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ABSTRACT

Deep reinforcement learning (DRL) has demonstrated impressive performance in
various gaming simulators and real-world applications. In practice, however, a
DRL agent may receive faulty observation by abrupt interferences such as black-
out, frozen-screen, and adversarial perturbation. How to design a resilient DRL
algorithm against these rare but mission-critical and safety-crucial scenarios is
an important yet challenging task. In this paper, we consider a resilient DRL
framework with observational interferences. Under this framework, we discuss
the importance of the causal relation and propose a causal inference based DRL
algorithm called causal inference Q-network (CIQ). We evaluate the performance of
CIQ in several benchmark DRL environments with different types of interferences.
Our experimental results show that the proposed CIQ method could achieve higher
performance and more resilience against observational interferences.

1 INTRODUCTION

Deep reinforcement learning (DRL) methods have shown enhanced performance, gained widespread
applications (Mnih et al., 2015; 2016; Ecoffet et al., 2019; Silver et al., 2017; Mao et al., 2017), and
improved robot learning (Gu et al., 2017) in navigation systems (Tai et al., 2017; Nagabandi et al.,
2018). However, most successful demonstrations of these DRL methods are usually trained and
deployed under well-controlled situations. In contrast, real-world use cases often encounter inevitable
observational uncertainty (Grigorescu et al., 2020; Hafner et al., 2018; Moreno et al., 2018) from an
external attacker (Huang et al., 2017) or noisy sensor (Fortunato et al., 2018; Lee et al., 2018). For
examples, playing online video games may experience sudden black-outs or frame-skippings due to
network instabilities, and driving on the road may encounter temporary blindness when facing the sun.
Such an abrupt interference on the observation could cause serious issues for DRL algorithms. Unlike
other machine learning tasks that involve only a single mission at a time (e.g., image classification),
an RL agent has to deal with a dynamic (Schmidhuber, 1992) and encoded state (Schmidhuber, 1991;
Kaelbling et al., 1998) and to anticipate future rewards. Therefore, DRL-based systems are likely to
propagate and even enlarge risks (e.g., delay and noisy pulsed-signals on sensor-fusion (Yurtsever
et al., 2020; Johansen et al., 2015)) induced from the uncertain interference.

In this paper, we investigate the resilience ability of an RL agent to withstand unforeseen, rare,
adversarial and potentially catastrophic interferences, and to recover and adapt by improving itself
in reaction to these events. We consider a resilient RL framework with observational interferences.
At each time, the agent’s observation is subjected to a type of sudden interference at a predefined
possibility. Whether or not an observation has interfered is referred to as the interference label.

Specifically, to train a resilient agent, we provide the agent with the interference labels during training.
For instance, the labels could be derived from some uncertain noise generators recording whether the
agent observes an intervened state at the moment as a binary causation label. By applying the labels
as an intervention into the environment, the RL agent is asked to learn a binary causation label and
embed a latent state into its model. However, when the trained agent is deployed in the field (i.e.,
the testing phase), the agent only receives the interfered observations but is agnostic to interference
labels and needs to act resiliently against the interference.

For an RL agent to be resilient against interference, the agent needs to diagnose observations to
make the correct inference about the reward information. To achieve this, the RL agent has to reason
about what leads to desired rewards despite the irrelevant intermittent interference. To equip an RL
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Figure 1: Frameworks of: (a) the proposed causal inference Q-network (CIQ) training and test
framework, where the latent state is an unobserved (hidden) confounder; (b) a 3D navigation task,
banana collector (Juliani et al., 2018), and (c) a video game, LunarLander (Brockman et al., 2016).

agent with this reasoning capability, we exploit the causal inference framework. Intuitively, a causal
inference model for observation interference uses an unobserved confounder (Pearl, 2009; 2019;
1995b; Saunders et al., 2018; Bareinboim et al., 2015) to capture the effect of the interference on the
reward collected from the environment.

When such a confounder is available, the RL agent can focus on the confounder for relevant reward
information and make the best decision. As illustrated in Figure 1, we propose a causal inference based
DRL algorithm termed causal inference Q-network (CIQ). During training, when the interference
labels are available, the CIQ agent will implicitly learn a causal inference model by embedding the
confounder into a latent state. At the same time, the CIQ agent will also train a Q-network on the
latent state for decision making. Then at testing, the CIQ agent will make use of the learned model
to estimate the confounding latent state and the interference label. The history of latent states is
combined into a causal inference state, which captures the relevant information for the Q-network to
collect rewards in the environment despite of the observational interference.

In this paper, we evaluate the performance of our method in four environments: 1) Cartpole-v0 – the
continuous control environment (Brockman et al., 2016); 2) the 3D graphical Banana Collector (Juliani
et al., 2018)); 3) an Atari environment LunarLander-v2 (Brockman et al., 2016), and 4) pixel Cartpole
– visual learning from the pixel inputs of Cartpole. For each of the environments, we consider four
types of interference: (a) black-out, (b) Gaussian noise, (c) frozen screen, and (d) adversarial attack.

In the testing phase mimicking the practical scenario that the agent may have interfered observations
but is unaware of the true interference labels (i.e., happens or not), the results show that our CIQ
method can perform better and more resilience against all the four types of interference. Furthermore,
to benchmark the level of resilience of different RL models, we propose a new robustness measure,
called CLEVER-Q, to evaluate the robustness of Q-network based RL algorithms. The idea is to
compute a lower bound on the observation noise level such that the greedy action from the Q-network
will remain the same against any noise below the lower bound. According to this robustness analysis,
our CIQ algorithm indeed achieves higher CLEVER-Q scores compared with the baseline methods.

The main contributions of this paper include 1) a framework to evaluate the resilience of DRL methods
under abrupt observational interferences; 2) the proposed CIQ architecture and algorithm towards
training a resilient DRL agent, and 3) an extreme-value theory based robustness metric (CLEVER-Q)
for quantifying the resilience of Q-network based RL algorithms.

2 RELATED WORKS

Causal Inference for Reinforcement Learning: Causal inference (Greenland et al., 1999; Pearl,
2009; Pearl et al., 2016; Pearl, 2019; Robins et al., 1995) has been used to empower the learning
process under noisy observation and have better interpretability on deep learning models (Shalit et al.,
2017; Louizos et al., 2017), also with efforts (Jaber et al., 2019; Forney et al., 2017; Bareinboim
et al., 2015) on causal online learning and bandit methods. Defining causation and applying causal
inference framework to DRL still remains relatively unexplored. Recent works (Lu et al., 2018;
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Tennenholtz et al., 2019) study this problem by defining action as one kind of intervention and
calculating the treatment effects on the action. In contrast, we introduce causation into DRL by
applying extra noisy and uncertain inventions. Different from the aforementioned approaches, we
leverage the causal effect of observational interferences on states, and design an end-to-end structure
for learning a causal-observational representation evaluating treatment effects on rewards.

Adversarial Perturbation: An intensifying challenge against deep neural network based systems
is adversarial perturbation for making incorrect decisions. Many gradient-based noise-generating
methods (Goodfellow et al., 2015; Huang et al., 2017) have been conducted for misclassification
and mislead an agent’s output action. As an example of using DRL model playing Atari games, an
adversarial attacker (Lin et al., 2017; Yang et al., 2020) could jam in a timely and barely detectable
noise to maximize the prediction loss of a Q-network and cause massively degraded performance.

Partially Observable Markov Decision Processes (POMDPs): Our resilient RL framework can
be viewed as a POMDP with interfered observations. Belief-state methods are available for simple
POMDP problems (e.g., plan graph and the tiger problem (Kaelbling et al., 1998)), but no provably
efficient algorithm is available for general POMDP settings (Papadimitriou & Tsitsiklis, 1987; Gregor
et al., 2018). Recently, Igl et al. (2018) have proposed a DRL approach for POMDPs by combining
variational autoencoder and policy-based learning, but this kind of methods do not consider the
interference labels available during training in our resilient RL framework.

Safe Reinforcement Learning: Safe reinforcement learning (SRL) (Garcia & Fernández, 2012)
seeks to learn a policy that maximizes the expected return, while satisfying specific safety constraints.
Previous approaches to SRL include reward-shaping (Saunders et al., 2018), noisy training (Fortunato
et al., 2018), shielding-based SRL (Alshiekh et al., 2018), and policy optimization with confident
lower-bound constraints (Thomas et al., 2015). However, finding these policies in the first place could
need to reset the model at each time and be computationally challenging. Our proposed resilient
RL framework can be viewed as an approach to achieve SRL (Alshiekh et al., 2018), but we focus
on gaining resilience against abrupt observation interferences. Another key difference between our
framework and other SRL schemes is the novelty in proactively using available interference labels
during training, which allows our agent to learn a causal inference model to make safer decisions.

3 RESILIENT REINFORCEMENT LEARNING

In this section, we formally introduce our resilient RL framework and provide an extreme-value
theory based metric called CLEVER-Q for measuring the robustness of DQN-based methods.

