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ABSTRACT

Biological data including gene expression data are generally high-dimensional
and require efficient, generalizable, and scalable machine-learning methods to dis-
cover their complex nonlinear patterns. The recent advances in machine learning
can be attributed to deep neural networks (DNNs), which excel in various tasks
in terms of computer vision and natural language processing. However, standard
DNNs are not appropriate for high-dimensional datasets generated in biology be-
cause they have many parameters, which in turn require many samples. In this
paper, we propose a DNN-based, nonlinear feature selection method, called the
feature selection network (FsNet), for high-dimensional and small number of sam-
ple data. Specifically, FsNet comprises a selection layer that selects features and
a reconstruction layer that stabilizes the training. Because a large number of pa-
rameters in the selection and reconstruction layers can easily result in overfitting
under a limited number of samples, we use two tiny networks to predict the large,
virtual weight matrices of the selection and reconstruction layers. Experimental
results on several real-world, high-dimensional biological datasets demonstrate
the efficacy of the proposed method.

1 INTRODUCTION

The recent advancements in measuring devices for life sciences have resulted in the generation
of large biological datasets, which are extremely important for many medical and biological ap-
plications, including disease diagnosis, biomarker discovery, drug development, and forensics (Li
& Chen, 2014). Generally, such datasets are substantially high-dimensional (i.e., many features
with small number of samples) and contain complex nonlinear patterns. Machine learning meth-
ods, including genome-wide association studies (d > 105, n < 104) and gene selection (d > 104,
n < 103) (Marx, 2013), have been successfully applied to discover the complex patterns hidden in
high-dimensional biological and medical data. However, most nonlinear models in particular deep
neural networks (DNN) are difficult to train under these conditions because of the significantly high
number of parameters. Hence, the following questions naturally arise: 1) are all the features neces-
sary for building effective prediction models? and 2) what modifications are required in the existing
machine-learning methods to efficiently process such high-dimensional data?

The answer to the first question is to select the most relevant features, thereby requiring an ap-
propriate feature selection method (Ye et al., 2019; Ming & Ding, 2019; Liao et al., 2019). This
problem, called feature selection, consists of identifying a smaller subset (i.e., smaller than the orig-
inal dataset) that contains relevant features such that the subset retains the predictive capability of
the data/model while eliminating the redundant or irrelevant features (Yamada et al., 2014; 2018a;
Climente-González et al., 2019). Most state-of-the-art feature selection methods are based on ei-
ther sparse-learning methods, including Lasso (Tibshirani, 1996), or kernel methods (Masaeli et al.,
2010; Yamada et al., 2018b; 2014). These shallow approaches satisfactorily work in practice for
biological data. However, sparse-learning models including Lasso are in general linear and hence
cannot capture high-dimensional biological data. Kernel-based methods can handle the nonlinearl-
ity, but it heavily depends on the choice of the kernel function. Thus, more flexibile approaches that
can train an arbitrary nonlinear transformation of features are desired.

An approach to learning such a nonlinear transformation could be based on deep autoencoders (Vin-
cent et al., 2010). However, deep autoencoders are useful for computer-vision and natural language
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processing tasks, wherein a large number of training samples are available. In contrast, for high-
dimensional biological data, the curse of dimensionality prevents us from training such deep models
without overfitting. Moreover, these models focus on building useful features rather than select-
ing features from data. The training of autoencoders for feature selection results in the discrete
combinatorial optimization problem, which is difficult to train in an end-to-end manner.

To train neural networks on high-dimensional data without resulting in overfitting, several ap-
proaches were proposed. Widely used ones are based on random projection and its variants (Dahl
et al., 2013; Wójcik & Kurdziel, 2019). However, their performances significantly depend on the
random projection matrix, and their usability is limited to dimensionality reduction only. There-
fore, they cannot be applied for feature selection. Another deep learning-based approach employs a
concrete autoencoder (CAE) (Balin et al., 2019), which uses concrete random variables (Maddison
et al., 2017) to select features without supervision. Although CAE is an unsupervised model with
poor performance, it can be extended to incorporate a supervised-learning setup. However, we ob-
served that this simple extension is not efficient because the large number of parameters in the first
layer of CAE can easily result in overfitting under a limited number of samples.

