
Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

SELF-SUPERVISED EXPLORATION
VIA LATENT BAYESIAN SURPRISE

Pietro Mazzaglia, Ozan Catal, Tim Verbelen, Bart Dhoedt
IDLab, Department of Information Technology
Ghent University – imec
Ghent, Belgium
{name}.{surname}@ugent.be

ABSTRACT

Training with Reinforcement Learning requires a reward function that is used to
guide the agent towards achieving its objective. However, designing smooth and
well-behaved rewards is in general not trivial and requires significant human en-
gineering efforts. Generating rewards in self-supervised way, by inspiring the
agent with an intrinsic desire to learn and explore the environment, might induce
more general behaviors. In this work, we propose a curiosity-based bonus as in-
trinsic reward for Reinforcement Learning, computed as the Bayesian surprise
with respect to a latent state variable, learnt by reconstructing fixed random fea-
tures. We extensively evaluate our model by measuring the agent’s performance in
terms of environment exploration, for continuous tasks, and looking at the game
scores achieved, for video games. Our model is computationally cheap and em-
pirically shows state-of-the-art performance on several problems. Furthermore,
experimenting on an environment with stochastic actions, our approach emerged
to be the most resilient to simple stochasticity. Further visualization is available
on the project webpage.1

1 INTRODUCTION

Agents can be trained with Reinforcement Learning (RL) to successfully accomplish tasks by max-
imising a reward signal, which should likely encourage correct behaviors and penalize wrong ac-
tions. For instance, agents can learn to play video games by maximizing the game score (Mnih
et al., 2015) or achieve robotic manipulation tasks, such as solving a Rubik’s cube (OpenAI et al.,
2019), by following human-engineered rewards. However, how to correctly define reward functions
to develop general skills remains an unsolved problem (Amodei et al., 2016).

In contrast to RL agents, humans can learn behaviors without any external rewards, due to the
intrinsic motivation that naturally drives them to be active and explore the environment (Larson &
Rusk, 2011). The process of skill acquisition can then be expressed as a selection process over
successful exploratory behaviors (Corbetta et al., 2018). The design of similar mechanisms for RL
agents opens to the possibility of training and evaluating agents without external rewards (Matusch
et al., 2020), potentially leading to more general strategies of learning.

The idea of instilling intrinsic motivation, or ‘curiosity’, into artificial agents has raised a large
interest in the RL community (Oudeyer et al., 2007; Schmidhuber, 1991). One common approach
consists of learning a model of the environment that is used to generate intrinsic rewards, which can
replace or complement the external reward function. However, what is the best approach to generate
such intrinsic bonuses is still unknown.

Several successful approaches modeled intrinsic rewards as the ‘surprisal’ information of the model.
In layman’s terms, this can be described as the difference between the agent’s belief about the
environment state and the ground truth, and can be implemented as the model’s predictions error
(Achiam & Sastry, 2017; Pathak et al., 2017). Alternatively, Bayesian surprise (Itti & Baldi, 2006)
may also be used as a bonus to incentive exploration, albeit existing work has mostly focused on

1https://lbsexploration.github.io/

1

https://lbsexploration.github.io/

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

computationally-expensive approaches, which evaluate surprise in the model’s parameters space
(Houthooft et al., 2016).

Contributions. In this work, we present an intrinsic bonus based on the concept of Bayesian sur-
prise, efficiently computed with respect to a latent state variable in the dynamics. The dynamics
learning process is obtained by optimizing a lower bound objective that reconstructs compact fea-
tures, obtained from the environment’s observations, using a fixed feature model.

The main contributions of this work are as follows: (i) a latent dynamics model, which captures
the unobserved state of the environment and allows to reconstruct observations in a compact fea-
ture space, (ii) a new latent Bayesian surprise exploration bonus, representing the information gain
with respect to the latent state variable of the dynamics, (iii) evaluation of the approach on several
continuous-actions robotic simulation tasks and on discrete-actions video games, and comparison
with other exploration strategies (iv) preliminary assessment of resilience to stochasticity in actions,
by comparing to baselines and ablations on an image-prediction environment.

The results empirically show that our Latent Bayesian Surprise (LBS) model performs on par and
often outperforms state-of-the-art methods, while also being more resilient to stochasticity.

2 INTRINSIC MOTIVATION FOR REINFORCEMENT LEARNING

We focus on bonus-based methods as intrinsic motivation to incentivize exploration in RL. To foster
reader’s understanding, we first introduce standard notation and common practices in the area.