We consider a sequential decision-making problem where an agent interacts with an environment. At
each time t, the agent gets an observation xt, e.g. a frame in a video environment. As in many RL
domains (e.g., Atari games), we view st = (xt−M+1, . . . , xt) to be the state of the environment where
M is a fixed number for the history of observations. Given a stochastic policy π, the agent chooses an
action at ∼ π(st) from a discrete action space based on the observed state and receives a reward rt
from the environment. For a policy π, define the Q-function Qπ(s, a) = E

[∑∞
t=0 γ

trt|s0 = s, a0 =

a, π
]

where γ ∈ (0, 1) is the discount factor. The agent’s goal is to find the optimal policy π∗ that
achieves the optimal Q-function given by Q∗(s, a) = maxπ Q

π(s, a).

3.1 RESILIENCE BASE ON AN INTERVENTIONAL PERSPECTIVE

We consider a resilient RL framework where the observations are subject to interference (as illustrated
in Fig 1 (a)) as an empirical process in Rubin’s Causal Model (RCM) (Kennedy, 2016; Holland,
1988; Balke & Pearl, 1997; Robins et al., 2003) for causal inference. Given a type of interference I,
the agent’s observation becomes:

x′t = F I(xt, it) = it × I(xt) + (1− it)× xt (1)

where it ∈ {0, 1} is the label indicating whether the observation is interfered at time t or not (under
the potential outcome estimation (Rubin, 1974)), and I(xt) is the interfered observation.

The interfered state is then given by s′t = (x′t−M+1, . . . , x
′
t). We assume that interference labels

it follow an i.i.d. Bernoulli process with a fixed interference probability pI as a noise level. For
example, when pI equals to 10%, each observational state has a 10% chance to be intervened under
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Figure 2: (a) Causal graphical model (CGM). (b) CIQ architecture. The notation itraint denotes the
inference label available during training, whereas ĩt is sampled during inference as it is unknown.

a perturbation. The agent now needs to choose its actions at ∼ π(s′t) based on the interfered state.
The resilient RL objective for the agent is to find a policy π to maximize rewards in this environment
under observation interference.

In this work, we consider four types of interference as described below.

Gaussian Noise. Gaussian noise or white noise is a common interference to sensory data (Osband
et al., 2019; Yurtsever et al., 2020). The interfered observation becomes I(xt) = xt + nt with a
zero-mean Gaussian noise nt. The noise variance is set to be the variance of all recorded states.

Adversarial Observation. Following the standard adversarial RL attack setting, we use the fast
gradient sign method (FGSM) (Szegedy et al., 2014) to generate adversarial patterns against the
DQN prediction loss (Huang et al., 2017). The adversarial observation is given by I(xt) = xt +
ε sign (∇xt

Q(xt, y; θ)) where y is the optimal output action by weighting over all possible actions.

Observation Black-Out. Off-the-shelf hardware can affect the entire sensor networks as a sensing
background (Yurtsever et al., 2020) over-shoot with I(xt) = 0 (Yan et al., 2016). This perturbation
is realistic owing to overheat hardware and losing the observational information of sensors.

Frozen Frame. Lagging and frozen frame(s) (Kalashnikov et al., 2018) often come from limited data
communication bottleneck bandwidth. A frozen frame is given by I(xt) = xt−1. If the perturbation
is constantly present, the frame will remain the first frozen frame since the perturbation happened.

3.2 CLEVER-Q: A ROBUSTNESS EVALUATION METRIC FOR Q-NETWORKS

Here we provide a comprehensive score (CLEVER-Q) for evaluating the robustness of a Q-network
model by extending the CLEVER robustness score (Weng et al., 2018) designed for classification
tasks to Q-network based DRL tasks. Consider an `p-norm bounded (p ≥ 1) perturbation δ to the
state st. We first derive a lower bound βL on the minimal perturbation to st for altering the action
with the top Q-value, i.e., the greedy action. For a given st and a Q-network, this lower bound βL
provides a robustness guarantee that the greedy action at st will be the same as that of any perturbed
state st + δ, as long as the perturbation level ‖δ‖p ≤ βL. Therefore, the larger the value βL is, the
more resilience of the Q-network against perturbations can be guaranteed. Our CLEVER-Q score
uses the extreme value theory to evaluate the lower bound βL as a robustness metric for benchmarking
different Q-network models. The proof of Theorem 1. is available in appendix B.1.

Theorem 1. Consider a Q-network Q(s, a) and a state st. Let A∗ = argmaxaQ(st, a) be the
set of greedy (best) actions having the highest Q-value at st according to the Q-network. Define
ga(st) = Q(st,A∗)−Q(st, a) for every action a, where Q(st,A∗) denotes the best Q-value at st.
Assume ga(st) is locally Lipschitz continuous1 with its local Lipschitz constant denoted by Laq , where
1/p+ 1/q = 1 and p ≥ 1. For any p ≥ 1, define the lower bound

βL = mina/∈A∗ga(st)/L
a
q . (2)

Then for any δ such that ‖δ‖p ≤ βL, we have argmaxaQ(st, a) = argmaxaQ(st + δ, a).

1Here locally Lipschitz continuous means ga(st) is Lipschitz continuous within the `p ball centered at st
with radius Rp. We follow the same definition as in (Weng et al., 2018).
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3.3 CAUSAL GRAPHICAL MODEL AND THE BENEFITS ON LEARNING PERFORMANCE

The causal relation of observation, reward, and interference can be described by a causal graphical
model (CGM) in Figure 2. We use zt to denote the latent state which can be viewed as a confounder
in causal inference. Formally, we define zt = h(xt, it) to be the hidden confounder. Here h is a
function which compresses (xt, it) into a confounder such that the CGM holds. It is clear from Eq.
(1) and the MDP definition that the CGM holds with h being the identity function, i.e., zt = (xt, it).
We assume that there exists some unknown compression function h such that zt is low-dimensional.
Similar to Louizos et al. (2017), we aim to learn to predict this low-dimensional hidden confounder
by a neural network.

Table 1: Causal hierarchy (Pearl, 2009; 2019; Bareinboim et al., 2020) in our resilient DRL setting.

Level Activity Symbol Example
(I) Association Observing P (rt|x′t) DQN

(II) Intervention Intervening P (rt|do(x′t), it) CIQ (ours)

According to the CGM, different training settings correspond to different levels of Pearl’s causal
hierarchy (Bareinboim et al., 2020; Shpitser & Pearl, 2008; Pearl, 2009) as shown in Table 1. If only
the observations are available, the training process corresponds to Level I of the causal hierarchy,
which associates the outcome rt to the input observation x′t directly by P (rt|x′t). Regular DQN and
other algorithms with only observations in training belong to this association level. On the other hand,
when interference type I and the interference labels it are available during training, the learning
problem is elevated to Level II of the causal hierarchy. In particular, the interference model of Eq. (1)
can be viewed as the intervention logic with the interference label it being the treatment information.
With these information, we can describe the causal inference problem by

P (rt|do(x′t), it) = P (rt|F I(xt, it) = x′t, it) (3)

with the do-operator (Pearl, 2019) in the intervention level of the causal hierarchy. Based on the
causal hierarchy Theorem (Pearl, 2009), we could answer causal questions in the higher Level II
given the interference type I and the interference labels it in the learning process.

We provide an example to analytically demonstrate the learning advantage of having the interference
labels during training. Consider an environment of i.i.d. Bernoulli states with P (xt = 1) = P (xt =
0) = 0.5 and two actions 0 and 1. There is no reward taking action at = 0. When at = 1, the agent
pays one unit to have a chance to win a two unit reward with probability qx at state xt = x ∈ {0, 1}.
Therefore, P (rt = 1|xt = x, at = 1) = qx and P (rt = −1|xt = x, at = 1) = 1 − qx. This
simple environment is a contextual bandit problem where the optimal policy is to pick at = 1 at state
xt = x if qx > 0.5, and at = 0 if qx ≤ 0.5. If the goal is to find an approximately optimal policy,
the agent should take action at = 1 during training to learn the probabilities q0 and q1. Suppose
the environment is subjected to observation black-out x′t = 0 with pI = 0.2 when xt = 1, and no
interference when xt = 0. Assume q0 = (3− q1)/5. Then we have P (rt = 1|x′t = 1, at = 1) = q1,
and P (rt = 1|x′t = 0, at = 1) = q0P (xt = 0|x′t = 0) + q1P (xt = 1|x′t = 0) = 0.5. If the agent
only has the interfered observation x′t, the samples for x′t = 0 are irrelevant to learning q1 because
rewards just randomly occur with probability half given x′t = 0. Therefore, the sample complexity
bound is proportional to 1/P (x′t = 1) because only samples with x′t = 1 are relevant. On the other
hand, if the agent has access to the labels it during training, even when observed x′t = 0, the agent
can infer whether xt = 1 by checking it = 1 or not. Therefore, the causal relation allows the agent
to learn q1 by utilizing all samples with xt = 1, and the sample complexity bound is proportional
to 1/P (xt = 1) = 2 which is a 20% reduction from 1/P (x′t = 1) = 2.5 when the labels are not
available. Note that zt = (xt, it) is a latent state for this example, and the latent state and its causal
relation is very important to improving learning performance.

