
Robust MTL (Mehta et al., 2012) † ✓ ✓ - -
Meta-learning † □ ✗ - -

BSA (Ghadimi & Wang, 2018) ✓ ✗ ✗ ✗ ✓
HiBSA (Lu et al., 2020) ✗ ✗ ✓ ✓ ✓
GDA (Lin et al., 2020) ✗ ✗ ✓ ✓ ✗
TR-MAML (Collins et al., 2020) ✗ ✓ ✓ ✓ ✓
TTSA (Hong et al., 2020) ✓ ✗ ✗ ✓ ✓
StocBio (Ji et al., 2021) ✓ ✗ ✗ ✗ ✗
MRBO (Yang et al., 2021) ✓ ✗ ✗ ✓ ✗
VRBO (Yang et al., 2021) ✓ ✗ ✗ ✗ ✗
ALSET (Chen et al., 2021) ✓ ✗ ✗ ✓ ✗
STABLE (Chen et al., 2022b) ✓ ✗ ✗ ✓ ✓
MMB (Hu et al., 2022) ✓ ✗ ✓ ✓ ✗

MORBiT (Ours) ✓ ✓ ✓ ✓ ✓

Single-Objective BLO. Lately, many new algorithms have been proposed to solve the single-objective
stochastic BLO problem in equation 1. Ghadimi & Wang (2018) proposed the first double-loop BSA
approach. StocBio (Ji et al., 2021) and VRBO (Yang et al., 2021) are double-loop schemes that
improve upon the convergence rate of BSA but do not consider constrained UL problems. TTSA
(Hong et al., 2020) is a single-loop algorithm that handles UL constraints. MRBO (Yang et al., 2021)
and ALSET (Chen et al., 2021) are single-loop algorithms improving TTSA’s convergence rate but
do not consider UL constraints. STABLE (Chen et al., 2022b) improves upon TTSA by leveraging
an additive correction term in the LL update step (beyond a basic SGD step) while still handling UL
constraints. In contrast to the above single-objective bilevel setup, our formulation in equation 2 gives
flexibility for inherently multi-objective problems in a robust manner to obtain stronger guarantees,
ensuring convergence of each individual objective, rather than the average objective.

Multi-Objective BLO. There has been a limited number of works analyzing multi-objective BLO
schemes (Sinha et al., 2015; Deb & Sinha, 2009; Ji et al., 2017). All of these works analyze the
multi-objective BLO problem from a game-theoretic point of view, using a vector-valued objective
with the notion of Pareto optimality. In contrast, we are the first to study the multi-objective BLO
problem from a traditional optimization perspective in terms of convergence properties and consider a
min-max robust version of the multi-objective problem which produces a single solution that ensures
the convergence of each individual objective instead of generating multiple Pareto-optimal solutions
which trade-off the optimality of the different objectives. See further discussion in Appendix D.4.

Min-max Robust Optimization in Machine Learning. Min-max optimization is commonly used
to achieve robustness, such as in distributionally robust learning (DRL) and adversarially robust
learning (ARL). In DRL, Duchi & Namkoong (2018) and Shalev-Shwartz & Wexler (2016) showed
that a min-max loss improves generalization due to variance regularization. HiBSA (Lu et al., 2020)
and GDA (Lin et al., 2020) compute quasi-Nash equilibria with convergence guarantees. Robust
optimization is shown to have strong generalization for new tasks in multi-task learning (Mehta et al.,
2012) and meta-learning (Collins et al., 2020). While the classic MAML (Finn et al., 2017) can be
formulated as a BLO problem (Rajeswaran et al., 2019), the precise problem analysed in Collins
et al. (2020) is a single-level one. In fact, we consider the bilevel form of the TR-MAML problem
as one of our applications for empirical evaluation. In ARL, the minimum is over the loss and the
maximum is over the worst-case perturbation to inputs (Madry et al., 2017; Wang et al., 2019). In
both DRL and ARL, the min-max objective is in the form minx maxy f(x, y) with a single-objective.
In contrast, we study general robust multi-objective BLO where the UL objective is dependent on the
LL solutions, and where the minimization is over the variable x shared across all objectives, and the
maximization is over the multiple objectives, ensuring that each individual objective converges fast.

Closely related and concurrent work. Since our goals align with the properties of TTSA (Hong
et al., 2020) – the single-loop nature and the ability to handle UL constraints – our proposed MORBiT
is inspired by TTSA and can be viewed as a robust multi-objective version. Beyond this advancement,

3

Published as a conference paper at ICLR 2023

our contribution also lies in the convergence analysis of MORBiT, which significantly diverges from
that of TTSA. After our MORBiT was developed and released (Gu et al., 2021), STABLE (Chen
et al., 2022b) was recently presented as an improvement of TTSA, and we wish to explore similar
improvements to MORBiT in future work. A very recent work (Hu et al., 2022) studies a problem that
appears to be quite similar to equation 2, with common elements such as bilevel and min-max, and
proposes a single-loop multi-block min-max bilevel (MMB) algorithm. However, there are significant
differences: (i) Firstly, in their setup, they consider an extension of a min-max single level problem to a
min-max BLO, and min-max is not meant to provide “robustness” among objectives. The applications
in Hu et al. (2022) are restricted to problems such as multi-task AUC maximization instead of the
common bilevel applications of representation learning and HPO. (ii) Also, Hu et al. (2022) do
not consider a constrained UL problem. The problem in equation 2 is not a generalization of their
problem – both our work and theirs are considering different setups with high-level commonalities.
For more details, see Appendix D.2. Table 1 shows how our setup compares to existing literature. To
the best of our knowledge, the precise problem in equation 2 has not been studied in ML literature.

3 ALGORITHM AND ANALYSIS

In this section, we propose a simple single-loop algorithm MORBiT to solve equation 2, and establish
a rigorous convergence rate and sample complexity for this algorithm. For the theoretical results,
we defer the precise assumptions, statements and proofs to Appendix A and present the high-level
theoretical results and critical novel proof steps here. In the sequel, we will always use the subscript
i ∈ [n] to denote the objective index and the superscript (k) to denote the iteration index, with x(k)

denoting the kth iterate of the shared variable x ∈ X ⊆ Rdx and y
(k)
i denoting the kth iterate of

the ith-objective-specific variable yi ∈ Rdyi . We will also use the shorthand y to denote all the
per-objective variables [y1, y2, . . . , yn], with y(k) denoting the kth iterate of all the per-objective
variables [y(k)1 , y

(k)
2 , . . . , y

(k)
n]. Given our assumption that the LL objectives gi are strongly convex,

we define y⋆i (x) ≜ argminyi∈Rdyi
gi(x, y), and use the shorthand ℓi(x) ≜ fi(x, y

⋆
i (x)).

3.1 MORBiT ALGORITHM

We begin with a standard reformulation of robust min-max problems (Duchi et al., 2008). We can
rewrite the non-smooth min-max problem in equation 2 as

min
x∈X

max
λ∈∆n

∑
i∈[n]

λifi(x, y
⋆
i (x)) subject to y⋆i (x) = argmin

yi∈Rdyi

gi(x, yi), ∀i ∈ [n] (3)

where ∆n ∈ Rn
+ is the n-simplex defined as ∆n := {λ ∈ Rn

+ : λi ≥ 0,∀i ∈ [n],
∑

i∈[n] λi =

1}. This problem is equivalent to the min-max problem in equation 2, but allows us to solve the
problem with (projected) gradient based methods. The gradient for yi, i ∈ [n] is the straightforward
∇yi

gi(x, yi) and we denote hi as its stochastic estimate, with h as the shorthand for the per-objective
stochastic gradient estimates [h1, h2, . . . , hn]. The gradient for the x-update is more involved because
of the hierarchical structure of the BLO problem. Then, we consider the following weighted objectives
utilizing the simplex variable λ ∈ ∆n to define the necessary gradients:

F (x, λ) =
∑

i∈[n]
λiℓi(x), F (x, y, λ) =

∑
i∈[n]

λifi(x, yi). (4)

Note that F (x, λ) is the UL objective in equation 3, and the UL gradients can be defined as:

∇xF (x, λ) =
∑

i∈[n]
λi∇ℓi(x), ∇λF (x, λ) = [ℓ1(x), · · · , ℓn(x)]⊤, (5)

where ∇xℓi(x) for any i ∈ [n] can be defined as follows utilizing the strong convexity of the LL
problem and implicit gradients (Gould et al., 2016):

∇ℓi(x) = ∇xfi(x, y
⋆
i (x))−∇2

xyi
gi(x, y

⋆
i (x))

[
∇2

yiyi
gi(x, y

⋆
i (x))

]−1 ∇yi
fi(x, y

⋆
i (x)). (6)

Note that in general, y⋆i (x) cannot be computed exactly. Following Ghadimi & Wang (2018), we
use an approximation of ∇xℓi(x) as a surrogate, denoted by ∇xfi(x, yi), by replacing y⋆i (x) in
equation 6 with any yi ∈ Rdyi as follows:

∇xfi(x, yi) = ∇xfi(x, yi)−∇2
xyi

gi(x, yi)
[
∇2

yiyi
gi(x, yi)

]−1 ∇yifi(x, yi). (7)

4

Published as a conference paper at ICLR 2023

Consequently, we define our approximate gradients for the UL variables x (and λ) as:

∇xF (x,y, λ) =
∑

i∈[n]
λi∇xfi(x, yi), ∇λF (x,y, λ) = [f1(x, yi), · · · , fn(x, yn)]⊤. (8)

We denote the (possibly biased) stochastic estimates of ∇xF (x,y, λ) as hx and ∇λF (x,y, λ) as hλ.

Algorithm 1: MORBiT with learning
rates α, β and γ for x,y, λ respectively

1 for k = 1, 2, · · · ,K do
2 y(k+1) ← y(k) − βh(k)

3 x(k+1) ← projX (x(k) − αh
(k)
x)

4 λ(k+1) ← proj∆n
(λ(k) + γh

(k)
λ)

5 end
6 Sample τ ∼ U({1, · · · ,K})
7 return x̄← x(τ), ȳi ← y

(τ−1)
i , λ̄← λ(τ)

Given the gradients and their stochastic estimates, we
present our single-loop algorithm MORBiT in algo-
rithm 1, where we utilize learning rates α, β, γ > 0 for
the UL variable x, LL variables yi, i ∈ [n] and the sim-
plex variable λ respectively. The algorithm tracks three
sets of variables x(k), y(k) = [y

(k)
1 , y

(k)
2 , . . . , y

(k)
n] and

λ(k) through a total of K iterations. The per-iterate
gradient estimates h(k) of the LL variables y is defined
as the collection of the per-objective gradient estimate
h
(k)
i evaluated at (x(k), y

(k)
i) for all i ∈ [n]. The gra-

dient estimates h(k)
x and h

(k)
λ of the UL variables x and λ are evaluated at (x(k),y(k+1), λ(k)). We

perform a standard gradient descent update for the objective specific variables yi, i ∈ [n] from y
(k)
i

to y
(k+1)
i . For the shared UL variable x, we perform a projected gradient descent to satisfy the

UL constraints, where projX (·) denotes the projection operation onto the constrained set X . We
update the simplex variable λ via projected gradient ascent, where we project the variable back
onto the n-simplex after a gradient ascent step with proj∆n

(·). Given the learning rates (α, β, γ),
MORBiT is quite straightforward in terms of implementation. When n = 1, the problem reduces to
single-objective BLO, λ(k) = 1, and MORBiT reduces to TTSA (Hong et al., 2020).

3.2 ANALYSIS

Given the single-loop MORBiT, we establish conditions under which MORBiT has finite-horizon
convergence. The coupling of the stochastic errors due to the sampling process makes the convergence
analysis of this three-sequence-based algorithm much more challenging than existing BLO algorithms.

Assumptions. We summarize the following typical assumptions (detailed in Appendix A.1) for
all objective pairs (fi, gi), i ∈ [n]. Focusing on the smoothness and regularity properties of the
objectives, we assume that (i) the LL objective gi is strongly convex in yi, twice-differentiable, and
has sufficiently smooth first and second order gradients (Assumption 2 in Appendix A.1), (ii) the UL
objective fi has sufficiently smooth first order gradients, and (iii) the function ℓi(x) ≜ fi(x, y

⋆
i (x))

is weakly convex, bounded and has bounded first-order gradients (Assumption 1 in Appendix A.1,
also see Appendix D.1). Regarding the quality of the gradient estimates h

(k)
i , i ∈ [n], h(k)

x and
h
(k)
λ , we assume that, for all k > 0, (i) h(k)

i is an unbiased estimate with bounded variance, (ii) h(k)
λ

is an unbiased estimate, and (iii) h(k)
x has bounded variance, and can be a biased estimate of the

∇xF (x(k),y(k+1), λ(k)) term defined in equation 8, but the bias norm at iteration k is bounded
by bk ≥ 0, with {bk, k ≥ 0} forming a non-increasing sequence. These gradient estimate quality
assumptions are detailed in Assumption 3 in Appendix A.1. While the assumptions on h

(k)
i and

h
(k)
λ are standard (Hong et al., 2020; Lu et al., 2022), the assumption on h

(k)
x actually can be easily

satisfied when a Hessian inverse approximation (HIA) based mini-batch sampling strategy is adopted,
which can also avoid the matrix inversion by leveraging the Neumann series (Agarwal et al., 2017;
Ghadimi & Wang, 2018; Hong et al., 2020).

Optimality and Stationarity of Solutions. To quantify the convergence properties of the solutions
x̄, ȳi, i ∈ [n], λ̄ generated by MORBiT, we use the following optimality properties of the optimal
solutions x⋆, y⋆i , i ∈ [n], λ⋆ of the problem in equation 3. (i) The per-objective optimal LL variable
y⋆i = y⋆i (x

⋆) = argminyi∈Rdyi
gi(x

⋆, yi); (ii) The optimal simplex variable λ⋆: F (x⋆, λ⋆) =

maxλ∈∆n F (x⋆, λ). Given the constrained UL, the first-order stationarity condition is satisfied if
⟨∇xF (x⋆, λ⋆), x− x⋆⟩ ≥ 0∀x ∈ X . (iii) For establishing near-stationarity of UL variable x, the
proximal map x̂(z) ∈ X , defined below,

x̂(z) ≜ argmin
x∈X

ρ

2
∥x− z∥2 + F (x, λ), ρ > 0 is a fixed constant. (9)

5

Published as a conference paper at ICLR 2023

is employed (Davis & Drusvyatskiy, 2018; Hong et al., 2020) to quantify the convergence for a
constrained variable x in the stochastic setting. If ∥x̂(x(k))−x(k)∥2 is small, then, near-stationarity of
x(k) is achieved at iteration k. Therefore, we need to bound ∥x̂(x̄)− x̄∥ to guarantee the convergence
of the UL solution x̄ returned by MORBiT. Given the convergence of the UL x̄, we also need to bound
∥ȳi−y⋆i (x̄)∥2 for each i ∈ [n] simultaneously to quantify the convergence of the LL variables. Finally,
the convergence of λ̄ requires us to bound the difference between F (x̄, λ̄) and maxλ∈∆n F (x̄, λ).