Markov Decision Processes. The RL setting can be formalized as a Partially Observable Markov
Decision Process (POMDP), which is denoted with the tuple M = {S,A, T,R,Ω,O, γ}, where
S is the set of unobserved states, A is the set of actions, T is the state transition function, also
referred to as the dynamics of the environment, R is the reward function, which maps transitions
into rewards, Ω is the set observations, O is a set of conditional observation probabilities, and γ is
a discount factor. The objective of the RL agent is to maximize the discounted sum of rewards, or
return, Gt =

∑T
k=t+1 γ

(k−t−1)rk, where t indicates the time step at which the return is computed.

Policy Optimization. In order to maximize the return function, the agent should condition its ac-
tions on the basis of the observations coming from the environment. The policy function π(at|ot) is
used to represent the probability of taking action at when observing ot. Several policy-optimization
algorithms also evaluate two value functions, V (ot) and Q(ot, at), that are used to estimate and
predict future rewards with respect to a certain observation or observation-action pair, respectively.

Dynamics Model. Exploration bonuses as intrinsic rewards can be generated using the surprisal of
a model of the environment’s dynamics, which is formalized as p(st+1|ot, at). In curiosity-driven
RL, it has been common practice to compute predictions on a compact feature space. For instance,
features φt = f(ot) can be computed with the mapping f : Rn −→ Rm, with m ≤ n, turning the
model dynamics into p(φt+1|ot, at). To distinguish it from the true state dynamics of the POMDP,
we refer to this formulation as Feature Dynamics.

Intrinsic Rewards. Intrinsic motivation is instilled into the agent by combining the generated in-
trinsic rewards with the external rewards of the environment. The combined reward at time step t is
represented as: rt = ηer

(e)
t + ηir

(i)
t , where r(e) is the external reward, r(i) is the intrinsic bonus,

and ηe and ηi are factors adopted to balance external and intrinsic rewards. How to optimally bal-
ance between exploration with intrinsic motivation and exploitation of external rewards is still an
unresolved question. To prevent this issue from affecting our experiments, we assign any external
rewards to zero. This is implemented by setting ηe = 0, focusing the agents solely on the exploratory
behaviors inspired by the curiosity mechanism.

3 LATENT BAYESIAN SURPRISE

Our model provides intrinsic motivation through a Bayesian surprise signal, which is computed with
respect to a latent state variable. First, we describe how the latent dynamics inference works and
how our model is trained by optimizing a variational lower bound on the log-likelihood of future

2

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

s
t

s
t+1

a
t

o
t+1

o
t

(a) POMDP Model

Φ
t

Φ
t+1

a
t

o
t+1

o
t

(b) Feature Dynamics Model

s
t

s
t+1

a
t

o
t+1

o
t

Φ
t+1

Φ
t

(c) LBS Model (ours)

Figure 1: Dynamics graphical models. In all examples, the model observes ot and at. Solid lines
indicate generative processes and dashed lines indicate the inference ones.

features, then explain how the intrinsic reward signal is obtained, and finally discuss the intuition
behind our work and connections with other methods.

Latent Dynamics. In a typical POMDP, the model dynamics should predict next states from current
observations and actions. This is represented in Figure 1a, where the agent, after having adopted ac-
tion at, reaches a state of the environment that is observed as ot+1. The dynamics model infers st+1

as p(st+1|ot, at). Generally, in the curiosity-driven RL literature, hidden true states of the POMDP
are overlooked and the state st is replaced by features φt that are computed as point estimates. In
this setup, the dynamics of the environment is modeled with p(φt+1|ot, at), as for Figure 1b.

Using fixed deterministic features for exploration, either random or pre-trained, has shown em-
pirically better results than training features concurrently with the dynamics model (Burda et al.,
2019a;b), likely because of their greater stability. However, a Feature Dynamics model based on
fixed deterministic features can be dangerous for several reasons: 1) deterministic features do not
allow to model uncertainty e.g. stochasticity in observations and transitions; 2) feature reduction
can always generate inconsistencies and ambiguities, which may lead to fit fictitious transitions.

To exploit fixed features, and contemporary alleviate the above problems, we introduce the latent
random variable st in the Feature Dynamics model. As for Figure 1c, the succession of states st
is used to capture the dynamics, in a POMDP fashion, while features are treated as the result of a
generation process from their respective observations. In this setup, the environment dynamics can
be modeled with respect to the latent state variable, and denoted as p(st+1|ot, at), and future features
can be reconstructed from the latent state, as p(φt+1|st+1), rather than reconstructing observations.