From the above discussion, we provide the interference type I the interference labels it to efficiently
train a resilient RL agent with the CGM; however, in the actual testing environment, the agent only
has access to the interfered observations x′t. The CGM allows the agent to infer the latent state zt and
utilize its causal relation with observation, interference and reward to learn resilient behaviors. We
will then show how we parameterize this model with a novel deep neural network.
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3.4 CAUSAL INFERENCE Q-NETWORK

Based on the causal inference graphical model, we propose a causal inference Q-network, referred as
CIQ, that is able to map the interfered observation x′t into a latent state zt, make proper inferences
about the interference condition it, and adjust our policy based on the estimated interference.

We approximate the latent state by a neural network z̃t = f1(x
′
t; θ1). From the latent state,

we generate the estimated interference label ĩt ∼ p(̃it|zt) = fI(zt;φ). We denote sCIt =
(z̃t−M+1, ĩt−M+1, . . . , z̃t, ĩt) to be the causal inference state. As discussed in the previous sub-
section, the causal inference state acts as a confounder between the interference and the reward.
Therefore, instead of using the interfered state s′t, the causal inference state sCIt contains more
relevant information for the agent to maximize rewards. Using the causal inference state helps focus
on meaningful and informative details even under interference.

With the causal inference state sCIt , the output of the Q-network Q(sCIt ; θ) is set to be switched
between two neural networks f2(sCIt ; θ2) and f3(sCIt ; θ3) by the interference label. Such a switching
mechanism prevents our network from over-generalizing the causal inference state. During training,
switching between the two neural networks is determined by the training interference label itrain

t . We
assume that the true interference label is available in the training phase so itrain

t = it. In the testing,
when it is not available, we use the predicted interference label ĩt as the switch to decide which of
the two neural networks to use. The design intuition of the inference mechanism is based on the
potential outcome estimation theory (Rubin, 1974; Imbens & Rubin, 2010; Pearl, 2009) in RCM and
modeling of the interference scenario as described in Eq. (1). Intuitively, the switching mechanism
(counterfactual inference) from RCM could be considered as a method to disentangle a single deep
network into two non-parameter-sharing networks to improve model generalization under uncertainty.
It has shown many advantages for representation learning in regression tasks (Shalit et al., 2017;
Louizos et al., 2017). We provide more implementation details in appendix C.1.

All the neural networks f1, f2, f3, fI have two fully connected layers2 with each layer followed by
the ReLU activation except for the last layer in f2, f3 and fI . The overall CIQ model is shown in
Figure 2 and θ = (θ1, θ2, θ3, φ) denotes all its parameters. Note that, as common practice for discrete
action spaces, the Q-network output Q(sCIt ; θ) is an A-dimensional vector where A is the size of the
action space, and each dimension represents the value for taking the corresponding action.

Finally, we train the CIQ model Q(s′t; θ) end-to-end by the DQN algorithm with an additional loss
for predicting the interference label. The overall CIQ objective function is defined as:

LCIQ(θ1, θ2, θ3, φ) = itrain
t · LDQN(θ1, θ2, φ) + (1− itrain

t ) · LDQN(θ1, θ3, φ)

+ λ · (itrain
t log p(̃it|z̃t; θ1, φ) + (1− itrain

t ) log(1− p(̃it|z̃t; θ1, φ))), (4)

where λ is a scaling constant and is set to 1 for simplicity. The entire CIQ training procedure is de-
scribed by Algorithm 1. Due to the design of the causal inference state and the switching mechanism,
we will show that CIQ can perform resilient behaviors against the observation interferences.

4 EXPERIMENTS

4.1 ENVIRONMENTS FOR DQNS

Our testing platforms were based on (a) OpenAI Gym (Brockman et al., 2016), (b) Unity-3D
environments (Juliani et al., 2018), (c) a 2D gaming environment (Brockman et al., 2016), and (d)
visual learning from pixel inputs of cart pole. Our test environments cover some major application
scenarios and feature discrete actions for training DQN agents with the CLEVER-Q analysis.

Vector Cartpole: Cartpole (Sutton et al., 1998) is a classical continuous control problem. The
defined environment is manipulated by adding a force of +1 or −1 to a moving cart. A pendulum
starts upright, and the goal is to balance and prevent it from falling over. We use Cartpole-v0
from Gym (Brockman et al., 2016) with a targeted reward = 195.0 to solve the environment. The
observational vector-state consist of four physical parameters of cart position and angle velocities.

2Though such manner may lead to the myth of over-parameterization, our ablation study proves that we can
achieve better results with almost the same amount of parameters.
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Algorithm 1 CIQ Training

1: Inputs: Agent, NoisyEnv, Oracle, max_step, NoisyEnv_test, target, eval_steps
2: Initialize: t = 0, score = 0, s′t = NoisyEnv.reset()
3: while t < max_step and score < target do
4: it = oracle(NoisyEnv, t)
5: at = Agent.act(s′t, it)
6: s′t+1, rt, done = NoisyEnv.step(at)
7: Agent.learn(s′t, at, rt, s

′
t+1, it)

8: if t ∈ eval_steps then
9: score = Agent.evaluate(NoisyEnv_test)

10: if done then
11: s′t = NoisyEnv.reset()
12: else
13: s′t = s′t+1
14: t = t + 1
15: Return Agent

Banana Collector: The Banana collector shown in Figure 1 (b) is one of the Unity baseline (Juliani
et al., 2018) rendering by 3D engine. Different from the MuJoCo (Todorov et al., 2012) simulators
with continuous actions, the Banana collector is controlled by four discrete actions corresponding to
moving directions. The state-space has 37 dimensions included velocity and a ray-based perception
of objects around the agent. The targeted reward is 12.0 points by accessing correct bananas (+1).

Lunar Lander: Similar to the Atari gaming environments, Lunar Lander-v2 (Figure 1 (c)) is a
discrete action environment from OpenAI Gym (Brockman et al., 2016). The state is an eight-
dimensional vector that records the lander’s position, velocity, angle, and angular velocities. The
episode finishes if the lander crashes or comes to rest, receiving a reward −100 or +100 with a
targeted reward of 200. Firing ejector costs −0.3 each frame with +10 for each ground contact.

Pixel Cartpole: To further evaluate our models, we conduct experiments from the pixel inputs in
the cartpole environment as a visual learning task. The size of input state is 400 × 600. We use a
max-pooling and a convolution layer to extract states as network inputs. The environment includes
two discrete actions {left, right}, which is identical to the Cartpole-v0 of the vector version.

4.2 BASELINE METHODS

In the experiments, we compare our CIQ algorithm with two sets of DRL baselines to demonstrate
the resilience capability of the proposed method. We ensure all the models have the same number of
9.7 millions parameters with careful fine-tuning to avoid model capacity issues.

Pure DQN: We use DQN as a baseline in our experiments. The DQN agent is trained and tested
on interfered state s′t. We also evaluate common DQN improvements in appendix C.1 and find the
improvements have no significant effect against interference.

DQN with an interference classifier (DQN-CF): In the resilient reinforcement learning framework,
the agent is given the true interference label itrain

t at training. Therefore, we would like to provide this
additional information to the DQN agent for a fair comparision. During training, the interfered state
s′t is concatenated with the true label itrain

t as the input for the DQN agent. Since the true label is not
available at testing, we train an additional binary classifier (CF) for the DQN agent. The classifier
is trained to predict the interference label, and this predicted label will be concatenated with the
interfered state as the input for the DQN agent during testing.

DQN with safe actions (DQN-SA): Inspired by shielding-based safe RL (Alshiekh et al., 2018), we
consider a DQN baseline with safe actions (SA). The DQN-SA agent will apply the DQN action if
there is no interference. However, if the current observation is interfered, it will choose the action
used for the last uninterfered observation as the safe action. This action-holding method is also a
typical control approach when there are missing observations (Franklin et al., 1998). Similar to
DQN-CF, a binary classifier for interference is trained to provide predicted labels at testing.
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Figure 3: Performance of DQNs under potential (20%) adversarial and black-out interference.

DVRLQ and DVRLQ-CF: Motivated by deep variational RL (DVRL) (Igl et al., 2018), we provide
a version of DVRL as a POMDP baseline. We call this baseline DVRLQ because we replace the
A2C-loss with the DQN loss. Similar to DQN-CF, we also consider another baseline of DVRLQ with
a classifier, referred to as DVRLQ-CF, for a fair comparison using the interference labels.

4.3 RESILIENT RL ON AVERAGE RETURNS

We run performance evaluation with six different interference probabilities (pI in Sec. 3.1), including
{0%, 10%, 20%, 30%, 40%, 50%}. We train each agent 50 times and highlight its standard deviation
with lighter colors. Each agent is trained until the target score (shown as the dashed black line)
is reached or until 400 episodes. We show the average returns for pI = 20% under adversarial
perturbation and black-out in Figure 3 and report the rest of the results in appendix C.1.

CIQ (green) clearly outperforms all the baselines under all types of interference, validating the effec-
tiveness of our CIQ in learning to infer and gaining resilience against a wide range of observational
interferences. Pure DQN (yellow) cannot handle the interference with 20% noise level. DQN-CF
(orange) and DQN-SA (brown) have competitive performance in some environments against certain
interferences, but perform poorly in others. DVRLQ (blue) and DVRLQ-CF (purple) cannot achieve
the target reward in most experiments and this might suggest the inefficiency of applying a general
POMDP approach in a framework with a specific structure of observational interference.

