
Published as a conference paper at ICLR 2024

QUADRATIC MODELS FOR UNDERSTANDING CATAPULT
DYNAMICS OF NEURAL NETWORKS

Libin Zhu1,2, Chaoyue Liu2, Adityanarayanan Radhakrishnan3, Mikhail Belkin1,2

1Department of Computer Science, UC San Diego
2Halicioğlu Data Science Institute, UC San Diego

3Harvard & Broad Institute of MIT and Harvard
2{libinzhu,ch1212,mbelkin}@ucsd.edu

3aradha@mit.edu

ABSTRACT

While neural networks can be approximated by linear models as their width in-
creases, certain properties of wide neural networks cannot be captured by linear
models. In this work we show that recently proposed Neural Quadratic Models
can exhibit the “catapult phase” (Lewkowycz et al., 2020) that arises when train-
ing such models with large learning rates. We then empirically show that the
behaviour of neural quadratic models parallels that of neural networks in general-
ization, especially in the catapult phase regime. Our analysis further demonstrates
that quadratic models can be an effective tool for analysis of neural networks.

1 INTRODUCTION

A recent remarkable finding on neural networks, originating from Jacot et al. (2018) and termed as
the “transition to linearity” (Liu et al., 2020), is that, as network width goes to infinity, such models
become linear functions in the parameter space. Thus, a linear (in parameters) model can be built to
accurately approximate wide neural networks under certain conditions. While this finding has helped
improve our understanding of trained neural networks (Du et al., 2019; Nichani et al., 2021; Zou &
Gu, 2019; Montanari & Zhong, 2020; Ji & Telgarsky, 2019; Chizat et al., 2019), not all properties
of finite width neural networks can be understood in terms of linear models, as is shown in several
recent works (Yang & Hu, 2020; Ortiz-Jiménez et al., 2021; Long, 2021; Fort et al., 2020). In this
work, we show that properties of finitely wide neural networks in optimization and generalization
that cannot be captured by linear models are, in fact, manifested in quadratic models.

The training dynamics of linear models with respect to the choice of the learning rates1 are well-
understood (Polyak, 1987). Indeed, such models exhibit linear training dynamics, i.e., there exists
a critical learning rate, ηcrit, such that the loss converges monotonically if and only if the learning
rate is smaller than ηcrit (see Figure 1a).

Recent work Lee et al. (2019) showed that the training dynamics of a wide neural network f(w;x)
can be accurately approximated by that of a linear model flin(w;x):

flin(w;x) = f(w0;x) + (w −w0)T∇f(w0;x), (1)

where ∇f(w0;x) denotes the gradient2 of f with respect to trainable parameters w at an ini-
tial point w0 and input sample x. This approximation holds for learning rates less than ηcrit ≈
2/‖∇f(w0;x)‖2, when the width is sufficiently large.

However, the training dynamics of finite width neural networks, f , can sharply differ from those
of linear models when using large learning rates. A striking non-linear property of wide neural

1Unless stated otherwise, we always consider the setting where models are trained with squared loss using
gradient descent.

2For non-differentiable functions, e.g. neural networks with ReLU activation functions, we define the gra-
dient based on the update rule used in practice. Similarly, we use Hf to denote the second derivative of f in
Eq. (2).

1

Published as a conference paper at ICLR 2024

(a) (b)

Figure 1: Optimization dynamics for linear and non-linear models based on choice of learning
rate. (a) Linear models either converge monotonically if learning rate is less than ηcrit and diverge
otherwise. (b) Unlike linear models, finitely wide neural networks and NQMs Eq. (2) (or general
quadratic models Eq. (3)) can additionally observe a catapult phase when ηcrit < η < ηmax.

(a) Optimization dynamics for f (wide neural networks): linear
dynamics and catapult dynamics.

(b) Generalization performance for
f , flin and fquad.

Figure 2: (a) Optimization dynamics of wide neural networks with sub-critical and super-
critical learning rates. With sub-critical learning rates (0 < η < ηcrit), the tangent kernel of
wide neural networks is nearly constant during training, and the loss decreases monotonically. The
whole optimization path is contained in the ball B(w0, R) := {w : ‖w −w0‖ ≤ R} with a finite
radius R. With super-critical learning rates (ηcrit < η < ηmax), the catapult phase happens: the
loss first increases and then decreases, along with a decrease of the norm of the tangent kernel .
The optimization path goes beyond the finite radius ball. (b) Test loss of fquad, f and flin plotted
against different learning rates. With sub-critical learning rates, all three models have nearly
identical test loss for any sub-critical learning rate. With super-critical learning rates, f and fquad
have smaller best test loss than the one with sub-critical learning rates. Experimental details are in
Appendix N.5.

networks discovered in Lewkowycz et al. (2020) is that when the learning rate is larger than ηcrit
but smaller than a certain maximum learning rate, ηmax, gradient descent still converges but experi-
ences a “catapult phase.” Specifically, the loss initially grows exponentially and then decreases after
reaching a large value, along with the decrease of the norm of tangent kernel (see Figure 2a), and
therefore, such training dynamics are non-linear (see Figure 1b).

As linear models cannot exhibit such a catapult phase, under what models and conditions does
this phenomenon arise? The work of Lewkowycz et al. (2020) first observed the catapult phase
phenomenon in finite width neural networks and analyzed this phenomenon for a two-layer linear
neural network. However, a theoretical understanding of this phenomenon for general non-linear
neural networks remains open. In this work, we utilize a quadratic model as a tool to shed light on
the optimization and generalization discrepancies between finite and infinite width neural networks.
We define Neural Quadratic Model (NQM) by the second order Taylor series expansion of f(w;x)
around the point w0:

NQM : fquad(w) = f(w0) + (w −w0)T∇f(w0) +
1

2
(w −w0)THf (w0)(w −w0). (2)

Here in the notation we suppress the dependence on the input data x, andHf (w0) is the Hessian of f
with respect to w evaluated at w0. Note that fquad(w) = flin(w)+ 1

2 (w−w0)THf (w0)(w−w0).

2

Published as a conference paper at ICLR 2024

Indeed, we note that NQMs are contained in a more general class of quadratic models:

General Quadratic Model : g(w;x) = wTφ(x) +
1

2
γwTΣ(x)w, (3)

where w are trainable parameters and x is input data. We discuss the optimization dynamics of such
general quadratic models in Section 3.3 and show empirically that they exhibit the catapult phase
phenomenon in Appendix N.4. Note that the two-layer linear network analyzed in Lewkowycz et al.
(2020) is a special case of Eq. (3), when φ(x) = 0 (See Appendix M).

Main Contributions. We prove that NQMs, fquad, which approximate shallow fully-connected
ReLU activated neural networks, exhibit catapult phase dynamics. Specifically, we analyze the opti-
mization dynamics of fquad by deriving the evolution of fquad and the tangent kernel during gradient
descent with squared loss, for a single training example and multiple uni-dimensional training ex-
amples. We identify three learning rate regimes yielding different optimization dynamics for fquad,
which are (1) converging monotonically (linear dynamics); (2) converging via a catapult phase (cat-
apult dynamics); and (3) diverging. We provide a number of experimental results corroborating our
theoretical analysis (See Section 3).

We then empirically show that NQMs, for the architectures of shallow (see Figure 2b as an example)
and deep networks, have better test performances when catapult dynamics happens. While this
was observed for some synthetic examples of neural networks in Lewkowycz et al. (2020), we
systematically demonstrate the improved generalization of NQMs across a range of experimental
settings. Namely, we consider fully-connected and convolutional neural networks with ReLU and
other activation functions trained with GD/SGD on multiple vision, speech and text datatsets (See
Section 4).

To the best of our knowledge, our work is the first to analyze the non-linear wide neural networks
in the catapult regime through the perspective of the quadratic approximation. While NQMs (or
quadratic models) were proposed and analyzed in Roberts et al. (2022), our work focuses on the
properties of NQMs in the large learning rate regime, which has not been discussed in Roberts et al.
(2022). Similarly, the following related works did not study catapult dynamics. Huang & Yau (2020)
analyzed higher order approximations to neural networks under gradient flow (infinitesimal learning
rates). Bai & Lee (2019) studied different quadratic models with randomized second order terms and
Zhang et al. (2019) considered the loss in the quadratic form, where no catapult phase happens. A
recent work showed the existence of the catapult phase in two-layer, homogenous networks Meltzer
& Liu (2023).

Discontinuity in dynamics transition. In the ball B(w0, R) := {w : ‖w − w0‖ ≤ R} with
constant radius R > 0, the transition to linearity of a wide neural network (with linear output layer)
is continuous in the network width m. That is, the deviation from the network function to its linear
approximation within the ball can be continuously controlled by the Hessian of the network function,
i.e. Hf , which scales with m (Liu et al., 2020):

‖f(w)− flin(w)‖ ≤ sup
w∈B(w0,R)

‖Hf (w)‖R2 = Õ(1/
√
m). (4)

Using the inequality from Eq. (4), we obtain ‖fquad − flin‖ = Õ(1/
√
m), hence fquad transitions

to linearity continuously as well in B(w0, R)3. Given the continuous nature of the transition to
linearity, one may expect that the transition from non-linear dynamics to linear dynamics for f and
fquad is continuous in m as well. Namely, one would expect that the domain of catapult dynamics,
[ηcrit, ηmax], shrinks and ultimately converges to a single point, i.e., ηcrit = ηmax, as m goes to in-
finity, with non-linear dynamics turning into linear dynamics. However, as shown both analytically
and empirically, the transition is not continuous, for both network functions f and NQMs fquad,
since the domain of the catapult dynamics can be independent of the width m (or γ). Additionally,
the length of the optimization path of f in catapult dynamics grows with m since otherwise, the
optimization path could be contained in a ball with a constant radius independent of m, in which f
can be approximated by flin. Since the optimization of flin diverges in catapult dynamics, by the ap-
proximation, the optimization of f diverges as well, which contradicts the fact that the optimization
of f can converge in catapult dynamics (See Figure 2a).

3For general quadratic models in Eq. (3), the transition to linearity is continuously controlled by γ.

3

Published as a conference paper at ICLR 2024

2 NOTATION AND PRELIMINARY

We use bold lowercase letters to denote vectors and capital letters to denote matrices. We denote the
set {1, 2, · · · , n} by [n]. We use ‖ ·‖ to denote the Euclidean norm for vectors and the spectral norm
for matrices. We use � to denote element-wise multiplication (Hadamard product) for vectors. We
use λmax(A) and λmin(A) to denote the largest and smallest eigenvalue of a matrix A, respectively.

Given a model f(w;x), where x is input data and w are model parameters, we use∇wf to represent
the partial first derivative ∂f(w;x)/∂w. When clear from context, we let ∇f := ∇wf for ease
of notation. We use Hf and HL to denote the Hessian (second derivative matrix) of the function
f(w;x) and the loss L(w) with respect to parameters w, respectively.

In the paper, we consider the following supervised learning task: given training data {(xi, yi)}ni=1

with data xi ∈ Rd and labels yi ∈ R for i ∈ [n], we minimize the empirical risk with the squared
loss L(w) = 1

2

∑n
i=1(f(w;xi) − yi)

2. Here f(w; ·) is a parametric family of models, e.g., a
neural network or a kernel machine, with parameters w ∈ Rp. We use full-batch gradient descent to
minimize the loss, and we denote trainable parameters w at iteration t by w(t). With constant step
size (learning rate) η, the update rule for the parameters is:

w(t+ 1) = w(t)− η dL(w)

dw
(t), ∀t ≥ 0.

Definition 1 (Tangent Kernel). The tangent kernel K(w; ·, ·) of f(w; ·) is defined as

K(w;x, z) = 〈∇f(w;x),∇f(w; z)〉, ∀x, z ∈ Rd. (5)

In the context of the optimization problem with n training examples, the tangent kernel matrix
K ∈ Rn×n satisfies Ki,j(w) = K(w;xi,xj), i, j ∈ [n]. The critical learning rate for optimization
is given as follows.
Definition 2 (Critical learning rate). With an initialization of parameters w0, the critical learning
rate of f(w; ·) is defined as

ηcrit := 2/λmax(HL(w0)). (6)

A learning rate η is said to be sub-critical if 0 < η < ηcrit or super-critical if ηcrit < η < ηmax.
Here ηmax is the maximum leaning rate such that the optimization of L(w) initialized at w0 can
converge.
Dynamics for Linear models. When f is linear in w, the gradient, ∇f , and tangent kernel are
constant: K(w(t)) = K(w0). Therefore, gradient descent dynamics are:

F (w(t+ 1))− y = (I − ηK(w0))(F (w(t))− y), ∀t ≥ 0, (7)

where F (w0) = [f1(w0), ..., fn(w0)]T with fi(w0) = f(w0;xi).

Noting that HL(w0) = ∇F (w0)T∇F (w0) and that tangent kernel K(w0) = ∇F (w0)∇F (w0)T

share the same positive eigenvalues, we have λmax(HL(w0)) = λmax(K(w0)), and hence,

ηcrit = 2/λmax(K(w0)). (8)

Therefore, from Eq. (7), if 0 < η < ηcrit, the loss L decreases monotonically and if η > ηcrit, the
loss L keeps increasing. Note that the critical and maximum learning rates are equal in this setting.

3 OPTIMIZATION DYNAMICS IN NEURAL QUADRATIC MODELS

In this section, we analyze the gradient descent dynamics of the NQM corresponding to a two-layer
fully-connected neural network. We show that, unlike a linear model, the NQM exhibits a catapult
dynamics: the loss increases at the early stage of training then decreases afterwards. We further
show that the top eigenvalues of the tangent kernel typically become smaller as a consequence of
the catapult.

