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Abstract

Visual autoregressive modeling has recently demonstrated potential in image tasks
by enabling coarse-to-fine, next-level prediction. Most indoor 3D occupancy predic-
tion methods, however, continue to rely on dense voxel grids and convolution-heavy
backbones, which incur high computational costs when applying such coarse-to-
fine frameworks. In contrast, cost-efficient alternatives based on Gaussian rep-
resentations—particularly in the context of multi-scale autoregression—remain
underexplored. To bridge this gap, we propose DFGauss, a Dynamic Focused
masking framework for multi-scale 3D Gaussian representation. Unlike conven-
tional approaches that refine voxel volumes or 2D projections, DFGauss directly
operates in the 3D Gaussian parameter space, progressively refining representations
across resolutions under hierarchical supervision. Each finer-scale Gaussian is
conditioned on its coarser-level counterpart, forming a scale-wise autoregressive
process. To further enhance efficiency, we introduce an importance-guided re-
finement strategy that selectively propagates informative Gaussians across scales,
enabling spatially adaptive detail modeling. Experiments on 3D occupancy bench-
marks demonstrate that DFGauss achieves competitive performance, highlighting
the promise of autoregressive modeling for scalable 3D occupancy prediction.

1 Introduction

With the accelerating progress in embodied intelligence and the deployment of active agents across
domains such as robotics and autonomous navigation, spatial understanding has become a critical
capability for intelligent systems [6, 40, 12]. To navigate indoor environments effectively, embodied
agents must perform various perception tasks, among which occupancy prediction [38] plays a
fundamental role in enabling agents to interpret and interact with complex real-world spaces. A
key challenge in occupancy prediction lies in the trade-off between resolution and completeness:
Small voxel sizes can cause holes and missing details, while larger voxels lead to over-smoothed,
inaccurate geometry—issues that coarse-to-fine strategies address by progressively refining spatial
resolution and structural fidelity [30]. Inspired by how humans perceive visual information—from
global context to local detail in a hierarchical manner [29]—recent advances in autoregressive
modeling [29, 28, 23, 20, 13] have shown great promise for addressing coarse-to-fine generation in
2D vision tasks, suggesting strong potential for enhancing 3D occupancy prediction.

While some efforts have attempted to extend autoregressive modeling to 3D volumetric representa-
tions using dense voxel grids [33, 1], these approaches often incur substantial computational overhead,
limiting their scalability and generalizability. In contrast, efficient Gaussian-based representations of-
fer a promising alternative, as they are both lightweight and capable of delivering strong performance.
However, the autoregressive paradigm remains largely underexplored in the context of Gaussian-
based methods, leaving a gap in effectively leveraging hierarchical modeling within computationally
efficient 3D spatial frameworks.
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Figure 1: Overview of the proposed DFGauss framework. An embodied agent acquires egocentric
RGB observations while navigating the environment, which are transformed into multi-scale Gaussian
representations for autoregressive refinement. A selective masking strategy focuses computation
on informative regions. In the illustrated example, the model identifies a bed (shown in peach) and
ceiling (shown in dark red) through hierarchical Gaussian updates.

In this paper, we propose DFGauss, a Dynamic Focused masking framework for multi-scale 3D
Gaussian representation (Figure 1). Our novelty lies in multi-scale Gaussian Splatting approach
for 3D scene understanding that explicitly addresses the above mentioned issue through dynamic,
attention-guided refinement. The core novelty of DFGauss lies in applying hierarchical autoregressive
refinement directly to a sparse set of learnable 3D Gaussian primitives, avoiding reliance on dense
volumetric or grid-based features. Unlike classical autoregressive models [29] that generate discrete
tokens, DFGauss models spatial dependencies in a continuous space, where Gaussian parameters
at each finer scale are predicted based on coarser-level outputs and corresponding encoder features.
This mirrors the coarse-to-fine "next-scale prediction" strategy in Visual AutoRegressive (VAR)
modeling [29], while diverging in its application to continuous Gaussian fields for structured 3D
occupancy prediction. To improve efficiency, DFGauss incorporates a dynamic focused masking
mechanism that selectively updates only the most informative Gaussians at each level, reducing
computational cost without compromising reconstruction quality of this paradigm. Together, these
components form a unified framework for efficient and expressive 3D spatial modeling, leading to
the following contributions:

* A novel multi-scale autoregressive hierarchical 3D Gaussian Splatting framework that
enhances 3D occupancy prediction for embodied agents.

