
Published as a conference paper at ICLR 2023

Metadata Archaeology: Unearthing Data
Subsets by Leveraging Training Dynamics

Shoaib Ahmed Siddiqui
University of Cambridge
msas3@cam.ac.uk

Nitarshan Rajkumar
University of Cambridge
nr500@cam.ac.uk

Tegan Maharaj
University of Toronto
tegan.maharaj@utoronto.ca

David Krueger
University of Cambridge
dsk30@cam.ac.uk

Sara Hooker
Cohere for AI
sarahooker@cohere.com

Abstract

Modern machine learning research relies on relatively few carefully curated
datasets. Even in these datasets, and typically in ‘untidy’ or raw data, prac-
titioners are faced with significant issues of data quality and diversity which
can be prohibitively labor intensive to address. Existing methods for dealing
with these challenges tend to make strong assumptions about the particular
issues at play, and often require a priori knowledge or metadata such as
domain labels. Our work is orthogonal to these methods: we instead focus
on providing a unified and efficient framework for Metadata Archaeology –
uncovering and inferring metadata of examples in a dataset. We curate dif-
ferent subsets of data that might exist in a dataset (e.g. mislabeled, atypical,
or out-of-distribution examples) using simple transformations, and lever-
age differences in learning dynamics between these probe suites to infer
metadata of interest. Our method is on par with far more sophisticated mit-
igation methods across different tasks: identifying and correcting mislabeled
examples, classifying minority-group samples, prioritizing points relevant
for training and enabling scalable human auditing of relevant examples.

1 Introduction

Modern machine learning is characterized by ever-larger datasets and models. The expanding
scale has produced impressive progress (Wei et al., 2022; Kaplan et al., 2020; Roberts et al.,
2020) yet presents both optimization and auditing challenges. Real-world dataset collection
techniques often result in significant label noise (Vasudevan et al., 2022), and can present
significant numbers of redundant, corrupted, or duplicate inputs (Carlini et al., 2022). Scaling
the size of our datasets makes detailed human analysis and auditing labor-intensive, and often
simply infeasible. These realities motivate a consideration of how to efficiently characterize
different aspects of the data distribution.

Prior work has developed a rough taxonomy of data properties, or metadata which different
examples might exhibit, including but not limited to: noisy (Wu et al., 2020; Yi and Wu,
2019; Thulasidasan et al., 2019a;b), atypical (Hooker et al., 2020; Buolamwini and Gebru,
2018; Hashimoto et al., 2018; S lowik and Bottou, 2021), challenging (Ahia et al., 2021;
Baldock et al., 2021; Paul et al., 2021; Agarwal et al., 2021), prototypical or core subset
selection (Paul et al., 2021; Sener and Savarese, 2018; Shim et al., 2021; Huggins et al., 2017;
Sorscher et al., 2022) and out-of-distribution (Hendrycks et al., 2019; LeBrun et al., 2022).
While important progress has been made on some of these metadata categories individually,
these categories are typically addressed in isolation reflecting an overly strong assumption
that only one, known issue is at play in a given dataset.

For example, considerable work has focused on the issue of label noise. A simple yet widely-
used approach to mitigate label noise is to remove the impacted data examples (Pleiss et al.,
2020). However, it has been shown that it is challenging to distinguish difficult examples
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Figure 1: Examples surfaced through the use of MAP-D on ImageNet train set. Column
title is the ground truth class, row title is the metadata category assigned by MAP-D.
MAP-D performs metadata archaeology by curating a probe set and then probing for similar
examples based on training dynamics. This approach can bring to light biases, mislabelled
examples, and other dataset issues.

from noisy ones, which often leads to useful data being thrown away when both noisy and
atypical examples are present (Wang et al., 2018; Talukdar et al., 2021).

Meanwhile, loss-based prioritization (Jiang et al., 2019; Katharopoulos and Fleuret, 2018)
techniques essentially do the opposite – these techniques upweight high loss examples,
assuming these examples are challenging yet learnable. These methods have been shown
to quickly degrade in performance in the presence of even small amounts of noise since
upweighting noisy samples hurts generalization (Hu et al., 2021; Paul et al., 2021).

The underlying issue with such approaches is the assumption of a single, known type of
data issue. Interventions are often structured to identify examples as simple vs. challenging,
clean vs. noisy, typical vs. atypical, in-distribution vs. out-of-distribution etc. However,
large scale datasets may present subsets with many different properties. In these settings,
understanding the interactions between an intervention and many different subsets of interest
can help prevent points of failure. Moreover, relaxing the notion that all these properties
are treated independently allows us to capture realistic scenarios where multiple metadata
annotations can apply to the same datapoint. For example, a challenging example may be
so because it is atypical.

In this work, we are interested in moving away from a siloed treatment of different data
properties. We use the term Metadata Archaeology to describe the problem of inferring
metadata across a more complete data taxonomy. Our approach, which we term Metadata
Archaeology via Probe Dynamics (MAP-D), leverages distinct differences in training
dynamics for different curated subsets to enable specialized treatment and effective labelling
of different metadata categories. Our methods of constructing these probes are general
enough that the same probe category can be crafted efficiently for many different datasets
with limited domain-specific knowledge.