4.4 ROBUSTNESS METRICS BASED ON RECORDING STATES

We evaluate the robustness of DQN and CIQ by the proposed CLEVER-Q metric. To make the test
state environment consistent among different types and levels of interference, we record the interfered
states, SN = I(SC), together with their clean states, SC . We then calculate the average CLEVER-Q
for DQN and CIQ based on the clean states SC using Eq. 2 over 50 times experiments for each agent.

We also consider a retrospective robustness metric, the action correction rate (AC-Rate). Motivated by
previous off-policy and error correction studies (Dulac-Arnold et al., 2012; Harutyunyan et al., 2016;
Lin et al., 2017), AC-Rate is defined as the action matching rate RAct = 1

T

∑T−1
t=0 1{at=a∗t } between

at and a∗t over an episode with length T . Here at denotes the action taken by the agent with interfered
observations SN , and a∗t is the action of the agent if clean states SC were observed instead. The
roles of CLEVER-Q and AC-Rate are complementary as robustness metrics. CLEVER-Q measures
sensitivity in terms of the margin (minimum perturbation) required for a given state to change the
original action. AC-rate measures the utility in terms of action consistency. Altogether, they provide
a comprehensive resilience assessment.
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Table 2 reports the two robustness metrics for DQN and CIQ under two types of interference. CIQ
attains higher scores than DQN in both CLEVER-Q and AC-Rate, reflecting better resilience in CIQ
evaluations. We provide more robustness measurements in appendix B.2 and E.

Table 2: AC-Rate and CLEVER-Q robustness analysis under Gaussian (l2-norm) and adversarial
(l∞-norm) perturbations in the vector Cartpole environment.

I=L2 AC-Rate CLEVER-Q I=L∞ AC-Rate CLEVER-Q
P%, I DQN CIQ DQN CIQ P%, I DQN CIQ DQN CIQ
10% 82.10% 99.61% 0.176 0.221 10% 62.23% 99.52% 0.169 0.248
20% 72.15% 98.52% 0.130 0.235 20% 9.68% 98.52% 0.171 0.236
30% 69.74% 98.12% 0.109 0.232 30% 1.22% 98.10% 0.052 0.230

4.5 ADDITIONAL ANALYSIS

We also conduct the following analysis to better understand our CIQ model. Environments with a
dynamic noise level are evaluated. Due to the space limit, see their details in appendix C to E.

Treatment effect analysis: We provide treatment effect analysis on each kind of interference to
statistically verify the CGM with lowest errors on average treatment effect refutation in appendix D.

Ablation studies: We conduct ablation studies by comparing several CIQ variants, each without
certain CIQ component. The results verify the importance of the proposed CIQ architecture in
appendix E.

Test on different noise levels: We train CIQ under one noise level and test on another level. The
results show that the difference in noise level does not affect much on the performance in appendix
C.6.

Neural saliency map: We apply the perturbation-based saliency map for DRL (Greydanus et al.,
2018) in appendix E.4 to visualize the saliency centers and actions of CIQ and other baseline agents.

Transferability in robustness: Based on CIQ, we study how well can the robustness of different
interference types transfer between training and testing environments . We evaluate two general set-
tings (i) same interference type but different noise levels (appendix C.6) and (ii) different interference
types (appendix E.5).

Multiple interference types: We also provide an generalized version of CIQ that deals with multiple
interference types at training and testing environments. The generalized CIQ is equipped with a
common encoder and individual interference decoders to study multi-module conditional inference,
as discussed in appendix E.6.

5 CONCLUSION

Our experiments suggest that, although some DRL-based algorithms can achieve high scores under
the normal condition, their performance can be severely degraded in the presence of interference.
In order to be resilient against interference, we propose CIQ, a novel causal-inference-driven DRL
algorithm. Evaluated on a wide range of environments and multiple types of interferences, the CIQ
results show consistently superior performance over several RL baseline methods. We also validate
the improved resilience of CIQ by CLEVER-Q and AC-Rate metrics and will open source code.
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A APPENDIX

INDEX

Our supplementary sections included:

• B. Proof of the CLEVER-Q Theorem and Additional Robustness Measurements
• C. Implementation Details and Additional Results
• D. Causal Relation Evaluation and Average Treatment Effects in CIQ Networks
• E. Ablation Studies

B PROOF OF THE CLEVER-Q THEOREM AND ADDITIONAL ROBUSTNESS
MEASUREMENTS

B.1 PROOF OF THE CLEVER-Q THEOREM

Here we provide a comprehensive score (CLEVER-Q) for evaluating the robustness of a Q-network
model by extending the CLEVER robustness score Weng et al. (2018) designed for classification
tasks to Q-network based DRL tasks. Consider an `p-norm bounded (p ≥ 1) perturbation δ to the
state st. We first derive a lower bound βL on the minimal perturbation to st for altering the action
with the top Q-value, i.e., the greedy action. For a given st and a Q-network, this lower bound βL
provides a robustness guarantee that the greedy action at st will be the same as that of any perturbed
state st + δ, as long as the perturbation level ‖δ‖p ≤ βL. Therefore, the larger the value βL is, the
more resilience of the Q-network against perturbations can be guaranteed. Our CLEVER-Q score
uses the extreme value theory to evaluate the lower bound βL as a robustness metric for benchmarking
different Q-network models.
Theorem 2. Consider a Q-network Q(s, a) and a state st. Let A∗ = argmaxaQ(st, a) be the
set of greedy (best) actions having the highest Q-value at st according to the Q-network. Define
ga(st) = Q(st,A∗)−Q(st, a) for every action a, where Q(st,A∗) denotes the best Q-value at st.
Assume ga(st) is locally Lipschitz continuous3 with its local Lipschitz constant denoted by Laq , where
1/p+ 1/q = 1 and p ≥ 1. Then for any p ≥ 1, define the lower bound

βL = mina/∈A∗ga(st)/L
a
q .

Then for any δ such that ‖δ‖p ≤ βL,

argmax
a

Q(st, a) = argmax
a

Q(st + δ, a)

Proof. Because ga(st) is locally Lipschitz continuous, by Holder’s inequality, we have

|ga(x)− ga(y)| ≤ Laq ||x− y||p, (5)

for any x, y within the Rp-ball centered at st. Now let x = st and y = st + δ, where δ is some
perturbation. Then

ga(st)− Laq ||δ||p ≤ ga(st + δ) ≤ ga(st) + Laq .||δ||p (6)

Note that if ga(st + δ) ≥ 0, then A∗ still remains as the top Q-value action set at state st + δ.
Moreover, ga(st)− Laq ||δ||p ≥ 0 implies ga(st + δ) ≥ 0. Therefore,

||δ||p ≤ ga(st)/Laq , (7)

provides a robustness guarantee that ensures Q(st + δ,A∗) ≥ Q(st + δ, a) for any δ satisfying Eq.
equation 5. Finally, to provide a robustness guarantee that Q(st + δ,A∗) ≥ Q(st + δ, a) for any
action a /∈ A∗, it suffices to take the minimum value of the bound (for each a) in Eq. equation 5 over
all actions other than a∗, which gives the lower bound

βL = mina/∈A∗ga(st)/L
a
q (8)

3Here locally Lipschitz continuous means ga(st) is Lipschitz continuous within the `p ball centered at st
with radius Rp. We follow the same definition as in Weng et al. (2018).
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For computing βL, while the numerator is easy to obtain, the local Lipschitz constant Laq cannot
be directly computed. In our implementation, by using the fact that Laq is equivalent to the local
maximum gradient norm (in `q norm), we use the same sampling technique from extreme value
theory as proposed in Weng et al. (2018) for estimating Laq .

B.2 ADDITIONAL ROBUSTNESS MEASUREMENTS

Following the discussion in Section 4.4 of the main content, we provide more experimental results
related to CLEVER-Q measurement and use action correction rate (AC-Rate) mentioned in the main
content as a reference.

Table S1. reports the two robustness metrics for DQN, CIQ, DQN-CF (a DQN joint-training with an
interference classifier, denoted as Q-CF), DQN-SA (a DQN joint-training with safe-action replay,
denoted as Q-SA), DVRLQ (a deep variational reinforcement learning framework Igl et al. (2018)
with a DQN-loss, denoted as V-Q), and DVRLQ-CF (a V-Q joint-training with an interference
classifier, denoted as V-CF) under two types of Ln-norm Weng et al. (2018) interference. CIQ
attains higher scores than DQN in both CLEVER-Q and AC-Rate, reflecting better resilience in CIQ
evaluations. The performance of the returns of each agent is shown in Table S2. We observe that
variational auto-encoding methods included V-Q and V-CF attaining a lower CLEVER-Q, Act-Rate,
and average returns from Table S1 and S2. From previous studies Van Hoof et al. (2016), reasons
would be difficulties Van Hasselt et al. (2016) of estimation considering temporal information and
the various state is hard to disentangle by a single network from counterfactual learning Shalit et al.
(2017); Louizos et al. (2017). We also conduct an experiment on a DQN extension of TD-VAE Gregor
et al. (2018), but the performance of this extension becomes even lower in all metrics than the V-CF
after carefully fine-tuning. We also find that the DQNs would be a benefit on the performance with a
joint-trained interference classifier shown in Table S1 and S2.