* A coarse-to-fine supervision strategy that progressively refines Gaussian parameters across
scales using multi-resolution labels.

* A dynamic focused masking mechanism that improves the efficiency of Gaussian refinement
by selectively updating informative regions.

» Extensive experiments on multiple datasets demonstrating state-of-the-art performance in
3D occupancy prediction.

2 Related Work

2.1 3D Occupancy Prediction for Embodied Agents

Among various 3D perception tasks, occupancy prediction has emerged as a compact and expres-
sive representation for modeling spatial semantics. While outdoor occupancy prediction has been
extensively studied in the context of autonomous driving [33, 41, 32, 21,9, 31, 4, 16], indoor envi-
ronments remain relatively underexplored despite their critical role in embodied Al and robotics.
MonoScene [3] proposes a voxel-based framework that infers occupancy from a single RGB image
using a 2D-to-3D U-Net architecture with contextual priors. To enable real-time exploration, Em-
bodiedOcc [34] introduces a Gaussian-based memory refinement scheme. However, most existing



approaches still rely on dense 3D voxel grids [33, 19, 18], and current Gaussian-based methods
remain in early stages of development. In particular, the rich features generated during Gaussian
splatting have not been fully exploited. In this work, we propose a novel framework that refines sparse
Gaussian features in a multi-scale autoregressive manner, combining the efficiency of Gaussian-based
representations with enhanced accuracy in occupancy prediction.

2.2 Multi-scale Autoregression

Recent advances in visual autoregressive modeling (VAR) introduce a multi-scale next-resolution
prediction strategy that amplifies supervision signals and enhances robustness, setting new bench-
marks in 2D generation efficiency and scalability [29, 22, 11, 5]. Inspired by this, recent works
have extended multi-scale modeling to 3D tasks such as occupancy prediction in autonomous driv-
ing. SurroundOcc [33], for instance, employs multi-scale 2D-3D attention to enable dense spatial
reasoning and supervision. NOMAE [1] introduces a multi-scale self-supervised framework for
LiDAR point clouds that focuses on localized occupancy reconstruction without modeling the full
3D volume. OctreeOcc [24] adopts an adaptive octree-based representation to support efficient and
fine-grained occupancy prediction while reducing computational cost. Despite their differences, these
methods rely on dense convolutional or transformer-based backbones. In contrast, the recent rise of
Gaussian Splatting offers a cost-effective and compact alternative for 3D scene representation via
continuous 3D Gaussian primitives. However, its integration with multi-scale optimization remains
underexplored. We posit that coarse-to-fine autoregressive modeling in the scale space—where
finer-scale representations are conditioned on coarser ones—provides an efficient and principled
approach for structured refinement in sparse 3D representations.

2.3 Gaussian Splatting

3D Gaussian Splatting [ 14] has recently emerged as a compelling alternative to traditional volumetric
and mesh-based rendering methods, offering real-time and high-fidelity radiance field rendering
via anisotropic Gaussian primitives. Building on this foundation, a series of follow-up works
aim to improve its efficiency and adaptability. Mip-Splatting [39] introduces a low-pass filtering
mechanism to mitigate aliasing artifacts caused by the sampling-sensitive nature of splats. Multi-scale
Gaussian Splatting [35] extends the framework to dynamic scenes by modeling object motion using
MLPs. Other works focus on redundancy reduction: LightGaussian [7] and Compact3DGS [17]
rank Gaussians by scale or opacity to prune uninformative primitives, significantly reducing memory
and computation costs. Motivated by this line of research, we propose a dynamic focus masking
mechanism that adaptively selects informative Gaussians across scales, enabling more efficient
and scalable optimization in multi-scale 3D spaces, particularly for structured scene understanding,
temporal consistency, and downstream prediction tasks in complex indoor environments with diverse
spatial layouts and semantic variations common in embodied Al applications.