As illustrated in Figure 2, our LBS model is made of the following components:

Latent Dynamics:
Latent Posterior:
Feature Reconstruction:

pθ(st+1|ot, at)
qθ(st+1|ot, at, ot+1)

pθ(φt+1|st+1)

where the latent dynamics model represents prior beliefs over next states, q(st+1) is an approxima-
tion of the dynamics posterior with respect to the latent state variable, and the features reconstruction
module allows to regenerate compact features from the corresponding latent state.

o
t

a
t

s
t+1

s
t+1

o
t+1

Latent
Posterior

Latent
Dynamics

Feature
Reconstruction

Φ
t+1

o
t+1

Fixed
Feature
Model

Φ
t+1

Figure 2: LBS architecture. The modules of LBS, with input and output variables. Latent Dynam-
ics and Posterior output distributions, while the Feature Reconstruction outputs point estimates.

3

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

All the components are jointly trained by maximizing the following variational lower bound on
future features log-likelihood:

J = Est+1∼q(s)[log p(φt+1|st+1)]− βDKL[q(st+1|ot, at, ot+1)‖p(st+1|ot, at)] (1)
where β is introduced to incentivize disentanglement in the latent state representation, as in (Higgins
et al., 2017). The derivation of the objective is available in Appendix A.

Reconstructing features φt+1, rather than observations, has several advantages. First, it has
been demonstrated by numerous experiments that most of the information contained in the high-
dimensional observations may be neglectable for exploration (Burda et al., 2019a). Thus, features
reconstruction may allow faster computation, without compromising performance. Secondly, the
use of features in the reconstruction objective avoids any shortcuts in the posterior model.

Bayesian Surprise Bonus. In information theory, Bayesian surprise is defined as the information
gain I obtained about a random variable by observing another random variable. In the context of
our method, we are interested in measuring the amount of information that is gained by the LBS
model when facing a new environment’s transition. After taking action at while being in the latent
state st, the agent would receive a new observation ot+1 that completes the transition and brings
newer information to the latent dynamics model.

Such information gain can be formulated as the KL divergence between the latent dynamics p(st+1)
and its approximate posterior q(st+1|ot+1) and adopted as an intrinsic reward for RL as follows:

r
(i)
t (ot, at, ot+1) = I(ot+1, st+1|ot, at) ≈ DKL[q(st+1|ot, at, ot+1)‖p(st+1|ot, at)] (2)

The above term can be efficiently computed by comparing the predictions of the latent dynamics and
of the latent posterior models, in an amortized inference fashion. Such signal should encourage the
agent to collect transitions where the latent dynamics predictions are more uncertain or erroneous.

Connections. The intuition behind LBS may be interpreted as the intersection of two known ideas
in the exploration landscape: one consists of computing features using a fixed feature network and
then using the error prediction of a ‘distillation’ model as curiosity (Burda et al., 2019b), the other
comes from the promising approach of using Bayesian surprise as an exploration signal (Houthooft
et al., 2016). The introduction of a latent random variable allows to combine the two ideas, while
also allowing to model stochasticity and feature’s inadequacies in a probabilistic fashion.

In the LBS model, the latent posterior can be seen as a distillation process from next observations to
next features, through the latent state. Instead, the latent dynamics allows to compute prior beliefs,
enabling the computation of Bayesian surprise in an efficient way, by exploiting amortized inference.

4 EXPERIMENTS

The aim of the experiments is to compare the performance of our LBS model and of its latent
Bayesian surprise bonus against other approaches for self-supervised exploration in RL.

Environments. Results are presented with respect to two sets of environments: one of continuous
control tasks and one with discrete-action games. The continuous control tasks include the classic
Mountain Car environment (Moore, 1990), the Mujoco-based Half-Cheetah environment (Todorov
et al., 2012), and the Ant Maze environment used in (Shyam et al., 2019). The discrete-action games
include 8 video games from the Atari Learning Environment (ALE; Bellemare et al. (2013)) and the
Super Mario Bros. game, which is a popular NES platform game. For all tasks, we update the policy
using the Proximal Policy Optimization algorithm (PPO; Schulman et al. (2017)).