We present consistent results across six image classification datasets, CIFAR-10/CIFAR-100
(Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), Waterbirds (Sagawa et al., 2020),
CelebA (Liu et al., 2015) , Clothing1M (Xiao et al., 2015) and two models from the ResNet
family (He et al., 2016). Our simple approach is competitive with far more complex mitigation
techniques designed to only treat one type of metadata in isolation. We summarize our
contributions as:

• We propose Metadata Archaeology, a unifying and general framework for uncov-
ering latent metadata categories.

• We introduce and validate the approach of Metadata Archaeology via Probe
Dynamics (MAP-D): leveraging the training dynamics of curated data subsets
called probe suites to infer other examples’ metadata.
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• We show how MAP-D could be leveraged to audit large-scale datasets or debug
model training, with negligible added cost - see Figure 1. This is in contrast to prior
work which presents a siloed treatment of different data properties.

• We use MAP-D to identify and correct mislabeled examples in a dataset. Despite
its simplicity, MAP-D is on-par with far more sophisticated methods, while enabling
natural extension to an arbitrary number of modes.

• Finally, we show how to use MAP-D to identify minority group samples, or surface
examples for data-efficient prioritized training.

2 Metadata Archaeology via Probe Dynamics (MAP-D)

Metadata is data about data, for instance specifying when, where, or how an example was
collected. This could include the provenance of the data, or information about its quality (e.g.
indicating that it has been corrupted by some form of noise). An important distinguishing
characteristic of metadata is that it can be relational, explaining how an example compares
to others. For instance, whether an example is typical or atypical, belongs to a minority
class, or is out-of-distribution (OOD), are all dependent on the entire data distribution.

The problem of metadata archaeology is the inference of metadata m ⊂ M given a
dataset D. While methods for inferring m might also be useful for semi-supervised labelling
or more traditional feature engineering, and vice versa, it is the relational nature of metadata
that makes this problem unique and often computationally expensive.

2.1 Methodology

Metadata Archaeology via Probe Dynamics (MAP-D), leverages differences in the
statistics of learning curves across metadata features to infer the metadata of previously
unseen examples.

We consider a model which learns a function fθ : X 7→ Y with trainable weights θ. Given the
training dataset D, fθ optimizes a set of weights θ∗ by minimizing an objective function L
with loss l for each example. We assume that the learner has access to two types of samples
for training. First is a training set D:

D :=
{

(x1, y1), . . . , (xN , yN )
}
⊂ X × Y , (1)

where X represents the data space and Y the set of outcomes associated with the respective
instances. Examples in the data space are also assumed to have associated, but unobserved,
metadata m ⊂ M. Secondly, we assume the learner to also have access to a small curated
subset of j samples (j ≤ N) associated with metadata m ⊂ M, i.e.:

Dm := {(x1, y1,m1), . . . , (xj , yj ,mj)} ⊂ X × Y ×M (2)

We refer to these curated subsets as probe suites. A key criteria is for our method to require
very few annotated probe examples (j ≪ N). In this work, we focus on probe suits which
can be constructed algorithmically, as human annotations of metadata require costly human
effort to maintain.

2.1.1 Assigning Metadata Features to Unseen Examples

MAP-D works by comparing the performance of a given example to the learning curves
typical of a given probe type. Our approach is motivated by the observation that different
types of examples often exhibit very different learning dynamics over the course of training
(see Figure 3). In an empirical risk minimization setting, we minimize the average training
loss across all training points.

L(θ) =
1

N

N∑
i=1

ℓ (xi, yi; θ)

However, performance on a given subset will differ from the average error. Specifically, we
firstly evaluate the learning curves of individual examples:

sti := (ℓ(xi, yi; θ1), ℓ(xi, yi; θ2), ..., ℓ(xi, yi; θt) | (xi, yi) ∈ D) (3)
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Figure 2: An illustration of samples from our curated probes. Creating our probe suites
requires no human annotation. We curate different subsets of data that might exist in
a dataset including (a) typical, (b) atypical, (c) corrupted, (d) mislabeled, (e) out-of-
distribution, and (f) random input examples, using simple transformations or existing scoring
mechanisms.

where sti denotes the learning curve for the ith training example, and t is the current epoch1.
An important property of the loss function is that it naturally integrates information regarding
the whole data distribution via training. This is essential for metadata inference which
is relational in nature. We then track the per-example performance on probes g for each
metadata category m ∈ {m1, . . . ,m|M|}, and refer to each probe as g(m).

gt
j(m) := (ℓ(xj , yj ; θ1), ℓ(xj , yj ; θ2), ..., ℓ(xj , yj ; θt) | (xj , yj) ∈ Dm) (4)

where gt
j(m) denotes the learning curve computed on the jth example chosen from a given

probe category m. We use Dg as shorthand to refer to the set of all these trajectories for the
different probe categories along with the category identity.

Dg :=
(

(gt
1(m1),m1), . . . , (gt

|m1|(m1),m1), (gt
1(m2),m2), . . . , (gt

|m|M||(m|M|),m|M|)
)

(5)

where |mc| refers the number of examples belonging to the metadata category mc.