Neural Quadratic Model (NQM). Consider the NQM that approximates the following two-layer
neural network:

f(u,v;x) =
1√
m

m∑
i=1

viσ

(
1√
d
uTi x

)
, (9)

4

Published as a conference paper at ICLR 2024

where ui ∈ Rd, vi ∈ R for i ∈ [m] are trainable parameters, x ∈ Rd is the input, and σ(·) is
the ReLU activation function. We initialize ui ∼ N (0, Id) and vi ∈ Unif[{−1, 1}] for each i
independently. Letting g(u,v;x) := fquad(u,v;x), this NQM has the following expression (See
the full derivation in Appendix A):

g(u,v;x) = f(u0,v0;x) +
1√
md

m∑
i=1

v0,i(ui − u0,i)
Tx1{uT0,ix≥0} +

1√
md

m∑
i=1

(vi − v0,i)σ
(
uT0,ix

)
+

1√
md

m∑
i=1

(vi − v0,i)(ui − u0,i)
Tx1{uT0,ix≥0}. (10)

Given training data {xi, yi}ni=1, we minimize the empirical risk with the squared loss L(w) =
1
2

∑n
i=1(g(w;xi)−yi)2 using GD with constant learning rate η. Throughout this section, we denote

g(u(t),v(t);x) by g(t) and its tangent kernelK(u(t),v(t)) byK(t), where t is the iteration of GD.
We assume ‖xi‖ = O(1) and |yi| = O(1) for i ∈ [n], and we assume the width of f is much larger
than the input dimension d and the data size n, i.e., m � max{d, n}. Hence, d and n can be
regarded as small constants. In the whole paper, we use the big-O and small-o notation with respect
to the width m. Below, we start with the single training example case, which already showcases the
non-linear dynamics of NQMs.

3.1 CATAPULT DYNAMICS WITH A SINGLE TRAINING EXAMPLE

In this subsection, we consider training dynamics of NQM Eq. (10) with a single training example
(x, y) where x ∈ Rd and y ∈ R. In this case, the tangent kernel matrix K reduces to a scalar, and
we denote K by λ to distinguish it from a matrix.

By gradient descent with step size η, the updates for g(t)−y and λ(t), which we refer to as dynamics
equations, can be derived as follows (see the derivation in Appendix B.1):

Dynamics equations.

g(t+ 1)− y =

1− ηλ(t) +
‖x‖2

md
η2(g(t)− y)g(t)︸ ︷︷ ︸

Rg(t)

 (g(t)− y) := µ(t)(g(t)− y), (11)

λ(t+ 1) = λ(t)− η ‖x‖
2

md
(g(t)− y)2

(
4

g(t)

g(t)− y
− ηλ(t)

)
︸ ︷︷ ︸

Rλ(t)

, ∀t ≥ 0. (12)

Note that as the loss is given by L(t) = 1
2 (g(t) − y)2, to understand convergence, it suffices to

analyze the dynamics equations above. Compared to the linear dynamics Eq. (7), this non-linear
dynamics has extra terms Rg(t) and Rλ(t), which are induced by the non-linear term in the NQM.
We will see that the convergence of gradient descent depends on the scale and sign of Rg(t) and
Rλ(t). For example, for constant learning rate that is slightly larger than ηcrit (which would result
in divergence for linear models), Rλ(t) stays positive during training, resulting in both monotonic
decrease of tangent kernel λ and the loss.

As λ(t) = λ0−
∑t−1
τ=0Rλ(τ), to track the scale of |µ(t)|, we will focus on the scale and sign ofRg(t)

and Rλ(t) in the following analysis. For the scale of λ0, which is non-negative by Definition 1, we
can show that with high probability over random initialization, |λ0| = Θ(1) (see Appendix I). And
|g(0)| = O(1) with high probability as well Du et al. (2018). Therefore the following discussion is
with high probability over random initialization. We start by establishing monotonic convergence
for sub-critical learning rates.

Monotonic convergence: sub-critical learning rates (η < 2/λ0 = ηcrit). The key observation
is that when |g(t)| = O(1), and λ(t) = Θ(1), |Rg(t)| and |Rλ(t)| are of the order o(1). Then, the
dynamics equations approximately reduce to the ones of linear dynamics:

g(t+ 1)− y = (1− ηλ(t) + o(1)) (g(t)− y),

λ(t+ 1) = λ(t) + o(1).

5

Published as a conference paper at ICLR 2024

Note that at initialization, the output satisfies |g(0)| = O(1), and we have shown λ0 = Θ(1).
With the choice of η, we have for all t ≥ 0, |µ(t)| = |1 − ηλ(t) + o(1)| < 1; hence,
|g(t) − y| decreases monotonically. The cumulative change on the tangent kernel will be o(1),
i.e.,

∑
t |Rλ(t)| = o(1), since for all t, |Rλ(t)| = O(1/m) and the loss decreases exponentially

hence
∑
|Rλ(t)| = O(1/m) · logO(1) = o(1). See Appendix C for a detailed discussion.

Catapult convergence: super-critical learning rates (ηcrit = 2/λ0 < η < 4/λ0 = ηmax). The
training dynamics are given by the following theorem.

Theorem 1 (Catapult dynamics on a single training example). Consider training the NQM Eq. (10)
with squared loss on a single training example by GD. With a super-critical learning rate η ∈[
2+ε
λ0
, 4−ελ0

]
where ε = Θ

(
logm√
m

)
, the catapult happens: with high probability over random initial-

ization, the loss increases to the order of Ω
(
m(ηλ0−2)2

logm

)
then decreases to O(1).

Proof of Theorem 1. We use the following transformation of the variables to simplify notations.

u(t) =
‖x‖2

md
η2(g(t)− y)2, w(t) =

‖x‖2

md
η2(g(t)− y)y, v(t) = ηλ(t).

Then the Eq. (11) and Eq. (12) are reduced to

u(t+ 1) = (1− v(t) + u(t) + w(t))2u(t) := κ(t)u(t), (13)
v(t+ 1) = v(t)− u(t)(4− v(t))− 4w(t). (14)

At initialization, since |g(0)| = O(1), we have u(0) = O
(

1
m

)
and w(0) = O

(
1
m

)
. Note that by

definition, for all t ≥ 0, u(t) ≥ 0 and we have v(t) ≥ 0 since λ(t) is the tangent kernel for a single
training example.

In the following, we will analyze the above dynamical equations. To make the analysis more under-
standable, we separate the dynamics during training into increasing phase and decreasing phase. We
denote δ := (η − ηcrit)λ0 = ηλ0 − 2.

Increasing phase. In this phase, |u(t)| increases exponentially from O
(

1
m

)
to Θ

(
δ2

logm

)
and

|v(t)− v(0)| = O
(

δ
logm

)
. This can be shown by the following lemma.

Lemma 1. For T > 0 such that supt∈[0,T] u(t) = O
(

δ2

logm

)
, u(t) increases exponentially with

inft∈[0,T] κ(t) ≥
(

1 + δ −O
(

δ
logm

))2
> 1 and supt∈[0,T] |v(t)− v(0)| = O

(
δ

logm

)
.

Proof. See the proof in Section D.

After the increasing phase, based on the order of u(t) we can infer the order of loss is Θ
(
mδ2

logm

)
.

Decreasing phase. When u(t) is sufficiently large, v(t) will have non-negligible decrease which
leads to the decreasing of κ(t), hence in turn making u(t) decrease as well. Consequently, we have:

Lemma 2. There exists T ∗ > 0 such that u(T ∗) = O
(

1
m

)
.

Proof. See the proof in Section E.

Then accordingly, the loss is of the order O(1).

Once the loss decreases to the order ofO(1), the catapult finishes and we in general have η < 2/λ(t)
as |µ(t)| = |1−ηλ(t)+Rg(t)| < 1 where |Rg(t)| = O(L(t)/m) = O(1/m). Therefore the training
dynamics fall into linear dynamics, and we can use the same analysis for sub-critical learning rates
for the remaining training dynamics. The stableness of the steady-state equilibria of dynamical
equations can be guaranteed by the following:

Theorem 2. For dynamical equations Eq. (11) and (12), the stable steady-state equilibria satisfy
g(t) = y (i.e.,loss is 0), and λ(t) ∈ [ε, 2/η − ε] with ε = Θ(logm/

√
m).

6

Published as a conference paper at ICLR 2024

Divergence (η > ηmax = 4/λ0). Initially, it follows the same dynamics with that in the increasing
phase in catapult convergence: |g(t)− y| increases exponentially as |µ(t)| > 1 and the λ(t) almost
does not change asRλ(t) is small. However, note thatRλ(t) > 0 since 1) g(t)/(g(t)−y) ≈ 1 when
g(t) becomes large and 2) η > 4/λ(t). Therefore, λ(t) keeps increasing during training, which
consequently leads to the divergence of the optimization. See Appendix G for a detailed discussion.

3.2 CATAPULT DYNAMICS WITH MULTIPLE TRAINING EXAMPLES

In this subsection we show the catapult phase will happen for NQMs Eq. (9) with multiple training
examples. We assume unidimensional input data, which is common in the literature and simplifies
the analysis for neural networks (see for example Williams et al. (2019); Savarese et al. (2019)).

Assumption 1. The input dimension d = 1 and not all xi is 0, i.e.,
∑
|xi| > 0.

We similarly analyze the dynamics equations with different learning rates for multiple training ex-
amples (see the derivation of Eq. (22) and (23) in Appendix) which are update equations of g(t)−y
and K(t). And similarly, we show there are three training dynamics: monotonic convergence, cata-
pult convergence and divergence.

In the analysis, we consider the training dynamics projected to two orthogonal eigenvectors of the
tangent kernel, i.e., p1 and p2, and we show with different learning rates, the catapult phase can
occur only in the direction of p1, or occur in both directions. We consider the case where 2/λ2(0) <
4/λ1(0) hence the catapult can occur in both directions. The analysis for the other case can be
directly obtained from our results. We denote the loss projected to pi by ΠiL := 1

2 〈g − y,pi〉
2 for

i = 1, 2. We have ΠiL(0) = O(1) with high probability over random initialization of weights.

We formulate the result for the catapult dynamics, which happens when training with super-critical
learning rates, into the following theorem, and defer the proof of it and the full discussion of training
dynamics to Appendix K.

Theorem 3 (Catapult dynamics on multiple training examples). Supposing Assumption 1 holds,
consider training the NQM Eq. (10) with squared loss on multiple training examples by GD. Then,
with high probability over random initialization we have

1. with η ∈
[

2+ε
λ1(0)

, 2−ε
λ2(0)

]
, the catapult only occurs in eigendirection p1: Π1L increases to

the order of Ω
(
m(ηλ1(0)−2)2

logm

)
then decreases to O(1);

2. with η ∈
[

2+ε
λ2(0)

, 4−ε
λ1(0)

]
, the catapult occurs in both eigendirections p1 and p2: ΠiL for

i = 1, 2 increases to the order of Ω
(
m(ηλi(0)−2)2

logm

)
then decreases to O(1),

where ε = Θ
(

logm√
m

)
.

We verify the results for multiple training examples via the experiments in Figure 3.

(a) Training loss (b) Largest eigenvalue of tangent
kernel

(c) Second largest eigenvalue of
tangent kernel

Figure 3: Training dynamics of NQMs for multiple examples case with different learning rates.
By our analysis, two critical values are 2/λ1(0) = 0.37 and 2/λ2(0) = 0.39. When η < 0.37, linear
dynamics dominate hence the kernel is nearly constant; when 0.37 < η < 0.39, the catapult phase
happens in p1 and only λ1(t) decreases; when 0.39 < η < ηmax, the catapult phase happens in p1
and p2 hence both λ1(t) and λ2(t) decreases. The experiment details can be found in Appendix N.1.

7

Published as a conference paper at ICLR 2024

3.3 CONNECTION TO GENERAL QUADRATIC MODELS AND WIDE NEURAL NETWORKS

General quadratic models. As mentioned in the introduction, NQMs are contained in a general
class of quadratic models of the form given in Eq. (3). Additionally, we show that the two-layer lin-
ear neural network analyzed in Lewkowycz et al. (2020) is a special case of Eq. (3), and we provide a
more general condition for such models to have catapult dynamics in Appendix M. Furthermore, we
empirically observe that a broader class of quadratic models g can have catapult dynamics simply
by letting φ(x) and Σ be random and assigning a small value to γ (See Appendix N.4).
Wide neural networks. We have seen that NQMs, with fixed Hessian, exhibit the catapult phase
phenomenon. Therefore, the change in the Hessian of wide neural networks during training is not
required to produce the catapult phase. We will discuss the high-level idea of analyzing the catapult
phase for a general NQM with large learning rates, and empirically show that this idea applies to
neural networks. We train an NQM Eq. (2) fquad on n data points {(xi, yi)}ni=1 ∈ Rd×R with GD.
The dynamics equations take the following form:

fquad(t+ 1)− y =

I − ηK(t) +
1

2
η2G(t)∇fquad(t)T︸ ︷︷ ︸

Rfquad
(t)

 (fquad(t)− y), (15)

K(t+ 1) = K(t)− 1

4
η
(
4G(t)∇fquad(t)T − ηG(t)G(t)T

)
︸ ︷︷ ︸

RK(t)

, (16)

where Gi,:(t) = (fquad(t)− y)T∇fquad(t)Hf (xi) ∈ Rm for i ∈ [n].
In our analysis for fquad which approximates two-layer networks in Section 3.2, we show that cata-
pult dynamics occur in the top eigenspace of the tangent kernel. Specifically, we analyze the dynam-
ics equations confined to the top eigendirection of the tangent kernel p1 (i.e, Π1L and λ1(t)). We
show that pT1 Rfquad

p1 and pT1 RKp1 scale with the loss and remain positive when the loss becomes
large, therefore pT1Kp1 (i.e., λmax(K)) as well as the loss will be driven down, and consequently
we yield catapult convergence.

We empirically verify catapults indeed happen in the top eigenspace of the tangent kernel for addi-
tional NQMs and wide neural networks in Appendix N.3. Furthermore, a similar behaviour of top
eigenvalues of the tangent kernel with the one for NQMs is observed for wide neural networks when
training with different learning rates (See Figure 5 in Appendix N).