Implementation Details. The LBS model components are implemented as follows: the latent dy-
namics and posterior models are deep neural networks with variational outputs, representing mul-
tivariate gaussian distributions; the feature reconstruction model is implemented as a multi-layer
perceptron (MLP). Parameter sharing is enabled between the posterior and the prior, by using the
last layer of the latent dynamics, concatenated with new observations, as an input to the posterior.

To easily obtain fixed features from observations, we follow the trend that empirically found ran-
dom features to be working well for exploration (Burda et al., 2019a; Pathak et al., 2019; Burda
et al., 2019b). Fixed features φt are obtained by processing observations ot with a randomly ini-
tialised network that is never updated. This network is either represented by a single linear layer, for
continuous control tasks, or by a small convolutional network, for vision-based tasks.

4

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

Figure 3: Continuous Control results. A comparison of our method against several baselines on
continuous control tasks. Lines show the mean state-space coverage (with standard deviation) in
terms of percentage of bins visited by the agents, trained only with intrinsic rewards.

Further details on the implementation and the experiments can be found in Appendix B and C.

4.1 CONTINUOUS CONTROL

In our continuous control experiments, we discretize the observation-space into bins and compare
the number of bins explored, in terms of coverage percentage, against the following baselines:

• Intrinsic Curiosity Model (ICM; Pathak et al. (2017)): intrinsic rewards are computed as
the mean-squared error (MSE) between network’s predictions in feature space and the true
features. Observation are processed into features using a feature network, trained jointly
with the dynamics model to optimize an inverse-dynamics objective.

• Random Network Distillation (RND; Burda et al. (2019b)): features are obtained with a
fixed randomly initialized network. Intrinsic rewards for each transition are computed as
the prediction errors between next-observation features and the output of a distillation net-
work, which is trained to match the outputs of the random feature network.

• Variational Information Maximizing Exploration (VIME; Houthooft et al. (2016)): the
dynamics is modeled as a Bayesian neural network (BNN; Bishop (1997)). Intrinsic re-
wards for single transitions are shaped as the information gain computed with respect to
the BNN’s parameters before and after updating the network, using the transition’s values.

• Random: a naive agent that explores by performing a series of random actions.

The training curves are presented in Figure 3, averaging over runs with eight different random seeds.

Mountain Car. In MountainCar, the limited observation space is discretized into 100 bins. As
shown in Figure 3, VIME is the best performing approach, with LBS and ICM following, slightly
behind. While the first three models could reach around 85% of the visitable bins, RND struggles
behind with about 50% of visited bins, which is still 35% better than Random exploration (∼15%).

Ant Maze. In the Ant Maze environment, the agent can explore up to seven bins, corresponding
to different aisles of a maze. LBS and ICM perform best in this environment, eventually reaching
the end of the maze in all runs. VIME (∼95%) and RND (∼91%) perform comparably, achieving a
solid result against the coverage achieved by the Random baseline (∼68%).

Half-Cheetah. In the Half-Cheetah environment, the observation space is discretized into 100 bins.
Performance in this task see LBS reaching the highest number of bins, with around 53% of coverage.
They follow ICM (∼47%) and VIME (∼39%). RND lacks behind by slightly outperforming the
Random baseline (∼25% vs ∼17%).

4.2 ARCADE GAMES

For the arcade games, the environments chosen are designed in a way that either requires the player
to explore in order to succeed, e.g. Qbert, or to survive as long as possible to avoid boredom, e.g.
Pong. For this reason, agents are trained only with curiosity, but evaluated on the game score they
achieve in one episode, or on the distance traveled from the initial position (only Super Mario Bros.).

5

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

Figure 4: Arcade Games results. A comparison of our method against error-based models, using
different sets of features, on 8 selected Atari and the Super Mario Bros games. Lines show the mean
sums of rewards (and standard deviations) of agents trained with intrinsic rewards, over three seeds.

We follow the setup of (Burda et al., 2019a) and compare against their baselines, which use MSE
prediction error in feature space as the intrinsic motivation signal. The difference between the Vari-
ational Autoencoder, or VAE model, the Random Features, or RF model, and the Inverse Dynamics
Features, or IDF model, lies in the features adopted. The VAE model trains an autoencoder, as in
(Kingma & Welling, 2014), concurrently with the dynamics model; the RF model uses a randomly
initialized network; the IDF model trains features that allows to model inverse dynamics.

A comparison against the above baselines, using different features on high-dimensionality observa-
tions, should demonstrate the relevance of our latent Bayesian surprise bonus, compared to error-
prediction bonuses, regardless of the features set adopted. The training curves are presented in
Figure 4, averaging over runs with three different random seeds.