Theoretical Convergence Rate. Now, we are ready to state our main theoretical result: a rigorous
convergence rate for the solution returned by MORBiT (algorithm 1). We state an abbreviated version
of the result, deferring details to Theorem 2 in Appendix A.2:

Theorem 1 (MORBiT convergence). Suppose that the previously stated assumptions holds and
learning rates are set as α = O(K−3/5), β = O(K−2/5) and γ = O(n−1/2K−3/5). Then, if b2k ≤ α,
the solutions x̄, ȳi, i ∈ [n], λ̄ generated by algorithm 1 satisfy:

E[∥x̂(x̄)− x̄∥2] ≤ Õ(
√
nK−2/5), (10a)

E
[
max
i∈[n]

∥ȳi − y⋆i (x̄)∥2
]
≤ Õ(

√
nK−2/5), (10b)

max
λ

E[F (x̄, λ)]− E[F (x̄, λ̄)] ≤ Õ(
√
nK−2/5), (10c)

with expectation over the stochastic gradient estimates and the random index τ (algorithm 1, line 6).

This result establishes the Õ(n1/2K−2/5)-stationarity achieved by K iterations of MORBiT for both
the UL and LL variables if all the assumptions are satisfied and the learning rates are selected
appropriately. Note that, if the UL problem is unconstrained, that is x ∈ X = Rdx , the definition
of the proximal map (equation 9) implies that E∥∇xF (x̄, λ̄)∥ ≤ Õ(n1/2K−2/5), providing the
convergence of x̄ to a Õ(n1/2K−2/5)-stationary point if the UL problem is unconstrained.

Comparison with Related Work. We would like to further highlight the differences between the
convergence results of TTSA and MORBiT to highlight the major novelties in our analyses and
theorem proving techniques. First, we consider a more general proximal map in equation 9 involving
a weighted sum of weakly convex functions ℓi instead of a single weakly convex function in TTSA,
requiring new construction of potential functions for establishing the convergence of the UL variable
x̄ in equation 10a. Secondly, even though TTSA provides a convergence rate for a single LL variable
(equivalent to bounding E[∥ȳi − y⋆i (x̄)∥2] for a single i ∈ [n]), we provide a much stronger result for
multiple LL optimization objectives, in the sense that simultaneously establishing convergence for all
LL variables in equation 10b through measuring the convergence rate of E[maxi∈[n] ∥ȳi − y⋆i (x̄)∥2].
This is especially challenging since a bounded E[∥ȳi − y⋆i (x̄)∥] for each i ∈ [n] does not directly
imply a bounded E[maxi∈[n] ∥ȳi − y⋆i (x̄)∥2]; in fact this can be generally unbounded. Finally, to
satisfy the requirements of the min-max problem in equation 3, we have to additionally establish
convergence for the simplex solution λ̄ in equation 10c while TTSA does not have any such analysis.

Given the convergence rate, another related quantity of interest is the sample complexity which
pertains to the number of queries to the stochastic gradient oracle required to achieve a desired level
of stationarity. For example, for an iterative algorithm that converges to a O(K−µ)-stationary point
with K iterations for some µ > 0, requiring O(1) queries to the stochastic gradient oracle in each
iteration, the sample complexity to find an ϵ-optimal solution is O(ϵ−1/µ). The number of stochastic
gradient oracle queries required is directly related to the conditions in the gradient estimate quality
assumptions (Assumption 3 in Appendix A.1 in our case). While the conditions on the per-iterate
gradient estimates h

(k)
i (for the per-objective LL variables) and h

(k)
λ (for the simplex variable λ)

both only require O(1) stochastic gradient oracle queries from each of the n objective pairs in each
iteration, the condition b2k ≤ α on the non-increasing squared norm of the per-iterate bias of the
gradient estimate h

(k)
x (for the UL variable) require O(logK) stochastic gradient oracle queries for

each of the n objective pairs leveraging the HIA sampling techniques in Ghadimi & Wang (2018)
and Hong et al. (2020) using the Neumann series (Agarwal et al., 2017). This gives us the following
sample complexity bound for MORBiT (see Appendix D.3 on potential improvements):

Corollary 1. Under the conditions of Theorem 1, MORBiT converges to ϵ-(near)-stationarity with
O(n5/4ϵ−5/2 log(1/ϵ)) queries to the stochastic gradient oracle for each of the n objective pairs.

6

Published as a conference paper at ICLR 2023

Proof Sketch of Theorem 1. We now give a proof sketch of our main theorem, with constant terms
abstracted away with O notation. In order to show equation 10a of Theorem 1 (convergence of x), we
will derive a descent lemma comparing successive iterates x(k) and x(k+1). Descent lemmas often
contain a quadratic term ∥x(k+1) − x(k)∥2, so it is natural that we must bound ∥h(k)

x ∥2. In Lemma 1,
we bound the expected squared norm of the stochastic gradient estimate:

Lemma 1. Under our regularity assumptions, E[∥h(k)
x ∥2] ≤ O

(∑
i∈[n]

λ
(k)
i ∥y⋆i (x(k))− y

(k+1)
i ∥2

)
.

Turning to equation 10b of Theorem 1, we use a descent relation on y
(k)
i − y⋆i (x

(k−1)). While ideally
we would obtain a descent relation purely involving y

(k)
i terms themselves, the intricate coupling of

the x and yi terms result in an extra x(k−1) − x(k) term. The resulting relation is shown in Lemma 2.
Here, we have that c1 = 1− µgβ

2 , c2 = 2
µgβ

− 1, where µgβ < 1.

Lemma 2. E[∥y(k+1)
i −y⋆i (x

(k))∥2] ≤ O
(
(1− c1)E[∥y(k)i − y⋆i (x

(k−1))∥2] + c2E[∥x(k−1) − x(k)∥2]
)
.

From this lemma, intuitively, we know that E[∥y(k)i − y⋆i (x
(k−1))∥2] is decreasing as k increases,

as long as the E[∥x(k−1) − x(k)∥2]’s are not too large. Therefore, it is important to have another
descent relation that upper bounds this quantity, which we do next in Lemma 3. The lemma naturally
involves the objective F (x(k), λ(k)), which will telescope. Here, we have c3 = 1

4α − Lf

2 , c4 = 4αL2.
As k → ∞, α → 0, and c3 is positive.

Lemma 3. Let L(k) ≜ E[F (x(k), λ(k))] =
∑

i∈[n] λ
(k)
i E[ℓi(x(k))]. Then, the L(k) satisfies:

L(k+1) − L(k) ≤ O
(
−c3E[∥x(k+1) − x(k)∥2] + c4 max

i∈[n]
E[∥y(k+1)

i − y⋆i (x
(k))∥2] +

√
nγ + α

)
.

Following the intuition previously described, we then use Lemmas 2 and 3 to show that the
E[∥x(k−1) − x(k)∥2] terms are small enough and that the y

(k)
i iterates converge in Lemma 4.

Lemma 4. 1
K

∑K
k=1 max

i∈[n]
E
[
∥y(k)i − y⋆i (x

(k−1))∥2
]
≤ O(

√
nK−2/5).

Finally, we can use the convergence of yi to prove convergence of λ and x. Theorem 1 then follows.
A more detailed proof plan can be found in Appendix A.3.

4 EXPERIMENTAL RESULTS

In this section, we consider two applications where the min-max multi-objective bilevel formulation in
equation 2 enhances robustness – multi-task representation learning and hyperparameter optimization.
We will highlight the advantage of the min-max formulation and the convergence of MORBiT on these
applications. We use PyTorch (Paszke et al., 2019), and implementation details are in Appendix C.
All results are aggregated over 10 trials.

Representation Learning. In this setup, each objective pair corresponds to a learning “task” i ∈ [n],
with its own training and validation dataset pair Dt

i , D
v
i . We consider a shared representation network

ϕx with ReLU nonlinearity (making the UL problem weakly convex) parameterized with x ∈ Rdx

and a per-task linear model wyi
parameterized with yi ∈ Rdyi . Here the UL is unconstrained. Using

L(f,D) to denote the loss of a model f on data D, we consider the problem in equation 2 with

fi(x, yi) ≜ L(wyi
◦ ϕx, D

v
i), gi(x, yi) ≜ L(wyi

◦ ϕx, D
t
i) + ρ∥wyi

∥22, (11)

with ρ > 0 as a regularization penalty (ensuring that the LL problem is strongly convex). We
first consider a multi-task setup with n = 10 binary classification tasks from the FashionMNIST
dataset (Xiao et al., 2017). The goal is to learn a shared representation and per-task models so that each
of the tasks generalizes well. Usually, this problem is solved as a single-objective BLO by minimizing
1/n
∑

i fi; we call this min-avg. We theoretically show that solving the min-max multi-objective
BLO in equation 2 provides a tighter generalization guarantee (Proposition 2, Appendix B).

7

Published as a conference paper at ICLR 2023

(a) Quality of min-avg vs min-max. (b) Convergence of ∥∇x∥2. (c) Task-gen. of min-avg vs min-max.
Figure 1: Numerical results for representation learning application.

Here we demonstrate the same in figure 1a – we plot the worst-case UL objective (the validation
loss) and the worst-case generalization loss across all tasks/objectives throughout the optimization
trajectory, comparing the behaviour of the solution of min-avg problem to that of the min-max
problem. The results indicate solving the min-max problem significantly reduces the worst-case
validation loss and this also results in a significant reduction of the worst-case generalization loss,
highlighting the utility of solving the min-max multi-objective bilevel problem in equation 2.

We study the convergence of the UL variable for the min-max problem in the form of the trajectory of
the (stochastic) gradient norm ∥∇x∥2 in figure 1b, comparing it to the theoretical Õ(K−2/5) rate. We
see that the empirical trajectory of the gradient norm closely tracks the theoretical rate.

We also consider a bilevel extension of the robust meta-learning application (Collins et al., 2020) for
a sinusoid regression task, a common meta-learning application introduced by Finn et al. (2017)1.
Here the goal of solving the problem in equation 2 with the objectives defined in equation 11 would
be to learn a robust representation network such that we not only improve generalization on tasks
seen during the optimization but also improve generalization for related unseen tasks.

We theoretically show that that solving the min-max multi-objective bilevel problem in equation 2
also provides a tighter generalization guarantee for the unseen tasks (Proposition 3, Appendix B).
Note that these results are similar in spirit to those of Mehta et al. (2012) and Collins et al. (2020), but
our results are the first for a general bilevel setup. The results in figure 1c support this, showing that
solving the min-max problem not only improves the generalization on seen tasks, but significantly
improves the generalization on unseen tasks when compared to solving the min-avg problem. These
results are also consistent with the results for robust MTL in figure 1a.

Hyperparameter Optimization. In this setup, each objective pair again corresponds to a learning
“task” i ∈ [n], each with its own d dimensional training/validation dataset pair Dt

i , D
v
i . We consider

a shared hyperparameter optimization problem for kernel logistic regression (Zhu & Hastie, 2001)
with K random Fourier features (RFFs) (Rahimi & Recht, 2007), where x = {xρ ∈ R2K

+ , xσ ∈ Rd
+}

are the regularization penalty and the bandwidth hyperparameters respectively, with ϕxσ denoting the
RFF2. The per-task linear model wyi

on top of the RFFs are parameterized with yi ∈ R2K . In this
setup, we have a weakly convex constrained UL problem (the hyperparameters need to be positive),
and an unconstrained strongly convex LL problem. Again using L(f,D) to denote the learning loss
of a model f on a dataset D, we consider the problem in equation 2 with

fi(x, yi) ≜ L(wyi
◦ ϕxσ

, Dv
i), gi(x, yi) ≜ L(wyi

◦ ϕxσ
, Dt

i) + ∥xρ ⊙ wyi
∥22, (12)

where ⊙ denotes the elementwise vector multiplication, and we consider a weighted regression
penalty3. We generate n = 16 binary classification tasks from the Letter dataset (Frey & Slate, 1991)
and compare the generalization of the min-max solution of equation 2 to that of the min-avg.

The results in figure 2a indicate that the solution of equation 2 provides a robust solution x (hyper-
parameters), significantly improving not only the worst-case validation loss but also the worst-case
generalization loss for the supervised learning problems. This result highlights the advantage of

1We use the formulation of Raghu et al. (2020) to separate the representation and the model parameters.
2For a d-dimension point p, the RFF ϕxσ (p) = [sin(W (xσ ⊙ p))⊤, cos(W (xσ ⊙ p))⊤]⊤ ∈ R2K , where

W ∈ RK×d is a random normal matrix and the sin(·) and cos(·) are applied elementwise.
3The weighted regression penalty mitigates bias especially in the high-dimensional learning setting (Candes

et al., 2008; Gasso et al., 2009; Šehić et al., 2022), which is common when using RFFs.

8

Published as a conference paper at ICLR 2023

(a) Quality of min-avg vs min-max. (b) Effect of n on convergence. (c) Effect of batch size.
Figure 2: Numerical results for hyperparameter optimization application.

solving the min-max problem in equation 2 and the ability of the single-loop MORBiT to handle a
weakly convex constrained UL problem.

We study the effect of the number of objective pairs n on the convergence. We consider n ∈
{4, 16, 64}, increasing n with a factor of 4 (implying a theoretical convergence slow down by a factor
of 2) to check how the convergence matches the

√
n-dependence in our theoretical result.

In this case, we consider the trajectory of the (stochastic) gradient norm ∥∇x∥2 (as in figure 1b). The
results in figure 2b display such a behaviour – for a fixed K (outer iterations), as the number of tasks
is increased 4-fold, the gradient norm approximately increases 2-fold (note the log2-scale on the
vertical axis). This validates our theoretical dependence on the number of objective pairs n.

We also study the effect of the batch size on the generalization performance of the min-max solution.
In the previous experiments, we considered a batch size of 8 for both the UL and LL stochastic
gradients. Here, we will consider batch sizes from {8, 32, 128}, using the same batch size for
gradients of both levels and variables.

Note that, in this problem, each of the 16 learning tasks (and hence, objective pairs) has a training
set size of around 900 samples (for the LL loss), with 300 samples each for the UL loss and for
computing the generalization loss. Unlike figures 1a and 2a, we only show the generalization loss
(dropping the validation loss) in figure 2c. The results indicate that increasing the batch size improves
the stability and reduces the variance of the overall generalization. However, the convergence follows
a similar trend for all batch sizes, and converges to a very similar level of generalization, supporting
the Õ(1) batch size requirement for convergence.

Empirical conclusion

The empirical evaluations highlight that considering the more robust min-max problem in
equation 2 does provide improved generalization in multiple applications (representation
learning for MTL and meta-learning, and for hyperparameter optimization).

The results also highlight the validity of our theoretical convergence analysis both in terms
of the number of iterations K and the number of objective pairs n.