Table 3: AC-Rate and CLEVER-Q robustness analysis under Gaussian (Lipschitz l2-norm) and
adversarial (Lipschitz l∞-norm) Huang et al. (2017) perturbations in the vector Cartpole environment.

I=L2 AC-Rate CLEVER-Q I=L∞ AC-Rate CLEVER-Q
P%, I DQN CIQ DQN CIQ P%, I DQN CIQ DQN CIQ
10% 82.10% 99.61% 0.176 0.221 10% 62.23% 99.52% 0.169 0.248
20% 72.15% 98.52% 0.130 0.235 20% 9.68% 98.52% 0.171 0.236
30% 69.74% 98.12% 0.109 0.232 30% 1.22% 98.10% 0.052 0.230

P%, I Q-CF Q-SA Q-CF Q-SA P%, I Q-CF Q-SA Q-CF Q-SA
10% 85.10% 83.58% 0.185 0.182 10% 71.82% 67.56% 0.181 0.174
20% 75.23% 74.94% 0.145 0.152 20% 55.28% 51.20% 0.136 0.124
30% 72.25% 71.47% 0.127 0.125 30% 46.45% 43.27% 0.109 0.102

P%, I V-Q V-CF V-Q V-CF P%, I V-Q V-CF V-Q V-CF
10% 83.65% 84.32% 0.184 0.188 10% 61.92% 65.87% 0.173 0.179
20% 71.79% 72.83% 0.123 0.138 20% 51.06% 53.48% 0.117 0.121
30% 69.70% 70.85% 0.094 0.108 30% 36.99% 37.89% 0.087 0.092

C IMPLEMENTATION DETAILS AND ADDITIONAL RESULTS

C.1 BACKGROUND AND TRAINING SETTING

To scale to high-dimensional problems, one can use a parameterized deep neural networkQ(s, a; θ) to
approximate the Q-function, and the network Q(s, a; θ) is referred to as the deep Q-network (DQN).
The DQN algorithm Mnih et al. (2015) updates parameter θ according to the loss function:

LDQN(θ) = E(st,at,rt,st+1)∼D

[
(yDQN
t −Q(st, at; θ))

2
]

where the transitions (st, at, rt, st+1) are uniformly sampled from the replay buffer D of previously
observed transitions, and yDQN

t = rt + γmaxaQ(st+1, a; θ
−) is the DQN target with θ− being the

target network parameter periodically updated by θ.
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Double DQN (DDQN) Van Hasselt et al. (2016) further improves the performance by modifying the
target to yDDQN

t = rt + γQ(st+1, argmaxaQ(st+1, a; θ); θ
−). Prioritized replay is another DQN

improvement which samples transitions (st, at, rt, st+1) from the replay buffer according to the
probabilities pt proportional to their temporal difference (TD) error: pt ∝ |yDDQN

t −Q(st, at; θ)|α
where α is a hyperparameter.

We use Pytorch 1.2 to design both DQN and causal inference Q (CIQ) networks in our experiments.
Our code can be found in the supplementary material. We use Nvidia GeForce RTX 2080 Ti GPUs
with CUDA 10.0 for our experiments. We use the Quantile Huber loss (Dabney et al., 2018) Lκ for
DQN models with κ = 1 in Sup-Eq. 10, which allows less dramatic changes from Huber loss:

Lκ(u) =
{

1
2u

2, if |u| ≤ κ
κ
(
|u| − 1

2κ
)
, otherwise (9)

The quantile Huber loss (Dabney et al., 2018) is the asymmetric variant of the Huber loss for quantile
τ ∈ [0, 1] from Sup-Eq. 9:

ρκτ (u) =
∣∣τ − δ{u<0}

∣∣Lκ(u). (10)

After the a maximum update step in the temporal loss u in Sup-Eq. 9, we synchronize θ−i with θi
follow the implementation from the OpenAI baseline Dhariwal et al. (2017) in Sup-Eq 11:

ui (θi) = E

yDDQN︸ ︷︷ ︸
θtarget

−Q (s, a; θi)︸ ︷︷ ︸
θlocal


2

. (11)

We use the soft-update Fox et al. (2015) to update the DQN target network as in Sup-Eq 12:

θlocal = τ × θlocal + (1− τ)× θtarget, (12)

where θtarget and θlocal represent the two neural networks in DQN and τ is the soft update parameter
depending on the task.

For each environment, in additional to the 5 baselines described in Section 4.2, we also evaluate the
performance of common DQN improvements such as deep double Q-networks (DDQN) for DDQN
with dueling (DDQNd), DDQN with a prioritized replay (DDQNp), DDQN with a joint-training
interference classifier (DDQN-CF), and DDQN with a safe action reply (DDQN-SA). We test each
model against four types of interference, Gaussian, Adversarial, Blackout, and Frozen Frame, with
pI ∈ [10%, 20%, 30%, 40%, 50%]. We also consider a non-stationary noise-level sampling from
a cosine-wave in a range of [0%, 30%] for every ten steps. Results in Table S4-S9 show a return
averaged from the four types of noise in the Env1 to Env4. CIQ shows a better and continuous
performance to solve the environments before the noise level attaining 40% and under the cosine-
noise. Compared to variational based DQNs methods, joint-trained DDQN-CF show a much obvious
advantages when the noise levels are in the range of 40% to 50%.

C.2 ENV1: CARTPOLE ENVIRONMENT.

We use a four-layer neural network, which included an input layer, two 32-unit wide ReLU hidden
layers, and an output layer (2 dimensions). The observation dimension of Cartpole-v1 Brockman
et al. (2016) is 4 and the input stacks 4 consecutive observations. The dimension of the input layer
is [4× 4]. We design a replay buffer with a memory of 100,000, with a mini-batch size of 32, the
discount factor γ is set to 0.99, the τ for a soft update of target parameter is 5× 10−3, a learning rate
for Adam Kingma & Ba (2014) optimization is 5× 10−4, a regularization term for weight decay is
1× 10−4, the coefficient α for importance sampling exponent is 0.6, the coefficient of prioritization
exponent is 0.4. We train each model 1,000 times for each case and report the mean of the average
final performance (average over all types of interference) in Table S4. Env1 is often recognized as a
simplest environment for DQN training. However, we observe an stability issue of attaining reward
over 190.0, when most DQN models attain an over 100.0 score in a 10% noise level. CIQ perform
best and competitive results without internal affects from over-parameterization
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Table 4: Performance on return in clean and five different noise level in Env1 evaluated by an average
of under uncertain perturbation included Gaussian, adversarial, blackout, and frozen frame. All DQN
models solve the environment with over 195.0 average returns in a clean state (a.k.a. no noise).

Model 0% 10% 20% 30% 40% 50% Cosine Para.
DQN 195.1 115.0 68.9 32.3 22.8 19.1 42.1 6.9 M
DDQNd 195.1 130.3 85.6 57.2 29.6 23.4 68.2 9.7 M
DDQNp 195.1 143.6 79.3 56.1 31.2 28.6 60.1 9.7 M
CIQ 195.1 195.1 195.1 195.0 168.2 113.1 195.0 9.7 M
DQN-CF 195.1 192.4 143.6 128.7 68.2 57.8 138.3 9.7 M
DDQN-CF 195.1 190.2 153.2 138.9 71.4 54.6 141.2 10.7 M
DVRLQ 195.1 152.6 107.8 76.12 58.12 19.2 72.9 9.7 M
DVRLQ-CF 195.1 163.1 119.3 91.3 70.9 25.1 89.2 10.7 M
DQN-SA 195.1 143.2 132.4 112.1 82.9 23.2 107.1 10.7 M
DDQN-SA 195.1 123.4 73.2 59.4 28.1 22.8 62.8 9.7 M

Table 5: Ablation study on parameter of different DQN models using in our experiments training under
four different noise type of noisy environments (P = 20%), which included Blackout, Adversarial,
Gaussian, and Frozen frame for Env1 reported in the main content. The minimal parameters of each
model denote as Para. in the Tab. 14.

Model Para. Gaussian Adversarial Blackout Frozen
DQN 6.9M 67.4 42.5 85.7 62.1
CIQ 9.7M 195.1 195.0 195.1 195.2
DQN-CF 9.7M 149.2 129.1 161.3 167.2
DQN-SA 9.7M 128.9 144.5 109.1 165.8
DVRLQ 9.7M 107.1 87.3 127.56 142.4
DVRLQ-CF 10.7M 112.3 97.82 131.3 152.3

C.3 ENV2: 3D BANANA COLLECTOR ENVIRONMENT.