4 QUADRATIC MODELS PARALLEL NEURAL NETWORKS IN GENERALIZATION

In this section, we empirically compare the test performance of three different models considered
in this paper upon varying learning rate. In particular, we consider (1) the NQM, fquad; (2) corre-
sponding neural networks, f ; and (3) the linear model, flin.

We implement our experiments on 3 vision datasets: CIFAR-2 (a 2-class subset of CIFAR-
10 (Krizhevsky et al., 2009)), MNIST (LeCun et al., 1998), and SVHN (The Street View House
Numbers) (Netzer et al., 2011), 1 speech dataset: Free Spoken Digit dataset (FSDD) (Jakobovski)
and 1 text dataset: AG NEWS (Gulli).

In all experiments, we train the models by minimizing the squared loss using standard GD/SGD
with constant learning rate η. We report the best test loss achieved during the training process with
each learning rate. Experimental details can be found in Appendix N.5. We also report the best test
accuracy in Appendix N.6. For networks with 3 layers, see Appendix N.7. From the experimental
results, we observe the following:

Sub-critical learning rates. In accordance with our theoretical analyses, we observe that all three
models have nearly identical test loss for any sub-critical learning rate. Specifically, note that as the
width m increases, f and fquad will transition to linearity in the ball B(w0, R):

‖f − flin‖ = Õ(1/
√
m), ‖fquad − flin‖ = Õ(1/

√
m),

where R > 0 is a constant which is large enough to contain the optimization path with respect
to sub-critical learning rates. Thus, the generalization performance of these three models will be
similar when m is large, as shown in Figure 4.

8

Published as a conference paper at ICLR 2024

25 50 75 100 125 150
Learning rate

0.068

0.069

0.070

0.071

0.072

0.073

0.074

0.075

B
es

tt
es

tL
os

s

2-layer FC on FSDD with GD

NN
Quadratic
Linear
Critical LR

20 40 60 80
Learning rate

0.095

0.100

0.105

0.110

0.115

B
es

tT
es

tL
os

s

2-layer FC on AG NEWS with GD

NN
Quadratic
Linear
Critical LR

10 20 30 40 50 60
Learning rate

0.06

0.08

0.10

0.12

0.14

B
es

tt
es

tL
os

s

2-layer FC on MNIST with GD

Linear
NN
Quadratic
Critical LR

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Learning rate

0.700

0.725

0.750

0.775

0.800

0.825

0.850

B
es

tT
es

tL
os

s

2-layer FC on CIFAR-2 with SGD

NN
Quadratic
Linear
Critical LR

1 2 3 4
Learning rate

0.68

0.70

0.72

0.74

0.76

0.78

0.80

B
es

tT
es

tL
os

s

2-layer CNN on CIFAR-2 with GD

NN
Quadratic
Linear
Critical LR

1.0 1.5 2.0 2.5 3.0 3.5
Learning rate

0.64

0.66

0.68

0.70

0.72

0.74

0.76

B
es

tT
es

tL
os

s

2-layer CNN on SVHN with GD

NN
Quadratic
Linear
Critical LR

Figure 4: Best test loss plotted against different learning rates for f(w), flin(w) and fquad(w)
across a variety of datasets and network architectures.

Super-critical learning rates. The best test loss of both f(w) and fquad(w) is consistently
smaller than the one with sub-critical learning rates, and decreases for an increasing learning rate in
a range of values beyond ηcrit, which was observed for wide neural networks in Lewkowycz et al.
(2020).

As discussed in the introduction, with super-critical learning rates, both fquad and f can be observed
to have catapult phase, while the loss of flin diverges. Together with the similar behaviour of fquad
and f in generalization with super-critical learning rates, we believe NQMs are a better model to
understand f in training and testing dynamics, than the linear approximation flin.

In Figure 4 we report the results for networks with ReLU activation function. We also implement the
experiments using networks with Tanh and Swish (Ramachandran et al., 2017) activation functions,
and observe the same phenomena in generalization for f , flin and fquad (See Appendix N.8).

5 SUMMARY AND DISCUSSION

Summary. In this paper, we use quadratic models as a tool to better understand optimization and
generalization properties of finite width neural networks trained using large learning rates. Notably,
we prove that quadratic models exhibit properties of neural networks such as the catapult phase
that cannot be explained using linear models, which importantly includes linear approximations to
neural networks given by the neural tangent kernel. Interestingly, we show empirically that quadratic
models mimic the generalization properties of neural networks when trained with large learning rate,
and that such models perform better than linearized neural networks.

Future directions. As quadratic models are more analytically tractable than finite width neural
networks, these models open further avenues for understanding the good performance of finite width
networks in practice. In particular, one interesting direction of future work is to understand the
change in the kernel corresponding to a trained quadratic model. As we showed, training a quadratic
model with large learning rate causes a decrease in the eigenvalues of the neural tangent kernel,
and it would be interesting to understand the properties of this changed kernel that correspond with
improved generalization. Indeed, prior work Long (2021) has analyzed the properties of the “after
kernel” corresponding to finite width neural networks, and it would be interesting to observe whether
similar properties hold for the kernel corresponding to trained quadratic models.

Another interesting avenue of research is to understand whether quadratic models can be used for
representation learning. Indeed, prior work Yang & Hu (2020) argues that networks in the neural
tangent kernel regime do not learn useful representations of data through training. As quadratic
models trained with large learning rate can already exhibit nonlinear dynamics and better capture
generalization properties of finite width networks, it would be interesting to understand whether
such models learn useful representations of data as well.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We thank Boris Hanin, Daniel A. Roberts and Sho Yaida for the discussion about quadratic models
and catapults. A.R. is funded by the George F. Carrier fellowship at Harvard School of Engineering
and Applied Sciences. We are grateful for the support from the National Science Foundation (NSF)
and the Simons Foundation for the Collaboration on the Theoretical Foundations of Deep Learn-
ing (https://deepfoundations.ai/) through awards DMS-2031883 and #814639 and the
TILOS institute (NSF CCF-2112665). This work used NVIDIA V100 GPUs NVLINK and HDR
IB (Expanse GPU) at SDSC Dell Cluster through allocation TG-CIS220009 and also, Delta sys-
tem at the National Center for Supercomputing Applications through allocation bbjr-delta-gpu from
the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) pro-
gram, which is supported by National Science Foundation grants #2138259, #2138286, #2138307,
#2137603, and #2138296.

REFERENCES

Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. In International Conference on Learning Representations, 2019.

Nicoletta Bof, Ruggero Carli, and Luca Schenato. Lyapunov theory for discrete time systems. arXiv
preprint arXiv:1809.05289, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

Antonio Gulli. AG’s corpus of news articles. http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. In International Conference on Machine Learning, pp. 4542–4551. PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Jakobovski. Free-Spoken-Digit-Dataset. https://github.com/Jakobovski/
free-spoken-digit-dataset.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve ar-
bitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pp. 8570–8581,
2019.

10

https://deepfoundations.ai/
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset

Published as a conference paper at ICLR 2024

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33,
2020.

Philip M Long. Properties of the after kernel. arXiv preprint arXiv:2105.10585, 2021.

David Meltzer and Junyu Liu. Catapult dynamics and phase transitions in quadratic nets. arXiv
preprint arXiv:2301.07737, 2023.

Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural networks: Mem-
orization and generalization under lazy training. arXiv preprint arXiv:2007.12826, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Eshaan Nichani, Adityanarayanan Radhakrishnan, and Caroline Uhler. Increasing depth leads to
U-shaped test risk in over-parameterized convolutional networks. In International Conference on
Machine Learning Workshop on Over-parameterization: Pitfalls and Opportunities, 2021.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can lin-
earized neural networks actually say about generalization? Advances in Neural Information
Processing Systems, 34, 2021.

Boris T Polyak. Introduction to optimization. Optimization Software, Inc, New York, 1987.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory. Cambridge
University Press, 2022.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded
norm networks look in function space? In Conference on Learning Theory, pp. 2667–2690.
PMLR, 2019.

Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, and Joan Bruna.
Gradient dynamics of shallow univariate relu networks. Advances in Neural Information Process-
ing Systems, 32, 2019.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In Advances in Neural Information Processing Systems, pp. 2053–2062, 2019.

11

Published as a conference paper at ICLR 2024

APPENDIX

A DERIVATION OF NQM

We will derive the NQM that approximate the two-layer fully connected ReLU activated neural
networks based on Eq. (2).

The first derivative of f can be computed by:

∂f

∂ui
=

1√
md

vi1{uTi x≥0}x
T ,

∂f

∂vi
=

1√
m
σ

(
1√
d
uTi x

)
, ∀i ∈ [m].

And each entry of the Hessian of f , i.e., Hf , can be computed by

∂2f

∂u2
i

= 0,
∂2f

∂v2i
= 0,

∂2f

∂uivi
=

1√
md

1{uTi x≥0}x
T , ∀i ∈ [m].

Now we get fquad taking the following form

NQM : fquad(u,v;x) = f(u0,v0;x) +
1√
md

m∑
i=1

(ui − u0,i)
Tx1{uT0,ix≥0}v0,i +

1√
m

m∑
i=1

(vi − v0,i)σ
(

1√
d
uT0,ix

)

+
1√
md

m∑
i=1

(ui − u0,i)
Tx1{uT0,ix≥0}(vi − v0,i). (17)

B DERIVATION OF DYNAMICS EQUATIONS

For simplicity of notation, we denote fquad by g. Note that at initialization, the first and second
derivatives of f with respect to parameters are the same as those of g.

B.1 SINGLE TRAINING EXAMPLE

The NQM can be equivalently written as:

g(u,v;x) = g(u0,v0;x) +

〈
u− u0, ∇ug(u,v;x)

∣∣∣∣
u=u0,v=v0

〉
+

〈
v − v0, ∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

〉

+

〈
u− u0,

∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0,v=v0

(v − v0)

〉
,

since ∂2g
∂u2 = 0 and ∂2g

∂v2 = 0.

And the tangent kernel λ(u,v;x) takes the form

λ(u,v;x) =

∥∥∥∥∥∇ug(u,v;x)

∣∣∣∣
u=u0,v=v0

+
∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0

(v − v0)

∥∥∥∥∥
2

F

+

∥∥∥∥∥∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

+ (u− u0)T
∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0,v=v0

∥∥∥∥∥
2

.

Here

∇uig(u,v;x)

∣∣∣∣
u=u0,v=v0

=
1√
md

m∑
i=1

v0,i1{uT0,ix≥0}x, ∀i ∈ [m],

∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

=
1√
md

σ
(
uT0 x

)
.

12

Published as a conference paper at ICLR 2024

In the following, we will consider the dynamics of g and λ with GD, hence for simplicity of nota-
tions, we denote

∇ug(0) := ∇ug(u,v;x)

∣∣∣∣
u=u0,v=v0

,

∇vg(0) := ∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

,

∂2g(0)

∂u∂v
:=

∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0,v=v0

.

By gradient descent with learning rate η, at iteration t, we have the update equations for weights u
and v:

u(t+ 1) = u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
,

v(t+ 1) = v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
.

Then we plug them in the expression of λ(t+ 1) and we get

λ(t+ 1) =

∥∥∥∥∇ug(0) +
∂2g(0)

∂u∂v
(v(t+ 1)− v(0))

∥∥∥∥2
F

+

∥∥∥∥∇vg(0) + (u(t+ 1)− u(0))T
∂2g(0)

∂u∂v

∥∥∥∥2
=

∥∥∥∥∇ug(0) +
∂2g(0)

∂u∂v

(
v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
− v(0)

)∥∥∥∥2
F

+

∥∥∥∥∥∇vg(0) +

(
u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
− u(0)

)T
∂2g(0)

∂u∂v

∥∥∥∥∥
2

= λ(t) + η2(g(t)− y)2
∥∥∥∥∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)∥∥∥∥2
F

+ η2(g(t)− y)2

∥∥∥∥∥
(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

∥∥∥∥∥
2

− 2η(g(t)− y)

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
− 2η(g(t)− y)

〈
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v
,

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

〉
.

Due to the structure of ∂
2g(0)
∂u∂v , we have∥∥∥∥∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)∥∥∥∥2
F

=
‖x‖2

md

∥∥∥∥∇vg(0) + (u(t)− u(0))T
∂2g(0)

∂u∂v

∥∥∥∥2
=
‖x‖2

md
‖∇vg(t)‖2,

and∥∥∥∥∥
(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

∥∥∥∥∥
2

=
‖x‖2

md

∥∥∥∥∇ug(0) +
∂2g(0)

∂u∂v
(v(t)− v(0))

∥∥∥∥2
F

=
‖x‖2

md
‖∇ug(t)‖2F .

13

Published as a conference paper at ICLR 2024

Furthermore,〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
=
‖x‖2

md
〈v(t)− v(0),∇vg(0)〉+

‖x‖2

md
〈∇ug(0),u(t)− u(0)〉+

〈
∇ug(0),

∂2g(0)

∂u∂v
∇vg(0)

〉
+

〈
∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v
(u(t)− u(0))T

∂2g(0)

∂u∂v

〉
=
‖x‖2

md
〈v(t)− v(0),∇vg(0)〉+

‖x‖2

md
〈∇ug(0),u(t)− u(0)〉+ g(0) +

‖x‖2

md

〈
v(t)− v(0),

∂2g(0)

∂u∂v
(u(t)− u(0))T

〉
= g(t)‖x‖2/md.

Similarly, we have〈
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v
,

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

〉
= g(t)‖x‖2/md.

As a result,

λ(t+ 1) = λ(t) +
‖x‖2

md
η2(g(t)− y)2λ(t)− 4‖x‖2

md
η(g(t)− y)g(t)

= λ(t) + η
‖x‖2

md
(g(t)− y)2

(
ηλ(t)− 4

g(t)

g(t)− y

)
.