5 CONCLUDING REMARKS

Motivated by the desiderata of robustness in bilevel learning applications, we study a new min-
max multi-objective BLO framework (equation 2) that provides full flexibility and generality. We
propose MORBiT (algorithm 1), a single-loop gradient descent-ascent based algorithm for finding
an solution to our proposed min-max multi-objective framework. We establish its convergence rate
(Theorem 1) and sample complexity (Corollary 1), demonstrating both the advantage of the min-max
multi-objective BLO framework and the validity of our theoretical analyses on robust representation
learning and hyperparameter optimization applications. We wish to explore further applications
where robustness would be beneficial such as in RL, federated learning and domain generalization.
On the theoretical side, we wish to develop single-loop algorithms with improved convergence
rates (for example, exploring techniques in Chen et al. (2022b)) and double-loop algorithms with
convergence guarantees for applications where a single-loop algorithm is not feasible (e.g., federated
learning). Finally, we also wish to develop algorithms for large n (the number of objective pairs) or
even n → ∞ where MORBiT is not computationally feasible.

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The formal definitions, assumptions, precise theorem statments, high level proof outline and detailed
proofs for our main theoretical results are presented in Appendix A. We provide appropriate citations
for the datasets used in our experiments and the experimental setup and details are presented in Ap-
pendix C. Our implementation is available at https://github.com/minimario/MORBiT.

ACKNOWLEDGEMENTS

A.G. is supported by the National Science Foundation (NSF) Graduate Research Fellowship under
Grant No. 2141064, and T.-W. Weng is supported by NSF under Grant No. 2107189. We would like
to thank the MIT-IBM Watson AI Lab (https://mitibmwatsonailab.mit.edu/) and the
MIT-UROP program (https://urop.mit.edu/) for their support. We would also like to thank
the organizers of the “Beyond First-order Methods in ML Systems” workshop at ICML’21 and the
“Bilevel Stochastic Methods for Optimization and Learning” session at INFORMS’22 for giving us
the opportunity to present various iterations of our work (Gu et al., 2021; 2022). Finally, we would
like to thank Soumyadip Ghosh and Mark Squillante for some insightful discussions.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. The Journal of Machine Learning Research, 18(1):4148–4187, 2017. 5, 6,
16, 32

Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation
learning for imitation learning via bi-level optimization. In Proceedings of International Conference
on Machine Learning (ICML), pp. 367–376. PMLR, 2020. 1

Jonathan F Bard. Practical bilevel optimization: algorithms and applications, volume 30. Springer
Science & Business Media, 2013. 1

Lucian Busoniu, Robert Babuska, and Bart De Schutter. Multi-agent reinforcement learning: A
survey. In Proceedings of the 9th International Conference on Control, Automation, Robotics and
Vision, pp. 1–6. IEEE, 2006. 2

Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted ℓ1
minimization. Journal of Fourier Analysis and Applications, 14(5):877–905, 2008. 8

Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu. Gradient-based bi-level optimization for
deep learning: A survey. arXiv preprint arXiv:2207.11719, 2022a. 1, 2

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 34:25294–25307, 2021. 3

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization. In Proceedings of International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 2466–2488. PMLR, 2022b. 3, 4, 9, 35

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning.
Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 33, 2020. 2, 3, 8,
16, 30, 32, 36

Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate
O(k−1/4) on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018. 6

Kalyanmoy Deb and Ankur Sinha. Solving bilevel multi-objective optimization problems using
evolutionary algorithms. In Proceedings of International Conference on Evolutionary Multi-
Criterion Optimization, pp. 110–124. Springer, 2009. 3

Stephan Dempe. Foundations of Bilevel Programming. Springer Science & Business Media, 2002. 1

10

https://github.com/minimario/MORBiT
https://mitibmwatsonailab.mit.edu/
https://urop.mit.edu/

Published as a conference paper at ICLR 2023

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally
robust optimization. arXiv preprint arXiv:1810.08750, 2018. 3

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
ℓ1-ball for learning in high dimensions. In Proceedings of the 25th International Conference on
Machine Learning, pp. 272–279, 2008. 4

Heshan Devaka Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and
Tianyi Chen. Mitigating gradient bias in multi-objective learning: A provably convergent approach.
In International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=dLAYGdKTi2. 36

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400, 2017. 3, 8, 32

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In Proceedings of International
Conference on Machine Learning, pp. 1568–1577. PMLR, 2018. 1, 36

Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers. Machine
Learning, 6(2):161–182, 1991. 8

Gilles Gasso, Alain Rakotomamonjy, and Stéphane Canu. Recovering sparse signals with a certain
family of nonconvex penalties and dc programming. IEEE Transactions on Signal Processing, 57
(12):4686–4698, 2009. 8

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018. 3, 4, 5, 6, 14, 16, 32

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016. URL https://arxiv.org/pdf/
1607.05447.pdf. 4

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022. 2

Alex Gu, Songtao Lu, Parikshit Ram, and Lily Weng. Nonconvex min-max bilevel optimization for
task robust meta learning. In Beyond First-order Methods in ML Systems workshop at ICML’21,
2021. 4, 10

Alex Gu, Songtao Lu, Parikshit Ram, and Lily Weng. Robust multi-objective bilevel optimization
with applications in machine learning. In INFORMS Annual Meeting, 2022. 10

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020. URL https://arxiv.org/pdf/2007.05170.pdf. 1, 3, 5, 6, 14, 15, 16, 32, 35

Quanqi Hu, Yongjian Zhong, and Tianbao Yang. Multi-block min-max bilevel optimization with
applications in multi-task deep auc maximization. arXiv preprint arXiv:2206.00260, 2022. 3, 4, 35

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Provably faster algorithms for bilevel optimization and
applications to meta-learning. arXiv preprint arXiv:2010.07962, 2020. 33

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In Proceedings of International Conference on Machine Learning (ICML), pp. 4882–4892.
PMLR, 2021. 3, 32

Ying Ji, Shaojian Qu, and Zhensheng Yu. A new method for solving multiobjective bilevel programs.
Discrete Dynamics in Nature and Society, 2017, 2017. 3

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4213–4220, 2019. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/4327/4205. 2

11

https://openreview.net/forum?id=dLAYGdKTi2
https://openreview.net/forum?id=dLAYGdKTi2
https://arxiv.org/pdf/1607.05447.pdf
https://arxiv.org/pdf/1607.05447.pdf
https://arxiv.org/pdf/2007.05170.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4327/4205
https://ojs.aaai.org/index.php/AAAI/article/view/4327/4205

Published as a conference paper at ICLR 2023

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In Proceedings of International Conference on Machine Learning (ICML), pp. 6083–
6093. PMLR, 2020. 3

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level opti-
mization for learning and vision from a unified perspective: A survey and beyond. arXiv preprint
arXiv:2101.11517, 2021. 1, 2

Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive ap-
proximation for one-sided non-convex min-max problems: algorithms and applications. IEEE
Transactions on Signal Processing, 68:3676–3691, 2020. 3

Yucheng Lu, Si Yi Meng, and Christopher De Sa. A general analysis of example-selection for stochas-
tic gradient descent. In Proceedings of International Conference on Learning Representations
(ICLR), 2022. 5, 15

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017. 3

Nishant A. Mehta, Dongryeol Lee, and Alexander G. Gray. Minimax multi-task learning and
a generalized loss-compositional paradigm for mtl. In Proceedings of the 25th International
Conference on Neural Information Processing Systems, pp. 2150–2158, 2012. 2, 3, 8, 36

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT press, 2018. 31

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf. 7

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of MAML. In Proceedings of International Conference
on Learning Representations (ICLR), 2020. 8

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Proceedings
of the 20th International Conference on Neural Information Processing Systems, pp. 1177–1184,
2007. 8

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Proceedings of Advances in Neural Information Processing Systems (NeurIPS), pp.
113–124, 2019. 3

Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional
hyperparameter optimization benchmark suite for lasso. In Proceedings of the First Conference on
Automated Machine Learning (Main Track), 2022. 8

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014. 31

Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In
Proceedings of International Conference on Machine Learning (ICML), pp. 793–801. PMLR, 2016.
3

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Towards understanding bilevel multi-objective
optimization with deterministic lower level decisions. In International Conference on Evolutionary
Multi-Criterion Optimization, pp. 426–443. Springer, 2015. 3

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Published as a conference paper at ICLR 2023

Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, and Bo Li.
Towards a unified min-max framework for adversarial exploration and robustness. arXiv preprint
arXiv:1906.03563, 2019. 3

Nic Wilson, Abdul Razak, and Radu Marinescu. Computing possibly optimal solutions for multi-
objective constraint optimisation with tradeoffs. AAAI Press/International Joint Conferences on
Artificial Intelligence, 2015. 36

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiV, 2017. 7

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
in non-iid federated learning. arXiv preprint arXiv:2101.11203, 2021. 3

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019. 36

Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang,
and Sijia Liu. Advancing model pruning via bi-level optimization. In Annual Conference on
Neural Information Processing Systems, 2022. 1

Yihua Zhang, Pranay Sharma, Parikshit Ram, Mingyi Hong, Kush R. Varshney, and Sijia Liu.
What is missing in IRM training and evaluation? challenges and solutions. In International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=MjsDeTcDEy. 1

Pu Zhao, Parikshit Ram, Songtao Lu, Yuguang Yao, Djallel Bouneffouf, Xue Lin, and Sijia Liu.
Learning to generate image source-agnostic universal adversarial perturbations. In International
Joint Conference on Artificial Intelligence, 2022. 1

Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine. Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), 14, 2001. 8

13

https://openreview.net/forum?id=MjsDeTcDEy
https://openreview.net/forum?id=MjsDeTcDEy

Published as a conference paper at ICLR 2023

A CONVERGENCE ANALYSIS OF MORBiT

A.1 ASSUMPTIONS

First, we begin by listing the assumptions we make:
Assumption 1 (Regularity of the outer functions). For all i ∈ [n], assume that outer functions
fi(x, y) and ℓi(x) = fi(x, y

⋆
i (x)) satisfy the following properties:

▶ For any x ∈ X , fi(x, ·) is Lipschitz (w.r.t. y) with constant Gf > 0.

▶ For any x ∈ X , ∇xfi(x, ·) and ∇yifi(x, ·) are Lipschitz continuous (w.r.t. yi) with constants
Lfx > 0 and Lfy > 0.

▶ For any yi ∈ Rdyi , ∇yi
fi(·, yi) is Lipschitz continuous (w.r.t. x) with constant L̄fy > 0.

▶ For any x ∈ X , yi ∈ Rdyi , we have ∥∇yi
fi(x, yi)∥ ≤ Cfy for Cfy > 0.

▶ The function ℓi(·) is µℓ weakly convex (in x), so that for all v, w ∈ X ,

ℓi(w) ≥ ℓi(v) + ⟨∇ℓi(v), w − v⟩ − µℓ∥w − v∥2. (13)

▶ For all x ∈ X , ∥ℓi(x)∥ ≤ Bℓ for Bℓ > 0.

▶ For all x ∈ X , ∥∇ℓi(x)∥ ≤ Cℓ, for Cℓ > 0.

Assumption 2 (Regularity of the inner functions). Assume that inner functions gi(x, yi),∀i ∈ [n]
satisfy:

▶ For any x ∈ X and yi ∈ Rdyi , gi(x, yi) is twice continuously differentiable in (x, yi).

▶ For any x ∈ X , ∇yigi(x, ·) is Lipschitz continuous (w.r.t. yi) with constant Lg .

▶ For any x ∈ X , gi(x, ·) is µg-strongly convex in yi, so that for all v, w ∈ Rdyi ,

gi(x,w) ≥ gi(x, v) + ⟨∇vgi(x, v), w − v⟩+ µg∥w − v∥2. (14)

▶ For any x ∈ X , ∇2
xyi

gi(x, ·) and ∇2
yi
gi(x, ·) are Lipschitz continuous (w.r.t. yi) with constants

Lgxy > 0 and Lgyy > 0, respectively.

▶ For any x ∈ X and yi ∈ Rdyi , we have ∥∇2
xyi

gi(x, yi)∥ ≤ Cgxy for some Cgxy > 0.

▶ For any yi ∈ Rdyi , ∇2
xyi

gi(·, yi) and ∇2
yi
gi(·, yi) are Lipschitz continuous (w.r.t. x) with constants

L̄gxy > 0 and L̄gyy > 0, respectively.

From these assumptions, we can show a few additional regularity-type conditions. Since these
conditions can also be found in Ghadimi & Wang (2018, Lemma 2.2) and Hong et al. (2020,
Lemma 2), we state these results without proof.
Lemma 5 (Corollary of Assumptions). Under Assumptions 1 and 2 stated above, for all x, x1, x2 ∈
X ⊆ Rdx , y ∈ Rdyi , i ∈ [n], we have

∥∇xfi(x, y)−∇ℓi(x)∥ ≤ L∥y⋆i (x)− y∥, (15a)
∥y⋆i (x1)− y⋆i (x2)∥ ≤ Gy∥x1 − x2∥, (15b)

∥∇ℓi(x1)−∇ℓi(x2)∥ ≤ Lf∥x1 − x2∥, (15c)

where we define

L ≜ Lfx +
LfyCgxy

µg
+ Cfy

(
Lgxy

µg
+

LgyyCgxy

µ2
g

)
, (16a)

Lf ≜ Lfx +
(L̄fy + L)Cgxy

µg
+ Cfy

(
L̄gxy

µg
+

L̄gyyCgxy

µ2
g

)
, (16b)

Gy ≜
Cg

µg
. (16c)

14

Published as a conference paper at ICLR 2023

Assumption 3 (Quality of stochastic gradient estimates). For any iteration k > 0 and all i ∈ [n],
the gradient estimates h(k)

i for the LL variable yi satisfy the following for some σg > 0 (Hong et al.,
2020; Lu et al., 2022):

E[h(k)
i] = ∇yi

gi(x
(k), y

(k)
i), (17)

E[∥h(k)
i −∇yigi(x

(k), y
(k)
i)∥2] ≤ σ2

g(1 + ∥∇yigi(x
(k), y

(k)
i)∥2). (18)

For any iteration k > 0, the gradient estimate h
(k)
λ for the simplex variable λ satisfies:

E[h(k)
λ] = ∇λF (x(k),y(k+1), λ(k)) =

[
f1(x

(k), y
(k+1)
1), · · · , fn(x(k), y(k+1)

n)
]⊤

. (19)

For any k ≥ 0 and a σf > 0, we assume that there exists a non-increasing sequence {bk}k≥0 such
that

E[h(k)
x] = ∇xF (x(k),y(k+1), λ(k)) +Bk, ∥Bk∥ ≤ bk, (20)

E[∥h(k)
x − E[h(k)

x]∥2] ≤ σ2
f . (21)

A.2 MAIN THEOREM AND REMARKS

We now state our main theorem, in full. Recall our notation from equation 9: for a fixed constant
ρ > 0, we defined the proximal map to be

x̂(z) ≜ argmin
x∈X

ρ

2
∥x− z∥2 + F (x, λ). (22)

We also define the Moreau envelope as

Φ1/ρ(z) ≜ min
x

ρ

2
∥x− z∥2 +

n∑
i=1

λiℓi(x). (23)

In addition, we use the notation ∆
(k)
yi ≜ E[∥y(k)i − y⋆i (x

(k−1))∥2] and i(k) ≜ argmaxi∈[n] ∆
(k)
yi .