We assign metadata features to an unseen data point by looking up the example’s nearest
neighbour from Dg, using the Euclidean distance. In general, assignment of probe type could
be done via any classification algorithm. However, in this work we use k-NN (k-Nearest
Neighbours) for its simplicity, interpretability and the ability to compute the probability of
multiple different metadata features.

p(m | sti) =
1

k

∑
(g,m̂) ∈ NN(sti,Dg,k)

1m̂=m (6)

where p(m | sti) is the probability assigned to probe category m based on the k nearest
neighbors for learning curve of the ith training example from the dataset, and NN(sti,Dg, k)
represents the top-k nearest neighbors for sti from Dg (probe trajectory dataset) based on
Euclidean distance between the loss trajectories for all the probe examples and the given
training example. We fix k=20 in all our experiments.

This distribution over probes (i.e metadata features) may be of primary interest, but we are
sometimes also interested in seeing which metadata feature a given example most strongly
corresponds to; in this case, we compute the argmax:

m′
i = arg max

m∈M
p(m | sti) (7)

where m′
i denotes the assignment of the ith example to a particular probe category.

We include the probe examples in the training set unless specified otherwise; excluding them
in training can result in a drift in trajectories, and including them allows tracking of training
dynamics.

1A coarser or finer resolution for the learning curves could also be used, e.g. every n steps or
epochs. All experiments in this work use differences computed at the end of the epoch.
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(a) Probe Accuracy (b) Percent First-Learned (c) Percent Consistently-Learned

Figure 3: Probe categories are distinguishable via learning dynamics of a ResNet-50 trained
on ImageNet, validating the approach of MAP-D. For each of the probe categories and
at each epoch, we plot (a) each probe’s average accuracy; (b) the cumulative fraction
of examples once predicted correctly by the nth epoch; and (c) the fraction that remain
predicted correctly on all subsequent epochs.

2.2 Probe Suite Curation

While probe suites can be constructed using human annotations, this can be very expensive
to annotate (Andrus et al., 2021; Veale and Binns, 2017). In many situations where auditing
is desirable (e.g. toxic or unsafe content screening), extensive human labour is undesirable
or even unethical (Steiger et al., 2021; Shmueli et al., 2021). Hence, in this work, we focus
on probes that can be computationally constructed for arbitrary datasets – largely by using
simple transformations and little domain-specific knowledge. We emphasize that our probe
suite is not meant to be exhaustive, but to provide enough variety in metadata features to
demonstrate the merits of metadata archaeology.

We visualize these probes in Figure 2, and describe below:

1. Typical We quantify typicality by thresholding samples with the top consistency
scores from Jiang et al. (2020) across all datasets. The consistency score is a measure
of expected classification performance on a held-out instance given training sets of
varying size sampled from the training distribution.

2. Atypical Similarly, atypicality is quantified as samples with the lowest consistency
scores from Jiang et al. (2020).

3. Random Labels Examples in this probe have their labels replaced with uniform
random labels, modelling label noise.

4. Random Inputs & Labels These noisy probes are comprised of uniform U(0, 1)
noise sampled independently for every dimension of the input. We also randomly
assign labels to these samples.

5. Corrupted Inputs Corrupted examples are constructed by adding Gaussian noise
with 0 mean and 0.1 standard deviation for CIFAR-10/100 and 0.25 standard
deviation for ImageNet. These values were chosen to make the inputs as noisy as
possible while still being (mostly) recognizable to humans.

We curate 250 training examples for each probe category. For categories other than Typi-
cal/Atypical, we sample examples at random and then apply the corresponding transforma-
tions. We also curate 250 test examples for each probe category to evaluate the accuracy of
our nearest neighbor assignment of metadata to unseen data points, where we know the true
underlying metadata.

Training Details and Architectures: We list all the training details and architectures
in Appendix A. All our experiments are based on ResNet-50 (He et al., 2016), except label
correction experiments which are based on ResNet-18 following Arazo et al. (2019).

3 Experiments and Discussion

In the following sections, we perform experiments across 6 datasets: CIFAR-10/100, Ima-
geNet, Waterbirds, CelebA, and Clothing1M. For details regarding the experimental setup,
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(a) Loss trajectories (b) Confusion matrix

Figure 4: Sanity check showing performance of MAP-D on the probe suite test set with
four main probe categories using ResNet-50 on ImageNet, where we know the ground-truth
metadata. (a) Solid line shows the mean learning curve while translucent lines are randomly
sampled 250 individual trajectories for each probe category. Again, the separation of different
probes is evident both in the dynamics over the course of training. (b) show confusion
matrices between the true vs. predicted metadata features, demonstrating strong performance
of the probes (see Fig. 12 for depiction of performance on all probe categories).

see Appendix A. We first evaluate convergence dynamics of different probe suites (Sec-
tion 3.1), validating the approach of MAP-D. We then qualitatively demonstrate the ability
to audit datasets using MAP-D (Section 3.2), and evaluate performance on a variety of
downstream tasks: noise correction (Section 3.3), prioritizing points for training
(Section 3.4), and identifying minority-group samples (Section 3.5).