To address these issues, we propose a non-linear feature selection network, called FsNet, for high-
dimensional biological data. FsNet comprises a selection layer that uses concrete random vari-
ables (Maddison et al., 2017), which are the continuous variants of a one-hot vector, and a recon-
struction layer that stabilizes the training process. The concrete random variable allows the con-
version of the discrete optimization problem into a continuous one, enabling the backpropagation
of gradients using the reparameterization trick. During the training period, FsNet selects a few
features using its selection layer while maximizing the classification accuracy and minimizing the
reconstruction error. However, owing to the large number of parameters in the selection and re-
construction layers, overfitting can easily occur under a limited number of samples. Therefore, to
avoid overfitting, we propose using two tiny networks to predict the large, virtual weight matrices
of the selection and reconstruction layers. Consequently, the size of the model is significantly re-
duced and the network can scale high-dimensional datasets on a resource-limited device/machine.
Through experiments on various real-world datasets, we show that the proposed FsNet significantly
outperforms CAE and the supervised counterpart thereof.

Contributions: Our contributions through this paper are as follows.

• We propose FsNet, an end-to-end trainable neural network based nonlinear feature selec-
tion, for high-dimensional data with small number of samples.

• FsNet compares favorably with the state-of-the-art nonlinear feature selection methods for
high-dimensional data with small number of samples.

• The model size of FsNet is one to two orders magnitude smaller than that of a standard
DNN model, including CAE (Balin et al., 2019).

2 RELATED WORK

Here, we discuss the existing shallow/deep feature selection methods, along with their drawbacks.

Shallow, nonlinear feature selection: Maximum relevance is a simple but effective criterion of
nonlinear feature selection (Guyon & Elisseeff, 2003). It uses mutual information and the Hilbert-
Schmidt Independence Criterion (HSIC) to select the features associated with the outcome (Peng
et al., 2005; Song et al., 2007). It is also called sure independence screening in the statistics commu-
nity (Fan & Lv, 2008; Balasubramanian et al., 2013). However, because it tends to select redundant
features, minimum redundancy maximum relevance (mRMR) feature selection was proposed (Peng
et al., 2005). Notably, mRMR finds the subset of independent features that are maximally associ-
ated with the outcome by using mutual information between features and between each feature and
the outcome. Recently, a kernel-based, convex variant of mRMR was proposed, called HSIC Lasso
(Yamada et al., 2014; 2018a; Climente-González et al., 2019). They effectively perform nonlin-
ear feature selection on high-dimensional data, producing simple models with parameters that can
be easily estimated. However, their performances are limited by the simplicity of the models and
depends on the choice of kernels.
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DNNs for feature selection: DNNs are nonlinear, complex models that can address the aforemen-
tioned problems associated with kernel-based methods. They can be used for feature selection by
adding a regularization term to the loss function, or by measuring the effect of an input feature on the
target variable (Verikas & Bacauskiene, 2002). Elaborately, an extra feature scoring layer is added
to perform element-wise multiplication on the features and score, and then they are entered as inputs
into the rest of the network (Wang et al., 2014; Lu et al., 2018). However, DNNs do not select fea-
tures during the training period, thereby resulting in a performance reduction after feature selection.
Moreover, it is generally difficult to obtain a sparse solution using a stochastic gradient. CAE (Balin
et al., 2019) addresses this problem by training an autoencoder that contains a feature selection layer
with a concrete variable, which is a continuous relaxation of a one-hot vector. Recently, another
end-to-end, supervised, feature selection method based on stochastic gates (STGs) was proposed
(Yamada et al., 2020). It uses a continuously relaxed Bernoulli variable and performs better than the
existing feature selection methods. However, these methods need to train a large number of param-
eters in the first layer, resulting in overfitting to the training data. Therefore, these approaches may
not be appropriate for DNN models with high-dimensional data and a limited number of samples.