We utilize the Unity Machine Learning Agents Toolkit Juliani et al. (2018), which is an open-source4

and reproducible 3D rendering environment for the task of Banana Collector. A reproducible source
code, which is designed to render the collector agent, has been given in the supplementary for both
Linux and Windows systems. A reward of +1 is provided for collecting a yellow banana, and a
reward of −1 is provided for collecting a blue banana. We use a six-layer deep network, which
includes an input layer, three 64-unit fully-connected ReLU hidden layers, soft-attention layer Rao
et al. (2017) (for all DQNs), and an output layer (2 dimensions). We use [37 × 4] for our input
layer, which composes from the observation dimension (37) and the stacked input of 4 consecutive
observations. We design a replay buffer with a memory of 100,000, with a mini-batch size of 32, the
discount factor γ is equal to 0.99, the τ for a soft update of target parameter is 10−3, a learning rate
for Adam Kingma & Ba (2014) optimization is 5× 10−4, a regularization term for weight decay is
1× 10−4, the coefficient α for importance sampling exponent is 0.6, the coefficient of prioritization
exponent is 0.4.

We train each model 1,000 times for each case and report the mean of the average final performance
(average over all types of interference) in Table S6. We report the DVRLQ-CF, which attains a higher
performance among DVRLQ and DVRLQ-SA, to compare with DQN-CF, DDQN-CF. CIQ still
performs an overall best performance compared to the other baselines. Interestingly, learning an
interference improves general performance combined with the joint-training frameworks.

C.4 ENV3: LUNAR LANDER ENVIRONMENT.

The lunar lander-v2 Brockman et al. (2016) is one of the most challenging environments with
discrete actions. The observation dimension of Lunar Lander-v2 Brockman et al. (2016) is 8 and the
input stacks 10 consecutive observations. The objective of the game is to navigate the lunar lander

4Source: https://github.com/Unity-Technologies/ml-agents
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Table 6: Performance on return in clean and five different noise level in Env2 evaluated by an average
of under uncertain perturbation included Gaussian, adversarial, blackout, and frozen frame. All DQN
models solve the environment with over 12.0 average returns in a clean state (a.k.a. no noise).

Model 0 % 10% 20% 30% 40% 50% Cosine Para.
DQN 12.0 9.5 5.1 3.4 2.0 2.1 3.2 7.6 M
DDQN 12.0 10.1 5.8 6.8 4.8 2.6 6.9 9.7 M
DDQNd 12.0 11.8 6.7 7.4 5.4 2.8 6.6 9.7 M
DDQNp 12.0 11.9 9.2 7.2 5.4 3.2 8.3 9.7M
CIQ 12.0 12.0 12.0 12.0 11.8 7.8 12.0 9.7 M
DQN-CF 12.0 12.0 11.5 10.1 9.0 6.9 11.8 9.7 M
DDQN-CF 12.0 12.0 11.8 10.8 10.0 7.1 11.9 10.7 M
DVRLQ-CF 12.0 12.0 11.2 10.5 9.2 6.8 11.6 10.7 M

Table 7: Ablation study on parameter of different DQN models using in our experiments training under
four different noise type of noisy environments (P = 20%), which included Blackout, Adversarial,
Gaussian, and Frozen frame for Env2 reported in the main content. The minimal parameters of each
model denote as Para. in the Tab. 14.

Model Para. Gaussian Adversarial Blackout Frozen
DQN 6.9M 6.1 4.5 5.2 5.7
CIQ 9.7M 12.0 12.0 12.0 12.0
DQN-CF 9.7M 12.0 10.9 11.3 11.8
DQN-SA 9.7M 12.0 11.1 11.1 11.2
DVRLQ 9.7M 12.0 11.3 10.3 11.6
DVRLQ-CF 10.7M 12.0 11.5 10.5 11.6

spaceship to a targeted landing spot without a collision. A collection of six discrete actions controls
two real-valued vectors ranging from -1 to +1. The first dimension controls the main engine on and
off numerically, and the second dimension throttles from 50% to 100% power. The following two
actions represent for firing left, and the last two actions represent for firing the right engine. The
dimension of the input layer is [8× 10]. We design a 7-layers neural network for this task, which
includes 1 input layer, 2 layer of 32 unit wide fully-connected ReLU network, 2 layers deep 64-unit
wide ReLU networks, 1 soft-attention layer Rao et al. (2017) (for all DQNs), and 1 output layer (4
dimensions). The replay buffer size is 500,000; the minimum batch size is 64, the discount factor is
0.99, the τ for a soft update of target parameters is 10−3, the learning rate is 5× 10−4, the minimal
step for reset memory buffer is 50. We train each model 1,000 times for each case and report the
mean of the average final performance (average over all types of interference) in Table S8. Env3 is
a challenging task owing to often receive negative reward during the training. We thus consider a
non-stationary noise-level sampling from a cosine-wave in a narrow range of [0%, 20%] for every ten
steps. Results suggest CIQ could still solve the environment before the noise-level going over to 30%.
For the various noisy test, CIQ attains a best performance over 200.0 the other DQNs algorithms
(skipping the table since only CIQ and DQN-CF have solved the environment over 200.0 training
with adversarial and blackout interference.)

C.5 ENV4: PIXEL CARTPOLE ENVIRONMENT

To observe pixel inputs of Cartpole-v1 as states, we use a screen-wrapper with an original size of
[400, 600, 3]. We first resize the original frame into a single gray-scale channel, [100, 150] from the
RGN2GRAY function in the OpenCV. The implementation details are shown in the "pixel_tool.py"
and "cartpole_pixel.py", which could be refereed to the submitted supplementary code. Then we
stack 4 consecutive gray-scale frames as the input. We design a 7-layer DQN model, which included
input layer, the first hidden layer convolves 32 filters of a [8 × 8] kernel with stride 4, the second
hidden layer convolves 64 filters of a [4× 4] kernel with stride 2, the third layer is a fully-connected
layer with 128 units, from fourth to fifth layers are fully-connected layer with 64 units, a soft-attention
layer Rao et al. (2017) (for all DQNs), and the output layer (2 dimensions). The replay buffer size is
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Table 8: Performance on average return in clean and five different noise level in Env3 evaluated by an
average of under uncertain perturbation included Gaussian, adversarial, blackout, and frozen frame.
All DQN models solve the environment with over 200.0 average returns in a clean state input (a.k.a.
no noise).

Model 0% 10% 20% 30% 40% 50% Cosine Para.
DQN 200.0 54.2 -102.1 -134.6 -200.2 -298.7 12.4 12.3M
DDQN 200.0 70.1 15.8 -6.8 -124.8 -243.2 32.5 15.5M
DDQNd 200.0 92.2 26.7 -7.4 -167.4 -100.1 43.3 15.5M
DDQNp 200.0 102.1 39.2 -17.2 -189 -107.8 65.0 15.5M
CIQ 200.0 200.0 200.0 107.8 50.1 17.2 200.0 15.5M
DQN-CF 200.0 98.2 81.5 40.1 9.0 -59.9 85.6 15.5M
DDQN-CF 200.0 188.2 91.8 58.2 10.0 -20.1 128.9 15.5M
DVRLQ-CF 200.0 198.2 121.1 80.2 29.2 11.2 165.4 15.5M

500,000; the minimum batch size is 32, the discount factor is 0.99, the τ for a soft update of target
parameters is 10−3, the learning rate is 5× 10−4, the minimal step for reset memory buffer is 1000.

We train each model 1,000 times for each case and report the mean of the average final performance
(average over all types of interference) in Table S9.

Table 9: Performance on average return in clean and five different noise level in Env4 evaluated by an
average of under uncertain perturbation included Gaussian, adversarial, blackout, and frozen frame.
Only selected DQN models below solve the environment with over 195.0 average returns in a clean
state input (a.k.a. no noise).

Model 0% 10% 20% 30% 40% 50% Cosine Para.
DDQNd 195.0 182.7 99.7 75.5 47.4 13.2 90.4 20.5M
DDQNp 195.0 187.9 139.2 88.3 51.6 15.9 120.3 20.5M
CIQ 195.0 195.0 195.0 157.8 90.1 87.2 195.0 20.5M
DQN-CF 195.0 175.0 112.5 90.0 52.0 39.2 92.8 20.5M
DDQN-CF 195.0 187.2 162.8 117.9 59.8 49.1 102.6 20.5M
DVRLQ-CF 195.0 193.6 121.1 80.2 63.2 41.4 91.2 20.5M

Table 10: Ablation study on parameter of different DQN models using in our experiments training
under four different noise type of noisy environments (P = 20%), which included Blackout, Adver-
sarial, Gaussian, and Frozen frame for Env4 reported in the main content. The minimal parameters of
each model denote as Para. in the Tab. 14.