3.1 Probe Suite Convergence Dynamics

In Figure 3, we present the training dynamics on the probe suites given a ResNet-50 model on
ImageNet. For all datasets, we observe that probe suites have distinct learning convergence
trajectories, demonstrating the efficacy of leveraging differences in training dynamics for the
identification of probe categories. We plot average 1) Probe Accuracy over the course
of training, 2) the Percent First-Learned i.e. the percentage of samples which have
been correctly classified once (even if that sample was be later forgotten) over the course of
training, and 3) the Percent Consistently-Learned i.e. the percentage of samples which
have been learned and will not be forgotten for the rest of training.

We observe consistent results across all dimensions. Across datasets, the Typical probe
has the fastest rate of learning, whereas the Random Outputs probe has the slowest. When
looking at Percent First-Learned in Figure 3, we see a very clear natural sorting by the
difficulty of different probes, where natural examples are learned earlier as compared to
corrupted examples with synthetic noise. Examples with random outputs are the hardest for
the model.

We also observe that probe ranking in terms of both Percent First-Learned and Percent
Consistently-Learned is stable across training, indicating that model dynamics can be
leveraged consistently as a stable signal to distinguish between different subsets of the
distribution at any point in training. These results motivate our use of learning curves as
signal to infer unseen metadata.

3.2 Auditing Datasets

A key motivation of our work is that the large size of modern datasets means only a
small fraction of datapoints can be economically inspected by humans. In safety-critical or
otherwise sensitive domains such as healthcare diagnostics (Xie et al., 2019; Gruetzemacher
et al., 2018; Badgeley et al., 2019; Oakden-Rayner et al., 2019), self-driving cars (NHTSA,
2017), hiring (Dastin, 2018; Harwell, 2019), and many others, providing tools for domain
experts to audit models is of great importance to ensure scalable oversight.
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(a) CIFAR-10 (b) CIFAR-100

Figure 5: Comparison of different noise correction methods under the presence of label noise.
Mean and standard deviation reported over 3 random runs. MAP-D is competitive with
most other methods, many of which are particularly targeted towards this problem.

We apply MAP-D to infer the metadata features of the underlying dataset. In Fig. 1,
we visualize class specific examples surfaced by MAP-D on the ImageNet train set. Our
visualization shows that MAP-D helps to disambiguate effectively between different types of
examples and can be used to narrow down the set of datapoints to prioritize for inspection.
We observe clear semantic differences between the sets. In Fig. 1, we observe that examples
surfaced as Typical are mostly well-centered images with a typical color scheme, where the
only object in the image is the object of interest. Examples surfaced as Atypical present the
object in unusual settings or vantage points, or feature differences in color scheme from the
typical variants. We observe examples that would be hard for a human to classify using the
Random Output probe category. For example, we see incorrectly labeled images of a digital
watch, images where the labeled object is hardly visible, artistic and ambiguous images, and
multi-object examples where several different labels may be appropriate. We visualize more
examples from the Random Output probe category in Fig. 8.

As a sanity check, we also evaluate the performance of MAP-D on the held-out probe test
set in Fig. 4, where we know the true underlying metadata used to curate that example.
In particular, we compute performance on the four probes which are most easily separable
via learning curves, and find that model was able to achieve high detection performance
(∼ 81.9% accuracy). Results with all probe categories are presented in appendix E. The
primary aim here is to demonstrate that MAP-D is sufficiently capable in detecting the
defined probe categories in the dataset.

3.3 Label Noise Correction

Here we apply MAP-D to detect and correct label noise, a data quality issue that has been
heavily studied in prior works (Zhang et al., 2017; Arazo et al., 2019; Arpit et al., 2017).
We benchmark against a series of different baselines under the assumption of uniform label
noise (Arazo et al., 2019; Zhang et al., 2017; Patrini et al., 2017; Reed et al., 2014), some of
which are specifically developed to deal with label noise. We emphasize that our aim is not
to develop a specialized technique for dealing with label noise, but to showcase that MAP-D,
a general solution for metadata archaeology, also performs well on specialized tasks such as
label correction.

To distinguish between clean and noisy samples using MAP-D, we add an additional random
sample probe curated via a random sample from the (unmodified) underlying data, as a
proxy for clean data. For this comparison, we follow the same experimental protocol as Arazo
et al. (2019), where all the methods we benchmark against are evaluated.

Concretely, for any label correction scheme, the actual label used for training is a convex
combination of the original label and the model’s prediction based on the probability of the
sample being either clean or noisy. Considering one-hot vectors, the correct label can be
represented as:

ȳi = p(clean | sti) × yi + p(noisy | sti) × ŷi (8)
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where ȳi represents the corrected label used to train the model, yi represents the label present
in the dataset weighted by the probability of the sample being clean p(clean | sti), and
ŷi represents the model’s prediction (a one-hot vector computed via argmax rather than
predicted probabilities) weighted by the probability of the sample being noisy p(noisy | sti).
Since we are only considering two classes, p(clean | sti) = 1 − p(noisy | sti). We employ the
online MAP-D trajectory scheme in this case, where the learning curve is computed given
all prior epochs completed as of that point. We use the actual probability estimate returned
by MAP-D. We highlight the utility of these probability estimates by comparing against the
binary prediction baseline in appendix C.