Finally, we define σ̃2
f = σ2

f + 3C2
ℓ (see Lemma 12). Now, we are ready to state the full version of

our main theorem:
Theorem 2 (Convergence of MORBiT). Under Assumptions 1, 2 and 3, and the terms defined in
Lemma 5, when step sizes are chosen as

α = min

(
µg

16GyL
ν,

K−3/5

4GyL

)
, (24)

β = min

(
ν,

4K−2/5

µg

)
, (25)

γ =
2K−3/5

Bℓn1/2
, (26)

where ν = min (µg/L2
g(1+σ2

g), 1/µg), Algorithm 1 produces x̄, λ̄, ȳi, i ∈ [n] satisfying:

E
[
max
i∈[n]

∥ȳi − y⋆i (x̄)∥2
]
≤ A, (27)

max
λ

E[F (x̄, λ)]− E[F (x̄, λ̄)] ≤
√
2Bℓ

√
nK−2/5 +GfA, (28)

E[∥x̂(x̄)− x̄∥2] ≤
16Φ1/ρ(x

(0))GyL

(−µℓ + ρ)ρK2/5
+

8(b20 + L2A)

(−µℓ + ρ)2
+

2α(σ̃2
f + 3b20 + 3L2A)

−µℓ + ρ
,

(29)

where

A =
∆

(0)
y
i(0)

/µg

K3/5
+

16σ2
g/µ

2
g

K7/5
+

Gy/L

K4/5
+

2
√
nBℓGy/L

K2/5
+

(b20 +
1
2σ

2
f)/(L

2)

K2/5
+

16σ2
g/µ

2
g

K2/5
. (30)

15

Published as a conference paper at ICLR 2023

Connection of TTSA (Hong et al., 2020). As we generalize Hong et al. (2020), our proof follows a
similar structure. In particular, Lemma 6 is a generalization of Hong et al. (2020, Equation (14)),
and our Lemma 7 combines Hong et al. (2020, Lemma 3 and 4). Lemmas 8, 9, and 11 in our work
parallel Hong et al. (2020, Lemmas 6, 5, and 7), respectively. Lemma 10 in our work deals with the
maximization problem w.r.t. λ, so there is no analogue in Hong et al. (2020). However, it borrows
techniques from Collins et al. (2020, Theorem 1).

We also discuss the convergence rate. Note that A in equation 30 is dominated by the fourth term,√
n/K2/5, so it is clear that equation 27 and equation 28 converge at a rate of O(

√
nK−2/5). We

give special attention to equation 29). Apart from the 8b20/(−µℓ+ρ)2 term, we see that the RHS of
equation 29 converges at a rate of O(

√
nK−2/5). To understand the convergence of this term, we

turn to (20) from Assumption 3. As discussed in section 3.2, bk can be made arbitrarily small by
running more iterations of the subroutine for estimating h

(k)
x (for example utilizing the HIA sampling

scheme (Agarwal et al., 2017; Ghadimi & Wang, 2018; Hong et al., 2020)). Therefore, as long as
we run enough iterations (O(logK) for HIA) such that b2k ≤ α, (29) will also converge at a rate of
O(

√
nK−2/5).

A.3 PROOF PLAN

Overall Roadmap: In what follows, we give a proof sketch of our main theorem, with constant
terms abstracted away with O notation. c1, c2, c3, c4 are positive constants depending on Lf (defined
in Lemma 5), µg (the LL objective convexity defined in Assumption 2) and the learning rates α, β (in
algorithm 1).

In order to show equation 10a of Theorem 1 (the convergence of x), we will derive a descent lemma
comparing successive iterates x(k) and x(k+1). Descent lemmas often contain a quadratic term
∥x(k+1) − x(k)∥2, so it is natural that we will have to bound ∥h(k)

x ∥2. As such, in Lemma 6, we
bound the averaged squared norm of the stochastic gradient estimate, E[∥h(k)

x ∥2]:

Lemma 6. Under our regularity assumptions, the average squared norm of h(k)
x can be bounded as

follows, where the expectation is over the filtration F ′
i ≜ {y(0)i , x(0), · · · , y(k)i , x(k), y

(k+1)
i }:

E[∥h(k)
x ∥2] ≤ O

(
n∑

i=1

λ
(k)
i ∥y⋆i (x(k))− y

(k+1)
i ∥2

)
. (31)

Turning to equation 10a of Theorem 1, we’ll use a descent relation on y
(k)
i − y⋆i (x

(k−1)). While
ideally we would obtain a descent relation purely involving y

((k))
i terms themselves, the intricate

coupling of the x and y terms result in an extra x(k−1) − x(k) term. The resulting relation is shown
in Lemma 7. Here, we have that c1 = 1− µgβ

2 , c2 = 2
µgβ

− 1, where µgβ < 1.

Lemma 7. The distance between the algorithm’s iterates y(k)i and the true inner optimum y⋆i (x
(k))

satisfies the following descent equation,

E[∥y(k+1)
i − y⋆i (x

(k))∥2] ≤ O((1− c1)E[∥y(k)i − y⋆i (x
(k−1))∥2] + c2E[∥x(k−1) − x(k)∥2]). (32)

From this lemma, intuitively, we know that E[∥y(k)i − y⋆i (x
(k−1))∥2] is decreasing as k increases, as

long as the E[∥x(k−1)−x(k)∥2]’s are not too large. Therefore, it is important to have another descent
relation that upper bounds this quantity, which we do next in Lemma 8. The lemma naturally involves
the objective L(k) = F (x(k), λ(k)), which will telescope. Here, we have c3 = 1

4α − Lf

2 , c4 = 4αL2.
As k → ∞, α → 0, and c3 is positive.

Lemma 8. Let L(k) ≜ E[F (x(k), λ(k))] =
n∑

i=1

λ
(k)
i E[ℓi(x(k))]. Then, the L(k) satisfies the descent

equation

L(k+1) − L(k) ≤ O
(
−c3E[∥x(k+1) − x(k)∥2] + c4 max

i∈[n]
E[∥y(k+1)

i − y⋆i (x
(k))∥2] +

√
nγ + α

)
.

(33)

16

Published as a conference paper at ICLR 2023

Following the intuition previously described, we then use Lemmas 7 and 8 to show that the
E[∥x(k−1) − x(k)∥2] terms are small enough and that the y

(k)
i iterates converge:

Lemma 9 (Informal, see Appendix A.7 for precise statement).

1

K

K∑
k=1

max
i∈[n]

E
[
∥y(k)i − y⋆i (x

(k−1))∥2
]
≤ O(

√
nK−2/5). (34)

Lemma 10 then leverages the convergence of yi, i ∈ [n] to bound the convergence of λ, and Lemma 11
shows the bound on x. By plugging in our step-sizes into Lemmas 9, 10, and 11, Theorem 1 directly
follows.
Lemma 10. For any λ ∈ ∆n, the iterates of Algorithm 1 satisfy

1

K
E

[
K∑

k=1

F (x(k), λ)− F (x(k), λ(k))

]
≤ O(

√
nK−2/5). (35)

Lemma 11. The iterates of Algorithm 1 satisfy

1

K

K∑
k=1

E[∥x̂(x(k))− x(k)∥2] ≤ O(
√
nK−2/5). (36)

A.4 PROOF OF LEMMA 1 (LEMMA 6)

Stating Lemma 1 more precisely:

Lemma 12. Under Assumptions 1, 2 and 3, the average squared norm of h(k)
x can be bounded as

follows, where σ̃2
f = σ2

f + 3C2
ℓ :

E[∥h(k)
x ∥2] ≤ σ̃2

f + 3b2k + 3L2
n∑

i=1

λ
(k)
i ∥y⋆i (x(k))− y

(k+1)
i ∥2, (37)

where the expectation is over the filtration F ′
i ≜ {y(0)i , x(0), · · · , y(k)i , x(k), y

(k+1)
i }.

Note that here the expectation is over F ′
i ≜ {y(0)i , x(0), · · · , y(k)i , x(k), y

(k+1)
i }, so no expectation is

needed in the last term.

Proof. We can derive the following:

E[∥h(k)
x ∥2] (1)= E[∥h(k)

x − E[h(k)
x]∥2] + ∥E[h(k)

x]∥2 (38)
(2)
= E[∥h(k)

x − E[h(k)
x]∥2] + ∥∇xF (x(k),y(k+1), λ(k)) +Bk∥2 (39)

(3)

≤ σ2
f + ∥∇xF (x(k),y(k+1), λ(k)) +Bk∥2 (40)

(4)
= σ2

f +

∥∥∥∥∥
n∑

i=1

λ
(k)
i ∇xfi(x

(k), y
(k+1)
i) +Bk

∥∥∥∥∥
2

(41)

(5)

≤ σ2
f + 3b2k +

3

2

∥∥∥∥∥
n∑

i=1

λ
(k)
i ∇xfi(x

(k), y
(k+1)
i)

∥∥∥∥∥
2

. (42)

(1) is true because

E[∥h(k)
x − E[h(k)

x]∥2] + ∥E[h(k)
x]∥2 = E[∥h(k)

x ∥2] + ∥E[h(k)
x]∥2 − 2E⟨h(k)

x ,E[h(k)
x]⟩+ ∥E[h(k)

x]∥2
(43)

= E[∥h(k)
x ∥2] + ∥E[h(k)

x]∥2 − ⟨E[h(k)
x],E[h(k)

x]⟩+ ∥E[h(k)
x]∥2

(44)

= E[∥h(k)
x ∥2]. (45)

17

Published as a conference paper at ICLR 2023

(2) follows from (20), (3) follows from (21), (4) follows from definition of ∇x, and (5) follows from
Young’s inequality, ∥a+ b∥2 ≤ 3∥a∥2 + 3

2∥b∥
2. Next, we bound the last term in (42). We start by

using the fact that∥∥∥∥ n∑
i=1

λ
(k)
i ∇xfi(x

(k), y
(k+1)
i)

∥∥∥∥2
(1)

≤ 2

∥∥∥∥ n∑
i=1

λ
(k)
i (∇xfi(x

(k), y
(k+1)
i)−∇ℓi(x

(k)))

∥∥∥∥2 + 2

∥∥∥∥ n∑
i=1

λ
(k)
i ∇ℓi(x

(k))

∥∥∥∥2 (46)

(2)

≤ 2

n∑
i=1

λ
(k)
i ∥∇xfi(x

(k), y
(k+1)
i)−∇ℓi(x

(k))∥2 + 2

n∑
i=1

λ
(k)
i ∥∇ℓi(x

(k))∥2, (47)

where (1) follows from ∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2, and (2) follows from
∥∥∥ n∑

i=1

piai

∥∥∥2 ≤
n∑

i=1

pi∥ai∥2.

Next, we bound the first term in (47). From Lemma 5, we have

∥∇xfi(x
(k), y

(k+1)
i)−∇ℓi(x

(k))∥2 ≤ L∥y⋆i (x(k))− y
(k+1)
i ∥2. (48)

Therefore, we can obtain

E[∥h(k)
x ∥2]

(1)

≤ σ2
f + 3b2k + 3L2

n∑
i=1

λ
(k)
i ∥y⋆i (x(k))− y

(k+1)
i ∥2 + 3

n∑
i=1

λ
(k)
i ∥∇ℓi(x

(k))∥2 (49)

(2)

≤ σ̃2
f + 3b2k + 3L2

n∑
i=1

λ
(k)
i ∥y⋆i (x(k))− y

(k+1)
i ∥2, (50)

where (1) comes from plugging (48) into (47) and (47) into (42), (2) comes from the definition of σ̃2
f

using ∥∇ℓi(x
(k))∥2 ≤ C2

ℓ and λ(k) ∈ ∆n.

A.5 PROOF OF LEMMA 2 (LEMMA 7)

We state the precise version of Lemma 2 here:

Lemma 13. Under Assumptions 1, 2, and 3, when β2(1 + σ2
g)L

2
g ≤ βµg and µgβ < 1, the iterates

y
(k)
i satisfy the descent equation:

E[∥y(k+1)
i − y⋆i (x

(k))∥2] (51)

≤
(
1− µgβ

2

)
∥y(k)i − y⋆i (x

(k−1))∥2 +
(2

µgβ
− 1
)
G2

y∥x(k−1) − x(k)∥2 + β2σ2
g .

Proof. For a particular (fixed) realization of the iterates x(1), · · · , x(k), y
(1)
i , · · · , y(k)i for some

i ∈ [n], we have

E[∥h(k)
i ∥2] (1)= E[∥h(k)

i − E[h(k)
i]∥2] + ∥E[h(k)

i]∥2 (52)
(2)
= E[∥h(k)

i −∇yigi(x
(k), y

(k)
i)∥2] + ∥∇yigi(x

(k), y
(k)
i)∥2 (53)

(3)

≤ σ2
g + (1 + σ2

g)∥∇yi
gi(x

(k), y
(k)
i)∥2 (54)

(4)

≤ σ2
g + (1 + σ2

g)∥∇yi
gi(x

(k), y
(k)
i)−∇yi

gi(x
(k), y⋆i (x

(k)))∥2 (55)
(5)

≤ σ2
g + (1 + σ2

g)L
2
g∥y

(k)
i − y⋆i (x

(k))∥2, (56)

where (1) follows from algebra, (2) follows from E[h(k)
i] = ∇yi

gi(x
(k), y

(k)
i) in equation 17 in

Assumption 3, (3) is from equation 18 in Assumption 3, (4) is from ∇yi
gi(x

(k), y⋆i (x
(k))) = 0 due

to the optimality of y⋆i (x
(k)), and (5) is due to the Lg-Lipschitz continuity of ∇yigi(x, ·).

18

Published as a conference paper at ICLR 2023

Next, we can bound the difference between y
(k+1)
i and y⋆i (x

(k)) as the following, where again we
assume that x(1), · · · , x(k), y(1), · · · , y(k)i is fixed and the expectation is over the stochasticity of the
gradient estimates:

E[∥y(k+1)
i − y⋆i (x

(k))∥2]
(1)
= E[∥y(k)i − βh

(k)
i − y⋆i (x

(k))∥2] (57)
(2)
= ∥y(k)i − y⋆i (x

(k))∥2 + β2E[∥h(k)
i ∥]2 − 2β⟨y(k)i − y⋆i (x

(k)),∇yi
gi(x

(k), y
(k)
i)⟩ (58)

(3)

≤ (1− 2βµg)∥y(k)i − y⋆i (x
(k))∥2 + β2E[∥h(k)

i ∥2] (59)
(4)

≤ (1− 2βµg)∥y(k)i − y⋆i (x
(k))∥2 + β2σ2

g + β2(1 + σ2
g)L

2
g∥y

(k)
i − y⋆i (x

(k))∥2 (60)
(5)

≤ (1− βµg)∥y(k)i − y⋆i (x
(k))∥2 + β2σ2

g (61)
(6)

≤ (1− βµg)

[
(1 + c)∥y(k)i − y⋆i (x

(k−1))∥2 +
(
1 +

1

c

)
∥y⋆i (x(k−1))− y⋆i (x

(k))∥2
]
+ β2σ2

g

(62)
(7)

≤ (1− βµg)

[
(1 + c)∥y(k)i − y⋆i (x

(k−1))∥2 +
(
1 +

1

c

)
G2

y∥x(k−1) − x(k)∥2
]
+ β2σ2

g , (63)

where (1) is true by definition, and (2) holds by direct algebra and the unbiasedness assump-
tion E[h(k)

i] = ∇yi
gi(x

(k), y
(k)
i) in equation 17 in Assumption 3, (3) is from strong convex-

ity, β
〈
∇yigi(x

(k), y
(k)
i), y

(k)
i − y⋆i (x

(k))
〉

≥ βµg∥y(k)i − y⋆i (x
(k))∥2, (4) is from equation 56,

(5) is from the assumption β2(1 + σ2
g)L

2
g ≤ βµg, (6) is from the inequality ∥a + b∥2 ≤

(1 + 1/c)∥a∥2 + (1 + c)∥b∥2, and (7) is from the Gy-lipschitzness of y⋆i (·) in Lemma 5.