Atari. The results in the selected Atari games are favorable towards the LBS model. It achieves the
best final score in 4 out 8 games: Pong, Seaquest, Breakout and Qbert, with a large margin for the
latter twos; and performs comparably in all other games, apart from Montezuma Revenge.

Interestingly, in Breakout, the only two levels available have exactly the same game mechanics and
graphics, so that when the agent breaks the last brick of Level 1, Level 2 starts exactly as a game
reset, as depicted in Figure 5a. For a curiosity-driven RL agent, this is totally disruptive as the model
tends to assign low intrinsic rewards to the start of Level 2, which provides well-known observations.

(a) Breakout Level Reset (b) Best Scores Breakout

Figure 5: Breakout Insights
Figure 6: Best Scores on the
Montezuma Revenge game

6

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

(a) Noisy MNIST task (b) Baselines Comparison (c) Ablation Comparison

Figure 7: Stochasticity Ablation. (a) Graphical presentation of the fictitious dynamics of the task.
(b-c) Intrinsic motivation ratio over training batches achieved by LBS, ICM, RND, and LBS abla-
tions The closer the ratio to the unity, at convergence, the better.

This fact is exacerbated by the curves of the best scores, in Figure 5b, which shows that LBS was
able to reach high scores, but eventually kept an average score below the Level 1’s threshold (432)2.

As for Montezuma Revenge, we present in Figure 6 the max scores achieved by all methods, showing
that also IDF and LBS models could actually reach non-zero scores during training. It is unclear
why the final scores of the latter got to zero, and further analysis should be conducted about this.
However, concerns about the use of Montezuma Revenge as a benchmark for exploration methods
have already been raised in the past (Taı̈ga et al., 2019), as the games mostly requires other kind of
systematic approaches to reach higher scores, rather than vanilla exploration (Badia et al., 2020).

Super Mario Bros. The final distance reached in the Mario’s game are comparable for LBS, RF
and VAE models, with ICM behind. It may be of interest, that different runs of our models found
different paths to solve World 1-1. One model went down from the pipe at the start of the level,
reaching the end by using a shortcut, while the other two ran and jumped across all the level.

4.3 STOCHASTIC ENVIRONMENT

In this environment, as in Pathak et al. (2019), we use the Noisy MNIST dataset to perform an
experiment on stochastic actions. Taking examples from the test set of MNIST, we built a fictitious
dynamics that always starts either from an image of a zero or a one, as in Figure 7a: a 0-image
always transitions to a 1-image, while a 1-image transitions into a number between two and nine.

We assess the performance in terms of the ratio between the intrinsic motivation provided for tran-
sitions starting from 1-images and transitions starting from 0-images. A well-behaved exploration
model should eventually understand that results associated with the more stochastic 1-image transi-
tions belong to the same category, and lose interest with respect to them. Thus, the correct expected
behavior is that the ratio should eventually lean to values close to the unity.

In Figure 7b, we compare LBS to ICM and RND and observe that LBS is the only model that
eventually captures the stochasticity in the transitions starting from 1-images, eventually lowering
the ratio at convergence. We further benchmark against two ablations of LBS: LBS - means only,
which takes only the means from the latent dynamics and posterior outputs, computing both the
training loss and the intrinsic rewards accordingly; LBS - no latent, which gets rid of the latent state
and instead uses stochastic random features with fixed variance. In the latter, the training loss and the
intrinsic rewards are both collapsed into a KL divergence term between the dynamics model and the
true features posterior. As shown in Figure 7c, both the latent state and the use of a random variable
as a latent are important components of LBS that help capturing stochasticity in the transitions.

2Further visual proof is available in our project page, where the Breakout agent is showed to prefer directing
the ball against the walls rather than destroying the last bricks of Level 1.

7

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

5 RELATED WORK

Reinforcement Learning. Value-based methods in RL use the Q-value function to choose the best
action in discrete settings (Mnih et al., 2015; Hessel et al., 2018). However, the Q-value approach
cannot scale well to high-dimensional outputs or continuous environments. Policy Optimization
techniques solve these problems by directly optimizing the policy, by either learning online, using
samples collected from the policy (Schulman et al., 2015; 2017), or offline, reusing the experience
stored in a replay buffer (Lillicrap et al., 2016; Haarnoja et al., 2018).