Training DNNs on high-dimensional data: The existing DNN-based methods can easily overfit
to the high-dimensional biological data, as they suffer from the curse-of-dimensionality irrespective
of regularization constraints. The biggest drawback of DNNs is that they need to have a large
number of parameters in the first layers of the decoder and encoder. HashedNets (Chen et al.,
2015) addressed this issue by exploiting the inherent redundancy in weights to group them into
relatively fewer hash buckets and shared them with all its connections. However, the hash function
groups the weights on the basis of their initial values instead of opting for a dynamic grouping,
thereby reducing the options to arbitrarily learn weights. Diet Networks (Romero et al., 2017) used
tiny networks to predict weight matrices. However, they are limited to the multilayer perceptron
only for classification and not for feature selection. A DNN model, referred to as deep neural
pursuit (DNP) (Liu et al., 2017), selects features from high-dimensional data with a small number
of samples. It is based on changes in the average gradients with multiple dropouts by an individual
feature. However, (Liu et al., 2017) reported that the performance of DNP significantly depends on
the number of layers.

These issues render the existing approaches inefficient for processing biological data, thereby raising
the need to develop a method for efficiently extracting features from biological data.

3 PROBLEM FORMULATION

Let X = (x1, · · · ,xn)> = (u1, · · · ,ud) ∈ Rn×d be the given data matrix, where x ∈ Rd
represents the sample vector with d number of features and u ∈ Rn the feature vector with n
number of samples. Let y = (y1, · · · , yn)> ∈ Rn be the target vector such that yi ∈ Y represents
the output for xi, where Y denotes the domain of the output vector y, which is continuous for
regression problems and categorical for classification problems. In this paper, we assume that the
number of samples is significantly fewer than that of the dimensions (i.e., n� d).

The final goal of this paper is to train a neural-network classifier f(·) : Rd → Y , which simultane-
ously identifies a subset S ⊆ F = {1, 2 · · · d} of features of a specified size |S| = K � d, where
the subset can reproduce the remaining F\S features with minimal loss.

4 PROPOSED METHOD: FSNET

We here present the architecture and training of the proposed FsNet model for selecting nonlinear
features from high-dimensional data.

4.1 FSNET MODEL

We aim to build an end-to-end, trainable, compact, feature selection model. Hence, we employ a
concrete random variable (Maddison et al., 2017) to select features, and we also use the weight-
predictor models used in Diet Networks to reduce the model size (Romero et al., 2017). We build
FsNet, a simple but effective model (see Figure 1). As shown in Figure 1(A), although the selec-
tion and reconstruction layers have many connections, they are virtual layers whose weights are
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Figure 1: (A) Architecture of FsNet. (B) and (C) are the weight-predictor networks for the selection
and reconstruction layers, respectively.

predicted from significantly small networks, as shown in Figures 1(B) & (C), respectively. The
weight-predictor networks (B) and (C) are trained on the feature embeddings.

The optimization problem of FsNet is given by

min
Θ

n∑
i=1

Loss(yi, fθc(ENCθe(x
S
i ))) + λ

n∑
i=1

‖xi − RECθr (DECθd(ENCθe(x
S
i )))‖22, (1)

where Loss(y, fθc) denotes the categorical cross-entropy loss (between y and fθc ), ‖ · ‖2 the `2
norm, λ ≥ 0 the regularization parameter for the reconstruction loss, Θ all the parameters in the
model, SEL(·) the selection layer, xSi = SEL(xi), ENC(·) the encoder network, DEC(·) the decoder
network, and REC(·) the reconstruction layer. The pseudocode for the training of FsNet is provided
in Algorithm 2 in the appendix.