Then, we choose c = µgβ
2(1−µgβ)

, so that (1− βµg)(1 + c) = 1− βµg/2 and 1 + 1/c = 2
µgβ

− 1. We
have c > 0 because µgβ < 1. Plugging these expressions into (63), we get

∥y(k+1)
i − y⋆i (x

(k))∥2 (64)

≤
(
1− µgβ

2

)
∥y(k)i − y⋆i (x

(k−1))∥2 +
(

2

µgβ
− 1

)
G2

y∥x(k−1) − x(k)∥2 + β2σ2
g ,

which completes the proof.

A.6 PROOF OF LEMMA 3 (LEMMA 8)

We state the precise version of Lemma 3 here:

Lemma 14. Let L(k) ≜ E[F (x(k), λ(k))] =
n∑

i=1

λ
(k)
i E[ℓi(x(k))]. Under Assumptions 1, 2 and 3,

assume that the iterates {x(k), y
(k)
i , i ∈ [n], λ(k),∀k} are generated by MORBiT, then, L(k) satisfies

the descent equation

L(k+1) − L(k)

≤ 4αL2 max
i∈[n]

∆(k+1)
yi

+

(
Lf

2
− 1

4α

)
E[∥x(k+1) − x(k)∥2] + γnB2

ℓ + 4αb20 + 2ασ2
f .

(65)

Proof. First, since ℓi is Lf -smooth, we know that for all i ∈ [n],

ℓi(x
(k+1)) ≤ ℓi(x

(k)) + ⟨x(k+1) − x(k),∇ℓi(x
(k))⟩+ Lf

2
∥x(k+1) − x(k)∥2. (66)

19

Published as a conference paper at ICLR 2023

Taking λ
(k)
i times the equation for i in (66) and summing, we can get

n∑
i=1

λ
(k)
i ℓi(x

(k+1))

≤
n∑

i=1

λ
(k)
i ℓi(x

(k)) +

〈
x(k+1) − x(k),

n∑
i=1

λ
(k)
i ∇ℓi(x

(k))

〉
+

Lf

2
∥x(k+1) − x(k)∥2.

(67)

Therefore, we have

n∑
i=1

λ
(k+1)
i ℓi(x

(k+1))−
n∑

i=1

λ
(k)
i ℓi(x

(k))

≤
n∑

i=1

λ
(k+1)
i ℓi(x

(k+1))−
n∑

i=1

λ
(k)
i ℓi(x

(k+1))︸ ︷︷ ︸
≜(A)

+ ⟨x(k+1) − x(k),

n∑
i=1

λ
(k)
i ∇ℓi(x

(k))⟩︸ ︷︷ ︸
≜(B)

+
Lf

2
∥x(k+1) − x(k)∥2. (68)

Next, we bound (A) and (B) respectively as follows. First, we upper bound term (A). First, from
the non-expansiveness of projections and λ(k+1) = proj∆n

(λ(k) + γh
(k)
λ), we have ∥λ(k+1) −

λ(k)∥ ≤ ∥γh(k)
λ ∥. Since λ(k+1), λ(k) ∈ ∆n, ∥λ(k+1) − λ(k)∥ ≤

√
2. Therefore, we know that

∥λ(k+1) − λ(k)∥ ≤ Λ ≜ min{
√
2, γ∥h(k)

λ ∥}. Based on these facts, we can have

(A) =

n∑
i=1

λ
(k+1)
i ℓi(x

(k+1))−
n∑

i=1

λ
(k)
i ℓi(x

(k+1)) (69)

(1)
=

n∑
i=1

(
λ
(k+1)
i − λ

(k)
i

)
ℓi(x

(k+1)) (70)

(2)

≤
∥∥∥λ(k+1) − λ(k)

∥∥∥∥∥∥∥[ℓ1(x(k+1)), ℓ2(x
(k+1)), · · · , ℓn(x(k+1))

]⊤∥∥∥∥ (71)

(3)

≤ ΛBℓ

√
n

(4)

≤
√
nmin{

√
2, ∥γh(k)

λ ∥}Bℓ

(5)

≤
√
nγ∥h(k)

λ ∥Bℓ, (72)

where (1) is straightforward, (2) follows from Cauchy-Schwarz, (3) follows from the update rule for
λ and the fact that |ℓi(·)| ≤ Bℓ from Assumption 1, (4) is from plugging in the definition of Λ, and
(5) follows from γ∥hk

λ∥ ≤
√
2.

Then, we upper bound (B). First, from the non-expansiveness of projection and the update rule
x(k+1) = projX (x(k) − αh

(k)
x), we know that

∥x(k+1) − x(k) + αh(k)
x ∥2 ≤ ∥ − αh(k)

x ∥2, (73)

⇒ ∥x(k+1) − x(k)∥2 + 2α⟨x(k+1) − x(k), h(k)
x ⟩ ≤ 0, (74)

⇒ 1

2α
∥x(k+1) − x(k)∥2 + ⟨x(k+1) − x(k), h(k)

x ⟩ ≤ 0. (75)

20

Published as a conference paper at ICLR 2023

Therefore, we can have

(B) =

〈(
n∑

i=1

λ
(k)
i ∇ℓi(x

(k))

)
,
(
x(k+1) − x(k)

)〉
(1)
=
〈
∇xF (x(k), λ(k)),

(
x(k+1) − x(k)

)〉
(76)

(2)
=
〈(

∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk

)
,
(
x(k+1) − x(k)

)〉
+
〈(

∇xF (x(k),y(k+1), λ(k)) +Bk

)
,
(
x(k+1) − x(k)

)〉
(77)

(3)

≤
〈(

∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk

)
,
(
x(k+1) − x(k)

)〉
(78)

+
〈(

∇xF (x(k),y(k+1), λ(k)) +Bk − h(k)
x

)
,
(
x(k+1) − x(k)

)〉
− 1

2α
∥x(k+1) − x(k)∥2

(4)

≤ 1

2c
∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk∥2 +

c

2
∥x(k+1) − x(k)∥2

+
1

2d
∥∇xF (x(k),y(k+1), λ(k)) +Bk − h(k)

x ∥2 + d

2
∥x(k+1) − x(k)∥2

− 1

2α
∥x(k+1) − x(k)∥2 (79)

(5)

≤ 1

2c
∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk∥2 +

c

2
∥x(k+1) − x(k)∥2

+
σ2
f

2d
+

d

2
∥x(k+1) − x(k)∥2 − 1

2α
∥x(k+1) − x(k)∥2 (80)

(6)
=

1

2c
∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk∥2

+

(
c+ d

2
− 1

2α

)
∥x(k+1) − x(k)∥2 +

σ2
f

2d
, (81)

where (1) is by definition of F (x(k), λ(k)), (2) is from adding and subtracting〈(
∇xF (x(k),y(k+1), λ(k)) +Bk

)
,
(
x(k+1) − x(k)

)〉
, (3) is from adding (75) to the previous

inequality, (4) is from applying the inequality ⟨a, b⟩ ≤ 1
2c∥a∥

2 + c
2∥b∥

2 to both inner product terms,
(5) is from equation 20 and equation 21 in Assumption 3, and (6) is from algebra.

Plugging in our expressions for (A) and (B) into (68), we get

n∑
i=1

λ
(k+1)
i ℓi(x

(k+1))−
n∑

i=1

λ
(k)
i ℓi(x

(k))

≤ γ∥h(k)
λ ∥

√
nBℓ +

1

2c
∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk∥2

+

(
c+ d+ Lf

2
− 1

2α

)
∥x(k+1) − x(k)∥2 +

σ2
f

2d
. (82)

21

Published as a conference paper at ICLR 2023

Next, we work on bounding ∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))− Bk∥2 in equation 81.
Observe that

∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))−Bk∥2

(1)

≤ 2∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))∥2 + 2∥Bk∥2 (83)
(2)

≤ 2∥∇xF (x(k), λ(k))−∇xF (x(k),y(k+1), λ(k))∥2 + 2b2k (84)

(3)

≤ 2

∥∥∥∥∥
n∑

i=1

[
λ
(k)
i

(
∇ℓi(x

(k))−∇xfi(x
(k), y

(k+1)
i)

)]∥∥∥∥∥
2

+ 2b2k (85)

(4)

≤ 2

(
n∑

i=1

λ
(k)
i L∥y⋆i (x(k))− y

(k+1)
i ∥

)2

+ 2b2k (86)

(5)

≤ 2L2 max
i∈[n]

∥y⋆i (x(k))− y
(k+1)
i ∥2 + 2b2k, (87)

where (1) comes from ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, (2) comes from ∥Bk∥ ≤ bk in Assumption 3,
(3) is from expanding the definitions of ∇xF (·, ·) and ∇xF (·, ·, ·), (4) is from Lemma 5. Therefore,
plugging in equation 87 into equation 82, using c = d = 1

4α , and taking expectation over the
stochasticity of the gradient estimates, we get:

n∑
i=1

λ
(k+1)
i ℓi(x

(k+1))−
n∑

i=1

λ
(k)
i ℓi(x

(k))

≤
√
nγ∥h(k)

λ ∥Bℓ + 4αL2 max
i∈[n]

E∥y⋆i (x(k))− y
(k+1)
i ∥2

+ 4αb2k +

(
Lf

2
− 1

4α

)
E[∥x(k+1) − x(k)∥2] + 2ασ2

f . (88)

Now, observe that the LHS looks like a telescoping sum. To make this more apparent, define

L(k) =
n∑

i=1

λ
(k)
i E[ℓi(x(k))] and ∆

(k)
yi = E[∥y(k)i − y⋆i (x

(k−1))∥2]. Therefore, with the assumption

that bk ≤ b0, we have

L(k+1) − L(k)

≤ 4αL2 max
i∈[n]

∆(k+1)
yi

+

(
Lf

2
− 1

4α

)
E[∥x(k+1) − x(k)∥2] +

√
nγ∥h(k)

λ ∥Bℓ + 4αb20 + 2ασ2
f

≤ 4αL2 max
i∈[n]

∆(k+1)
yi

+

(
Lf

2
− 1

4α

)
E[∥x(k+1) − x(k)∥2] + γnB2

ℓ + 4αb20 + 2ασ2
f .

(89)

A.7 PROOF OF LEMMA 9

We restate Lemma 9 in more general terms here:

Lemma 15. Assume that Ω(k),Θ(k),Υ
(k)
i , λi, c0, c1, c2, d0, d1, d2 are real numbers such that for all

0 ≤ k ≤ K − 1,

Ω(k+1) ≤ Ω(k) − c0Θ
(k+1) + c1 max

i∈[n]
Υ

(k+1)
i + c2 (90)

and also for all 1 ≤ k ≤ K, 1 ≤ i ≤ N ,

Υ
(k+1)
i ≤ (1− d0)Υ

(k)
i + d1Θ

(k) + d2. (91)

22

Published as a conference paper at ICLR 2023

In addition, assume that 1− d0 > 0, d0 − d1c1c
−1
0 > 0 and c0 − c1d1d

−1
0 , and that Υ(k)

i ,Ω(k) ≥ 0

for all k, i ∈ [n]. Then, if i(0) = argmaxi∈[n] Υ
(0)
i , we have

1

K

K∑
k=1

max
i∈[n]

Υ
(k)
i ≤ (d0 − d1c

−1
0 c1)

−1

(
Υ

(0)

i(0)
+ d1Θ

(0) + d2 + d1c
−1
0 Ω(0)

K
+ d1c

−1
0 c2 + d2

)
.

(92)

Proof. First, let i(k) ≜ argmax
i∈[n]

Υ
(k)
i , so that Υ

(k)

i(k) = max
i∈[n]

Υ
(k)
i . Summing (90) from k =

0, 1, · · · ,K − 1, we get:

c0

K∑
k=1

Θ(k) ≤ Ω(0) − Ω(k) + c1

K∑
k=1

Υ
(k)

i(k) + c2K. (93)

Next, we apply (91) for i = i(k+1). Noting that 1− d0 > 0 and Υ
(k)

i(k+1) ≤ Υ
(k)

i(k) by definition of i(k),
we have

Υ
(k+1)

i(k+1) ≤ (1− d0)Υ
(k)

i(k+1) + d1Θ
(k) + d2 (94)

≤ (1− d0)Υ
(k)

i(k) + d1Θ
(k) + d2. (95)

Then summing for k = 1 to K, we get

d0

K∑
k=1

Υ
(k)

i(k) ≤ Υ
(1)

i(1)
−Υ

(K+1)

i(K+1) + d1

K∑
k=1

Θ(k) + d2K. (96)

Now, we have

d0

K∑
k=1

Υ
(k)

i(k)

(1)

≤ Υ
(1)

i(1)
−Υ

(K+1)

i(K+1) + d1c
−1
0

(
Ω(0) − Ω(k) + c1

K∑
k=1

Υ
(k)

i(k) + c2K

)
+ d2K (97)

(2)

≤ Υ
(1)

i(1)
+ d1c

−1
0

(
Ω(0) + c1

K∑
k=1

Υ
(k)

i(k) + c2K

)
+ d2K (98)

(3)

≤ Υ
(1)

i(1)
+ d1c

−1
0 Ω(0) + d1c

−1
0 c1

K∑
k=1

Υ
(k)

i(k) + d1c
−1
0 c2K + d2K, (99)

where (1) holds from plugging (93) into (96), (2) is true because Υ,Ω ≥ 0, and (3) follows from the
distributive property. We can rewrite this equation as

(d0 − d1c
−1
0 c1)

K∑
k=1

Υ
(k)

i(k) ≤ Υ
(1)

i(1)
+ d1c

−1
0 Ω(0) + d1c

−1
0 c2K + d2K (100)

⇒ 1

K

K∑
k=1

Υ
(k)

i(k) ≤ (d0 − d1c
−1
0 c1)

−1

(
Υ

(1)

i(1)
+ d1c

−1
0 Ω(0)

K
+ d1c

−1
0 c2 + d2

)
. (101)

By plugging in Υ
(1)

i(1)
= Υ

(0)

i(0)
+ d1Θ

(0) + d2 into (101), we get the statement of the lemma.