For g, we plug the update equations for u and v in the expression of g(t+ 1) and we can get
g(t+ 1) = g(0) + 〈u(t+ 1)− u(0),∇ug(0)〉+ 〈v(t+ 1)− v(0),∇vg(0)〉

+

〈
u(t+ 1)− u(0),

∂2g(0)

∂u∂v
(v(t+ 1)− v(0)

〉
= g(0) +

〈
u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
− u(0),∇ug(0)

〉
+

〈
v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
− v(0),∇vg(0)

〉
+

〈
u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
− u(0) ,

∂2g(0)

∂u∂v

(
v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
− v(0)

)〉
= g(t)− η(g(t)− y)

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),∇ug(0)

〉
− η(g(t)− y)

〈
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v
,∇vg(0)

〉
+ η2(g(t)− y)2

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
− η(g(t)− y)

〈
u(t)− u(0),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
− η(g(t)− y)

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v
(v(t)− v(0))

〉
= g(t)− η(g(t)− y)λ(t)

+ η2(g(t)− y)2
〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
= g(t)− η(g(t)− y)λ(t) +

‖x‖2

md
η2(g(t)− y)2g(t)

14

Published as a conference paper at ICLR 2024

Therefore,

g(t+ 1)− y =

(
1− ηλ(t) +

‖x‖2

md
η2(g(t)− y)g(t)

)
(g(t)− y).

B.2 MULTIPLE TRAINING EXAMPLES

We follow the similar notation on the first and second order derivative of g with Appendix B.1.
Specifically, for k ∈ [n], we denote

∇ugk(0) := ∇ug(u,v;xk)

∣∣∣∣
u=u0,v=v0

,

∇vgk(0) := ∇vg(u,v;xk)

∣∣∣∣
u=u0,v=v0

,

∂2gk(0)

∂u∂v
:=

∂2g(u,v;xk)

∂u∂v

∣∣∣∣
u=u0,v=v0

.

By GD with learning rate η, we have the update equations for weights u and v at iteration t:

u(t+ 1) = u(t)− η
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,

v(t+ 1) = v(t)− η
n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
.

We consider the evolution of K(t) first.

Ki,j(t+ 1) =

〈
∇ugi(0) +

∂2gi(0)

∂u∂v
(v(t+ 1)− v(0)),∇ugj(0) +

∂2gj(0)

∂u∂v
(v(t+ 1)− v(0))

〉
+

〈
∇vgi(0) + (u(t+ 1)− u(0))T

∂2gi(0)

∂u∂v
,∇vgj(0) + (u(t+ 1)− u(0))T

∂2gj(0)

∂u∂v

〉
= Ki,j(t)−

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,

∇ugj(0) +
∂2gj(0)

∂u∂v
(v(t)− v(0))

〉
−

〈
η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,∇ugi(0) +

∂2gi(0)

∂u∂v
(v(t)− v(0))

〉

+

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,

η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)〉

−

〈
η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,∇vgi(0) + (u(t)− u(0))T

∂2gi(0)

∂u∂v

〉

−

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,∇vgj(0) + (u(t)− u(0))T

∂2gj(0)

∂u∂v

〉

+

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,

η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)〉
.

15

Published as a conference paper at ICLR 2024

We separate the data into two sets according to their sign:
S+ := {i : xi ≥ 0, i ∈ [n]}, S− := {i : xi < 0, i ∈ [n]}.

We consider two scenarios: (1) xi and xj have different signs; (2) xi and xj have the same sign.

(1) With simple calculation, we get if xi and xj have different signs, i.e., i ∈ S+, j ∈ S− or
i ∈ S−, j ∈ S+,

∂2gi(0)

∂u∂v

∂2gj(0)

∂u∂v
= 0,

∂2gi(0)

∂u∂v
∇ugj(0) = 0,

∂2gi(0)

∂u∂v
∇vgj(0) = 0.

Without lose of generality, we assume i ∈ S+, j ∈ S−. Then we have
Ki,j(t+ 1) = Ki,j(t).

(2) If xi and xj have the same sign, i.e., i, j ∈ S+ or i, j ∈ S−,
∂2gi(0)

∂u∂v

∂2gj(0)

∂u∂v
=

1√
m

∂2gi(0)

∂u∂v
xj ,

∂2gi(0)

∂u∂v
∇ugj(0) =

1√
m
∇ugi(0)xj ,

∂2gi(0)

∂u∂v
∇vgj(0) =

1√
m
∇vgi(0)xj .

For i, j ∈ S+, we have

Ki,j(t+ 1) = Ki,j(t)−
2η√
m

∑
k∈S+

(gk(t)− yk)xi

〈
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v
,

∇ugj(0) +
∂2gj(0)

∂u∂v
(v(t)− v(0))

〉
− 2η√

m

∑
k∈S+

(gk(t)− yk)xi

〈
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0)),∇vgj(0) + (u(t)− u(0))T

∂2gj(0)

∂u∂v

〉

+
η2

m
xixj

∥∥∥∥∥∥
∑
k∈S+

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)∥∥∥∥∥∥
2

+
η2

m
xixj

∥∥∥∥∥∥
∑
k∈S+

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)∥∥∥∥∥∥
2

= Ki,j(t)−
4η

m
xixj

∑
k∈S+

(gk(t)− yk)gk(t) +
η2

m
xixj ((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+)

= Ki,j(t)−
4η

m
xixj ((g(t)− y)�m+)

T
(g(t)�m+)

+
η2

m
xixj ((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+) .

Similarly, for i, j ∈ S−, we have

Ki,j(t+ 1) = Ki,j(t)−
4η

m
xixj ((g(t)− y)�m−)

T
(g(t)�m−)

+
η2

m
xixj ((g(t)− y)�m−)

T
K(t) ((g(t)− y)�m−) .

Combining the results together, we have

K(t+ 1) = K(t) +
η2

m
((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+)p1p

T
1

+
η2

m
((g(t)− y)�m−)

T
K(t) ((g(t)− y)�m−)p2p

T
2

− 4η

m
((g(t)− y)�m+)

T
(g(t)�m+)p1p

T
1

− 4η

m
((g(t)− y)�m−)

T
(g(t)�m−)p2p

T
2 .

16

Published as a conference paper at ICLR 2024

Now we derive the evolution of g(t)− y. Suppose i ∈ S+. Then we have

gi(t+ 1) = gi(0) + 〈u(t+ 1)− u(0),∇ugi(0)〉+ 〈v(t+ 1)− v(0),∇vgi(0)〉

+

〈
u(t+ 1)− u(0),

∂2gi(0)

∂u∂v
(v(t+ 1)− v(0)

〉
= gi(t)− η

〈
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,∇ugi(0)

〉

− η

〈
n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,∇vgi(0)

〉

− η

〈
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,
∂2gi(0)

∂u∂v
(v(t)− v(0)

〉

− η

〈
n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
, (u(t)− u(0)T

∂2gi(0)

∂u∂v

〉

+ η2

〈
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,

∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)〉

= gi(t)− η
∑
k∈S+

(gk(t)− yk)Kk,i(t) +
η2

m

∑
k∈S+

∑
j∈S+

(gk(t)− yk)(gj(t)− yj)gj(t)xkxi.

Similarly, for i ∈ S−, we have

gi(t+ 1) = gi(t)− η
∑
k∈S−

(gk(t)− yk)Kk,i(t) +
η2

m

∑
k∈S−f

∑
j∈S−

(gk(t)− yk)(gj(t)− yj)gj(t)xkxi.

Combining the results together, we have

g(t+ 1)− y =

(
I − ηK(t) +

η2

m
((g(t)− y)�m+)T (g(t)�m+)p1p

T
1

+
η2

m
((g(t)− y)�m−)T (g(t)�m−)p2p

T
2

)
(g(t)− y).

C OPTIMIZATION WITH SUB-CRITICAL LEARNING RATES

Theorem 4. Consider training the NQM Eq. (10), with squared loss on a single training example
by GD. With a sub-critical learning rate η ∈ [ε, 2−ελ0

] with ε = Θ
(

logm√
m

)
, the loss decreases

exponentially with

L(t+ 1) ≤
(

1− δ +O

(
1

mδ

))2

L(t) = (1− δ + o(δ))2L(t),

where δ = min(ηλ0, 2− ηλ0).

Furthermore, supt |λ(t)− λ(0)| = O
(

1
mδ

)
.

We use the following transformation of the variables to simplify notations.

u(t) =
‖x‖2

md
η2(g(t)− y)2, w(t) =

‖x‖2

md
η2(g(t)− y)y, v(t) = ηλ(t).

17

Published as a conference paper at ICLR 2024

Then the Eq. (11) and Eq. (12) are reduced to

u(t+ 1) = (1− v(t) + u(t) + w(t))2u(t) := κ(t)u(t)

v(t+ 1) = v(t)− u(t)(4− v(t))− 4w(t).

At initialization, since |g(0)| = O(1), we have u(0) ≤ Cu/m for some constant Cu > 0. As

|w(t)| = C
√
u(t)√
m

. where C := η‖x‖|y|√
d

> 0, we have |w(0)| ≤ CuC/m3/2. Note that by definition,
for all t ≥ 0, u(t) ≥ 0 we have v(t) ≥ 0 since λ(t) is the tangent kernel for a single training
example. From the definition of δ, we can infer that δ < 1.

In the following, we will show that if v(0) ∈ [ε, 2− ε] with ε = Θ
(

logm√
m

)
, then there exist constant

Cκ, Cv > 0 such that for all t ≥ 0,

κ(t) ≤
(

1− δ +
Cκ
mδ

)2

< 1, |v(t)− v(0)| ≤ Cv
mδ

,

if Cκ ≥ 9Cu + (Cu + CuC)δ and m satisfies

m > max

{
12Cκ
δ2

,

√
6Cκ
δ3/2

, C2

}
.

Given the condition on m, we have (1− δ + Cκ
mδ)2 < 1.

We will prove the result by induction. When t = 0, we have

κ(0) = (1− v(0) + u(0) + w(0))
2
<

(
1− δ +

Cu
m

+
CuC

m3/2

)2

<

(
1− δ +

Cκ
mδ

)2

,

where we use the assumption Cκ ≥ (Cu + CuC)δ.

Therefore the result holds at t = 0.

Suppose when t = T the results hold. Then at t = T + 1, by the inductive hypothesis that u(t)

decreases exponentially with κ(t) <
(
1− δ + Cκ

mδ

)2
, we can bound the change of v(T + 1) from

v(0):

|v(T + 1)− v(0)| =
T∑
t=0

|u(t)(4− v(t)) + 4w(t)|

≤
T∑
t=0

|u(t)||4− v(t)|+
T∑
t=0

4|w(t)|

≤ max
t∈[0,T]

|v(t)− 4| ·
u(0)− u(T) maxt∈[0,T] κ(t)

1−maxt∈[0,T] κ(t)
+
w(0)− w(T) maxt∈[0,T]

√
κ(t)

1−maxt∈[0,T]

√
κ(t)

≤ 4 · u(0)

1−maxt∈[0,T] κ(t)
+

w(0)

1−maxt∈[0,T]

√
κ(t)

≤ 4 · Cu/m
δ/2

+
CuC/m

3/2

δ/2

≤ 9Cu
mδ

.

For the summation of the “geometric sequence” i.e., {u(0), u(1), · · · , u(T)} where u(0) and u(T)
have the determined order but the ratio has an upper bound, we use the maximum ratio, i.e., maxκ(t)
in the denominator to upper bound the summation.

18

Published as a conference paper at ICLR 2024

For 1−maxt∈[0,T] κ(t), we use the bound that

1−
(

1− δ +
Cκ
mδ

)2

= 2δ − δ2 − C2
κ

m2δ2
− 2Cκ

mδ
+

2Cκ
m

≥ δ − δ

6
− δ

6
− δ

6

≥ δ

2
,

where we use the assumption on m.

Furthermore,

κ(T + 1) = (1− v(T + 1) + u(T + 1) + w(T + 1))2

= (1− v(0) + v(0)− v(T + 1) + u(T + 1) + w(T + 1))2

≤
(

1− δ +
9Cu
mδ

+
Cu
m

+
CuC

m3/2

)2

≤
(

1− δ +
Cκ
mδ

)2

.

Here we use the assumption Cκ ≥ 9Cu + (Cu + CuC)δ.

Therefore, we finish the inductive step hence finishing the proof.

D PROOF OF LEMMA 1

We present the formal statement of Lemma 1:

Lemma 1. Consider constants Cu, C ′u, Cv, Cκ, Cε > 0 which satisfies Cκ ≥ 28C ′u + C ′uδ +

C
√
C ′u where C = η‖x‖|y|/

√
d, and Cv ≥ 28C ′u. If m satisfies

m ≥ max

{
Cκδ

Cu(C + 1)
,

(
2Cu + 4C

√
Cu

CκCε

)2

,
576C2

C ′uδ
2
, exp(Cvδ), exp(4Cκ)

}
,

then with high probability over random initialization of the weights, the following holds: for
T > 0 such that supt∈[0,T] u(t) ≤ C′uδ

2

logm , u(t) increases exponentially with ratio inft∈[0,T] κ(t) ≥(
1 + δ − Cκδ

logm

)2
> 1 and supt∈[0,T] |v(t)− v(0)| ≤ Cvδ

logm .

Proof. Due to the random initialization of the weights, we have with probability, there exists con-

stant Cu > 0 such that |u(0)| ≤ Cu/m. As |w(t)| =
C
√
u(t)√
m

, where C := η‖x‖|y|√
d

> 0, we have

|w(0)| ≤ C
√
Cu

m3/2 .

We prove the results by induction.

Recall that δ := ηλ0 − 2 ∈ [ε, 2 − ε] where ε ∈ [Cε logm/
√
m,C ′ε logm/

√
m] for some constant

0 < Cε < C ′ε.

When t = 0, as v(0) = ηλ0 = δ + 2, we have

κ(0) = (1− v(0) + u(0) + w(0))
2

= (1− (δ + 2) + u(0) + w(0))
2

= (1 + δ − u(0)− w(0))
2
.