Model Para. Gaussian Adversarial Blackout Frozen
DQN 6.9M 52.6 37.5 70.5 47.6
CIQ 9.7M 195.0 195.0 195.0 195.0
DQN-CF 9.7M 119.2 99.1 131.3 137.2
DQN-SA 9.7M 98.0 114.6 79.2 135.2
DVRLQ 9.7M 107.1 87.3 127.56 142.4
DVRLQ-CF 10.7M 121.3 97.82 131.3 152.3

C.6 TRAIN AND TEST ON DIFFERENT NOISE LEVEL

We consider settings with different training and testing noise levels for CIQ evaluation. The (train,
test)% case trains with train% noise then tests with test% noise. Their results shown in Table S11
are similar to the cases with the same training and testing noise level. We observe that CIQ have
the capability of learning transformable q-value estimation, which attain a succeed score of 195.00
in the noise level 30 ± 10%. Meanwhile, other DQNs methods included DDQN-CF, DVRLQ-CF,
DDQN-SA perform a general performance decay in the test on different noise level. This result
would be limited to the generalization of power and challenges Bengio (2013); Higgins et al. (2018)
in as disentangle unseen state of a single parameterized deep network.
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Table 11: Stability test of proposed CIQ (Train Noise-Level, Test Noise-Level)

Metrics (10, 30)% (30, 10)% (30, 20)% (30, 30)% (30, 40)% (30, 50)%
Performance 182.8 195.0 195.0 195.0 195.0 185.7
CLEVER-Q 0.195 0.239 0.232 0.230 0.224 0.215
AC-Rate 91.45 % 98.54% 98.62% 99.45% 98.45% 92.45%

D CAUSAL EFFECTS

In a causal learning setting, evaluating treatment effects and conducting statistical refuting experiments
are essential to support the underlying causal graphical model. Through resilient reinforcement
learning framework, we could interpret DQN by estimating the average treatment effect (ATE) of
each noisy and adversarial observation. We first define how to calculate a treatment effect in the
resilient RL settings and conduct statistical refuting tests including random common cause variable
test (Tc), replacing treatment with a random (placebo) variable (Tp), and removing a random subset
of data (Ts). The open-source causal inference package Dowhy Sharma et al. (2019) is used for
analysis.

D.1 AVERAGE TREATMENT EFFECT UNDER INTERVENTION

We refine a Q-network with discrete actions for estimating treatment effects based on Theorem
1 in Louizos et al. (2017). In particular, individual treatment effect (ITE) can be defined as the
difference between the two potential outcomes of a Q-network; and the average treatment effect
(ATE) is the expected value of the potential outcomes over the subjects. In a binary treatment setting,
for a Q-value function Qt(st) and the interfered state I(st), the ITE and ATE are calculated by:

QITEt = Qt(st) (1− pt) +Qt(I(st))pt (13)

ATE =

T∑
t=1

E
[
QITEt (I(st))

]
− E

[
QITEt (st)

]
T

(14)

where pt is the estimated inference label by the agent and T is the total time steps of each episode.
As expected, we find that CIQ indeed attains a better ATE and its significance can be informed by the
refuting tests based on Tc, Tp and Ts.

To evaluate the causal effect, we follow a standard refuting setting Rothman & Greenland (2005);
Pearl et al. (2016); Pearl (1995b) with the causal graphical model in Fig. 3 of the main context
to run three major tests, as reported in Tab. 13. The code for the statistical test was conducted by
Dowhy Sharma et al. (2019), which has been submitted as supplementary material. (We intend to
open source as a reproducible result.)

Pearl Pearl (1995a) introduces a "do-operator" to study this problem under intervention. The do
symbol removes the treatment tr, which is equal to interference I in the Eq. (1) of the main content ,
from the given mechanism and sets it to a specific value by some external intervention. The notation
P (rt|do(tr)) denotes the probability of reward rt with possible interventions on treatment at time
t. Following Pearl’s back-door adjustment formula Pearl (2009) and the causal graphical model
in Figure 2 of the main content., it is proved in Louizos et al. (2017) that the causal effect for a
given binary treatment tr (denoted as a binary interference label it in Eq. (1) of the main content), a
series of proxy variables X = (

∑T
t=1 xt) ≡ S′ = (

∑T
t=1 s

′
t), as s′t in Eq. (1) of the main content, a

summation of accumulated reward R = (
∑T
t=1 rt) and a confounding variable Z can be evaluated

by (similarly for tr = 0):

p(R|S′, do(tr = 1)) =
∫
Z
p(R|S, do(tr = 1),Z)p(Z|S, do(tr = 1))dZ

(i)
=∫

Z
p(R|S′, tr = 1,Z)p(Z|S′)dZ,

(15)

where equality (i) is by the rules of do-calculus Pearl (1995a); Pearl et al. (2016) applied to the causal
graph applied on Figure 1 of the main content. We extend to Eq. 15 on individual outcome study with
DQNs, which is known by the Theorem 1. from Louizos et. al. Louizos et al. (2017) and Chapter
3.2 of Pearl Pearl (2009).
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D.2 REFUTATION TEST:

A sampling plan for collecting samples refer to as subgroups (i=1, ..., k). Common cause variation
(T-c) is denoted as σc, which is an estimate of common cause variation within the subgroups in terms
of the standard deviation of the within subgroup variation:

σc ∼=
k∑
i=1

si/k, (16)

where k denotes as the number of sample size. We introduce intervention a error rate n, which is a
probability to feed error interference (e.g., feed it = 0 even under interference with a probability of n)
and results shown in Table 12.

The test (T-p) of replacing treatment with a random (placebo) variable is conducted by modifying
the graphical relationship in the proposed probabilistic model in Fig. 3 of the main context. The
new assign variable will follow the placebo note but with a value sampling from a random Gaussian
distribution. The test of removing a random subset of data (T-r) is to randomly split and sampling
the subset value to calculate an average treatment value in the proposed graphical model. We use
the official dowhy5 implementation, which includes: (1) confounders effect on treatment: how the
simulated confounder affects the value of treatment; (2) confounders effect on outcome: how the
simulated confounder affects the value of outcome; (3) effect strength on treatment: parameter for
the strength of the effect of simulated confounder on treatment, and (4) effect strength on outcome:
parameter for the strength of the effect of simulated confounder on outcome. Following the refutation
experiment in the CEVAE paper, we conduct experiments shown in Tab. S12 and S13 with 10 % to
50 % intervention noise on the binary treatment labels. The results in Tab. S12 show that proposed
CIQ maintains a lower rate compared with the benchmark methods included logistic regression and
CEVAE (refer to Fig. 4 (b) in Louizos et al. (2017)).

Through Eq. (9) to (10) and the corresponding correct action rate in the main context, we could
interpret deep q-network by estimating the average treatment effect (ATE) of each noisy and adver-
sarial observation. ATE Louizos et al. (2017); Shalit et al. (2017) is defined as the expected value
of the potential outcomes (e.g., disease) over the subjects (e.g., clinical features.) For example, in
navigation environments, we could rank the harmfulness of each noisy observation against q-network
from the autonomous driving agent.

Table 12: Absolute error ATE estimate; lower value indicates a much stable causal inference under
perturbation on logic direction with P I = 10% and n=error rate of intervention on the binary label.

Model n=0.1 n=0.2 n=0.3 n=0.4 n=0.5
LR 0.062 0.084 0.128 0.151 0.164
CEVAE 0.021 0.042 0.062 0.072 0.081
CIQ 0.019 0.020 0.015 0.018 0.023

Table 13: Validation of causal effect by three causal refuting tests. The causal effect estimate is tested
by random common cause variable test (T-c), replacing treatment with a random (placebo) variable
(T-p – lower is better), and removing a random subset of data (T-r). Adversarial attack outperforms in
most tests.

Noise : do(I) n = 0.1 n = 0.2
Method ATE w/ T-c w/ T-p w/ T-s ATE w/ T-c w/ T-p w/ T-s
Adversarial 0.2432 0.2431 0.0294 0.2488 0.0868 0.0868 0.0109 0.0865
Black-out 0.2354 0.2212 0.0244 0.2351 0.0873 0.0870 0.0140 0.0781
Gaussian 0.1792 0.1763 0.0120 0.1751 0.0590 0.0610 0.0130 0.0571
Frozen Frame 0.1614 0.1614 0.0168 0.1435 0.0868 0.0868 0.0140 0.0573

5Source:github.com/microsoft/dowhy/causal_refuters
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E ABLATION STUDIES

E.1 THE NUMBER OF MODEL PARAMETERS

We also spend efforts on a parameter-study on the results of average returns between different
DQN-based models, which included DQN, Double DQN (DDQN), DDQN with dueling, CIQ,
DQN with a classifier (DQN-CF), DDQN with a classifier (DDQN-CF), DQN with a variational
autoencoder Kingma & Welling (2013) (DQN-VAE), NoisyNet, and using the latent input of causal
effect variational autoencoder for Q network (CEVAE-Q) prediction. Overall, CEVAE-Q is with
minimal-requested parameters with 14.4 M (in Env1) as the largest model used in our experiments
in Tab. 14. CIQ remains roughly similar parameters as 9.7M compared with DDQN, DDQNd, and
Noisy Net. Our ablation study in Tab. 14 indicates the advantages of CIQ are not owing to extensive
features using in the model according to the size of parameters. CIQ attains benchmark results in our
resilient reinforcement learning setting compared to the other DQN models.

Table 14: Ablation study on parameter of different DQN models using in our experiments in Env1,
Env2, Env3, and Env4. The minimal parameters of each model denote as Para. in the Table 10.