Plugging the following values into Lemma 15 and utilizing Lemmas 13 and 14 and the learning rates
α, β, γ from Theorem 2, we get the result in Lemma 9 in precise terms:

Ω(k) = L(k), Θ(k) = E[∥x(k) − x(k−1)∥2], Υ
(k)
i = ∆(k)

yi
,

c0 =
1

4α
− Lf

2
, c1 = 4αL2, c2 = γnB2

ℓ + 4αb20 + 2ασ2
f ,

d0 = µgβ/2, d1 =

(
2

µgβ
− 1

)
G2

y, d2 = β2σ2
g . (102)

23

Published as a conference paper at ICLR 2023

Next, recall that our step sizes were

α = min

(
µg

16GyL
ν,

K−3/5

4GyL

)
, β = min

(
ν,

4K−2/5

µg

)
, γ =

2K−3/5

Bℓn1/2
, (103)

where ν = min(
µg

L2
g(1+σ2

g)
, 1
µg

). Note that the choice of ν was motivated by the conditions of Lemma

5. First, observe that 1− d0 > 0 is true because we chose β < 2/µg . Now, observe that α
β ≤ µg

16GyL
.

Finally, will next show that d0 − d1c1(c0)
−1 > 0 and c0 − c1d1(d0)

−1 > 0, completing the set of
conditions in Lemma 5. By direct algebraic manipulation, we have

d0 − d1c1(c0)
−1 =

µgβ

2
−

(
2

µgβ
− 1
)
G2

y · 4L2α(
1
4α − Lf

2

) ≥ µgβ

2
−

2
µgβ

·G2
y · 4L2α(

1
4α − Lf

2

)
≥ µgβ

2
−

8L2G2
yα

βµg

(
1
4α − Lf

2

) ≥ µgβ

2
−

64L2G2
y

µ2
g

· α
2

β2
· µgβ

≥ µgβ

2
−

64L2G2
y

µ2
g

·
µ2
g

256G2
yL

2
· µgβ =

µgβ

2
− µgβ

4
=

µgβ

4
. (104)

Similarly, we also have

c0 − c1d1(d0)
−1

=

(
1

4α
− Lf

2

)
−

4L2α ·
(

2
µgβ

− 1
)
G2

y

µgβ
2

=

(
1

4α
− Lf

2

)
−

8L2α
(

2
µgβ

− 1
)
G2

y

µgβ

≥
(

1

4α
− Lf

2

)
−

8L2α
(

2
µgβ

)
G2

y

µgβ
≥
(

1

4α
− Lf

2

)
−

16L2αG2
y

µ2
g

· α
2

β2
· 1
α

≥ 1

8α
−

16L2αG2
y

µ2
g

·
µ2
g

256G2
yL

2
· 1
α

=
1

8α
− 1

16α
=

1

16α
. (105)

24

Published as a conference paper at ICLR 2023

Now, we can bound the optimality of y by bounding the maximum difference ∆
(k)
yi :

1

K

K∑
k=1

max
i∈[n]

∆(k)
yi

(1)

≤ (d0 − d1c
−1
0 c1)

−1

(
Υ

(0)

i(0)
+ d1Θ

(0) + d2 + d1c
−1
0 Ω(0)

K
+ d1c

−1
0 c2 + d2

)
(106)

(2)
=

4

µgβ

(
Υ

(0)

i(0)
+ d1Θ

(0) + d2 + d1c
−1
0 Ω(0)

K
+ d1c

−1
0 c2 + d2

)
(107)

(3)

≤ 4

µgβ

∆
(0)
y
i(0)

+ β2σ2
g +

2G2
y

µgβ
(8α)L(0)

K

+
2G2

y

µgβ
(8α)(nγB2

ℓ + 4αb20 + 2ασ2
f) + β2σ2

g

)
(108)

(4)
=

4∆(0)
y
i(0)

µgβ
+ 4β

σ2
g

µg
+

64G2
yα

µ2
gβ

2

K
+

64G2
yα

µ2
gβ

2

(
nγBℓ + 4αb20 + 2ασ2

f

)
+

4βσ2
g

µg
(109)

(5)
=

4∆
(0)
y
i(0)

µg

1

βK
+

4σ2
g

µg

β

K
+

64G2
y

µ2
g

α

β2K
+

64G2
y

µ2
g

γB2
ℓ

nα

β2

+
64G2

y(4b
2
0 + 2σ2

f)

µ2
g

α2

β2
+

4σ2
g

µg
β (110)

(6)

≤
∆

(0)
y
i(0)

/µg

K3/5
+

16σ2
g/µ

2
g

K7/5
+

Gy/L

K4/5
+

2
√
nBℓGy/L

K2/5
+

(b20 +
1
2σ

2
f)/(L

2)

K2/5
+

16σ2
g/µ

2
g

K2/5
.

(111)

Here, (1) follows directly from plugging Υ
(k)
i from (102) into Lemma 4, (2) follows from (104), (3)

comes from plugging in the rest of (102), (4) is direct algebraic manipulation, (5) separates the step
sizes and n,K factors from the rest of the constants, and (6) applies the definition of the step sizes.
This gives us the O(

√
nK−2/5) bound in Lemma 9.

A.8 PROOF OF LEMMA 10

We present a precise form of Lemma 10 here:

Lemma 16. For any λ ∈ ∆n, under Assumptions 1, 2, and 3, assume that the iterates {x(k), y
(k)
i , i ∈

[n]λ(k),∀k} generated by MORBiT, then we have

1

K
E

[
K∑

k=1

F (x(k), λ)− F (x(k), λ(k))

]

≤ 1√
2

(
Bℓ

√
nK−3/5 +Bℓ

√
nK−2/5

)
+

Gf

K

K∑
k=1

max
i∈[n]

∆(k)
yi

.

(112)

Proof. Recall that we defined

F (x, λ) :=

n∑
i=1

λifi(x, y
⋆
i (x)) =

n∑
i=1

λiℓi(x). (113)

25

Published as a conference paper at ICLR 2023

For a fixed realization of x(1), · · · , x(k), y
(1)
i , · · · , y(k)i , i ∈ [n], we have

F (x(k), λ)− F (x(k), λ(k))

(1)
=

n∑
i=1

(λi − λ
(k)
i)fi(x

(k), y⋆i (x
(k))) (114)

(2)
=

n∑
i=1

(λi − λ
(k)
i)(fi(x

(k), y⋆i (x
(k)))− fi(x

(k), y
(k+1)
i) + fi(x

(k), y
(k+1)
i))) (115)

(3)
=

〈(
λ− λ(k)

)
,
[
f1(x

(k), y
(k+1)
1), · · · , fn(x(k), y(k+1)

n)
]⊤〉

+

n∑
i=1

(λi − λ
(k)
i)(fi(x

(k), y⋆i (x
(k)))− fi(x

(k), y
(k+1)
i)) (116)

(4)
=
〈(

λ− λ(k)
)
, h

(k)
λ

〉
+

n∑
i=1

(λi − λ
(k)
i)(fi(x

(k), y⋆i (x
(k)))− fi(x

(k), y
(k+1)
i)) (117)

(5)
=

∥λ− λ(k)∥2 + γ2∥h(k)
λ ∥2 − ∥λ− λ(k) − γh

(k)
λ ∥2

2γ

+

n∑
i=1

(λi − λ
(k)
i)(fi(x

(k), y⋆i (x
(k)))− fi(x

(k), y
(k+1)
i)) (118)

(6)

≤
∥λ− λ(k)∥2 + γ2∥h(k)

λ ∥2 − ∥λ− λ(k+1)∥2

2γ

+

n∑
i=1

(λ− λ(k))i(fi(x
(k), y⋆i (x

(k)))− fi(x
(k), y

(k+1)
i)) (119)

(7)

≤
∥λ− λ(k)∥2 + γ2∥h(k)

λ ∥2 − ∥λ− λ(k+1)∥2

2γ
+Gf

n∑
i=1

(λi − λ
(k)
i)(y⋆i (x

(k))− y
(k+1)
i),

(120)

where (1) comes from the definition of F , (2) follows from adding and subtracting (λi −
λ
(k)
i)fi(x

(k), y
(k+1)
i) terms, (3) follows from splitting the preceding sum and writing the first term as

a dot product, (4) follows from definition of h(k)
λ , (5) uses ⟨a, b⟩ = ∥a∥2+∥b∥2−∥a−b∥2

2 , (6) follows
from the update λ(k+1) = proj∆n

(λ(k) − γh
(k)
λ) and the projection property, and (7) follows from

Lipschitzness of f .

Therefore, applying the telescoping sum by adding the preceding inequality over k = 1, 2, . . . ,K,
and taking expectation, we get:

E

[
K∑

k=1

F (x(k), λ)− F (x(k), λ(k))

]
(1)

≤ γ

2

K∑
k=1

E∥h(k)
λ ∥2 + E[∥λ− λ(1)∥2]

2γ
+Gf

K∑
k=1

n∑
i=1

(λi − λ
(k)
i)∆(k)

yi
(121)

(2)

≤ γ

2

K∑
k=1

E∥h(k)
λ ∥2 + 1

γ
+Gf

K∑
k=1

max
i∈[n]

∆(k)
yi

(122)

(3)

≤ nKB2γ

2
+

1

γ
+Gf

K∑
k=1

max
i∈[n]

∆(k)
yi

(123)

(4)

≤
√
2

2

(
Bℓ

√
nK2/5 +Bℓ

√
nK3/5

)
+Gf

K∑
k=1

max
i∈[n]

∆(k)
yi

(124)

26

Published as a conference paper at ICLR 2023

where (1) follows directly from (120) and the telescoping sum, (2) follows from λ ∈ ∆n and ∥λ−
λ(1)∥2 ≤ 2, (3) follows from ∥h(k)

λ ∥2 ≤ nB2, and (4) follows from selecting γ =
√
2

Bℓ
√
nK3/5 .

Therefore, we obtain

1

K
E

[
K∑

k=1

F (x(k), λ)− F (x(k), λ(k))

]

≤ 1√
2

(
Bℓ

√
nK−3/5 +Bℓ

√
nK−2/5

)
+GfO(

√
nK−2/5).

(125)

A.9 PROOF OF LEMMA 11

We state Lemma 11 here in precise terms:

Lemma 17. Under Assumptions 1, 2, and 3 with the iterates {x(k), y
(k)
i , i ∈ [n], λ(k),∀k} generated

by MORBiT, then we have

1

K

K∑
k=1

E[∥x̂(x(k))− x(k)∥2] (126)

≤ 4

−µℓ + ρ

(
Φ1/ρ(x0)

ραK
+

2

−µℓ + ρ
b20+(

2L2

−µℓ + ρ
+

3L2α

2

)(
1

K

K∑
k=1

max
i∈[n]

∆(k)
yi

)
+

α

2

(
σ̃2
f + 3b20

))
.

Proof. Recall that we defined the Moreau envelope and proximal map as follows:

Φ1/ρ(z) ≜ min
x

ρ

2
∥x− z∥2 +

n∑
i=1

λiℓi(x), x̂(z) ≜ argmin
x

ρ

2
∥x− z∥2 +

n∑
i=1

λiℓi(x). (127)

Therefore, we have

Φ1/ρ(x
(k+1))

(1)
=
∑
i

λiℓi(x̂(x
(k+1))) +

ρ

2
∥x(k+1) − x̂(x(k+1))∥2 (128)

(2)

≤
∑
i

λiℓi(x̂(x
(k))) +

ρ

2
∥x(k+1) − x̂(x(k))∥2 (129)

(3)
=
∑
i

λiℓi(x̂(x
(k))) +

ρ

2
∥x(k+1) − x(k) + x(k) − x̂(x(k))∥2 (130)

(4)
=
∑
i

λiℓi(x̂(x
(k))) +

ρ

2
∥x(k+1) − x(k)∥2 + ρ

2
∥x(k) − x̂(x(k))∥2

+ ρ
〈(

x(k+1) − x(k)
)
,
(
x(k) − x̂(x(k))

)〉
(131)

where (1) is by definition of the proximal map, (2) comes from the optimality of the Moreau envelope,
(3) is by adding and subtracting x(k), and (4) is from expanding out ∥a+b∥2 into ∥a∥2+∥b∥2+2⟨a, b⟩.

27

Published as a conference paper at ICLR 2023

Next, from the optimality condition of the update x(k+1) = proj∆n
(x(k) − αh

(k)
x), we have

⟨x(k+1) − x̂(x(k)), x(k+1) − x(k) + αh(k)
x ⟩ ≤ 0 (132)

(1)⇒ ⟨x(k+1) − x(k) + x(k) − x̂(x(k))x(k+1) − x(k) + αh(k)
x ⟩ ≤ 0 (133)

(2)⇒ ⟨x(k+1) − x(k), x(k) − x̂(x(k))⟩
≤ −∥x(k+1) − x(k)∥2 − α⟨h(k)

x , x(k+1) − x(k)⟩ − α⟨h(k)
x , x(k) − x̂(x(k))⟩ (134)

(3)⇒ ρ⟨x(k+1) − x(k), x(k) − x̂(x(k))⟩
≤ −ρ∥x(k+1) − x(k)∥2 − ρα⟨h(k)

x , x(k+1) − x(k)⟩ − ρα⟨h(k)
x , x(k) − x̂(x(k))⟩ (135)

(4)⇒ ρ⟨x(k+1) − x(k), x(k) − x̂(x(k))⟩
≤ −ρ∥x(k+1) − x(k)∥2 + ρ⟨αh(k)

x , x(k) − x(k+1)⟩+ ρα⟨h(k)
x , x̂(x(k))− x(k)⟩ (136)

(5)⇒ ρ⟨x(k+1) − x(k), x(k) − x̂(x(k))⟩

≤ −ρ∥x(k+1) − x(k)∥2 + ρ

2

(
∥αh(k)

x ∥2 + ∥x(k) − x(k+1)∥2
)

+ ρα⟨h(k)
x , x̂(x(k))− x(k)⟩ (137)

(6)⇒ ρ⟨x(k+1) − x(k), x(k) − x̂(x(k))⟩

≤ −ρ

2
∥x(k+1) − x(k)∥2 + ρα2

2
∥h(k)

x ∥2 + ρα⟨h(k)
x , x̂(x(k))− x(k)⟩ (138)

where (1) is by adding and subtracting x(k), (2) is from distributing the inner product ⟨(x(k+1) −
x(k)) + (x(k) − x̂(x(k))), (x(k+1) − x(k)) + αh

(k)
x ⟩, (3) is from multiplying both sides by ρ, (4) is

from simple algebra, (5) is from rewriting ⟨a, b⟩ ≤ ∥a∥2+∥b∥2

2 , and (6) is from combining terms.
Therefore, substituting (138) into (131), we get

Φ1/ρ(x
(k+1))

≤
∑
i

λiℓi(x̂(x
(k))) +

ρ

2
∥x(k) − x̂(x(k))∥2 + ρα2

2
∥h(k)

x ∥2 + ρα⟨h(k)
x , x̂(x(k))− x(k)⟩ (139)