Latent Dynamics. In complex environments, the use of latent dynamics models has proven suc-
cessful for control and long-term planning, either by using VAEs to model locally-linear latent states
(Watter et al., 2015), or by using recurrent world models in POMDPs (Buesing et al., 2018; Hafner
et al., 2019; 2020).

Intrinsic Motivation. Several exploration strategies have been presented in Section 4, concerning
entropy maximization in the transitions (Pathak et al., 2017), with respect to future observations
(Burda et al., 2019b) or model’s parameters (Houthooft et al., 2016). In Disagreement (Pathak
et al., 2019), they train an ensemble of dynamics models and use the variance in their predictions as
intrinsic motivation. In VDM (Bai et al., 2020), they model a latent variable to reconstruct features
(using a different reconstruction model from ours) and use the average surprisal over several sampled
reconstructions as an exploration bonus.

Models that use alternative approaches to modelling the environment’s dynamics are based on
pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017), which use den-
sity estimations techinques to explore less seen areas of the environment, Randomized Prior Func-
tions (Osband et al., 2018), applying statistical bootstrapping and ensembles to the Q-value function
model, or Noisy Nets (Fortunato et al., 2018), applying noise to the value-function network’s layers.

Planning Exploration. Recent breakthroughs concerning exploration in RL have also focused on
using the learned environment dynamics to plan to explore. This is the case of (Shyam et al., 2019)
and (Ratzlaff et al., 2020), where they use imaginary rollouts from their dynamics models to plan
exploratory behaviors, and (Sekar et al., 2020), where they combine a model-based planner in latent
space (Hafner et al., 2020) with the Disagreement exploration strategy (Pathak et al., 2019).

6 DISCUSSION

In this work, we introduced the LBS model to generate intrinsic rewards as the Bayesian suprise over
a latent state variable. Our method has proven successful in several continuous-control and discrete-
action settings, outperforming or performing on par with state-of-the-art methods for self-supervised
exploration in RL.

The experiments in low-dimensional continuous-control tasks, which evaluate performance over
an artificial metrics on the coverage of the observation space, have shown that our method pro-
vides more in-depth exploration than other methods. In particular, VIME seems to shine in low-
dimensional environments such as Mountain Car but is struggling with higher-dimensional observa-
tions. RND generally performed worst in these low-dimensional experiments.

In our arcade games results, we provided additional insights about exploration in some video games,
such as Breakout, Montezuma Revenge and Super Mario Bros., identifying issues to be considered
for future works or highlighting interesting exploratory behaviors that emerged from our runs. Fu-
ture benchmarks using these games would likely benefit from this information.

We also tested LBS to be resilient to stochasticity in the dynamics, in a simple fictitious task. We
believe stochasticity is an important limitation that still affects exploration methods and future work
should focus on understanding to which extent limitations apply and how to overcome them.

As our Bayesian surprise proved successful in several environments, we are also interested in ap-
plying it for planning exploration, by further exploiting our latent dynamics model. A natural im-
plementation of this, could for instance adopt recurrent world models (Ha & Schmidhuber, 2018)
or latent overshooting (Hafner et al., 2019) to compute Bayesian surprise with respect to latent state
predictions in the more distant future.

8

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

ACKNOWLEDGMENTS

This research received funding from the Flemish Government (AI Research Program).

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement learning, 2017.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete prob-
lems in ai safety, 2016.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Bilal Piot, Steven Kap-
turowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles Blundell. Never
give up: Learning directed exploration strategies. In 8th International Conference on Learning Representa-
tions, ICLR 2020, 2020.

Chenjia Bai, Peng Liu, Zhaoran Wang, Kaiyu Liu, Lingxiao Wang, and Yingnan Zhao. Variational dynamic for
self-supervised exploration in deep reinforcement learning, 2020.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. J. Artif. Int. Res., 47(1):253–279, 2013.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. Unify-
ing count-based exploration and intrinsic motivation. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 1479–1487, 2016.

Christopher M. Bishop. Bayesian Neural Networks. Journal of the Brazilian Computer Society, 4, 1997.

Lars Buesing, Theophane Weber, Sebastien Racaniere, S. M. Ali Eslami, Danilo Rezende, David P. Reichert,
Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, and Daan Wierstra. Learning and querying fast
generative models for reinforcement learning, 2018.

Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A. Efros. Large-
scale study of curiosity-driven learning. In 7th International Conference on Learning Representations, ICLR,
2019a.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network distillation.
In 7th International Conference on Learning Representations, ICLR 2019, 2019b.