Model Para. Env1 Env2 Env3 Env4
DQN 6.9M 20.2 3.1 -113.6 10.8
DDQN 9.7M 41.1 3.5 -123.4 57.9
DDQNd 9.7M 82.9 4.7 -136.3 67.2
CIQ 9.7M 195.1 12.5 200.1 195.2
DQN-CF 9.7M 140.5 12.5 -78.3 120.2
DDQN-CF 12.1M 161.3 12.5 -10.1 128.2
DQN-VAE 9.7M 151.1 7.6 -92.9 24.1
NoisyNet 9.7M 158.6 5.5 50.1 100.1
CEVAE-Q 12.5M 39.8 11.5 -156.5 45.8
DVRLQ-CF 10.7M 107.11 9.2 -34.9 42.5

Noisy Nets Fortunato et al. (2018) has been introduced as a benchmark whose parameters are
perturbed by a parametric noise function. We select Noisy Net in a DQN format as a noisy training
baseline with interfered state s′t concated with a interference label it from a classifier.

(a) (b) (c) (d)

Figure 4: Perturbation-based saliency map on Pixel Cartpole under adversarial perturbation: (a) DQN,
(b) CIQ, (c) DQN-CF, and (d) DVRLQ-CF. The black arrows are correct actions and blue arrows are
agents’ actions. The neural saliency of CIQ makes more correct actions responding to ground actions.

E.2 LATENT REPRESENTATIONS

We conduct an ablation study by comparing other latent representation methods to the proposed CIQ
model.

DQN with an variational autoencoder (DQN-VAE): To learn important features from observations,
many recent works leverage deep variational inference for accessing latent states for feeding into
DQN. We provide a baseline on training a variational autoencoder (VAE) built upon the DQN baseline,
denoted as DQN-VAE. The DQN-VAE baseline is targeted to recover a potential noisy state and feed
the bottleneck latent features into the Q-network.

CEVAE-Q Network: TARNet (Shalit et al., 2017; Louizos et al., 2017) is a major class of neural net-
work architectures for estimating outcomes of a binary treatment on linear data (e.g., clinical reports).
Our proposed CIQ uses an end-to-end approach to learn the interventional (causal) features. We
provide another baseline on using the latent features from a causal variational autoencoder (Louizos
et al., 2017) (CEVAE) as latent features as state inputs followed the loss function in (Louizos et al.,
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2017). To get the causal latent model in Q-network, we approximate the posterior distribution by
a neural network zt ∼ p(zt|x̃t) = φ(x̃t; θ1). Then we train this neural network, CEVAE-Q, by
variational inference using the generative model.

We conduct 10,000 times experiments and fine-tuning on DQN-VAE and CEVAE-Q. The results in
Table 15 shows that the latent representation learned by CIQ provides better resilience than other
representations.

Table 15: Performance on average return in clean and five different noise level in Env1 evaluated
by an average of under uncertain perturbation included Gaussian, adversarial, blackout, and frozen
frame. All DQN models solve the environment with over 195.0 average returns in a clean state input
(a.k.a. no noise).

Model 0% 10% 20% 30% 40% 50% Cosine Para.
DQN 195.1 115.0 68.9 32.3 22.8 19.1 42.1 6.9 M
DDQN 195.1 123.4 73.2 59.4 28.1 22.8 62.8 9.7 M
CIQ 195.1 195.1 195.1 195.0 168.2 113.1 195.0 9.7 M
DQN-VAE 195.1 173.5 141.3 124.8 86.5 33.3 101.2 9.7 M
DQN-CEVAE 195.1 154.4 111.9 94.8 75.5 48.3 82.1 12.5 M

Table 16: Structure-wise ablation studies of CIQ in Env1 (noise level P = 20%).

Model Return CLEVER-Q AC-Rate
CIQ 195.1 0.241 97.3
B1: CIQ w/o the concatenation 152.1 0.196 78.2
B2: CIQ w/o the θ3 network 150.1 0.182 65.6
B3: CIQ w/o providing grounded it for training 135.1 0.142 53.6

E.3 ARCHITECTURE ABLATION STUDY ON CIQ

To study the importance of specific components in CIQ, we conducted additional ablation studies
and constructed two new baseline models shown in Table 16 tested in Env1 (Cartpole). Baseline
1 (B1) - CIQ w/o the concatenation of ĩt in SCI . This comparison shows the importance of using
both the predicted confounder z̃t and the predicted label ĩt. B1 uses label prediction to help latent
representation but not using the predicted labels in decision-making. The structure is motivated by
a task-specific (depth-only information from a maze environment) DQN network from a previous
study Mirowski et al. (2016). Baseline 2 (B2) - CIQ w/o the θ3 network (for testing θ3’s importance)
The structure Humplik et al. (2019) is motivated by a meta-inference reinforcement learning proposed
by. Baseline 3 (B3) - CIQ w/o providing grounded it for training, for testing the importance of the
inference loss and joint loss propagation. The superior performance of CIQ validates the proposed
model is indeed crucial from the previous discussion in Section 3 of the main content. The setting
used for Table 16 is the same as the setting for the third column (noise level = 20%) in Table 5 and
the third column (noise level = 20%) in Table 15, tested in Env1 (Cartpole).

E.4 PERTURBATION-BASED NEURAL SALIENCY FOR DQN AGENTS

To better understand our CIQ model, we use the benchmark saliency method on DQN agent,
perturbation-based saliency map, (Greydanus et al., 2018) to visualize the salient pixels, which
are sensitive to the loss function of the trained DQNs. We made a case study of an input frame
under an adversarial perturbation, as shown in Fig. 4. We evaluate DQN agents included DQN, CIQ,
DQN-CF, DVRLQ-CF and record its weighted center from the neural saliency map, where saliency
pixels of CIQ respond to ground true actions more frequent (96.2%) than the other DQN methods.

E.5 ROBUSTNESS TRANSFERABILITY AMONG DIFFERENT INTERFERENCE TYPES

We conduct additional experiments to study robustness transferability of DQN and CIQ when training
and testing under different kinds of interference types in Env1. Note that both architectures would
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solve a clean environment successfully (over 195.0). The reported numbers are averaged over 20
independent runs for each condition. As shown in Table 17 and Table 18, CIQ agents consistently
attain significant performance improvement when compared with DQN agents, especially between
Gaussian and adversarial perturbation. For example, CIQ succeeded to solve the environment 12
times out of 20 independent runs, with an average score of 165.2 in Gaussian (train)-Adversarial (test)
adaptation. n particular, for CIQ, 12 times out of 20 independent runs are successfully transfered
from Gaussian to Adversarial perturbation. Interestingly, augmenting adversarial perturbation does
not always guarantee the best policy transfer when testing in the Blackout and Frozen conditions,
which shows a slightly lower performance compared with training on Gaussian interference. The
reason could be attributed to the recent findings that adversarial training can undermine model
generalization (Raghunathan et al., 2019; Su et al., 2018).

Table 17: DQN adaptation: train and test on different interference (noise level P = 20%) in Env1.

Train / Test Gaussian Adversarial Blackout Frozen
Gaussian 67.4 38.4 43.7 52.1
Adversarial 53.2 42.5 35.3 44.2
Blackout 46.2 27.4 85.7 50.3
Frozen 62.3 26.2 45.9 62.1

Table 18: CIQ adaptation: train and test on different interference (noise level P = 20%) in Env1.

Train / Test Gaussian Adversarial Blackout Frozen
Gaussian 195.1 165.2 158.2 167.8
Adversarial 162.8 195.0 152.4 162.5
Blackout 131.3 121.1 195.3 145.7
Frozen 161.6 135.8 147.1 195.2

E.6 CIQ WITH MULTI-INTERFERENCE.

Here we show how the proposed CIQ model can be extended from the architecture shown in Figure 2
to the multi-interference (MI) setting. The design intuition is based on two-step inference by a
common encoder, to infer a clean or noisy observation, followed by an individual decoder tied to an
interference type, to infer noisy types and activate the corresponding Q-network (named θ4).
Note that the two-step inference mechanism follows the RCM as two sequential potential outcome es-
timation models (Rubin, 1974; Imbens & Rubin, 2010), where interfered observation x′t is determined
by two labels i1,t and i2,t according to x′t = i1,t(i2,tI1(xt)+(1−i2,t)I2(xt))+(1−i1,t)xt extended
from Eq.(1), where i1,t indicates the presence of interference and i2,t indicates which interference
type (here we show the case of two types). As a proof of concept, we consider two interference types
together, Gaussian noise and adversarial perturbation. In this setting every observation (state) can
possibly undergo an interference with either Gaussian noise or Adversarial perturbation. From the
results shown in Table. 19, we find that the extended version of CIQ, CIQ-MI, is capable of making
correct action to solve (over 195.0) the environment when training with mixed interference types (last
row). Another finding is that robustness tranferability (153.9/154.2) in CIQ-MI is slightly degraded
compared to the results (162.8/165.2) in Table 18 with the same training episodes (500) and runs
(20), which could be caused by the increased requirement of model capacity (Ammanabrolu & Riedl,
2019) of CIQ-MI.

Table 19: CIQ-MI: CIQ agent with an extended multi-interference (MI) architecture testing in Env1

(noise level P = 20%).

Train / Test Gaussian Adversarial Gaussian + Adversarial
Gaussian 195.1 154.2 96.3
Adversarial 153.9 195.0 105.1
Gaussian + Adversarial 195.0 195.0 195.0
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