Despite the relative simplicity and generality of MAP-D, it generally performs as well as
highly-engineered methods developed specifically for this task. Our results are presented
in Fig. 5. Specifically, at extremely high levels of noise, MAP-D performs significantly
better on both CIFAR-10 and CIFAR-100 in comparison to Arazo et al. (2019) (CIFAR-10:
∼ 47% vs ∼ 59%; CIFAR-100: ∼ 6.5% vs ∼ 16.5%).

We also show that MAP-D is robust against changes in the training setup, while Arazo et
al. Arazo et al. (2019) struggles in those cases in appendix D.

3.4 Prioritized Training

Prioritized training refers to selection of most useful points for training in an online fashion
with the aim of speeding up the training process. We consider the online batch selection
scenario presented in Mindermann et al. (2022), where we only train on a selected 10% of
the examples in each minibatch. Simple baselines for this task include selecting points with
high loss or uniform random selection. It can be helpful to prioritize examples which are
not yet learned (i.e. consistently correctly classified), but this can also select for mislabeled
examples, which are common in large web-scraped datasets such as Clothing1M (Xiao et al.,
2015). As noted by Mindermann et al. (2022), we need to find points which are useful to
learn. Applying MAP-D in this context allows us to leverage training dynamics to identify
such examples - we look for examples that are not already learned, but which still have
training dynamics that resemble clean data:

training score = (clean score + (1. - correct class confidence)) / 2. (9)

where clean score is the probability of an example being clean (vs. noisy) according to
the k-NN classifier described in Section 2.1.1. An example can achieve a maximum score of
1 under this metric when MAP-D predicts the example is clean, but the model assigns 0
probability to the correct label. Following Mindermann et al. (2022), we select 32 examples
from each minibatch of 320. For (class-)balanced sampling, we also ensure that we always
select at least 2 examples from each of the 14 possible classes, which significantly improves
performance. Figure 6 shows the effectiveness of this approach vs. these baselines; we achieve
a ∼ 10x stepwise speedup over uniform random selection of examples.

We also report the original results from Mindermann et al. (2022) for reference which uses a
different reporting interval. Mindermann et al. (2022) requires pretraining a separate model,
and uses the prediction of that model to decide which points to prioritize for training. Our
method on the other hand uses an online MAP-D trajectory scheme to decide whether an
example is clean or noisy2. It is important to note that using balanced sampling with RHO
Loss is likely to also improve performance for Mindermann et al. (2022).

3.5 Detection of Minority Group Samples

Minimizing average-case error often hurts performance on minority sub-groups that might be
present in a dataset (Sagawa et al., 2019; 2020; Liu et al., 2021). For instance, models might
learn to rely on spurious features that are only predictive for majority groups. Identifying
minority-group samples can help detect and correct such issues, improving model fairness.

Previous works identify minority examples as those that are not already fit after some number
of training epochs, and retrain from scratch with those examples upweighted (Liu et al.,

2We append the loss values of all examples in the batch to their learning curves before computing
the assignments in order to ensure that examples can be correctly assigned even at the first epoch.
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2021; Zhang et al., 2022). The number of epochs is treated as a hyperparameter; tuning
it requires running the training process twice (without and then with upweighting) and
evaluating on held-out known-to-be-minority examples. Instead of relying on the inductive
bias that minority examples will be harder to fit, we apply MAP-D to find examples that
match minority examples’ training dynamics, and find this is much more effective method of
identifying minority examples, see Figure 7. This avoids the costly hyperparameter tuning
required by previous methods. Instead of just using 250 examples per probe category, we
use the complete validation set in order to enable a fair comparison with JTT (Liu et al.,
2021). Furthermore, these examples are not included as part of the training set in order to
match the statistics of examples at test time.

4 Related Work

We divide the related work into two major categories, starting from metadata inference which
is the primary goal of our work, followed by potential interventions based on the discovered
metadata. We provide a more holistic discussion of related work in Appendix F.

4.1 Metadata Inference

Our work primarily relates to metadata inference. We consider metadata which is relational
in nature. Individual efforts have been targeted towards different metadata properties in
isolation, where an example is only ranked along one axis. Examples of such metadata is
mislabeled examples (Arazo et al., 2019), typical/atypical examples (Brown et al., 2020; Jiang
et al., 2020), difficult examples (Agarwal et al., 2021), minority-group examples (Liu et al.,
2021; Sagawa et al., 2020; 2019; Zhang et al., 2022), points worth training (Mindermann et al.,
2022), or domain identity in a domain generalization setting (Creager et al., 2021). MAP-D
is a general method which enables metadata inference for different metadata categories in a
consolidated framework leveraging the training dynamics of the network.