Daniela Corbetta, Abigail DiMercurio, Rebecca F. Wiener, John P. Connell, and Matthew Clark. How percep-
tion and action fosters exploration and selection in infant skill acquisition. In Studying the Perception-Action
System as a Model System for Understanding Development, volume 55 of Advances in Child Development
and Behavior, pp. 1–29. 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alexander Graves, Vlad
Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy networks
for exploration. In Proceedings of the International Conference on Representation Learning (ICLR 2018),
2018.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870,
2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2555–2565, 2019.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behav-
iors by latent imagination. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, 2020.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI, pp. 3215–3222, 2018.

9

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In 5th International Conference on Learning Representations, ICLR 2017, 2017.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational
information maximizing exploration. In Proceedings of the 30th International Conference on Neural Infor-
mation Processing Systems, NIPS’16, pp. 1117–1125, 2016.

Laurent Itti and Pierre Baldi. Bayesian surprise attracts human attention. In Advances in Neural Information
Processing Systems, volume 18, pp. 547–554, 2006.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceed-
ings, 2014.

Reed W. Larson and Natalie Rusk. Chapter 5 - Intrinsic Motivation and Positive Development. In Positive
Youth Development, volume 41 of Advances in Child Development and Behavior, pp. 89–130. JAI, 2011.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR, 2016.

Brendon Matusch, Jimmy Ba, and Danijar Hafner. Evaluating agents without rewards, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

A. Moore. Efficient memory-based learning for robot control, 1990.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube with a
robot hand, 2019.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning.
In Advances in Neural Information Processing Systems, volume 31, pp. 8617–8629, 2018.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration with
neural density models. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pp. 2721–2730, 2017.

P. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for autonomous mental development.
IEEE Transactions on Evolutionary Computation, 11(2):265–286, 2007.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pp. 2778–2787, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5062–5071, 2019.

Neale Ratzlaff, Qinxun Bai, Li Fuxin, and Wei Xu. Implicit generative modeling for efficient exploration.
In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 7985–7995, 2020.

J. Schmidhuber. Curious model-building control systems. In [Proceedings] 1991 IEEE International Joint
Conference on Neural Networks, pp. 1458–1463 vol.2, 1991.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy opti-
mization. In Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Plan-
ning to explore via self-supervised world models. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 8583–8592, 2020.

10

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 5779–5788, 2019.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman, Filip De Turck,
and Pieter Abbeel. #exploration : a study of count-based exploration for deep reinforcement learning. In
Advances in Neural Information Processing Systems, volume 30, pp. 1–18, 2017.

Adrien Ali Taı̈ga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G. Bellemare. Benchmarking
bonus-based exploration methods on the arcade learning environment, 2019.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’15, pp. 2746–2754, 2015.

11

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

A LATENT DYNAMICS LOWER BOUND

The LBS model’s loss is obtained by maximizing a variational lower bound (ELBO) on future fea-
tures log-likelihood. The ELBO derivation employs marginalization and Jensen’s inequality, as
shown:

log p(φt+1|ot, at) , logEst+1∼p(s)[p(st+1, φt+1|ot, at)]
= logEst+1∼p(s)[p(st+1|ot, at)p(φt+1|st+1)]

≥ Est+1∼q(s)[log(p(st+1|ot, at)p(φt+1|st+1)/q(st+1)]

= Est+1∼q(s)[log p(φt+1|st+1)]−DKL[q(st+1)‖p(st+1)]

B IMPLEMENTATION DETAILS

Mountain Car. The agent is spawned at the bottom of a valley and can move across two hills, by
adopting an adequate velocity action. The observation space is two-dimensional, and limited to the
following ranges: [-1.2, 0.6] for the position and [-0.07, 0.07] for the velocity. We divide each range
in ten equally-sized ranges and generate 100 bins from their possible combinations.

Ant Maze. A robotic ant should navigate a ’C-shaped’ maze, where 7 visitable bins have been
identified by heavily discretizing the observation space (Shyam et al., 2019).

Half-Cheetah. Tasks using the HalfCheetah environment usually concern training a bipedal walker
robot to learn skills such as walking, running, flipping backward or forward. For this reason, we
chose to evaluate exploration performance in terms of x-axis velocity and angular velocity, empir-
ically choosing ranges of [-9.0, 9.0] and [-18.0, 18.0], respectively. Each range is divided into ten
smaller subranges and exploration is measured as the percentage of the bins visited among the 100
bins, representing all visitable combinations of subranges.