3 Method

Our model converts 2D image features into 3D Gaussian representations via cross-attention and
sparse convolution. As illustrated in Figure 2, we introduce a hierarchical refinement framework
that jointly optimizes multi-scale image features and Gaussian parameters across spatial resolutions.
Given a monocular RGB image, a Hierarchical Feature Generation module extracts a multi-scale
feature pyramid. To provide geometric cues, we incorporate a depth prediction network [36] to
estimate depth maps at each level of the hierarchy. Each scale-specific feature map is then processed
by a corresponding Gaussian Encoder, which predicts initial Gaussian parameters. Inspired by prior
work [10, 34], we design a multi-scale Gaussian encoder that produces 3D Gaussians at different
resolutions directly from the image features. These parameters are progressively refined by a Multi-
Scale Gaussian Refinement module, where each level is conditioned on the output of the coarser scale
via attention-based fusion, forming an autoregressive refinement process. For global Gaussian update,
we adopt the same confidence-guided refinement strategy as in [34], selectively updating only the
Gaussians corresponding to the original resolution. Finally, lightweight Gaussian-to-Voxel decoders
apply 3D Gaussian splatting to project the refined Gaussians onto voxel grids, generating occupancy
volumes at each resolution. Supervision is provided across all scales using multi-resolution 3D
occupancy labels, facilitating effective learning of coarse-to-fine geometric structures. For training,
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Figure 2: Overview of the DFGauss framework. Given an indoor monocular RGB image, a Hi-
erarchical Feature Generation module extracts features at multiple granularity. These multi-scale
features are encoded into Gaussian parameters by an Multi-scale Gaussian Encoder. The Multi-Scale
Gaussian Refinement Module further optimizes these Gaussians across the hierarchy. Finally, a
Gaussian-to-Voxel decoder predicts 3D occupancy from the multi-scale features. Supervision is
provided by 3D occupancy labels at multiple resolutions.

we adopt the loss formulation from [10], combining Focal Loss, Lovasz Loss, Semantic-Scale Loss,
and Geometric-Scale Loss to jointly address class imbalance, boundary precision, and multi-scale
consistency. In summary, our framework establishes a fully image-based Gaussian representation
pipeline for monocular 3D occupancy prediction across multiple spatial granularities.

3.1 Multi-Scale Gaussian Encoder

Inspired by recent works [10, 34], we propose a Gaussian encoder that operates at each hierarchical
scale of the image feature pyramid. Given image features at a specific scale s, the encoder first initial-

izes a sparse set of 3D Gaussian primitives within camera frustum. Each Gaussian is parameterized

by a tuple ggs) = { i, i, ¢, 04, 1; }, where p; € R3 is the mean position, \; € R3 are scale factors,

¢; € R* is rotation quaternion, o; € R is the opacity, and 1; € R® are semantic logits over C classes.

To incorporate visual cues, each Gaussian is lifted into a high-dimensional feature space via a
feature alignment module, which integrates local image descriptors with geometric priors from a
depth-aware branch. These features are then refined through a combination of self-attention (among
Gaussians) and cross-attention (with multi-scale image features), enabling context-aware adaptation
to the observed scene geometry.

To extend this to a multi-scale design, we construct a hierarchy of Gaussian encoders {E(*)}5_,
operating over S scales of image features {F(S) sS:l’ ordered from coarse (s = 1) to fine (s = 5).

Each encoder E(*) predicts a set of Gaussians G(*) from its input features. Formally, we define:

N
G(S) = E(S)(F(S)aD(S))a G(S) = {gz(é)}il ) Vs € {17 cey S}a (1)

where D(*) is the predicted depth map at scale s, used for geometric alignment during Gaussian
(s)

initialization. Each g, is defined in 3D space, enabling sparse yet expressive representation.

This multi-scale Gaussian encoding framework allows each level to specialize in a different spatial
granularity, facilitating coarse-to-fine 3D understanding and efficient downstream refinement.