Selection Layer (Train): We first describe the selection layer, which is used to select important
features in an end-to-end manner. The feature selection problem is generally a combinatorial prob-
lem, but it is difficult to train in an end-to-end manner because it breaks the propagation of the
gradients. To overcome this obstacle, a concrete random variable (Maddison et al., 2017), which is
a continuous relaxation of a discrete one-hot vector, can be used for the training, as it computes the
gradients using the reparameterization trick. Specifically, selecting the k-th feature of the input x
can be expressed as x(k) = e>k x, where ek ∈ Rd denotes the one-hot vector whose k-th feature is
1 and 0 otherwise. The concrete variables for the kth neuron in the selection layer are defined as
follows:

µ(k) =
exp ((log δ

(k)
s + g)/τ)∑d

j=1 exp ((log δ
(k)
sj + gj)/τ)

, k = 1, 2, . . . ,K, (2)

where g ∈ Rd is drawn from the Gumbel distribution. Additionally, τ denotes the temperature that
controls the extent of the relaxation,K the number of selected features, and ∆s = (δs,1, . . . , δs,d) =

(δ
(1)
s , . . . , δ

(K)
s )> ∈ RK×d, δ(k)s ∈ RK>0 is the model parameter for concrete variables. Notably,

µ(k) becomes a one-hot vector when τ → 0.

Using the concrete variables M = (µ(1),µ(2), . . . ,µ(K))>, the feature selection process can be
simply written by using matrix multiplications as follows:

SEL(x) =Mx.

Because the feature selection process can be written by using matrix multiplications, it can be trained
in an end-to-end manner. However, the number of parameters in the selection layer is O(dK); it
depends on the size of the input layer d and the number of neurons in the selection layer K. Thus,
for high-dimensional data, the number of model parameters can be high, resulting in overfitting un-
der a limited number of samples n. We address both the issues by using a tiny weight-predictor
network ϕωs(·) : Rb → RK>0 to predict the weights δs,j = ϕωs(φ(uj)) (see Figure 1(B)), where
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φ(uj) ∈ Rb is the embedding representation of feature j and b ≤ n the size of the embedding rep-
resentation. Specifically, the feature embedding φ(uj) for the jth feature vector used for training
the weight-predictor networks is defined as φ(uj) = ρj � νj , where � denotes elementwise multi-
plication, whereas ρj and νj denote the frequencies and means of the histogram bins of feature uj ,
respectively. In this paper, we use δs,j = softmax(Wωs

φ(uj)), where Wωs
∈ RK×b is the model

parameter for the tiny network. Over epochs, µ(k) will converge to a one-hot vector. Notably, the
model parameter ∆ ∈ RK×d depends on the input dimension d. However because the model size
of the weight-predictor network depends on b � d, we can significantly reduce the network model
size using the predictor network. Moreover, the tiny weight-predictor network can also be trained in
an end-to-end manner.

Algorithm 1 Unique argmax function uargmax

Input: matrixA ∈ Rd×K+ , with d rows and K cols
Output: selected indices S

1: S ← {}
2: for i = 0−K do
3: (x, y)← index of max value inA
4: S ← S ∪ x
5: A.row(x)← 0
6: A.col(y)← 0
7: end for

Selection Layer (Inference): For infer-
ence, we can replace the concrete vari-
ables with a set of feature indices. Con-
sequently, the inference becomes faster
than before, as we need not compute
tiny networks. However, if we sim-
ply use the argmax function, it tends
to select redundant features, and thus
the prediction performance can be de-
graded. Therefore, we propose the
unique argmax function to select non-
redundant features and then use the non-
redundant feature set for inference. The K best and unique features are selected from the estimated
M as S = uargmax(M>). Subsequently, for inference, we use xS ∈ RK as an input of the
encoder network. Although this is a heuristic approach, it works satisfactorily in practice.

Encoder Network: The goal of the encoder network ENCθe(·) : RK → Rh is to obtain a low-
dimensional hidden representation h ∈ Rh from the output of the selection layer xS . The encoder
network is expressed as follows:

ENCθe(x
S) = σ(W

(e)
Le
σ(· · ·W (e)

2 σ(W
(e)
1 xS) · · · ), (3)

where xS = SEL(x) denotes the output of the selection layer, θe = {W (e)
` }

Le

`=1 the weight matrix,
Le the number of layers in the encoder network, and σ(·) an activation function.

Classifier Network: The classifier network fθc(·) : Rh → Y predicts the final output from the
hidden representation h = ENCθe(x

S) as follows:

fθc(h) = softmax(W (y)
Ly
σ(· · ·W (y)

2 σ(W
(y)
1 h) · · · ), (4)

where θc = {W (y)
` }

Ly

`=1, and Ly denotes the number of layers in the classifier network.