= Φ1/ρ(x
(k)) +

ρα2

2
∥h(k)

x ∥2 + ρα⟨h(k)
x , x̂(x(k))− x(k)⟩ (140)

where the second equality is by definition of the Moreau envelope. Now, we bound the last term in
(140):

⟨h(k)
x , x̂(x(k))− x(k)⟩
(1)
=
〈
x̂(x(k))− x(k), h(k)

x −∇xF (x(k),y(k+1), λ(k))
〉

+
〈
x̂(x(k))− x(k),∇xF (x(k),y(k+1), λ(k))−∇xF (x(k), λ(k))

〉
+
〈
x̂(x(k))− x(k),∇xF (x(k), λ(k))

〉
(141)

(2)
= ⟨x̂(x(k))− x(k), Bk⟩︸ ︷︷ ︸

(A)

+ ⟨x̂(x(k))− x(k),∇xF (x(k),y(k+1), λ(k))−∇xF (x(k), λ(k))⟩︸ ︷︷ ︸
(B)

+ ⟨x̂(x(k))− x(k),∇xF (x(k), λ(k))⟩︸ ︷︷ ︸
(C)

(142)

where (1) follows from adding and subtracting ∇xF (x(k),y(k+1), λ(k)),∇xF (x(k), λ(k)) terms and
(2) is from splitting the inner product and applying h

(k)
x − ∇xF (x(k),y(k+1), λ(k)) = Bk from

equation 20 in Assumption 3. To bound (A) and (B), we simply apply ⟨a, b⟩ ≤ c
4∥a∥

2 + 1
c∥b∥

2 to

28

Published as a conference paper at ICLR 2023

both inner products:

(A) = ⟨x̂(x(k))− x(k), Bk⟩ ≤
c

4
∥x̂(x(k))− x(k)∥2 + 1

c
b2k (143)

(B) =
〈(

x̂(x(k))− x(k)
)
,∇xF (x(k),y(k+1), λ(k))−∇xF (x(k), λ(k))

〉
≤ 1

c
∥∇xF (x(k),y(k+1), λ(k))−∇xF (x(k), λ(k))∥2 + c

4
∥x̂(x(k))− x(k)∥2. (144)

We proceed to bound (C). First, from weak convexity of µℓ, we have that for all i ∈ [n],

ℓi(x̂(x
(k))) ≥ ℓi(x

(k)) + ⟨∇ℓ(x(k)), x̂(x(k))− x(k)⟩ − µℓ

2
∥x̂(x(k))− x(k)∥2. (145)

Taking λi times the ith of these equations, we get
n∑

i=1

λiℓi(x̂(x
(k))) ≥

n∑
i=1

λiℓi(x
(k)) +

〈 n∑
i=1

∇ℓi(x
(k)), x̂(x(k))− x(k)

〉
− µℓ

2
∥x̂(x(k))− x(k)∥2.

(146)
By definition of the Moreau envelope, we also have

n∑
i=1

λiℓi(x
(k)) ≥

n∑
i=1

λiℓi(x̂(x
(k))) +

ρ

2
∥x̂(x(k))− x(k)∥2. (147)

Adding (146) and (147), we have
µℓ − ρ

2
∥x̂(x(k))− x(k)∥2 ≥ ⟨∇xF (x(k), λ(k)), x̂(x(k))− x(k)⟩. (148)

If we let c = −µℓ+ρ
2 in (143) and (144), we can rewrite (142) as

⟨h(k)
x , x̂(x(k))− x(k)⟩

≤ c

2
∥x̂(x(k))− x(k)∥2 + 1

c
b2k +

1

c
∥∇xF (x(k),y(k+1), λ(k))−∇xF (x(k), λ(k))∥2

− −µℓ + ρ

2
∥x̂(x(k))− x(k)∥2 (149)

≤ c

2
∥x̂(x(k))− x(k)∥2 + 1

c
b2k +

L2

c

(
n∑

i=1

λi∥y⋆i (x(k))− y
(k+1)
i ∥2

)
− −µℓ + ρ

2
∥x̂(x(k))− x(k)∥2 (150)

≤ 2

−µℓ + ρ
b2k +

2L2

−µℓ + ρ

(
n∑

i=1

λi∥y⋆i (x(k))− y
(k+1)
i ∥2

)
− −µℓ + ρ

4
∥x̂(x(k))− x(k)∥2.

(151)

Taking the full expectation Fi ≜ {y(0)i , x(0), · · · , y(k)i , x(k)}, we have

E[⟨h(k)
x , x̂(x(k))− x(k)⟩]

≤ 2

−µℓ + ρ
b2k +

2L2

−µℓ + ρ
E

[
n∑

i=1

λi∥y⋆i (x(k))− y
(k+1)
i ∥2

]
− −µℓ + ρ

4
∥x̂(x(k))− x(k)∥2

(152)

=
2

−µℓ + ρ
b2k +

2L2

−µℓ + ρ

[
n∑

i=1

λiE[∥y⋆i (x(k))− y
(k+1)
i ∥2]

]
− −µℓ + ρ

4
∥x̂(x(k))− x(k)∥2

(153)

≤ 2

−µℓ + ρ
b2k +

2L2

−µℓ + ρ

(
max
i∈[n]

E[∥y⋆i (x(k))− y
(k+1)
i ∥2]

)
− −µℓ + ρ

4
∥x̂(x(k))− x(k)∥2

(154)

=
2

−µℓ + ρ
b2k +

2L2

−µℓ + ρ

(
max
i∈[n]

∆(k)
yi

)
− −µℓ + ρ

4
∥x̂(x(k))− x(k)∥2 (155)

29

Published as a conference paper at ICLR 2023

Therefore, rewriting everything into (146) and taking the full expectation over Fi, we have (recall
that the definition of ∆(k)

yi includes an expectation):

E[Φ1/ρ(x
(k+1))]

(1)

≤ E[Φ1/ρ(x
(k))] +

ρα2

2
E[∥h(k)

x ∥2] + ραE[⟨h(k)
x , x̂(x(k))− x(k)⟩] (156)

(2)
= E[Φ1/ρ(x

(k))] +
2ρα

−µℓ + ρ
b2k +

2L2ρα

−µℓ + ρ

(
max
i∈[n]

∆(k)
yi

)
− ρα(−µℓ + ρ)

4
E[∥x̂(x(k))− x(k)∥2]

+
ρα2

2

(
σ̃2
f + 3b2k + 3L2 max

i∈[n]
∆(k)

yi

)
(157)

(3)
= E[Φ1/ρ(x

(k))] +
2ρα

−µℓ + ρ
b2k +

(
2L2ρα

−µℓ + ρ
+

3L2ρα2

2

)(
max
i∈[n]

∆(k)
yi

)
+

ρα(µℓ − ρ)

4
E[∥x̂(x(k))− x(k)∥2] + ρα2

2
(σ̃2

f + 3b2k), (158)

where (1) is a copy of (140) and (2) is from (158), plugging in ∥h(k)
x ∥2 from Lemma 1, and doing

the same expectation calculation from (152) to (155). Finally, (3) is combining terms via algebra.
Summing up from k = 0, 1, · · · ,K − 1, we get the following bound:

1

K

K∑
k=1

E[∥x̂(x(k))− x(k)∥2]

≤ 4

−µℓ + ρ

(
Φ1/ρ(x0)

ραK
+

2

−µℓ + ρ
b20

+

(
2L2

−µℓ + ρ
+

3L2α

2

)(
1

K

K∑
k=1

max
i∈[n]

∆(k)
yi

)
+

α

2

(
σ̃2
f + 3b20

))
(159)

=
4

−µℓ + ρ

Φ1/ρ(x0)

ραK︸ ︷︷ ︸
K−2/5

+
2

−µℓ + ρ
b20

+
2L2

−µℓ + ρ

(
1

K

K∑
k=1

max
i∈[n]

∆(k)
yi

)
︸ ︷︷ ︸√

nK−2/5

+
α

2

(
σ̃2
f + 3b20 +

3L2

K

K∑
k=1

max
i∈[n]

∆(k)
yi

)
︸ ︷︷ ︸

K−3/5+
√
nK−1

 . (160)

B GENERALIZATION BOUNDS

In addition to convergence, we also show the generalization abilities of the bilevel optimizer. The
theorem in this section is inspired by Collins et al. (2020, Theorem 4), but our results hold for
the fully general min-max multi-objective BLO setup while Collins et al. (2020) study a min-max
multi-objective single-level problem. Assume that for a learning task i, we observe mi batches of
train/test data, Dt

i,j and Dv
i,j , j ∈ [mi]. Assume that each train and test batch has K and J input-

output pairs, respectively, so that sets Dt
i,j , D

v
i,j are drawn from a common distribution Di. Also,

let y⋆i (x;D
t
i) = argminyi

1
mi

∑mi

j′=1 gi(x, yi, D
t
i,j′) be the value of yi that minimizes the empirical

inner loss on some dataset Dt
i . For outer and inner objectives fi, gi, we consider the following

30

Published as a conference paper at ICLR 2023

function class Fi, where x ∈ X is the set of optimization parameters introduced in equation 2 and
(Dt

i , D
v
i) are any train and test datasets sampled from Di:

Fi =
{
fi
(
x, ŷ⋆i (x;D

t
i), D

v
i

)
, x ∈ X

}
.

We use f and g to denote the empirical function values evaluated at the points in Dt
i and Dv

i , and so
the empirical Rademacher complexity of Fi on mi samples Di ≜ {(Dt

i,j , D
v
i,j}

mi
j=1 ∼ (Di)

mi is

Ri
mi

(Fi) = EDi
Eϵj

sup
x∈X

1

mi

mi∑
j=1

ϵjfi
(
x, y⋆i (x;D

t
i,j);D

v
i,j

) ,

where ϵjs are Rademacher random variables (±1/2 with equal probability). The empirical loss for
fixed samples Dt

i,j and Dv
i,j ,

F̂i(x) ≜
1

mi

mi∑
j=1

fi
(
x, y⋆i (x;D

t
i,j);D

v
i,j

)
.

Similarly, define Fi(x) ≜ EDi
[F̂i(x)]. First, from classical generalization results such as Shalev-

Shwartz & Ben-David (2014, Theorem 26.5) or Mohri et al. (2018, Theorem 3.3), we directly
conclude the following proposition, which bounds the true loss of the classifier as a function of the
empirical loss.

Proposition 1. Assume the regularity assumptions considered in Appendix 3, specifically that the
function ℓ is Bℓ-bounded. Then, with probability at least 1− δ, we have

Fi(x) ≤ F̂i(x) + 2Ri
mi

(Fi) +Bℓ

√
log 1/δ

2mi
. (161)

This extends to the following in a straightforward manner, providing a guarantee for the worst-case
generalization for any learning task i:

Proposition 2. Assume the regularity assumptions given in Section 5, specifically that the function ℓ
is Bℓ-bounded. Then, with probability at least 1− δ, we have

max
i∈[n]

Fi(x) ≤ max
i∈[n]

F̂i(x) + 2Rm(F) +Bℓ

√
log n/δ

2m
. (162)

Here we assume that Fi = F and mi = m for all i ∈ [n] and hence Ri
mi

(Fi) = Rm(F) for all
i ∈ [n].

Next, we proceed to bound the generalization on unseen tasks. Consider a new task with distribution
Dn+1 =

∑n
i=1 aiDi, for some a ∈ ∆n, meaning that the distribution of the new task is anywhere in

the convex hull of the distribution of the old tasks. We make this assumption because if the new task
is very dissimilar to the existing tasks, there is no reason to expect good generalization in the first
place. We then show the following proposition:

Proposition 3. For all x ∈ X , with probability at least 1− δ, we have

Fn+1(x) ≤ max
p∈∆n

piF̂i(x) + 2

n∑
i=1

aiR
i
mi

(Fi) +

n∑
i=1

aiBℓ

√
log(n/δ)

2mi
. (163)

Notice that while Proposition 3 holds true for all x, the tighest upper bound is found when x minimizes
maxp∈∆n

piF̂i(x), which is precisely when x = x⋆, the optimal solution to problem we study in
equation 2. This highlights another advantage of our formulation over TTSA: when we use the
solution obtained by the single averaged objective

∑
i fi in equation 1, x⋆

min-avg, we will have a looser
upper bound for Fn+1(x

⋆
min-avg) compared to Fn+1(x

⋆), showing that our formulation gives tighter
robust (or worst case) generalization guarantees and this behaviour has been demonstrated empirically
in section 4.

31

Published as a conference paper at ICLR 2023

Proof. (of Proposition 3) First, by definition, for all x, we have that

Fn+1(x) = E(Dtrain
n+1,j ,Dtest

n+1,j)∼Dn+1

f̂i
x, argmin

yi

mi∑
j′=1

ĝi(x, yi, D
train
i,j′), D

test
i,j

 (164)

=

n∑
i=1

aiE(Dtrain
n+1,j ,Dtest

n+1,j)∼Di

f̂i
x, argmin

yi

mi∑
j′=1

ĝi(x, yi, D
train
i,j′), D

test
i,j

 (165)

=

n∑
i=1

aiFi(x). (166)

Therefore, for all x, using a union bound over 1 ≤ i ≤ n, we get that with probability at least 1−nδ′,
we have

Fn+1(x) =

n∑
i=1

aiFi(x) ≤
n∑

i=1

aiF̂i(x) + 2

n∑
i=1

aiR
i
mi

(F) +

n∑
i=1

aiB

√
log 1/δ′

2mi
. (167)

Letting δ = nδ′ in (167), we have

Fn+1(x) ≤ max
p∈∆n

piF̂i(x) + 2

n∑
i=1

aiR
i
mi

(F) +

n∑
i=1

aiBℓ

√
log(n/δ)

2mi
(168)

Therefore, plugging in x⋆ gives us

Fn+1(x
⋆) ≤ min

x∈X
max
p∈∆n

piF̂i(x) + 2

n∑
i=1

aiR
i
mi

(F) +

n∑
i=1

aiBℓ

√
log(n/δ)

2mi
. (169)

C IMPLEMENTATION DETAILS AND COMPUTE RESOURCES

We perform our experiments in Python 3.7.10 and PyTorch 1.8.1 with Intel(R) Core(TM) i5-8265U
CPU @ 1.60GHz. The code is available at our repository https://github.com/minimario/
bilevel. For our empirical evaluation, we first select α, β that give good performance/convergence
for the min-avg problem (the baseline). We do a hyperparameter search to choose these parame-
ters, specifically the initial learning rates. Then we fix α, β and only select γ that provides good
convergence for the min-max problem (our proposed scheme).

Hypergradient computation. We would like to note that the analysis does not require the actual
hypergradient but rather a stochastic estimate with bounded bias. The standard Hessian inverse
approximation using the Neumann series (Agarwal et al., 2017; Ghadimi & Wang, 2018; Hong
et al., 2020) is one way of computing this estimate (as we have discussed in section 3.2 preceding
Corollary 1). Since we are considering a single-loop algorithm, even a straightforward iterative
differentiation (Ji et al., 2021) can provide an sufficiently useful estimate of the hypergradient. We
utilize this for our empirical evaluations.