19

Published as a conference paper at ICLR 2024

Based on the condition on m that m ≥ Cκδ
Cu(C+1) , we have,

(1 + δ − u(0)− w(0))
2 ≥

(
1 + δ − Cu

m
− CuC

m3/2

)2

≥
(

1 + δ − Cu
m
− CuC

m

)2

≥
(

1 + δ − Cκδ

logm

)2

.

And by the condition m ≥
(

2Cu+4c
√
Cu

CκCε

)2
, we get

|v(1)− v(0)| ≤ |u(0)||2− δ|+ 4|w(0)| ≤ 2Cu/m+
4C
√
Cu

m3/2
≤ Cκδ/ logm.

Therefore the results hold at t = 0.

Suppose when t = T ′ the results hold. Then at t = T ′ + 1, by the inductive hypothesis that u(t)

increases exponentially with a rate at least
(

1 + δ − Cκδ
logm

)2
from u(0) ≤ Cu/m to u(T ′) ≤ C′uδ

2

logm ,
we can bound the change of v(t):

|v(T ′ + 1)− v(0)| =

∣∣∣∣∣∣
T ′∑
t=1

u(t)(v(t)− 4) + 4w(t)

∣∣∣∣∣∣
≤ max
t∈[0,T ′]

|v(t)− 4|
T ′∑
t=1

u(t) + 4

T ′∑
t=1

|w(t)|

≤ max
t∈[0,T ′]

|v(t)− 4|
u(T ′) mint∈[0,T ′] κ(t)

mint∈[0,T ′] κ(t)− 1
+ 4
|w(T ′)|mint∈[0,T ′]

√
κ(t)

mint∈[0,T ′]
√
κ(t)− 1

≤
(

max
t∈[0,T ′]

|v(t)− v(0)|+ |v(0)− 4|
) (

C′uδ
2

logm

)
· (1 + δ)2(

1 + δ −
(
Cκδ
logm

))2
− 1

+

4

(
C
√
C′uδ√

m logm

)
· (1 + δ)(

1 + δ −
(
Cκδ
logm

))
− 1

≤
(

2− δ +
Cvδ

logm

)
·
(

9C ′uδ

logm

)
+

24C
√
C ′u√

m logm

≤ 28C ′uδ

logm
. (18)

Here are the techniques we used for the above inequalities: for the summation of the “geometric
sequence” i.e., {u(0), u(1), · · · , u(T ′)} where u(0) and u(T ′) have the determined order but the
ratio has a lower bound, we use the smallest ratio, i.e., inf κ(t) to upper bound the summation.
Specifically, we apply the following inequality to bound the summation:
T ′∑
t=1

u(t) ≤
T ′∑
t=1

u(T ′)(
mint∈[0,T ′] κ(t)

)t−1 = u(T ′)

T ′∑
t=1

1(
mint∈[0,T ′] κ(t)

)t−1 ≤ u(T ′)
mint∈[0,T ′] κ(t)

mint∈[0,T ′] κ(t)− 1
.

Additionally, sine m ≥ exp(4Cκδ), we used the inequality(
1 + δ − Cκδ

logm

)2

− 1 =

(
1− Cκδ

logm

)2

δ2 + 2

(
1− Cκδ

logm

)
δ

≥ 2

(
1− Cκδ

logm

)
δ ≥ δ,

20

Published as a conference paper at ICLR 2024

and
(

1 + δ −
(
Cκδ
logm

))
− 1 ≥ δ

2 to bound the denominator of the summation of the geometric
sequence.

And we further used the inequality 0 < δ < 2 and
24C
√
C′u√

m logm
≤ C′uδ

logm by the condition on m to get
the final upper bound.

Consequently, by the assumption Cv ≥ 28C ′uδ, we have |v(T ′ + 1)− v(0)| ≤ Cvδ
logm .

Now we bound the ratio κ(T ′ + 1). By our assumption, u(T ′ + 1) ≤ u(T) ≤ C′uδ
2

logm , and we can

similarly bound |w(T ′ + 1)| ≤ C
√
C′uδ√

m logm
as |w(T ′ + 1)| = C

√
u(T ′+1)√
m

.

And the rate κ(T ′ + 1) satisfies

κ(T ′ + 1) = (1− v(T ′ + 1) + u(T ′ + 1) + w(T ′ + 1))2

= (1− v(0) + v(0)− v(T ′ + 1) + u(T ′ + 1) + w(T ′ + 1))
2

= (1 + δ + v(T ′ + 1)− v(0)− u(T ′ + 1)− w(T ′ + 1))
2
.

Note that |v(T ′ + 1) − v(0)| ≤ 28C′uδ
logm by Eq. (18). By the assumption that m ≥ exp(4Cκ) and

Cκ ≥ 28C ′u + C ′uδ + C
√
C ′u, we have δ > |v(T ′ + 1)− v(0)|+ u(T ′ + 1) + |w(T ′ + 1)|.

Consequently, we can get

κ(T ′ + 1) = (1 + δ + v(T ′ + 1)− v(0)− u(T ′ + 1)− w(T ′ + 1))
2

≥ (1 + δ − |v(T ′ + 1)− v(0)| − u(T ′ + 1)− |w(T ′ + 1)|)2

≥

(
1 + δ − 28C ′uδ

logm
− C ′uδ

2

logm
−

C
√
C ′uδ√

m logm

)2

≥
(

1 + δ − Cκδ

logm

)2

.

Since m ≥ exp(4Cκ), we have
(

1 + δ − Cκδ
logm

)2
≥
(
1 + 3

4δ
)2
> 1.

Then we finish the inductive step hence finishing the proof.

E PROOF OF LEMMA 2

A formal statement of Lemma 2 is as follows:

Lemma 2: Under the condition of Lemma 1, if we further assume that m satisfies

m > max

{
exp(2Cvδ),

256C2

(Cε − C ′v)2C ′u
2 , exp

(
5(C ′u + 4C

√
C ′u)

)
, exp

(
C ′u(Cε − 2C ′v)− 8C

√
C ′u

20CC ′u

)}
,

where C ′v := 18C ′u + 2Cv , and Cv ≥ 4C
√
C ′u, Cε > 2C ′v , then with high probability over random

initialization of the weights, the following holds: there exists T ∗ > 0 such that u(T ∗) = O
(

1
m

)
.

Proof. The main idea of the proof is the following: as u(t) increases, v(t) decreases since u(t)(4−
v(t)) � w(t) = Θ(

√
u(t)/

√
m) in Eq. (14) and u(t)(4 − v(t)) < 0. Furthermore, the increase

of u(t) speeds up the decrease of v(t). However, v(t) cannot decrease infinitely as v(t) ≥ 0 by
definition. Therefore, u(t) has to stop increasing at some point and decrease to a small value.

We first show that by the choice of the learning rate that 4 − v(0) ≥ ε where ε = Θ
(

logm√
m

)
, we

will have 4− v(t) > 0 for all t in the increasing phase. Recall that δ := ηλ0 − 2.

21

Published as a conference paper at ICLR 2024

Proposition 1. Under the condition in Lemma 1, if we further assume m > exp

(
48C
√
C′u

Cε

)2/3

,

then for T > 0 such that supt∈[0,T] u(t) ≤ C′uδ
2

logm , we have v(T) < 4− Cε logm
2
√
m

.

See the proof in Appendix H.1

Given the constant C ′u in Lemma 1, we define the end of the increasing phase by T1, i.e.,

T1 := sup

{
t : u(t) ≤ C ′uδ

2

logm

}
. (19)

We further show that there exists T2 ≥ T1 such that v(T2) ≤ 3.

Note that we indeed can show that there exists T2 such that v(T2) < C whereC ∈ (2, 4) is a constant
independent of m. Here for the simplicity of the presentation, we take C as 3. Furthermore, we note
that T1, T2 depends on m.

Before that, we present a useful result that controls the decrease of v(t):

Proposition 2. For t such that v(t) < 4, if u(t) > 4C
m(4−v(t))2 , then v(t+ 1) < v(t).

See the proof in Appendix H.2.

Now we are ready to show the existence of T2 such that v(T2) ≤ 3.

Proposition 3. Under the condition of Lemma 1, if we further assume that m satisfies

m > max

exp

(
7682C2

C ′uC
2
ε

)
, exp (2C ′u + Cε) , exp

(
48C

√
C ′u

Cε

)2/3

,
16C2

C ′u
2

 ,

and C ′u ≥ 4C2, there exists T2 ≥ T1 such that v(T2) ≤ 3.

See the proof in Appendix H.3

Since v(T2) < 3 hence 4− v(T2) ≥ 1. Simply using Proposition 2, we get

Proposition 4. v(t) keeps decreasing after T2 until u(t) = O
(

1
m

)
.

By definition v(t) = ηλ(t) where λ(t) ≥ 0, v(t) will not keep decreasing for t → ∞ hence there
exists T ∗ such that u(T ∗) = O

(
1
m

)
. And it indicates that the loss will decrease to the order of

O(1).

F PROOF OF THEOREM 2

We compute the steady-state equilibria of Eq. (13) and (14). By letting u(t+1) = u(t) and v(t+1) =
v(t), we have the steady-state equilibria (u∗, v∗) satisfy one of the following:

(1) u∗ = 0, v∗ ∈ R;

(2) |1− v∗ + u∗ + w∗| = 1, u∗(4− v∗) + 4w∗ = 0.

As w(t)2 = C2u(t)
m where C := η‖x‖|y|√

d
> 0, we write w as a function of u for simplicity, hence

w∗ = w(u∗).

As the dynamics equations are non-linear, we analyze the local stability of the steady-state equilibria.
We consider the Jacobian matrix of the dynamical systems:

J(u, v) =

[
2(1− v + u+ w)(1 + dw

du)u+ (1− v + u+ w)2 −2(1− v + u+ w)u
v − 4− 4dwdu 1 + u

]
.

22

Published as a conference paper at ICLR 2024

We analyze the stability of two equilibria separately.

For Scenario (1), we evaluate J(u, v) at the steady-state equilibrium (u∗, v∗) then we get

J(u∗, v∗) =

[
(1− v∗)2 0

v∗ − 4− 4dwdu 1

]
.

We get the two eigenvalues of J(u∗, v∗) are 1 and (1 − v∗)2. We will show the Lyapunov stability
of the equilibrium (u∗, v∗). Specifically, we apply Theorem 1.2 in Bof et al. (2018). We find the
domain

D = {(u, v) : u ≤ C1, |v − v∗| ≤ min(|C2 − v∗|, |2− C2 − v∗|},

where C1 = Θ(1/m) and C2 = Θ(1/
√
m), and the Lyapunov function V (u, v) = u + (v − v∗)2.

It is not hard to verify that V is locally Lipschitz in D as V is continuous in a compact domain.
Furthermore, we can see that (u∗, v∗) with u∗ = 0, v∗ ∈ [ε, 2 − ε] where ε = Θ(logm/

√
m)

satisfies the condtions Eq. (3,4) in Theorem 1.2 in Bof et al. (2018). Therefore, (u∗, v∗) with u∗ = 0
and v∗ ∈ [ε, 2− ε] is a stable equilibrium point.

For Scenario (2), we again evaluate J(u, v) at the steady-state equilibrium (u∗, v∗) then we get

J(u∗, v∗) =

[
−2u∗ + C

√
u∗√
m

+ 1 2u∗

− 2C√
mu∗

1 + u∗

]
,

where we replace v∗ by 4 + 4w∗/u∗ based on the second equality in Scenario (2). Note that u∗(4−
v∗) > 0 since v < 4 during the whole training process, therefore we have w∗ < 0 to achieve the
equilibrium.

We can compute the eigenvalue of J(u∗, v∗) then we get

λJ = 1 +
C

2
√
m

√
u∗ − u∗

2
± 1

2
(u∗)1/4

√
16

C√
m
− C2

√
u∗

m
+ 6

Cu∗√
m
− 9(u∗)3/2i.

Note that when Scenario (2) holds, there are only two possible cases

(2.1) u∗ = Θ(1/m), |w∗| = Θ(1/m) and v∗ = Θ(1);

(2.2) u∗ = Θ(1/m), |w∗| = Θ(1/m) and v∗ = Θ(1/m).

For (2.1), by the first equality v∗ = 2−u∗+w∗ ∈ (1, 2). Then plugging v∗ into the second equality
yields u∗ ∈

(
4
3
C2

m , 2C
2

m

)
.

For (2.2), by the second equality that u∗(4− v∗) + 4w∗ = 0, we have u∗ = C2

m + o(1/m).

By computing the modulo of λJ , we have

|λJ | = 1 +
5C√
m

√
u∗ − u∗ + o

(
1

m

)
.

Therefore, for both (2.1) and (2.2) we have |λJ | > 1 which indicates (u∗, v∗) is unstable.

G OPTIMIZATION WITH η > ηmax

Theorem 5. Consider training the NQM Eq. (10), with squared loss on a single training example
by GD. If the learning rate satisfies η ∈

[
4+ε
λ0
,∞
)

with ε = Θ
(

logm√
m

)
, then GD diverges.

23

Published as a conference paper at ICLR 2024

Proof. We similarly use the transformation transformation of the variables to simplify notations.

u(t) =
‖x‖2

md
η2(g(t)− y)2, w(t) =

‖x‖2

md
η2(g(t)− y)y, v(t) = ηλ(t).

Then the Eq. (11) and Eq. (12) are reduced to

u(t+ 1) = (1− v(t) + u(t) + w(t))2u(t) := κ(t)u(t)

v(t+ 1) = v(t)− u(t)(4− v(t))− 4w(t).

We similarly consider the interval [0, T] such that supt∈[0,T] u(t) = O
(

1
logm

)
. By Lemma 1, in

[0, T], u(t) increases exponentially with a rate supt∈[0,T] κ(t) > 9. We assume |w(t)| > |u(t)(4−
v(t))| for all t ∈ [0, T], which is the worst case as v(t) will increase the least. By Lemma 1, we
have

∑T
t=0 |w(t)| = O

(
1√

m logm

)
, which is less than ε. Therefore, we have v(T) > 4.