4.2 Metadata-specific Interventions

Once these metadata categories have been identified, different metadata specific interven-
tions can be performed. Example of such interventions could be: correcting mislabeled
examples present in a dataset (Arazo et al., 2019), using them only in a self-supervised
training objective (Li et al., 2020a), or even completely ignoring them during training (Wang
et al., 2018; Talukdar et al., 2021), upweighting or balancing training on atypical, or avoid
memorization of noisy labels (Brown et al., 2020), upweighting minority-group samples to
promote model fairness (Liu et al., 2021; Sagawa et al., 2020; 2019; Zhang et al., 2022),
selectively training on the most important points in a batch (Mindermann et al., 2022), or
perform group distributionally robust optimization using domain identities (Sagawa et al.,
2019). We show that MAP-D can also be used to perform specific interventions once the
metadata inference phase is completed.

5 Conclusion

We introduce the problem of Metadata Archaeology as the task of surfacing and inferring
metadata of different examples in a dataset, noting that the relational qualities of metadata
are of special interest (as compared to ordinary data features) for auditing, fairness, and
many other applications. Metadata archaeology provides a unified framework for addressing
multiple such data quality issues in large-scale datasets. We also propose a simple approach to
this problem, Metadata Archaeology via Probe Dynamics (MAP-D), based on the assumption
that examples with similar learning dynamics represent the same metadata. We show that
MAP-D is successful in identifying appropriate metadata features for data examples, even
with no human labelling, making it a competitive approach for a variety of downstream tasks
and datasets and a useful tool for auditing large-scale datasets. MAP-D can fail in scenarios
where the training trajectories are not sufficiently distinct, or the probe suite is not correctly
tailored for the task. We provide a detailed discussion of the limitations of our approach
and future work in appendix G.
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Figure 6: Results for score-based prioritization with MAP-D (pink, lavender) compared
against simple baselines. Mean and standard deviation computed over 3 random runs. The
correct class score baselines (purple, orange) both select examples with the highest loss,
which lead to poor performance due to label noise. Uniform selection baselines (blue, green)
perform quite well, but take longer to train; out method achieves almost a 10x stepwise
training speedup. RHO Loss* baseline (grey)) plots original results reported in Mindermann
et al. (2022) while all other results use our implementation. While * use a different reporting
interval, results remain comparable. The two methods are similar in training speed, but
MAP-D achieves higher accuracy.

A Experimental Details

In all experiments, we use variants of the ResNet architecture and leverage standard image
classification datasets – CIFAR-10/100 and ImageNet. We train with SGD using standard
hyperparameter settings: learning rate 0.1, momentum 0.9, weight-decay 0.0005, and a
cosine learning rate decay. We achieve top-1 accuracies of 93.68% on CIFAR-10, 72.80% on
CIFAR-100, and 73.94% on ImageNet.

CIFAR-10/100 To account for the smaller image size in this dataset, we follow standard
practice and modify the models input layer to have stride 1 and filter size 3. We use a
batch-size of 128 and train for 150 epochs. We use random horizontal flips and take a random
crop of size 32 × 32 after padding the image using reflection padding with a padding size
of 4 (He et al., 2016). For label noise correction experiments, we follow the experimental
protocol of Arazo et al. (2019) with ResNet-18 where we train the model for 300 epochs with
SGD and an initial learning rate of 0.1 decayed by a factor of 0.1 at the 100th and 250th

epoch. A weight decay of 0.0001 is also applied.

ImageNet We use a batch-size of 256 and train for 100 epochs. We apply center crop
augmentation for testing as per the common practice (i.e. resize image to 256 × 256 and
take the center crop of size 224 × 224) (He et al., 2016; NVIDIA, 2022).

Waterbirds / CelebA We use the same model architecture and hyperparameters as Liu
et al. (2021) in order to enable a fair and direct comparison. All experiments are based on
the default ResNet-50 architecture. The Waterbirds models are trained for 300 epochs using
SGD with an initial learning rate of 0.00001, and a high weight decay of 1.0. The model
was early-stopped after the 60th epoch for JTT (Liu et al., 2021). The CelebA models are
trained for 50 epochs using SGD with an initial learning rate of 0.00001, and a high weight
decay of 0.1. The model was early-stopped after the first epoch for JTT (Liu et al., 2021).

Clothing1M We use the online batch selection protocol from Mindermann et al. (2022)
where 32 examples are chosen from a large batch of 320 examples for training at each step.
Following Mindermann et al. (2022), we use AdamW optimizer with default hyperparameters
as in PyTorch (Paszke et al., 2019) and ImageNet pretrained ResNet-50. No learning rate
decay is applied in this case.
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(a) Waterbirds (b) CelebA

Figure 7: Demonstration of the effectiveness of MAP-D in detecting minority-group samples
on two famous minority-group datasets with spurious correlations, compared to the detection
performance of JTT (Liu et al., 2021) which relies on early-stopping. MAP-D achieves better
or similar performance, without needing costly hyperparameter tuning or retraining.

B Examples considered to be mislabeled by MAP-D

Fig. 8 highlights images which MAP-D considers to be mislabeled from different ImageNet
classes on the ImageNet train set. MAP-D is naturally very selective in considering examples
to be mislabeled in contrast to conventional classifier-based approaches, which will assign an
equal proportion of examples to the mislabeled set.