3.2 Hierarchical Multi-Scale Refinement in Gaussian Parameter Space

We propose to perform hierarchical refinement directly on the parameters of 3D Gaussians. This
representation offers three key advantages: (i) compactness—Gaussian primitives provide a sparse,



continuous encoding of the scene without voxel quantization artifacts; (ii) expressiveness—each
Gaussian captures both spatial location and geometric shape via learnable scale and orientation; and
(7ii) hierarchical alignment—different scales of Gaussians naturally correspond to varying levels of
scene abstraction. These properties make the Gaussian parameter space a compelling domain for
multi-resolution refinement, allowing the network to progressively increase spatial fidelity while
preserving semantic structure. The core innovation of our approach lies in shifting the multi-scale
refinement paradigm from dense voxel-based feature maps to a sparse, continuous set of learnable
3D Gaussians. By operating directly in the Gaussian parameter space, our method achieves finer
geometric detail, efficient memory scaling, and hierarchical abstraction across spatial resolutions.

We explicitly formulate this process as an autoregressive refinement hierarchy for 3D scene represen-
tation, where the Gaussian set at each scale s is conditioned on all coarser levels (1:s—1). Specifically,
we model the hierarchical dependency as:

p(G<S> ’Gu:sfl), @(1:S>) _ ﬁp(g(S) Gu:sfl)?@(s)) . )
s=1

Here, G() denotes the initial Gaussian set predicted at scale s, and G(*) represents its refined

version obtained by updating G ) with residual corrections guided by G(1**=1)_ This autoregressive
structure enables structured, scale-wise propagation of geometric and semantic information.

(1:s—

Given the coarse-to-fine Gaussian sets G 1) and the initial prediction G®), we compute residual

updates via a cross-attention fusion block:
AGH = ) (G0, 60), 3)
s)

where fa(nn denotes a learned attention-based MLP that integrates coarse geometric priors with initial
scale-s predictions for residual parameter refinement.

The refined Gaussian parameters at scale s are obtained by updating the initial predictions with
learned residuals. For position, scale, opacity, and semantic logits, we have

(49, X9 10) = (7 8, 37+ AN, o 4 8, 10 4 10)

(s)

The rotation is updated separately by refining the initial quaternion prediction ¢, with a learned

delta quaternion Aq'®):

qgs) = Normalize <éj§s) ® Aqgs)) ) ®)

where ® denotes quaternion multiplication and Normalize enforces the unit-norm constraint. Here,
qﬁs) is the initial rotation quaternion of the i-th Gaussian at scale s, Aqgs) is the learned quaternion

update, and q<s)

; 1s the final normalized quaternion rotation after refinement.

This formulation enables structured multi-scale refinement while maintaining geometric and semantic
coherence across scales and resolution levels.

3.3 Selective Gaussian Refinement Mask

To further enhance optimization efficiency, we introduce a Selective Gaussian Refinement Mask.
The core idea is to leverage coarse-scale importance cues to identify spatially relevant regions and
selectively refine only a sparse subset of fine-scale Gaussian parameters (Figure 3). By concentrating
computational resources on informative areas, this mask improves both efficiency and scalability for
training high-resolution 3D Gaussian fields.

Let GG—1 € RNs-1%xD and G(®) € RN:*P denote the Gaussian parameters at scales s—1 and s,
respectively. Rather than refining fine-scale Gaussians based on all N,_; coarse-scale anchors, we
identify and propagate information from a smaller, semantically relevant subset.

(s—l)

Percentile-Based Importance Selection. Each coarse anchor g

-1) . . .
score wgs ) via a learnable scoring function:

is assigned a scalar importance
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Figure 3: Illustration of the Selective Gaussian Refinement Mask. Coarse-scale Gaussians with
high importance scores are first selected (left) and then used to guide the refinement of fine-scale
Gaussians (right) through cross-scale attention.

(=) ¢ R. (6)

K3

7Y = ScoreNet(g!* ™),

(s—

‘We compute importance scores 7, Y for each coarse-scale anchor using a lightweight MLP-based

(s—1)

scoring function. We then retain the top-p% of anchors ranked by 7, , forming the index set:

Tselect = Topp ({77(S 1)} ) ) G£§1ei) = {ggs_l) |i€ Iselect} . @)

Here, we apply a soft index set corresponding to the top-p% of Gaussians [26, 2]. Let Zgeet €
REXNXK pe g 50ft index set, where B is the batch size, N is the number of Gaussians, and K is the
top-p% number of Gaussians. Each slice over the last dimension defines a distribution over the N
elements, indicating their soft selection probability of being in the top-p%. This formulation identifies
regions requiring further refinement, as Ggejeey € RBXKXD ig selected from the original matrix
G € REXNXD wwhere D is the feature dimension. During inference, we replace this relaxation with
a discrete Top,, operator for both memory and computational efficiency.