Decoder Network: Generally, a decoder function is employed to reconstruct the original output.
However, in this paper, the decoder function DECθd(·) : Rh → Rh′

computes another hidden
representation h̃ ∈ Rh′

and defines the last reconstruction layer separately. The decoder function is
defined as follows:

DECθd(h) = σ(W
(d)
Ld
σ(· · ·W (d)

2 σ(W
(d)
1 h) · · · ). (5)

where h = ENCθe(x
S), θd = {W (d)

` }
Ld

`=1, and Ld denotes the number of layers in the decoder
network.

Reconstruction Layer: To reconstruct the original high-dimensional feature x, it must haveO(dh′)
parameters and depend on the dimension d. Thus, in a manner similar to the selection layer, we use
a tiny network to predict the model parameters. The reconstruction layer is expressed as follows:

RECθr (h̃) =W
(r)h̃, (6)

where h̃ = DECθd(h), θr = W (r) ∈ Rd×h′
, and [W (r)>]j = ϕωr

(φ(uj)) denotes the vir-
tual weights of the jth row in the reconstruction layer. The tiny network ϕωr

(·) : Rb → Rh′

is trained on φ(uj) ∈ Rb to predict the weights that connect the jth row of the reconstruc-
tion layer to all the h′ neurons of the last layer of the decoder network. In this paper, we use
[W (r)>]j = tanh(Wωr

φ(uj)), whereWωr
∈ Rh′×b is the model parameter for the tiny network.
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Figure 2: Comparison among FsNet, supervised CAE, and Diet Network for mean training and
testing accuracies over the epochs. For the neural-network-based approaches, we set the model
parameters to b = 10 and K = 10. (See all the experimental results in Figure 5).
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Figure 3: Comparison among the proposed FsNet and existing supervised CAE approaches in terms
of the mean test reconstruction error over the epochs. (See the appendix for all the data results).

5 EMPIRICAL EVALUATION

Here, we compare FsNet with several baselines using benchmark and the real metagenome dataset.

5.1 SETUP

We compared FsNet with CAE (Balin et al., 2019), which is a unsupervised, neural-network-based,
feature selection method, Diet Networks (Romero et al., 2017), HSIC Lasso (Yamada et al., 2014;
2018a; Climente-González et al., 2019), and mRMR (Peng et al., 2005). Notably, CAE and HSIC
Lasso are state-of-the-art, nonlinear feature selection methods, which are deep and shallow, respec-
tively. FsNet and CAE (Balin et al., 2019) were run on a Linux server with an Intel Xeon CPU
Xeon(R) CPU E5-2690 v4 @ 2.60 GHz processor, 256 GB RAM, and NVIDIA P100 graphics card.
HSIC Lasso (Yamada et al., 2014) and mRMR (Peng et al., 2005) were executed on a Linux server
with an Intel Xeon CPU E7-8890 v4 2.20 GHz processor and 2 TB RAM.

For FsNet and CAE, we conducted experiments on all the datasets using a fixed architecture, defined
as [d→ K → 64→ 32→ 16(→ |Y|)→ 32→ 64→ d], where d and |Y| are data dependent, and
K ∈ {10, 50}. Each hidden layer uses the leakyReLU activation function and dropout regularization
with a dropout rate of 0.2. We implemented FsNet in keras and used the RMSprop optimizer for all
the experiments. For the regularization parameter λ, we used λ = 1 for all the experiments. We
performed the experiments with 4000 epochs at a learning rate of η = 10−3, initial temperature
τ0 = 10, and end temperature τE = 0.01 in the annealing schedule for all the experiments.