C Binary vs. Probabilistic Outputs in Label Correction

Arazo et al. (2019) used a convex combination of the labels weighted by the actual probability
returned by their BMM model. As MAP-D returns probability estimates, this enabled
leveraging label correction framework in the same way. However, the utility of the uncertainty
estimates is not immediately apparent. Therefore, in order to gauge the utility of these
uncertainty estimates, we used binary predictions (argmax) instead of the actual probabilities
returned by MAP-D. The results are visualized in Fig. 9. It is clear from the figure that the
model struggles significantly in coping with noise when being restricted to binary predictions,
indicating that the uncertainty estimates provided by MAP-D enables the model to learn
the correct label.

D Number of epochs before Label Correction

Arazo et al. (2019) segregated the complete 300 epochs of training into two phases: (i)
pretraining phase where they train the model without label correction, and (ii) label correction
phase for the rest of the 195 epochs during which they perform label correction. We observe
that a relative strength of MAP-D is the ability to forgo such prolonged pretraining phase
during training. We perform a simple experiment with a reduced number of pretraining
epochs (10 instead of 105), leading to 290 epochs of training with label correction. These
results are presented in Fig. 10, demonstrating that there is only negligible impact of
pretraining schedule on MAP-D performance, while the performance of Arazo et al. (2019)
is drastically impacted, specifically in no-noise and high-noise regimes.

E Probe Loss Distribution

We plot the probe loss distribution at specific epochs during training in Fig. 11. The figure
also presents loss distribution from the validation/test probe examples where which are not
directly used for the nearest neighbor classifier. Initially, the loss distribution for different
probe categories is similar. However, as training progresses, the loss on some of the easier
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Figure 8: Examples surfaced through the use of MAP-D on ImageNet train set using the
Typical probe (first image in each set, highlighted with black border) and Random Output
probe (next two images). Sub-caption indicates the ground truth class. This showcases the
utility of MAP-D for exploring a dataset, showing what the model considers typical for a
class as well as uncovering potentially problematic examples.

Figure 9: Ablation for label correction on CIFAR-10, where we use a binary prediction instead
of probability estimates returned by MAP-D. This highlights the utility and effectiveness of
the uncertainty estimates computed by MAP-D.

probe categories converges to zero. This illustrates that distinguishing examples based on
loss distributions is possible, but difficult by just looking at one particular point in training.
However, looking at the complete loss trajectory is sufficient to disambiguate the defined
probe categories. We visualize the loss trajectories for all the defined probe categories in
Fig. 12.
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(a) CIFAR-10 (b) CIFAR-100

Figure 10: Comparison between pretraining schedules of 105 epochs (default value as set
by Arazo et al. (2019)) and 10 epochs. Mean and standard deviation reported over 3 random
runs. MAP-D is robust against changes in the number of pretraining epochs, while the
method from Arazo et al. (2019) achieves slightly poorer performance in the low-noise setting
and significantly poorer performance in the high-noise setting.

(a) 1st Epoch (b) 25th Epoch (c) 50th Epoch (d) 75th Epoch (e) 90th Epoch

Figure 11: Probe categories are distinguishable via learning dynamics of a ResNet-50 trained
on ImageNet, validating the approach of MAP-D. For each of the probe categories, we
plot the spread of losses at various epochs of training, including the validation/test probe
examples. However, it is worth noting that deciding a single to distinguish these examples is
difficult. On the other hand, using a full trajectory is sufficient for identification.

The figure also attempts to highlight that the loss distribution is similar for both training as
well as validation/test probe examples from each of the probe categories.

F Related Work (Complete)

Many research directions focus on the properties of data and leveraging them in turn to
improve the training process. We categorize and discuss each of these below.

Monitoring per-example learning dynamics Kaplun et al. (2022) tracked training
over each point individually in the dataset from multiple models in order to yield interesting
insights into the structure of both models and data. Similarly, Rabanser et al. (2022)
proposed a confident classification framework via monitoring the disagreement between
different checkpoints throughout the training process and rejected predictions on samples
with a significant disagreement. MAP-D is similar in spirit to this line of work, where we
monitor loss values instead of softmax scores or model predictions on each individual example.
However, MAP-D provides a more general framework to infer hidden metadata categories
leveraging these training dynamics.

Difficulty of examples Koh and Liang (2017) proposes influence functions to identify
training points most influential on a given prediction. Work by Arpit et al. (2017); Li et al.
(2020c); Feldman (2019); Feldman and Zhang (2020) develop methods that measure the
degree of memorization required of individual examples. While Jiang et al. (2020) proposes

18



Published as a conference paper at ICLR 2023

(a) Loss trajectories

(b) Confusion matrix

Figure 12: Sanity check showing performance of MAP-D on the probe suite test set with all
probe categories using ResNet-50 on ImageNet, where we know the ground-truth metadata.
(a) Solid line shows the mean learning curve while translucent lines are randomly sampled
250 individual trajectories for each probe category. Again, the separation of different probes
is evident both in the dynamics over the course of training. (b) show confusion matrices
between the true vs. predicted metadata features, demonstrating strong performance of the
probes.

a consistency score to rank each example by alignment with the training instances, Carlini
et al. (2019) considers several different measures to isolate prototypes that could conceivably
be extended to rank the entire dataset. Agarwal et al. (2021) leverage variance of gradients
across training to rank examples by learning difficulty. Further, Hooker et al. (2019) classify
examples as challenging according to sensitivity to varying model capacity. In contrast to
all these approaches that attempt to rank an example along one axis, MAP-D is able to
discern between different sources of uncertainty without any significant computational cost
by directly leveraging the training dynamics of the model.