C.1 SINUSOID REGRESSION TASK

We consider the sinusoid regression experiment (Finn et al., 2017), a multi-task representation
learning problem where each task Ti is a regression problem y = ti(x) = ai sin(x − ϕi). We
uniformly sample the amplitude ai ∈ [0.1, 5], frequency and phase ϕi ∈ [0, π] for each task. We use
n = 3 training tasks and 3 testing tasks, with 2 ”easy tasks” (ai ∈ [0.1, 1.05]) and one ”hard tasks”
(ai ∈ [4.95, 5]) for each set. We use easy and hard tasks following the setup in (Collins et al., 2020).
During training, for each task i, the learner is given samples (x, y), x ∈ [−5, 5]. The goal is to learn
a function approximating ti as best as possible in the mean squared error sense.

32

https://github.com/minimario/bilevel
https://github.com/minimario/bilevel

Published as a conference paper at ICLR 2023

As described in Section 2, we use a neural network divided into two pieces, i.e., an embedding
network and a task-specific network. The embedding network f : R → R10 consists of two hidden
ReLU layers of size 80 and a final fully connected layer of size 10. Each task-specific network
gi : R10 → R, i ∈ [n] is a one-layer linear layer. Therefore, the loss on an input x ∈ R and
y = ti(x) for task i is (gi(f(x)) − y)2, and the true loss of the network with parameters f, gi are
ℓi(f ; gi) = E(x,y)[(gi(f(x))− y)2]. The embedding network is as follows:

Input (R)
Linear FC Layer (output in R80)

ReLU
Linear FC Layer (output in R80)

ReLU
Linear FC Layer (output in R10)

Training: At each iteration, we first perform the inner loop optimization step (meta-training) by
sampling 10 shots from each of the tasks in order to update each of the task-specific network weights.
We use just 1 inner loop step. Pseudocode for the inner loop is shown below in PyTorch-style:

f o r t a s k i d i n t a s k l i s t :
xs , ys = s a m p l e b a t c h (t a s k i d , n s h o t s)
embedding = embedd ing ne twork (xs)
f o r i n r a n g e (n i n n e r) :

h e a d o p t i m i z e r s [t a s k i d] . z e r o g r a d ()
t o t a l l o s s = g e t l o s s (t a s k i d , xs , ys)
t o t a l l o s s . backward ()
h e a d o p t i m i z e r s [t a s k i d] . s t e p ()

For each outer loop optimization, we run a meta-validation batch again containing 10 shots from each
of the tasks. We then take an outer-loop step, optimizing the embedding weights using the results
of the meta-validation batch. The meta-validation batch is sampled in the exact same way as the
meta-training batch shown above.

Regularization: First, as in (Ji et al., 2020), we add weight regualarization during inner loop training
of the form ϵw

∑
w∈W ∥w∥, where W denotes the set of weight parameters, where ϵw = 0.01. In

PyTorch, this is expressed as

l 2 r e g c o n s t a n t = 0 . 0 1
f o r p i n heads [t a s k] . p a r a m e t e r s () :

l 2 r e g += p . norm (2)
t o t a l l o s s += l 2 r e g * l 2 r e g c o n s t a n t

Next, for the inner λ updates, we add a regularization term to the overall loss, −ϵλ
∑n

i=1(λi − 1
n)

2,
where ϵλ = 3, which pulls the λs closer to uniform. In PyTorch, the λ update is expressed as

t a s k g r a d i e n t = t a s k l o s s e s [i]
r e g g r a d i e n t = −mu lambda * (lambdas [t a s k] − 1 / n)
lambdas [t a s k] += (t a s k u p d a t e + r e g u p d a t e) * gamma

Parameters: For the Task-Robust version of the algorithm, we use α = 0.007, β = 0.005, γ =
0.003. For the standard version of the algorithm, we use α = 0.007, β = 0.011, γ = 0.003.

Loss curves: To approximate the true loss for measurement purposes, we use 100 equally-spaced
samples from [−5, 5]. After each iteration, we calculated the maximum loss among all the tasks. In
1c, we show the minimum of these maximum losses up until each epoch.

Results with more tasks: Finally, we show another figure similar to Figure 1, but with 20 training
tasks and 20 test tasks. It can be observed that both the task-robust training loss and the task-robust
testing loss greatly outperform their respective standard losses.

33

Published as a conference paper at ICLR 2023

Figure 3: Comparison of standard (min-avg) training and robust (min-max) training using 20 tasks

C.2 NONLINEAR REPRESENTATION LEARNING

We consider binary classification tasks generated from the FashionMNIST data set where we select 8
“easy” tasks (lowest log loss ∼ 0.3 from independent training) and 2 “hard” tasks (lowest loss ∼ 0.45
from independent training). We learn a shared representation network that maps the 784 dimensional
(vectorized 28×28 images) to a 100 dimensional space. Each tasks then learns a binary classifier on
top of this representation. The task specific objective gi for task i corresponds to the cross-entropy
loss on the training set, while the upper level objective fi corresponds to the loss of the y⋆i (x) with
the learned representation x on a validation set. We also maintain a heldout test set which we use to
evaluate the generalization of the learned representation and per-task models.

For our data, we had x ∈ R784×100 and y ∈ R100×2. We used step sizes α = 0.01, β = 0.01, and
γ = 0.3. We used batch sizes of 8 and 128 to compute gi for each inner step and fi for each outer
iteration, respectively. In addition, we included ℓ2-regularization of y with regularization penalty
0.0005. We used vanilla SGD with a learning rate scheduler (ReduceLROnPlateau), invoked every
100 outer iterations, with patience of 10. Each optimization was executed for 10000 outer iterations.
The results are generated by aggregation over runs with 10 different seeds.

C.3 HYPERPARAMETER OPTIMIZATION

In this application, we use learning rates α = 0.0001, β = 0.001, γ = 0.001 and 20000 outer
iterations. We use a batch size of 8 for both the inner and outer steps for each i ∈ [16] for the
initial experiment in figure 2a. The optimizer was vanilla SGD with a learning rate scheduler
(ReduceLROnPlateau), invoked every 100 outer iterations, with patience of 30. The results are
generated by aggregating over 10 runs with different seeds. For the other HPO experiments, the
number of tasks n and the batch sizes are discussed in the main text.

D ADDITIONAL TECHNICAL DETAILS

Here we provide further discussion on some technical aspects of the problem we are studying in this
paper.

34

Published as a conference paper at ICLR 2023

D.1 WEAK-CONVEXITY AND NON-CONVEXITY

We consider weakly convex UL objective, and here we discuss how it is related to non-convexity.
Weak convexity captures a class of non-convex problems. Weakly convex functions are not convex –
note difference in the following definitions (also in Appendix A.1, Assumptions 1 and 2). For any
convex function τ , there exists a µ ≥ 0 such that, for any x, x′ (x ̸= x′)

τ(x′) ≥ τ(x) + ⟨∇xτ(x), x
′ − x⟩+ µ∥x′ − x∥2, (170)

whereas, for a weakly-convex function κ, there exists ν > 0 such that, for any x, x′ (x ̸= x′)

κ(x′) ≥ κ(x) + ⟨∇xκ(x), x
′ − x⟩ − ν∥x′ − x∥2. (171)

Note the ”−ν” for a weakly-convex κ(·) instead of the ”+µ” for a convex τ(·) in the third term
on the right hand side of the above two inequalities. So κ(·) is clearly not convex. Moreover, note
that the ∥x′ − x∥2 term on the right-hand side of the inequality for the weakly-convex function is
strictly positive, implying that, for large enough ν, the inequality will be true for any function. We
provide convergence results which depend on the coefficient of weak-convexity (for our UL function
in question, it is denoted as µℓ), with slower rates for larger coefficients.

D.2 COMPARISON WITH HU ET AL. (2022)

Hu et al. (2022) may appear similar to our work at a glance, but we would like to clarify that the
differences are nontrivial as we are solving a different problem. We address this briefly in section 2
(Closely related and Concurrent Work), but we will elaborate further here to make the distinction
clearer.

At a high level, the problem in Hu et al. (2022) is not multi-objective: the authors explicitly call
it multi-block. They are still solving the single-objective min-max problem minx maxα f(x, α).
Hence the problem setup in Hu et al. (2022) cannot solve standard bilevel learning applications such
as representation learning and HPO; they choose AUC maximization as their motivating example
instead.

Now, we explain what may be a source of confusion: why it seems like they are solving a multi-
objective problem. Hu et al. (2022) start with the min-max problem minx maxα f(x, α) with strong
concavity in α, such as in AUC maximization. Then they make it bilevel to minx maxα f(x, y⋆(x), α)
subject to y⋆(x) = argminy g(x, y, α) by splitting the x variable and then further splitting into multi-
block to minx maxαi,i∈[n]

∑
i fi(x, y

⋆
i (x), αi). Here, each fi is strongly concave in αi. This is a

different problem setup than ours and does not include our problem formulation.

Therefore, the crucial difference is this: they study a single-objective problem minx maxα f(x, α),
and we consider the robust multi-objective bilevel problem minx maxi fi(x, y

⋆
i (x)). Their approach

seems similar at first glance because they are solving the single-objective problem in a bilevel,
multi-block way, but their problem class does not encompass the multi-objective one we consider.

D.3 IMPROVING THE SAMPLE COMPLEXITY OF MORBiT

There is a potential room for improvement in the sample complexity of MORBiT. In the n = 1 case,
our algorithm builds off of TTSA (Hong et al., 2020) with a O(1/ϵ2.5) complexity. The only existing
work in the n = 1 case with a better sample complexity in a single-loop constrained UL case is the
extremely recent STABLE (Chen et al., 2022b), achieving O(1/ϵ2). STABLE, has a much more
complex LL update than TTSA using variance reduction techniques. We are optimistic that more
complex algorithms like STABLE can be extended to the robust multi-objective bilevel optimization
setting with improved sample complexity.

D.4 WHY ROBUST minmax INSTEAD OF PARETO MULTI-OBJECTIVE OPTIMIZATION?

Bilevel optimization problems are ubiquitous in machine learning applications such as representation
learning and hyperparameter optimization, which is difficult to formulate as a single-level problem.
We consider standard stochastic bilevel problems such as these, formulating a natural robust multi-
objective version of these problems inspired by the benefits of robust multi-objective learning

35

Published as a conference paper at ICLR 2023

highlighted in Mehta et al. (2012) and Collins et al. (2020). These papers consider the robust multi-
objective view but do not study stochastic bilevel learning problems, which we do. Existing bilevel
optimization problems, however, are all single-objective rather than multi-objective.

The advantages of taking single objective problems and formulating them as robust multi-objective
problems have been highlighted in various works – see the literature cited in section 2 (Min-max
Robust Optimization in Machine Learning). To summarize, the main advantage is that we can
get guarantees on the worst-case performance instead of the usual average case performance (see
for example our generalization guarantees in Appendix B). If we just summed the objectives and
solved a single-objective problem, we would only be able to establish guarantees for the average-case
performance: maybe we would find a solution that is good for most tasks, but might do extremely
poorly on some. Moreover, at the lower level (LL) problem, there are different objectives for the
learners as the individual problem structures and data distributions are different, again forming a
natural multi-objective optimization (MOO) problem.

Much like our motivating existing literature on robust multi-objective learning, we focus on a
single robust solution instead of a set of Pareto optimal solutions since, in various applications, we
finally need select a single solution, and the robust (min max) solution provides stronger worst-case
guarantees than any Pareto-optimal solution, which is our main motivation.

Pareto frontiers can be very useful and informative, potentially allowing us to understand the tradeoff
between the multiple objectives. However, we would like to note that there are various forms of
solutions in multi-objective optimization. There are Pareto optimal solutions, but also “possibly
optimal” solutions (Wilson et al., 2015), convex coverage set of solutions (Yang et al., 2019), and
minmax robust solution (that we consider). The appropriate form of solution(s) would depend on
the application, and we are focusing on minmax applications, motivated by existing work such as
Mehta et al. (2012) and Collins et al. (2020), since a minmax solution can be shown to have good
generalization guarantees (as we have also shown in Appendix B).

Furthermore, while the Pareto frontier can be more informative and the Pareto curves better demon-
strate tradeoff between the objectives, it is important to note that, this curve is mostly intuitive with
obvious tradeoffs for n = 2 objectives. With n > 3 objectives, the Pareto frontier cannot even be
visualized, and one has to resort to pairwise comparisons, making it hard to reason about the tradeoffs
between objectives even for moderately high n since we will have to consider n2 such comparisons
(for example n ∼ O(10)). Therefore, given a Pareto front of solutions, it is not clear which of the
Pareto optimal solutions we should select.

One advantage of the minmax formulation (equation 2) is that it tries to seek a single solution
instead of a set of solutions. This allows us to use the solution for a new related problem (like for a
new related task in representation learning application or hyperparameter optimization application
in Franceschi et al. (2018)), we can use the robust minmax solution – we select the robust solution
for the shared UL variable x (the representation network or the hyperparameter configuration). With
a Pareto front, it is not clear which solution to pick for a new task since we would have a set of
solutions, without the knowledge of which one would be useful for a new task/objective.

Furthermore, while a solution on the Pareto frontier implies that there is no other solution that
“dominates” it, to the best of our knowledge, there is no guarantee that some solution on the obtained
Pareto frontier achieves the optimal value for the robust minmax objective maxi minx fi(x) unless
the Pareto frontier is completely dense, which is never the case. Multi-objective optimizers can return
a set of solutions on the Pareto frontier, but even uniformly covering the Pareto frontier requires the
size of the solution set to grow exponentially in the number of objectives n.

Finally, for nonconvex objective functions, the Pareto frontier refers to the Pareto stationarity rather
than Pareto optimality. Our considered first-order stationarity condition is defined on the weighted
average of the objective value, while the classical Pareto stationarity (please see Fernando et al. (2023,
equation (2)) and references therein) is measured on the size of the weighted average of the gradients.
The weighting vector in both of these two notations is optimized over a simplex. Therefore, the
stationarity condition of our proposed minmax formulation can be considered as one variant of
Pareto stationarity for nonconvex problems.

36

	Introduction
	Problem and Related Work
	Algorithm and Analysis
	MORBiT Algorithm
	Analysis

	Experimental Results
	Concluding Remarks
	Convergence Analysis of MORBiT
	Assumptions
	Main Theorem and Remarks
	Proof Plan
	Proof of Lemma 1 (Lemma 6)
	Proof of Lemma 2 (Lemma 7)
	Proof of Lemma 3 (Lemma 8)
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11

	Generalization Bounds
	Implementation details and Compute Resources
	Sinusoid Regression Task
	Nonlinear Representation Learning
	Hyperparameter optimization

	Additional Technical Details
	Weak-convexity and Non-convexity
	Comparison with hu2022multi
	Improving the Sample Complexity of MORBiT
	Why Robust minmax instead of Pareto Multi-Objective Optimization?