This subset serves as a coarse-to-fine attention mask that identifies regions requiring further refinement
in both geometry and semantics.

Cross-Scale Attention for Refinement. Let G(°) € RB*M*D and GS;ECP RBXKXD denote
the fine-scale and selected coarse-scale Gaussian sets, respectively, where B is the batch size, D is

the feature dimension, and M, K are the number of queried and key-value Gaussians per sample.

We apply a cross-scale attention mechanism as follows:

A(S) ((s—N\T
G( s) _ G( s) & SOftmaX(Gﬁne(GseleC[ ) > G(S_l). )

fine — fine

\/5 select

Here, & denotes the residual update operator in the Gaussian parameter space: quaternion components
are composed, while position, scale, opacity, and semantic logits are updated through element-wise

addition, consistent with Egs. (4)—(5).The resulting G retains the same shape (B, M, D).

fine

4 Experiment

We conduct experiments on three indoor occupancy prediction benchmarks: Occ-ScanNet [38],
EmbodiedOcc-ScanNet [34], and their respective smaller variants, Occ-ScanNet-mini [34] and
EmbodiedOcc-ScanNet-mini [34]. Occ-ScanNet and its mini version provide monocular RGB inputs
paired with voxel-level semantic labels within a frustum-aligned 3D space, supporting per-frame
local occupancy prediction in a static setting. In contrast, EmbodiedOcc-ScanNet introduces a
sequential and embodied formulation, where temporally continuous monocular observations enable
iterative refinement of global scene understanding. Each frame is labeled with a local occupancy
volume projected from a globally consistent ground-truth space, allowing both frame-wise supervision
and memory-based global prediction. Following standard protocols [38, 34, 33], we report Scene
Completion Intersection-over-Union (IoU) and mean Intersection-over-Union (mloU) across semantic
classes. Local metrics are computed within the camera frustum of each frame, while global metrics



Table 1: Local Prediction (Single-View) Results on the Occ-ScanNet dataset.
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Method Input | IoU ] ] ] || mloU
MonoScene [3] 2% | 41.60]15.17 4471 22.41 12.55 26.11 27.03 3591 2832 6.57 32.16 19.84]24.62
ISO [38] 2% 42,16 19.88 41.88 22.37 16.98 29.09 42.43 42.00 29.60 10.62 36.36 24.61|28.71
EmbodiedOcc [34] | 2 |53.95]40.90 50.80 41.90 33.00 41.20 55.20 61.90 43.80 35.40 53.50 42.90 | 45.48
Ours 2 | 55.28 | 42.23 52.95 43.23 34.20 43.20 56.73 63.81 45.66 35.92 5523 44.33|47.03

Table 2: Local Prediction Results on the Occ-ScanNet-mini dataset.

o0 % g ]

£ 5 = ] 8 ] s = g !

T & § § £ 2 %5 % 2 £ %
Method Input | IoU || ] | [ | mloU
MonoScene [3] 2% [ 41.90]17.00 4620 23.90 12.70 27.00 29.10 34.80 29.10 9.70 34.50 20.40|25.90
ISO [38] 2 [42.90(21.10 42.70 24.60 15.10 30.80 41.00 43.30 3220 12.10 35.90 25.10 |29.40
EmbodiedOcc [34] | " [53.80(29.10 48.70 42.30 38.70 42.00 62.70 60.60 48.20 33.80 58.00 46.50 | 46.40
Ours 2 [ 54.28|29.25 48.73 38.70 39.28 42.33 64.88 62.56 49.73 37.13 57.29 48.07 | 47.08

evaluate performance over the union of explored regions, capturing the model’s ability to maintain
spatial consistency over time.

While our primary focus is on indoor occupancy prediction, we further assess the generalization
capability of our approach on outdoor scenarios using publicly available datasets. These additional
experiments underscore the broader applicability of our method. Experimental details and additional
evaluation results are provided in Appendix.