5.2 BENCHMARK DATASET

We used six high-dimensional datasets from biological classification problems1. Table 4 in the
appendix lists the relevant details of these datasets. The performance was evaluated on the basis
of four parameters: classification accuracy, reconstruction error, mutual information between the
selected features, and model size. Because neither HSIC Lasso nor mRMR could directly classify
the samples, we used a support vector machine (SVM) (with a radial basis function) trained on
the selected features. As CAE is an unsupervised method, we added a softmax layer to its loss
function to ensure a fair comparison; the resulting model is henceforth referred to as supervised

1Publicly available at http://featureselection.asu.edu/datasets.php
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Table 1: Comparison of the mean testing accuracy among FsNet, supervised CAE, HSIC Lasso
(HSIC), and mRMR with K = 10 and K = 50. Moreover, we report SVM and Diet Networks. ∗
The pyMRMR package, which is a wrapper of the original code, returns a memory error, and we
could not execute the models on these datasets.

K = 10 K = 50 All features
Dataset FsNet CAE HSIC mRMR FsNet CAE HSIC mRMR SVM Diet-net
ALLAML 0.911 0.833 0.899 0.848 0.922 0.936 0.917 0.919 0.819 0.811
CLL SUB 0.640 0.575 0.604 N/A∗ 0.582 0.556 0.680 N/A∗ 0.569 0.564
GLI 85 0.874 0.884 0.831 N/A∗ 0.795 0.822 0.829 N/A∗ 0.759 0.842
GLIOMA 0.624 0.584 0.595 0.564 0.624 0.604 0.672 0.693 0.628 0.712
Prostate GE 0.871 0.835 0.924 0.871 0.878 0.884 0.926 0.933 0.846 0.753
SMK CAN 0.695 0.680 0.660 0.620 0.641 0.667 0.684 0.668 0.699 0.665

CAE. Because RMSprop is a stochastic optimizer, all the results reported are the means of 20 runs
on random splits of the datasets.

Classification accuracy: Figure 2 compares the training and testing behaviors of FsNet and super-
vised CAE for embedding size b = 10 and number of selected features K = 10. The results across
the datasets show that FsNet can learn better than supervised CAE owing to its reduced number
of parameters. The classification performance of FsNet for 10 selected features is comparable or
superior to that of the SVM and Diet Networks for all the features across all the datasets. Similarly,
the comparable performances of the proposed FsNet for 10 selected features and Diet-Network with
all the features across the datasets illustrate that using a concrete random variable for the continuous
relaxation of the discrete feature selection objective does not significantly change the objective func-
tion. Additionally, the correlation between the testing and training accuracies of FsNet demonstrates
its generalization capability in comparison to supervised CAE, which seems to be overfitted under
such high-dimensional data with a limited number of samples.

Table 1 presents the testing accuracies of the feature selection methods for various numbers of fea-
tures selected on the six datasets. The experiments show that FsNet performs consistently better
than supervised CAE, HSIC Lasso, mRMR, and Diet Networks for K = 10. However, the perfor-
mance of neural-network-based models deteriorates when the number of features K increases. This
is because as the number of parameters increases, the training of the model becomes increasingly
difficult. Overall, FsNet tends to outperform the baselines even when the number of selected features
is small (K = 10), and this is a satisfactory property of FsNet.

The selected features are highly predictive of the target variable. However, they represent the rest
of the features in the dataset, as can be seen from the reconstruction error introduced in produc-
ing the original features from selected features (see Figure 3). FsNet achieves a more competitive
reconstruction error than supervised CAE and Diet Network on all the datasets.

Table 2: Model-size comparison between supervised
CAE and FsNet 2 (in KBs) at K = 10. Because FsNet
predicts the model parameter by using a fixed-sized neu-
ral network, its model size is the same for all the datasets.

Dataset FsNet CAE Compression ratio
ALLAML 108 4280 39.6
CLL SUB 108 6748 62.5
GLI 85 108 13160 121.9
GLIOMA 108 2704 25.0
Prostate GE 108 3600 33.3
SMK CAN 108 11820 109.4

Model-size comparison: The number of
parameters in the selection layer of super-
vised CAE isO(dK), whereas in FsNet, the
weight-predictor network of the selection
layer has O(bK) parameters. Similarly, the
number of parameters in the reconstruction
layer of supervised CAE isO(dh′), whereas
in FsNet, the weight-predictor network of
the reconstruction layer has O(bh′) param-
eters. The model compression ratio (CR)
for FsNet with respect to supervised CAE is
CR = |θs|+|θr|+s

|ωs|+|ωr|+s = dh+h′d+s
bh+h′b+s = O

(
d
b

)
,

where s = |θe|+ |θ|+ |θd| denotes the number of parameters in the rest of the network. Thus, FsNet
has ≈ d

b times fewer parameters than supervised CAE.