Then at the end of the increasing phase, we have |u(T1)(4 − v(T1))| = Ω(1/
√
m) is of a greater

order than |w(T1)| = O(1/
√
m logm), hence v(t) will increase at T1. Note that κ(T1) = (1− 4 +

o(1))2 = 9 + o(1), hence u((t) also increases at T1.

It is not hard to see that v(t) will keep increasing unless u(t) decreases to a smaller order. Specif-
ically, if |u(t)(4 − v(t))| = |4w(t)|, it requires u(t) to be of the order at least O(1/

√
logm) (by

letting εu(t) = Θ(w(t)) = Θ(
√
u(t)/m)), which will not happen as κ(t) = (1−v(t) +o(1))2 > 1

and it contradicts the decrease of u(t).

Therefore, both u(t) and v(t) keep increasing which leads to the divergence of GD.

H PROOF OF PROPOSITIONS

H.1 PROOF OF PROPOSITION 1

Proof. Note that 4 − v(0) = 2 − δ ≥ Cε logm√
m

by definition, where Cε > 0 is a constant. To show

4− v(T) > Cε logm
2
√
m

, a sufficient condition is v(T)− v(0) < Cε logm
2
√
m

.

Specifically, we will prove for T > 0 such that supt∈[0,T] u(t) ≤ C′uδ
2

logm , the following holds:

v(T)− v(0) < 4

T∑
t=0

|w(t)| ≤
24C

√
C ′u√

m logm
,

where C,C ′u are the same constants defined in Lemma 1. Then by the condition that m >

exp

(
48C
√
C′u

Cε

)2/3

, we have v(T)− v(0) < Cε logm
2
√
m

.

We will prove the result by induction.

When T = 0, the result holds trivially.

Suppose T = T ′ the result holds. When T = T ′ + 1, since v(T ′)− v(0) < 0, we have v(T ′) < 4.
Therefore, by the update equation of v(t) Eq. (14), we have

v(T ′ + 1) = v(T ′)− u(T ′)(4− v(T ′))− 4w(T ′)

≤ v(T ′)− 4w(T ′)

≤ v(T ′) + 4|w(T ′)|.

Then v(T ′ + 1)− v(0) = v(T ′ + 1)− v(T ′) + v(T ′)− v(0) ≤
∑T ′+1
t=0 |w(t)|.

By Lemma 1, we have
∑T ′+1
t=0 |w(t)| ≤ 24C

√
C′u√

m logm
. Indeed, this inequality holds for any T ′ + 1 such

that supt∈[0,T ′+1] u(t) ≤ C′uδ
2

logm .

24

Published as a conference paper at ICLR 2024

Therefore, we finish the inductive step hence finish the proof.

H.2 PROOF OF PROPOSITION 2

Proof. A sufficient condition for v(t) to decrease is

u(t)(4− v(t)) > 4|w(t)| =
4C
√
u(t)√
m

.

If u(t) > 4C
m(4−v(t))2 , then the above condition is satisfied.

H.3 PROOF OF PROPOSITION 3

Proof. Note that for t ∈ [0, T1], the change of v(t) satisfies supt |v(t)−v(0)| ≤ Cvδ
logm by Lemma 1.

For δ < 1− Cvδ
logm , i.e., v(0) < 3− Cvδ

logm , we have v(T1) < v(0) + |v(T1)−v(0)| = 2 + δ+ |v(0)−
v(T1)| < 3. Therefore, the existence of T2 can be guaranteed by simply letting T2 = T1.

For δ ≥ 1 − Cvδ
logm , i.e., v(0) ≥ 3 − Cvδ

logm , we will show there exists T2 ≥ T1 which depends on m
such that v(T2) < 3.

We prove the existence of T2 by contradiction. Suppose that for all t ≥ T1 + 1 we have v(t) ≥ 3.

For the simple case that if all u(t) > 4C
m(4−v(t))2 , then by Proposition 2, v(t) keeps decreasing which

will ultimately lead to v(t) < 3.

Suppose there is an iteration t ≥ T1 + 1 such that u(t) ≤ 4C
m(4−v(t))2 . The following Proposition

guarantees that v(t) will decrease to a smaller value after t once such t occurs. Therefore, we can
find T2.

Proposition 5. Under the condition of Lemma 1, suppose m further satisfies

m > max

{
exp

(
7682C2

C ′uC
2
ε

)
,

16C2

C ′u
2 , exp (2C ′u + Cε)

}
,

where C ′u ≥ 4C2.

Then if there is T ≥ 0 such that u(T) ≤ 4C
m(4−v(T))2 and v(T) > 3, we have v(T ′ + 2) < v(T) and

u(T ′ + 1) > 4C
m(4−v(T ′))2 , where T ′ is the end of the increasing phase starting from T .

See the proof in Appendix H.4.

H.4 PROOF OF PROPOSITION 5

Proof. Since u(T) ≤ C′u
logm by the assumption that m > 16C2

C′u
2 , the training dynamics falls into the

increasing phase from T . We denote the end of the increasing phase starting from T by T ′, i.e.,

T ′ = sup

{
t : u(t) ≤ C ′uδ

2

logm
, t ≥ T

}
.

We will prove the result by induction.

Suppose T ′ is the end of the first increasing phase, i.e., T ′ = T1. By proposition 1, v(T1) <

4− Cε logm
2
√
m

. And the magnitude of u(T1 + 1) can be lower bounded by

u(T1 + 1) ≥ C ′u
4 logm

, (20)

25

Published as a conference paper at ICLR 2024

where we use δ ≥ 1
2 by the assumption on m that and plug δ in C′uδ

2

logm .

Note that when m > exp (28C ′u), δ ≥ 1
2 is necessary for v(T1) > 3 as |v(T1)− v(0)| ≤ 28C′uδ

logm by
Inequality (18).

Furthermore, with the above bound on u(T1 + 1), we have

v(T1 + 1) = v(T1)− u(T1)(4− v(T1))− 4w(T1)

≤ 4− Cε logm

2
√
m

+
C ′u

4 logm

Cε logm

2
√
m

+ 4|w(T1)|

≤ 4− Cε logm

2
√
m

+
C ′uCε
8
√
m

+
2
√
C ′u√

m logm

≤ 4− Cε logm

4
√
m

. (21)

Consequently, when C ′u ≥ 4C2 and m > exp (2C ′u + Cε), we have

u(T1 + 1) = κ(T1)u(T1) = (1− v(T1) + u(T1) + w(T1))2u(T1)

≤

(
1− 4 +

Cε logm

4
√
m

+
C ′u

4 logm
+

C
√
C ′u

2
√
m logm

)2
C ′u

4 logm

≤ 9C ′u
4 logm

.

Therefore, at T1 + 1, we have

v(T1 + 1)− v(T1 + 2) ≥ u(T1 + 1)(4− v(T1 + 1))−
4C
√
u(T1 + 1)√
m

≥ C ′u
4 logm

Cε logm

4
√
m
−

8C
√
C ′u√

m logm

=
C ′uCε
16
√
m
−

6C
√
C ′u√

m logm

≥ C ′uCε
32
√
m
,

where we use the assumption that m > exp
(

256C2

9C′uC
2
ε

)
.

Note that the increase is caused by the termw(t) since for all t ∈ [T, T1+1] we have u(t)(4−v(t)) <
0. Then we have the maximum increase during [T, T1 + 1] be bounded by

v(T1 + 1)− v(T) ≤
T1+1∑
t=T

4|w(t)| ≤
24C

√
C ′u√

m logm
,

where we use Eq. (18) in the proof of Lemma 1.

By the assumption on m that m > exp
(

7682C2

C′uC
2
ε

)
, we have v(T1 + 2) < v(T).

If there is T̃ > 0 such that u(T̃) ≤ 4C

m(4−v(T̃))2
while v(T̃) > 3, there is another increasing

phase. Since v(T̃) < v(T), we can apply the same analysis under the same condition to show
v(T̃1 + 2) < v(T̃), where T̃1 is the end of the increasing phase starting from T̃ . Therefore, we finish
the inductive step hence finish the proof.

26

Published as a conference paper at ICLR 2024

H.5 PROOF OF PROPOSITION 7

Restate Proposition 7: For any u,v ∈ Rm, rank(K) ≤ 2. Furthermore, p1, p2 are eigenvectors
of K, where p1,i = xi1{i∈S+}, p2,i = xi1{i∈S−}, for i ∈ [n].

Proof. By Definition 1,

Ki,j =
1

m

m∑
k=1

(v2k + u2k)xixj1{ukxi≥0}1{ukxj≥0}, i, j ∈ [n].

By definition of eigenvector, we can see
n∑
j=1

Ki,jp1,j =
1

m

n∑
j=1

m∑
k=1

(v2k + u2k)xix
2
j1{ukxi≥0}1{ukxj≥0}1{j∈S+}

=

n∑
j=1

x2j1{j∈S+}
1

m

m∑
k=1

(v2k + u2k)xi1{ukxi≥0}1{ukxj≥0}

= xi1{xi∈S+}

n∑
j=1

x2j1{j∈S+}
1

m

m∑
k=1

(v2k + u2k)1{ukxj≥0},

where we use the fact that if xixj < 0, Ki,j = 0.
As p1,i = xi1{xi∈S+} and

∑n
j=1 x

2
j1{j∈S+}

1
m

∑m
k=1(v2k + u2k)1{ukxj≥0} does not de-

pend on i, we can see p1 is an eigenvector of K with corresponding eigenvalue λ1 =∑n
j=1 x

2
j1{j∈S+}

1
m

∑m
k=1(v2k + u2k)1{ukxj≥0}.

The same analysis can be applied to show p2 is another eigenvector of K with corresponding
λ2 =

∑n
j=1 x

2
j1{j∈S−}

1
m

∑m
k=1(v2k + u2k)1{ukxj≥0}.

For the rank of K, it is not hard to verify that K = λ1p1p
T
1 + λ2p2p

T
2 hence the rank of K is at

most 2.

I SCALE OF THE TANGENT KERNEL FOR SINGLE TRAINING EXAMPLE

Proposition 6 (Scale of tangent kernel). For any δ ∈ (0, 1), if m ≥ c′ log(4/δ) where c′ is an
absolute constant, with probability at least 1− δ, ‖x‖2/(2d) ≤ λ(0) ≤ 3‖x‖2/(2d).

Proof. Note that when t = 0,

λ(0) =
1

md

m∑
i=1

(
uT0,ix1{uT0,ix≥0}

)2
+

1

md

m∑
i=1

(v0,i)
2‖x‖2

(
1{uT0,ix≥0}

)2
.

According to NTK initialization, for each i ∈ [m], v0,i ∼ N (0, 1) and u0,i ∼ N (0, I). We consider
the random variable

ζi := uT0,ix1{uT0,ix≥0}, ξi := v0,i1{uT0,ix≥0}.

it is not hard to see that ζi and ξi are sub-guassian since uT0,ix and v0,i are sub-gaussian. Specifically,
for any t ≥ 0,

P{|ζi| ≥ t} ≤ P{|uT0,ix| ≥ t} ≤ 2 exp
(
−t2/(2‖x‖2)

)
,

P{|ξi| ≥ t} ≤ P{|v0,i| ≥ t} ≤ 2 exp
(
−t2/2

)
,

where the second inequality comes from the definition of sub-gaussian variables.

Since ξi is sub-gaussian, by definition, ξ2 is sub-exponential, and its sub-exponential norm is
bounded:

‖ξ2i ‖ψ1 ≤ ‖ξi‖2ψ2
≤ C,

27

Published as a conference paper at ICLR 2024

where C > 0 is a absolute constant. Similarly we have ‖ζi‖2ψ2
≤ C‖x‖2.

By Bernstein’s inequality, for every t ≥ 0, we have

P

{∣∣∣∣∣
m∑
i=1

ξ2i −
m

2

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−cmin

(
t2∑m

i=1 ‖ξ2i ‖2ψ1

,
t

maxi ‖ξ2i ‖ψ1

))
,

where c > 0 is an absolute constant.

Letting t = m/4, we have with probability at least 1− 2 exp (−m/c′),

m

4
≤

m∑
i=1

ξ2i ≤
3m

4
,

where c′ = c/(4C).

Similarity, we have with probability at least 1− 2 exp (−m/c′),

m

4
‖x‖2 ≤

m∑
i=1

ζ2i ≤
3m

4
‖x‖2.

As a result, using union bound, we have probability at least 1− 4 exp (−m/c′),

‖x‖2

2d
≤ λ(0) ≤ 3‖x‖2

2d
.

J SCALE OF THE TANGENT KERNEL FOR MULTIPLE TRAINING EXAMPLES

Proof. As shown in Proposition 7, p1 and p2 are eigenvectors ofK, hence we have two eigenvalues:

λ1(0) =
pT1K(0)p1

‖p1‖2
, λ2(0) =

pT2K(0)p2

‖p2‖2
.

Take λ1(0) as an example:

λ1(0)‖p1‖2 =

n∑
i,j=1

xixj1{xi≥0}1{xj≥0}

m∑
k=1

(u20,k + v20,k)xixj1{u0,kxi≥0}1{u0,kxj≥0}

=

m∑
k=1

(u20,k + v20,k)
(
1{u0,k≥0}

)2 n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0}.

Similar to the proof of Proposition 6, we consider ξk := v0,k1{u0,k≥0} which is a sub-gaussian
random variable. Hence ξ2k is sub-exponential so that ‖ξ2k‖ψ1 ≤ C where C > 0 is an absolute
constant. By Bernstein’s inequality, for every t ≥ 0, we have

P

{∣∣∣∣∣
m∑
i=1

ξ2i −
m

2

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−cmin

(
t2∑m

i=1 ‖ξ2i ‖2ψ1

,
t

maxi ‖ξ2i ‖ψ1

))
,

where c > 0 is an absolute constant.

Letting t = m/4, we have with probability at least 1− 2 exp (−m/c′),

m

4
≤

m∑
i=1

ξ2i ≤
3m

4
,

where c′ = c/(4C).