Model Details. In the LBS modules, the variational layers are implemented as linear layers that
output the means and standard deviations of a distribution. Standard deviations are obtained by
applying a softplus operator to the outputs of the network. The reparametrization trick is used to
propagate gradients through the sampling from the posterior.

For vision-based tasks, observations are first processed by small convolutional networks, which
are trained as part of the dynamics and of the posterior models. As for the model’s loss, we
found β = 0.01 to be working well across all tasks. We used 512-dimensional hidden layers, la-
tent state and features, for vision-based tasks. For continuous-control experiments, we instead use
32-dimensional hidden layers, latent state and features’ dimensionality is the same as the observa-
tion’s dimensionality.

Normalization. Observation normalization is applied differently for different kinds of environment.
In continuous control tasks, observations are normalized by maintaining running statistics. For video
games, following the setup in (Burda et al., 2019a), observation’s mean and standard deviation values
are computed on 10,000 steps collected using a random agent, and are kept fixed during training.

Hyper-parameters. In all experiments, the same learning rate, number of updates and mini-batches
have been used both for the policy and the model training. The policy value loss coefficient is fixed
to 0.5 and the entropy coefficient to 0.001.

For continuous-control experiments, we used a learning rate of 3e− 4, 10 updates per episode, and
32 minibatches. From one environment, we collected 2048 steps per epoch. For the arcade games
experiments, we used a learning rate of 1e− 4, 3 updates per episode, and 8 minibatches. From 128
parallel environments, we collected 128 steps from each, per epoch.

12

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

C ADDITIONAL RESULTS

In this Section, we provide the final performance in terms of coverage for the continuous control
experiments (Table 1) and the final scores for the video games experiments (Table 2). We also
compare to Human performance, reporting the scores in (Mnih et al., 2015), to show that curiosity-
driven playing of video games can in some cases be in the same scale with human performance (e.g.
BeamRider, Qbert), or even outperform it (e.g. Breakout). It should be also considered that in all
Atari games, the max length of an episode was limited to 4500 steps and that performance is shown
with respect to 400M frames for training, as in (Burda et al., 2019a). Thus, the scores here shown
may likely be increased with longer training or removing the episodic steps limitation.

Table 1: Continuous Control Final Performance

LBS ICM RND VIME Random

MountainCar 85.62 ± 2.69 84.5 ± 1.45 50.12 ± 5.31 87.38 ± 2.24 15.5 ± 0.55
AntMaze 100.0 ± 0.0 100.0 ± 0.0 91.07 ± 2.67 94.64 ± 1.86 67.86 ± 2.54

HalfCheetah 52.67 ± 2.04 46.67 ± 2.1 25.0 ± 0.59 39.0 ± 0.0 16.67 ± 0.31

Table 2: Arcade Games Final Performance

LBS ICM RF model VAE model Human

BeamRider 2659 ± 286 1710 ± 98 1803 ± 251 3250 ± 89 5775
Breakout 359 ± 10 92 ± 20 165 ± 51 206 ± 20 31.8

MontezumaRevenge 0 ± 0 0 ± 0 254 ± 180 87 ± 62 4367
Pong -0.8 ± 0.7 -6.6 ± 4.1 -6.0 ± 0.3 -18.8 ± 3.1 9.3
Qbert 8866 ± 794 4692 ± 286 3775 ± 408 2232 ± 226 13455

Riverraid 4711 ± 517 5296 ± 465 4499 ± 146 4958 ± 91 13513
Seaquest 623 ± 31 530 ± 20 433 ± 66 439 ± 27 20182

SpaceInvaders 534 ± 78 615 ± 41 599 ± 41 737 ± 28 1652
Super Mario Bros. 5168 ± 336 4178 ± 175 5610 ± 470 5511 ± 277 -

13

Published as a workshop paper at “Self-supervision for Reinforcement Learning” (ICLR 2021)

Finally, we report the training curves for the episode lenghts (Figure 8) and the best scores achieved
(Figure 9), in all arcade games experiments.

Figure 8: Arcade Games - Episode lengths

Figure 9: Arcade Games - Best scores

14

	Introduction
	Intrinsic Motivation for Reinforcement Learning
	Latent Bayesian Surprise
	Experiments
	Continuous Control
	Arcade Games
	Stochastic Environment

	Related Work
	Discussion
	Latent Dynamics Lower Bound
	Implementation Details
	Additional Results