Coreset selection techniques The aim of these methods is to find prototypical examples
that represent a larger corpus of data (Zhang, 1992; Bien and Tibshirani, 2012; Kim et al.,
2015; Kim et al., 2016), which can be used to speed up training (Sener and Savarese, 2018;
Shim et al., 2021; Huggins et al., 2017; Sorscher et al., 2022) or aid in interpretability of the
model predictions (Yoon et al., 2019). MAP-D provides a computationally feasible alternate
to identify and surface these coresets.
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Noisy examples A special case of example difficulty is noisy labels, and correcting for their
presence. Arazo et al. (2019) use parameterized mixture models with two modes (for clean
and noisy) fit to sample loss statistics, which they then use to relabel samples determined to
be noisy. Li et al. (2020b) similarly uses mixture models to identify mislabelled samples,
but actions on them by discarding the labels entirely and using these samples for auxiliary
self-supervised training. These methods are unified by the goal of identifying examples that
the model finds challenging, but unlike MAP-D, do not distinguish between the sources of
this difficulty. The method from Arazo et al. (2019) particularly works under the assumption
of uniform label noise. Other works such as Northcutt et al. (2021) tackles the case of
non-uniform noise by estimating the noise matrix.

Leveraging training signal There are several prior techniques that also leverage network
training dynamics over distinct phases of learning (Achille et al., 2017; Jiang et al., 2020;
Mangalam and Prabhu, 2019; Faghri et al., 2020; Agarwal et al., 2021). Notably, Pleiss
et al. (2020) use loss dynamics of samples over the course of training, but calculate an
Area-Under-Margin metric and show it can distinguish correct but difficult samples from
mislabelled samples. In contrast, MAP-D is capable of inferring multiple data properties.
Swayamdipta et al. (2020) computed the mean and variance of the model’s confidence for the
target label throughout training to identify interesting examples in the context of natural
language processing. However, their method is limited in terms of identifying only easy,
hard, or confusing examples. Our work builds upon this direction and can be extended to
arbitrary sources of uncertainty based on defined probe suites leveraging loss trajectories.

Adaptive training Adaptive training leverages training dynamics of the network to
identify examples that are worth learning. Loss-based prioritization (Jiang et al., 2019;
Katharopoulos and Fleuret, 2018) upweight high loss examples, assuming these examples
are challenging yet learnable. These methods have been shown to quickly degrade in
performance in the presence of even small amounts of noise since upweighting noisy samples
hurts generalization (Hu et al., 2021; Paul et al., 2021). D’souza et al. (2021) motivate
using targeted data augmentation to distinguish between different sources of uncertainty,
and adapting training based upon differences in rates of learning. On the other hand,
several methods prioritize learning on examples with a low loss assuming that they are
more meaningful to learn. Recent work has also attempted to discern between points
that are learnable (not noisy), worth learning (in distribution), and not yet learned (not
redundant) (Mindermann et al., 2022). MAP-D can also be leveraged for adaptive training
by defining the different sources of uncertainties of interest.

Minority group samples The recent interest has been particularly towards finding and
dealing with minority group samples to promote model fairness (Sagawa et al., 2019; 2020;
Liu et al., 2021; Zhang et al., 2022; Nam et al., 2022). The dominant approach to deal
with this problem without assuming access to group labels is to either pseudo-label the
dataset using a classifier (Nam et al., 2022) or to train a model with early-stopping via a
small validation set to surface minority group samples (Liu et al., 2021; Zhang et al., 2022).
However, this setting only works for the contrived datasets where the model can classify the
group based on the background. MAP-D leverages the population statistics rather than
exploiting the curation process of the dataset to naturally surface minority group samples,
which is scalable and applicable in the real-world.

G Limitations and Future Work

MAP-D surfaces examples from the model based on the loss trajectories. This is based on a
strong assumption that these loss trajectories are separable. It is possible that the learning
curve for two set of probe categories exhibit similar behavior, limiting the model’s capacity
in telling them apart. In this case, the learning curve is no longer a valid discriminator
between probes.

Furthermore, developing an appropriate probe-suite for a given task is non-trivial. As we
use automated techniques, the effectiveness of the curated probe suite can be low for certain
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applications. Furthermore, the automated techniques leveraging for designing the probe
suite might not be applicable for a particular modality. In practice, designing a good and
appropriate probe suite which elicits the right information from the model is a difficult task.

However, for good constructions of probe categories relying on global population statistics,
we consider MAP-D to be a competitive and data-efficient method.

This work is focused on a computer vision setting; we consider an important direction of
future work to be extending this to other domains such as speech or NLP.
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