4.1 Main Results

Local Prediction (Single-View) Results. In the single-view setting, DFGauss consistently outper-
forms prior baselines across datasets of varying scales. On the Occ-ScanNet benchmark (Table 1), our
method achieves an IoU of 55.28 and mIoU of 47.03, surpassing the Gaussian-based baseline [34]
by 1.33% and 1.55% respectively. This highlights the advantage of our multi-scale autoregressive
Gaussian refinement. On the smaller-scale Occ-ScanNet-mini dataset (Table 2), DFGauss further
improves performance with an IoU of 54.28 and mIoU of 47.08, outperforming all voxel-based and
Gaussian-based baselines. These consistent gains across both full and mini variants demonstrate the
robustness and scalability of our approach for local occupancy prediction. These results demonstrate
that the hierarchical multi-scale design of DFGauss enables robust generalization under limited
training data and across diverse model architectures and input modalities.

Global Prediction (Continuous-View) Results. In the continuous-view setting, DFGauss also
outperforms the Gaussian-based baseline (Table 3). The proposed multi-scale refinement enhances
scene detail modeling and facilitates better alignment between the current view and previously
observed frames. On the EmbodiedOcc and EmbodiedOcc-mini datasets, DFGauss surpasses the
single-scale Gaussian baseline(Table 4), achieving a 1.36% improvement in embodied mloU and a
1.44% gain in mloU on the mini subset. These results highlight the robustness of DFGauss and the
effectiveness of hierarchical multi-scale regression in capturing fine-grained temporal and spatial
context through dynamic, agent-centric environments.

4.2 Ablation Study

Component-Wise Ablation. In the component-wise ablation study (Table 5), DFGauss achieves the
highest performance when both the multi-scale regression module and the dynamic masking strategy
are integrated. Compared to the vanilla model, introducing the multi-scale regression alone improves
IoU by 1.85% and mloU by 0.78%. When the dynamic mask is further applied, the gains increase to



Table 3: Global Prediction (Continuous-View) Results on the EmbodiedOcc-ScanNet Dataset.

2 =1

2 g L N 2 £

= = R s = 2

3 & : % £ % % 3 :z 5 %
Method Input| IoU | W | | | mloU
SplicingOcc 2% [49.01]31.60 38.80 35.50 36.30 47.10 54.50 57.20 34.40 32.50 51.20 29.10]|40.74
EmbodiedOcc[34] | 2™ |51.52(22.70 44.60 37.40 39.00 50.10 56.70 59.70 35.40 38.40 52.00 32.90|42.53
Ours 2% |53.80(26.35 46.22 36.73 39.22 50.37 57.41 60.21 37.50 42.22 53.20 33.25|43.89

Table 4: Global Prediction Results on the EmbodiedOcc-ScanNet-mini dataset.

2 2 E.

= 5 = B g = E o
Method Input| IoU | ® | | u mloU
SplicingOcc z' |48.80[29.00 37.60 37.30 26.80 44.50 66.00 52.70 40.80 36.60 54.50 27.90 | 41.20
EmbodiedOcc [34] | 2 |50.70 | 21.50 44.50 38.30 27.90 46.90 64.70 55.30 42.70 35.80 52.50 27.50 | 41.60
Ours ' [52.32(22.73 44.80 38.70 30.21 47.12 65.10 55.62 43.21 37.83 55.24 32.83 | 43.04

2.71% in IoU and 1.13% in mIoU. These results indicate that the multi-scale hierarchy effectively
refines the details of occupancy prediction, while the dynamic mask focuses computation on regions
requiring the most refinement.

Mask Ratio Ablation. In the mask ratio ablation study (Table 6), we observe that increasing the mask
ratio up to 50% consistently improves both local and global performance metrics, indicating that
denser refinement improves representational quality. However, beyond this point, further increases do
not yield consistent gains and may slightly degrade performance, likely due to overly sparse Gaussian
selections limiting effective refinement. Additionally, lower mask ratios lead to reductions in memory
usage, reflecting the efficiency benefits of selectively refining only the most informative regions.