28

Published as a conference paper at ICLR 2024

The same analysis applies to ζk := u0,k1{u0,k≥0} as well and we have with probability at least
1− 2 exp (−m/c′),

m

4
≤

m∑
i=1

ζ2i ≤
3m

4
.

As a result, we have probability at least 1− 4 exp (−m/c′),

λ1(0)‖p1‖2 =
1

m

m∑
i=k

(u20,k + v20,k)
(
1{uk(0)≥0}

)2 n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0}

∈

1

2

n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0},

3

2

n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0}

 .
Applying the same analysis to λ2(0), we have with probability 1− 4 exp (−m/c′),

λ2(0)‖p2‖2 =
1

m

m∑
i=k

(u20,k + v20,k)
(
1{uk(0)≤0}

)2 n∑
i,j=1

x2ix
2
j1{xi≤0}1{xj≤0}

∈

1

2

n∑
i,j=1

x2ix
2
j1{xi≤0}1{xj≤0},

3

2

n∑
i,j=1

x2ix
2
j1{xi≤0}1{xj≤0}

 .
The largest eigenvalue is max{λ1(0), λ2(0)}. Combining the results together, we have with proba-
bility at least 1− 4 exp (−m/c′),

1

2
M ≤ ‖K(0)‖ ≤ 3

2
M,

where M = max

{∑n
i,j=1 x

2
ix

2
j1{xi≥0}1{xj≥0}∑n

i=1 x
2
i1{xi≥0}

,
∑n
i,j=1 x

2
ix

2
j1{xi≤0}1{xj≤0}∑n

i=1 x
2
i1{xi≤0}

}
.

K ANALYSIS ON OPTIMIZATION DYNAMICS FOR MULTIPLE TRAINING
EXAMPLES

In this section, we discuss the optimization dynamics for multiple training examples. We will see
that by confining the dynamics into each eigendirection of the tangent kernel, the training dynamics
is similar to that for a single training example.

Since xi is a scalar for all i ∈ [n], with the homogeneity of ReLU activation function, we can
compute the exact eigenvectors of K(t) for all t ≥ 0. To that end, we group the data into two sets
S+ and S− according to their sign:

S+ := {i : xi ≥ 0, i ∈ [n]}, S− := {i : xi < 0, i ∈ [n]}.

Now we have the proposition for the tangent kernel K(the proof is deferred to Appendix H.5):

Proposition 7 (Eigenvectors and low rank structure of K). For any u,v ∈ Rm, rank(K) ≤ 2.
Furthermore, p1, p2 are eigenvectors of K, where p1,i = xi1{i∈S+}, p2,i = xi1{i∈S−}, for i ∈ [n].

Note that when all xi are of the same sign, rank(K) = 1 and K only has one eigenvector (either
p1 or p2 depending on the sign). It is in fact a simpler setting since we only need to consider one
direction, whose analysis is covered by the one for rank(K) = 2. Therefore, in the following we
will assume rank(K) = 2. We denote two eigenvalues of K(t) by λ1(t) and λ2(t) corresponding
to p1 and p2 respectively, i.e., K(t)p1 = λ1(t)p1, K(t)p2 = λ2(t)p2. Without loss of generality,
we assume λ1(0) ≥ λ2(0).

29

Published as a conference paper at ICLR 2024

By Eq. (5), the tangent kernel K at step t is defined as:

Ki,j(t) = 〈∇vgi(t),∇vgj(t)〉+ 〈∇ugi(t),∇ugj(t)〉

=
1

m

m∑
k=1

(
(uk(t))2 + (vk(t))2

)
xixj1{uk(0)xi≥0}1{uk(0)xj≥0}, ∀i, j ∈ [n].

Similar to single example case, the largest eigenvalue of of tangent kernel is bounded from 0:
Proposition 8. For any δ ∈ (0, 1), if m ≥ c′ log(4/δ) where c′ is an absolute con-
stant, with probability at least 1 − δ, M/2 ≤ λmax(K(0)) ≤ 3M/2 where M =

max

{∑n
i,j=1 x

2
ix

2
j1{xi≥0}1{xj≥0}∑n

i=1 x
2
i1{xi≥0}

,
∑n
i,j=1 x

2
ix

2
j1{xi≤0}1{xj≤0}∑n

i=1 x
2
i1{xi≤0}

}
.

The proof can be found in Appendix J.

For the simplicity of notation, given p,m ∈ Rn, we define the matrices Kp,mand Qp,m:

Kp,m(t) := ((g(t)− y)�m)
T
K(t) ((g(t)− y)�m)ppT ,

Qp,m(t) := ((g(t)− y)�m)
T

(g(t)�m)ppT

It is not hard to see that for all t, Kp,m and Qp,m are rank-1 matrices. Specially, p is the only
eigenvector of Kp,m and Qp,m.

With the above notations, we can write the update equations for g(t)− y and K(t) during gradient
descent with learning rate η:

Dynamics equations.

g(t+ 1)− y =

I − ηK(t) +
η2

m

(
Qp1,m+(t) +Qp2,m−(t)

)
︸ ︷︷ ︸

Rg(t)

 (g(t)− y), (22)

K(t+ 1) = K(t) +
η2

m

(
Kp1,m+

(t) +Kp2,m−(t)
)
− 4η

m

(
Qp1,m+

(t) +Qp2,m−(t)
)

︸ ︷︷ ︸
RK(t)

, (23)

where m+,m− ∈ Rn are mask vectors:

m+,i = 1{i∈S+}, m−,i = 1{i∈S−}.

Now we are ready to discuss different three optimization dynamics for multiple training examples
case, similar to the single training example case in the following.

Monotonic convergence: sub-critical learning rates (η < 2/λ1(0)). We use the key observation
that when ‖g(t)‖ is small, i.e., O(1), and ‖K(t)‖ is bounded, then ‖Rg(t)‖ and ‖RK(t)‖ are of the
order o(1). Then the dynamics equations approximately reduce to the ones of linear dynamics for
multiple training examples:

g(t+ 1)− y = (I − ηK(t) + o(1)) (g(t)− y),

K(t+ 1) = K(t) + o(1).

At initialization, ‖g(0)‖ = O(1) with high probability over random initialization. By the choice
of the learning rate, we will have for all t ≥ 0, ‖I − ηK(t)‖ < 2, hence ‖g(t) − y‖ decreases
exponentially. The cumulative change on the norm of tangent kernel is o(1) since ‖RK(t)‖ =
O(1/m) and the loss decreases exponentially hence

∑
‖RK(t)‖ = O(1/m) · logO(1) = o(1).

Catapult convergence: super-critical learning rates (2/λ1(0) < η < min{2/λ2(0), 4/λ1(0)}).
We summarize the catapult dynamics in the following:

30

Published as a conference paper at ICLR 2024

Restate Theorem 3 (Catapult dynamics on multiple training examples). Supposing Assumption 1
holds, consider training the NQM Eq. (10) with squared loss on multiple training examples by GD.
Then,

1. with η ∈
[

2+ε
λ1(0)

, 2−ε
λ2(0)

]
, the catapult only occurs in eigendirection p1: Π1L increases to

the order of Ω
(
m(η−2/λ1(0))

2

logm

)
then decreases to O(1);

2. with η ∈
[

2+ε
λ2(0)

, 4−ε
λ1(0)

]
, the catapult occurs in both eigendirections p1 and p2: ΠiL for

i = 1, 2 increases to the order of Ω
(
m(η−2/λi(0))2

logm

)
then decreases to O(1),

where ε = Θ
(

logm√
m

)
.

The proof can be found in Appendix L.

For the remaining eigendirections p3, · · · ,pn, i.e., the basis of the subspace orthogonal to p1 and
p2, we can show that the loss projected to this subspace does not change during training in the
following proposition. It follows from the fact that K, Rg(t) and RK(t) are orthogonal to pip

T
i for

i = 3, · · · , n.
Proposition 9. ∀t ≥ 0, ΠiL(t) = ΠiL(0) for i = 3, · · · , n.

Once the catapult finishes as the loss decreases to the order of O(1), we generally have η > 2/λ1
and η > 2/λ2. Therefore the training dynamics fall into linear dynamics, and we can use the same
analysis for sub-critical learning rates for the remaining training dynamics.

Divergence: (η > ηmax = 4/λ1(0)). Similar to the increasing phase in the catapult convergence,
initially ‖g(t)−y‖ increases in direction p1 and p2 since linear dynamics dominate and the learning
rate is chosen to be larger than ηcrit. Also, we approximately have η > 4/λ1(t) at the end of the
increasing phase, by a similar analysis for the catapult convergence. We consider the evolution of
K(t) in the direction p1. Note that when ‖g(t)‖ increases to the order of Θ(

√
m), g(t)�m+ will

be aligned with p1, hence with simple calculation, we approximately have

pT1 RK(t)p1 ≈
‖g(t)‖2‖p1‖2

m
η(λ1(t)− 4η) > 0.

Therefore, λ1(t) increases since pT1K(t + 1)p1 = pT1K(t)p1 + pT1 RK(t)p1 > pT1K(t)p1. As
a result, ‖I − ηK(t) + Rg(t)‖ becomes even larger which makes ‖g(t) − y‖ grows faster, and
ultimately leads to divergence of the optimization.

L PROOF OF THEOREM 3

As the tangent kernel K has rank 2 by Proposition 7, the update of weight parameters w is in a
subspace with dimension 2. Specifically,

w(t+ 1) = w(t)− η ∂g
∂w

∂L
∂g

(t),

where ∂g/∂w has rank 2. Therefore, to understand the whole training dynamics, it is sufficient to
analyze the dynamics of the loss in eigendirection p1 and p2.

We will analyze the dynamics of the loss L and the tangent kernel K confined to p1 and p2. It
turns out that the dynamics in each eigen direction is almost independent on the other hence can be
reduced to the same training dynamics for a single training example.

We start with eigendirection p1. For dynamics equations Eq. (22) and (23), we consider the training
dynamics confined to direction p1 and we have

Π1L(t) =
(
1− ηλ1(t) + pT1 Rg(t)p1

)2
Π1L(t) := κ1(t)Π1L(t),

λ1(t+ 1) = λ1(t) + pT1 RK(t)p1,

31

Published as a conference paper at ICLR 2024

where we use the notation Π1L(t) = 1
2 〈g(t)− y,p1〉

2.

We further expand pT1 Rg(t)p1 and pT1 RK(t)p1 and we have

pT1 Rg(t)p1 =
2η2

m
Π1L(t) +

η2

m
〈(g(t)− y)�m+,y �m+〉 ,

pT1 RK(t)p1 =
2η

m
Π1L(t)(ηλ1(t)− 4)− 4η

m
〈(g(t)− y)�m+,y �m+〉 .

Analogous to the transformation for Eq. (11) and (12) as we have done in the proof of Theorem 1,
we let

u1(t) =
2η2

m
Π1L(t), w1(t) =

η2

m
〈(g(t)− y)�m+,y �m+〉 , v1(t) = ηλ1(t).

Then the dynamic equations can be written as:

u1(t+ 1) = (1− v1(t) + u1(t) + w1(t))2u1(t), (24)
v1(t+ 1) = v1(t)− u1(t)(4− v1(t))− 4w1(t). (25)

Note that at initialization, ‖g(t)‖ = O(
√

1) with high probability, hence we have u1(0) = O
(

1
m

)
andw1(0) = O

(
1
m

)
(we omit the factor n as n is a constant). Furthermore, |w1(t)| = Θ

(√
u1(t)√
m

)
.

Therefore, both the dynamic equations and the initial condition are exactly the same with the ones
for a single training example (Eq. (13) and (14)). Then we can follow the same idea of the proof of
Theorem 1 to show the catapult in eigendirection p1.

Similarly, when we consider the training dynamics confined to p2, we have

u2(t+ 1) = (1− v2(t) + u2(t) + w2(t))2u2(t), (26)
v2(t+ 1) = v2(t)− u2(t)(4− v2(t))− 4w2(t), (27)

where

u2(t) =
2η2

m
Π2L(t), w2(t) =

η2

m
〈(g(t)− y)�m−,y �m−〉 , v2(t) = ηλ2(t).

Then the same analysis with Theorem 1 can be used to show the catapult in direction p2.

Note that when 2/λ2(0) > 4/λ1(0), the learning rate is only allowed to be less than 4/λ1(0)
otherwise GD will diverge, therefore, there will be no catapult in direction p2.

M SPECIAL CASE OF QUADRATIC MODELS WHEN φ(x) = 0

In this section we will show under some special settings, the catapult phase phenomenon also hap-
pens and how two layer linear neural networks fit in our quadratic model.

We consider one training example (x, y) with label y = 0 and assume the initial tangent kernel
λ(0) = Ω(1). Letting the feature vector φ(x) = 0, the quadratic model Eq.(3) becomes:

g(w) =
1

2
γwTΣ(x)w.

For this quadratic model, we have the following proposition:
Proposition 10. With learning rate 2

λ(0) < η < 4
λ(0) , if Σ(x)2 = ‖x‖2 · I , g(w) exhibits catapult

phase.

Proof. With simple computation, we get

g(t+ 1) =
(
1− ηλ(t) + γη2‖x‖2(g(t))2

)
g(t),

λ(t+ 1) = λ(t)− γ‖x‖2(g(t))2(4− ηλ(t)).

We note that the evolution of g and λ is almost the same with Eq. (11) and Eq. (12) if we regard
γ = 1/m. Hence we can apply the same analysis to show the catapult phase phenomenon.

32

Published as a conference paper at ICLR 2024

It is worth pointing out that the two-layer linear neural network with input x ∈ Rd analyzed in
Lewkowycz et al. (2020) that

f(U,v;x) =
1√
m
vTUx,

where v ∈ Rm,U ∈ Rm×d is a special case of our model with w =
[
Vec(U)T ,vT

]T
, γ = 1/

√
m

and

Σ =

(
0 Im ⊗ x

Im ⊗ xT 0

)
∈ Rmd+m.

N EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

N.1 VERIFICATION OF NON-LINEAR TRAINING DYNAMICS OF NQMS, I.E., FIGURE 3

We train the NQM which approximates the two-layer fully-connected neural network with ReLU
activation function on 128 data points where each input is drawn i.i.d. from N (−2, 1) if the label is
−1 or N (2, 1) if the label is 1. The network width is 5, 000.

N.2 EXPERIMENTS FOR TRAINING DYNAMICS OF WIDE NEURAL NETWORKS WITH
MULTIPLE EXAMPLES.

We train a two-layer fully-connected neural network with ReLU activation function on 128 data
points where each input is drawn i.i.d. from N (−2, 1) if the label is −1 or N (2, 1) if the label is 1.
The network width is 5, 000. See the results in Figure 5.

(a) Training loss (b) Largest eigenvalue of tangent
kernel

(c) Second largest eigenvalue of
tangent kernel

Figure 5: Training dynamics of wide neural networks for multiple examples case with different
learning rates. Compared to the training dynamics of NQMs, i.e., Figure 3, the behaviour of of top
eigenvalues is almost the same with different learning rates: when η < 0.37, the kernel is nearly
constant; when 0.37 < η < 0.39, only λ1(t) decreases; when 0.39 < η < ηmax, both λ1(t) and
λ2(t) decreases. See the experiment setting in Appendix N.2.

N.3 TRAINING DYNAMICS CONFINED TO TOP EIGENSPACE OF THE TANGENT KERNEL

We consider the corresponding dynamics equations (15) and (16) for neural networks:
f(t+ 1)− y = (I − ηK(t) +Rf (t)) (f(t)− y), (28)

K(t+ 1) = K(t)−RK(t). (29)

Note that for NQMs, Rf (t) and RK(t) have closed-form expressions but generally for neural net-
works they do not have.

We consider the training dynamics confined to the top eigenvector of the tangent kernel p1(t):

〈p1(t), f(t+ 1)− y〉 =
(
I − ηλ1(t) + p1(t)TRf (t)p1(t)

)
〈p1(t), f(t)− y〉 ,

p1(t)TK(t+ 1)p1(t) = λ1(t)− p1(t)TRK(t)p1(t).

33

Published as a conference paper at ICLR 2024

We conduct experiments to show that p1(t)TRf (t)p1(t) and p1(t)TRK(t)p1(t) scale with the loss
and remain positive when the loss is large. Furthermore, the loss confined to p1 can almost capture
the spike in the training loss.

In the experiments, we train a two-layer FC and CNN with width 2048 and 1024 respectively on 128
points from CIFAR-2 (2 class subset of CIFAR-10) and SVHN-2 (2 class subset from SVHN-10).
The results for NQM can be seen in Figure 6 and for neural networks can be seen in Figure 7.

(a) FC on CIFAR-2 (b) CNN on CIFAR-2 (c) FC on SVHN-2 (d) CNN on SVHN-2

Figure 6: Training dynamics confined to the top eigenspace of the tangent kernel for NQMs.

(a) FC on CIFAR-2 (b) CNN on CIFAR-2 (c) FC on SVHN-2 (d) CNN on SVHN-2

Figure 7: Training dynamics confined to the top eigenspace of the tangent kernel for wide
neural networks.

N.4 TRAINING DYNAMICS OF GENERAL QUADRATIC MODELS AND NEURAL NETWORKS.

As discussed at the end of Section 3, a more general quadratic model can exhibit the catapult phase
phenomenon. Specifically, we consider a general quadratic model:

g(w;x) = wTφ(x) +
1

2
γwTΣ(x)w.

We will train the general quadratic model with different learning rates, and different γ respectively,
to see how the catapult phase phenomenon depends on these two factors. For comparison, we also
implement the experiments for neural networks. See the experiment setting in the following:

General quadratic models. We set the dimension of the input d = 100. We let the feature vector
φ(x) = x/‖x‖ where xi ∼ N (0, 1) i.i.d. for each i ∈ [d]. We let Σ be a diagonal matrix with
Σi,i ∈ {−1, 1} randomly and independently. The weight parameters w are initialized by N (0, Id).
Unless stated otherwise, γ = 10−3, and the learning rate is set to be 2.8.

Neural networks. We train a two-layer fully-connected neural networks with ReLU activation
function on 20 data points of CIFAR-2. Unless stated otherwise, the network width is 104, and the
learning rate is set to be 2.8.

See the results in Figure 8.

34

Published as a conference paper at ICLR 2024

(A)

(B)
(a) Loss (log scaled) vs.

γ/width
(b) Tangent kernel norm

vs. γ/width
(c) Loss vs. learning rate (d) Tangent kernel norm

vs. learning rate

Figure 8: General quadratic models have similar training dynamics with neural networks when
trained with super-critical learning rates. Panel (A): experiments on general quadratic models.
Smaller γ or larger learning rates lead to larger training loss at the peak. Larger learning rates make
tangent kernel decrease more. Panel (B): experiments on two-layer neural networks. Larger width
(corresponding to smaller γ) and larger learning rates have similar effect on the training loss at the
peak and decrease of tangent kernel norm with quadratic models. Note that width or γ seems to have
no effect on the tangent kernel norm at convergence.

N.5 TEST PERFORMANCE OF f , flin AND fquad, I.E., FIGURE 2(B) AND FIGURE 4

For the architectures of two-layer fully connected neural network and two-layer convolutional neural
network, we set the width to be 5, 000 and 1, 000 respectively. Specific to Figure 2(b), we use the
architecture of a two-layer fully connected neural network.

Due to the large number of parameters in NQMs, we choose a small subset of all the datasets. We
use the first class (airplanes) and third class (birds) of CIFAR-10, which we call CIFAR-2, and select
256 data points out of it as the training set. We use the number 0 and 2 of SVHN, and select 256 data
points as the training set. We select 128, 256, 128 data points out of MNIST, FSDD and AG NEWS
dataset respectively as the training sets. The size of testing set is 2, 000 for all. When implementing
SGD, we choose batch size to be 32.

For each setting, we report the average result of 5 independent runs.

N.6 TEST PERFORMANCE OF f , flin AND fquad IN TERMS OF ACCURACY

In this section, we report the best test accuracy for f , flin and fquad corresponding to the best test
loss in Figure 4. We use the same setting as in Appendix N.5.

N.7 TEST PERFORMANCE OF f , flin AND fquad WITH ARCHITECTURE OF 3-LAYER FC

In this section, we extend our results for shallow neural networks discussed in Section 4 to 3-layer
fully connected neural networks. In the same way, we compare the test performance of three models,
f , flin and fquad upon varying learning rate. We observe the same phenomenon for 3-layer ReLU
activated FC with shallow neural networks. See Figure 12 and 13.

We use the first class (airplanes) and third class (birds) of CIFAR-10, which we call CIFAR-2, and
select 100 data points out of it as the training set. We use the number 0 and 2 of SVHN, and select
100 data points as the training set. We select 100 data points out of AG NEWS dataset as the training
set. For the speech data set FSDD, we select 100 data points in class 1 and 3 as the training set. The
size of testing set is 500 for all.

For each setting, we report the average result of 5 independent runs.

35

Published as a conference paper at ICLR 2024

20 40 60 80 100
Learning rate

0.55

0.60

0.65

0.70

0.75

B
es

tT
es

tA
cc

ur
ac

y

2-layer FC on MNIST with GD

Linear
NN
Quadratic
Critical LR

20 40 60 80
Learning rate

0.78

0.80

0.82

0.84

B
es

tT
es

tA
cc

ur
ac

y

2-layer FC on AG NEWS with GD

NN
Quadratic
Linear
Critical LR

Figure 9: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 2-layer FC on MNIST trained with GD. Right panel: 2-layer FC on AG NEWS trained with
GD.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Learning rate

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

B
es

tT
es

tA
cc

ur
ac

y

2-layer FC on CIFAR-2 with SGD

NN
Quadratic
Linear
Critical LR

1.0 1.5 2.0 2.5 3.0 3.5
Learning rate

0.77

0.78

0.79

0.80

B
es

tT
es

tA
cc

ur
ac

y

2-layer CNN on SVHN with GD

NN
Quadratic
Linear
Critical LR

Figure 10: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 2-layer FC on CIFAR-2 trained with SGD. Right panel: 2-layer CNN on SVHN trained with
GD.

25 50 75 100 125 150
Learning rate

0.565

0.570

0.575

0.580

0.585

0.590

B
es

tT
es

tA
cc

ur
ac

y

2-layer FC on FSDD with GD

NN
Quadratic
Linear
Critical LR

1 2 3 4
Learning rate

0.74

0.75

0.76

0.77

0.78

B
es

tT
es

tA
cc

ur
ac

y

2-layer CNN on CIFAR-2 with GD

NN
Quadratic
Linear
Critical LR

Figure 11: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 2-layer FC on FSDD trained with GD. Right panel: 2-layer CNN on CIFAR-2 trained with
GD.

N.8 TEST PERFORMANCE WITH TANH AND SWISH ACTIVATION FUNCTIONS

We replace ReLU by Tanh and Swish activation functions to train the models with the same setting
as Figure 4. We observe the same phenomenon as we describe in Section 4.

36

Published as a conference paper at ICLR 2024

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Learning rate

0.72

0.74

0.76

0.78

0.80

0.82

0.84
B

es
tT

es
tL

os
s

3-layer FC on CIFAR-2 with GD

NN
Quadratic
Linear
Critical LR

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Learning rate

0.66

0.68

0.70

0.72

0.74

0.76

B
es

tT
es

tL
os

s

3-layer FC on SVHN-2 with GD

NN
Quadratic
Linear
Critical LR

Figure 12: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 3-layer FC on CIFAR-2 trained with GD. Right panel: 3-layer FC on SVHN-2 trained with
GD.

4 5 6 7 8
Learning rate

0.14

0.15

0.16

0.17

0.18

B
es

tT
es

tL
os

s

3-layer FC on FSDD-2 with GD

NN
Quadratic
Linear
Critical LR

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Learning rate

0.30

0.35

0.40

0.45

B
es

tT
es

tL
os

s

3-layer FC on AG NEWS with GD

NN
Quadratic
Linear
Critical LR

Figure 13: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 3-layer FC on FSDD-2 trained with GD. Right panel: 3-layer FC on AG NEWS trained with
GD.

60 80 100 120
Learning rate

0.0850

0.0875

0.0900

0.0925

0.0950

0.0975

0.1000

0.1025

B
es

tT
es

tL
os

s

2-layer FC on AG NEWS with GD

NN
Quadratic
Linear
Critical LR

(a) Swish activation function

30 40 50 60 70 80
Learning rate

0.0875

0.0900

0.0925

0.0950

0.0975

0.1000

0.1025

B
es

tT
es

tL
os

s

2-layer FC on AG NEWS with GD

NN
Quadratic
Linear
Critical LR

(b) Tanh activation function

Figure 14: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer FC as the architecture and train the models on AG NEWS with GD.

37

Published as a conference paper at ICLR 2024

20 40 60 80 100
Learning rate

0.070

0.071

0.072

0.073

0.074

0.075

B
es

tT
es

tL
os

s

2-layer FC on FSDD with GD

NN
Quadratic
Linear
Critical LR

(a) Swish activation function

20 30 40 50 60 70 80
Learning rate

0.070

0.071

0.072

0.073

0.074

0.075

0.076

0.077

B
es

tT
es

tL
os

s

2-layer FC on FSDD with GD

NN
Quadratic
Linear
Critical LR

(b) Tanh activation function

Figure 15: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer FC as the architecture and train the models on FSDD with GD.

2 3 4 5 6
Learning rate

0.70

0.75

0.80

0.85

B
es

tT
es

tL
os

s

2-layer CNN on CIFAR-2 with GD

NN
Quadratic
Linear
Critical LR

(a) Swish activation function

2 3 4 5
Learning rate

0.79

0.80

0.81

0.82

0.83

0.84

B
es

tT
es

tL
os

s

2-layer CNN on CIFAR-2 with GD

NN
Quadratic
Linear
Critical LR

(b) Tanh activation function

Figure 16: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer CNN as the architecture and train the models on CIFAR-2 with GD.

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Learning rate

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

B
es

tT
es

tL
os

s

2-layer CNN on SVHN with GD

NN
Quadratic
Linear
Critical LR

(a) Swish activation function

2 3 4 5 6
Learning rate

1.015

1.020

1.025

1.030

1.035

1.040

1.045

1.050

B
es

tT
es

tL
os

s

2-layer CNN on SVHN with GD

NN
Quadratic
Linear
Critical LR

(b) Tanh activation function

Figure 17: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer CNN as the architecture and train the models on SVHN with GD.

38

	Introduction
	Notation and preliminary
	Optimization dynamics in Neural Quadratic Models
	Catapult dynamics with a single training example
	Catapult dynamics with multiple training examples
	Connection to general quadratic models and wide neural networks

	Quadratic models parallel neural networks in generalization
	Summary and Discussion
	Derivation of NQM
	Derivation of dynamics equations
	Single training example
	Multiple training examples

	Optimization with sub-critical learning rates
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Optimization with
	Proof of propositions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of proposition 5
	Proof of Proposition 7

	Scale of the tangent kernel for single training example
	Scale of the tangent kernel for multiple training examples
	Analysis on optimization dynamics for multiple training examples
	Proof of Theorem 3
	Special case of quadratic models when
	Experimental settings and additional results
	Verification of non-linear training dynamics of NQMs, i.e., Figure 3
	Experiments for training dynamics of wide neural networks with multiple examples.
	Training dynamics confined to top eigenspace of the tangent kernel
	Training dynamics of general quadratic models and neural networks.
	Test performance of , and , i.e., Figure 2(b) and Figure 4
	Test performance of , and in terms of accuracy
	Test performance of , and with architecture of 3-layer FC
	Test performance with Tanh and Swish activation functions