Hierarchy Level Ablation. As shown in the hierarchy level ablation (Table 7), performance steadily
improves with increasing refinement depth up to level 4, after which the gains plateau or slightly
decline under a fixed masking ratio. Notably, the latency increases gradually—from 165 ms to
287 ms—as the refinement depth grows, indicating that deeper hierarchies incur only moderate
computational overhead. This suggests that our Gaussian-based framework enables scalable multi-
scale refinement while maintaining reasonable inference efficiency.

Table 6: Effect of mask ratio on inference

Table 5: Ablation on the Components memory and performance

| Local Metric | Global Metric

‘ Local Metric ‘ Global Metric

I\S/ICllallté— Mask ToU mloU IoU mloU Ratio% Memory ‘ IoU mloU ‘ IoU  mloU
80 5328 M | 54.03 46.12 | 53.83 4347

- - 5233  46.20 | 51.33 4246 70 5524M | 55.82 46.54 | 53.72 43.63

v - 5432 46.65 | 53.04 4321 60 5732M | 5528 47.03 | 53.80 43.89
v v 55.28 47.03 | 53.80 43.89 50 5998 M | 55.68 46.93 | 53.76 43.58
40 6179M | 54.84 46.73 | 5342 4321

4.3 Qualitative Results

Figure 4 presents qualitative results on the Occ-ScanNet dataset. Compared to the Gaussian-based
baseline without autoregressive hierarchy, DFGauss captures more fine-grained structures in the
target space, demonstrating the benefit of multi-scale refinement in improving spatial detail.



Table 7: Ablation on hierarchical depth; depth 1 is the baseline without refinement.
‘ Local Metric ‘ Global Metric

Depth  Latency (ms) ‘ IoU mIoU‘ IoU mloU

1 165 52.33  46.20 | 51.33 42.46
2 193 54.67 46.88 | 52.25 4295
3 232 55.28 47.03 | 53.8 43.89
4 268 55.89 46.78 | 53.65 43.72
5 287 55.13 46.83 | 53.83 43.62

scene0040_00

Figure 4: Qualitative results on Occ-ScanNet: (a) Input, (b) GT, (c) EmbodiedOcc, (d) DFGauss.

5 Limitation and Future Work

In this paper, we primarily focus on a Gaussian-based model architecture for monocular indoor
occupancy prediction. However, extending this framework to multi-view indoor perception [34]
remains an open direction and is not explored in this work. Additionally, the proposed mechanism
could be applied to a broader range of point cloud tasks, such as panoptic segmentation [25, 37],
semantic segmentation [27], occupancy prediction [38], and 3D scene completion [15, &]. In future
work, we plan to extend our experiments to these 3D scene understanding tasks to further investigate
the potential of multi-scale Gaussian representations across diverse domains.

6 Conclusion

We present DFGauss, a multi-scale autoregressive Gaussian framework for 3D occupancy prediction.
Unlike traditional approaches that rely on dense volumetric multi-scale regression, our method focuses
on learning in the Gaussian parameter space across scales—a sparse and efficient representation
that remains underexplored. To further enhance both accuracy and efficiency, we introduce a
selective, dynamically focused refinement mask that prioritizes informative regions during hierarchical
refinement. Extensive experiments demonstrate that our approach improves occupancy prediction
performance while also reducing computational overhead. We hope that this framework inspires
future research on efficient and expressive 3D scene understanding.
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Section 3, primarily centered around a novel multi-scale autoregressive Gaussian refinement
framework for 3D occupancy prediction.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes,Please see Sec. 5.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
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* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide the methodological details of our approach in Section 3,
and further elaborate on the implementation specifics in Appendix ??. Our method is
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* The answer NA means that the paper does not include experiments.
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If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Our code will be released upon paper acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide details of the dataset splits in Appendix ??, and the hyperpa-
rameter settings in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: No, the baselines do not report error bars. Reproducing all baseline results and
all experiments in our study with sufficient runs to report error bars is also impractical due
to computational constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we report these details in Appendix, including the type of compute hard-
ware used. We also provide memory consumption and runtime statistics related information
in Tables 6, 7, and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, our work is conducted with NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: To the best of our knowledge, we do not foresee societal impacts of our work.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite the used existing datasets and models.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed descriptions about our method. Our code will be released
upon paper acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subject involved
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: the core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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