Table 2 lists the model sizes2 in kilobytes (KBs) for FsNet and supervised CAE. The results show
that FsNet can significantly reduce its model size according to the number of selected features (K)
and size of the feature embedding (b). FsNet compresses the model size by 25–122 folds in com-

2Model size figures are the size of the keras model on the disk.
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parison to supervised CAE. This reduction in the model size of FsNet is due to the use of tiny
weight-predictor networks in the fat selection and reconstruction layers.
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Figure 4: Comparison in terms of the average mutual informa-
tion between the features selected by CAE and FsNet, respec-
tively. The lower, the better.

Minimum redundancy: The min-
imum redundancy criterion is im-
portant to measure the usefulness of
the selected features. According to
this criterion, the selected features
should have minimum dependencies
between themselves. We used the
average mutual information between
all the pairs of the selected features
to compare the validity of the fea-
tures selected by FsNet and CAE,
respectively. The average mutual
information is defined as follows:
Î(S) = 2

K(K−1)
∑
i,j∈S,j>i I(Xi, Xj), where I(Xi, Xj) denotes the mutual information between

features i and j in the selected set S.

As shown in Figure 4, compared with CAE, the average mutual information between the features se-
lected by FsNet is significantly lower on all the datasets. This shows that compared with CAE, FsNet
more effectively selects the features with minimum redundancy owing to the use of unique argmax
functions in the selection layer.

5.3 APPLICATION TO INFLAMMATORY BOWEL DISEASE

Table 3: Classification accuracy of different methods on
the metagenome dataset on inflammatory bowel disease.

Accuracy
Method K = 10 K = 50
FsNet 0.999 ± 0.002 0.994 ± 0.016
CAE 0.999 ± 0.002 0.983 ± 0.033
HSIC Lasso (B=10) 0.945 ± 0.003 0.962 ± 0.002
HSIC Lasso (B=20) 0.939 ± 0.004 0.959 ± 0.003
mRMR 0.941 ± 0.004 0.955 ± 0.003
SVM 0.914 ± 0.003
Diet-networks 0.999 ± 0.002

We studied a metagenome dataset
(Lloyd-Price et al., 2019), which con-
tains information regarding the gut bac-
teria of 359 healthy individuals and 958
patients with inflammatory bowel dis-
ease. Specifically, 7 547 features are
KEGG orthology accession numbers,
which represent molecular functions to
which reads from the guts of samples
guts are mapped. We included three ad-
ditional features: age, sex, and race.

We selected 10 or 50 features on this
dataset using FsNet, CAE, HSIC Lasso, STG, and mRMR. For HSIC Lasso, as the number of
samples was high, we employed the block HSIC Lasso (Climente-González et al., 2019), where B
denotes the tuning parameter of the block HSIC Lasso, and B = n is equivalent to the standard
HSIC Lasso (Yamada et al., 2014). The DNN based apporaches outperformed shallow methods.
FsNet and CAE could achieve perfect prediction accuracy with only 10 features. Moreover, the
compression ratio between FsNet and CAE is 21.41, and thus we conclude that FsNet can obtain
preferable performance with much less number of parameters for high-dimensional data. This result
indicates that DNN based methods can replace kernel methods even for high-dimensional data.

6 CONCLUSIONS

We proposed FsNet, which is an end-to-end trainable, deep learning-based, feature selection method
for high-dimensional data with a small number of samples. FsNet can select unique features by us-
ing a concrete random variable. Using weight-predictor functions and a reconstruction loss, it not
only required few parameters but also stabilized the model and made it appropriate for training
with a limited number of samples. The experiments on several high-dimensional biological datasets
demonstrated the robustness and superiority of FsNet for feature selection in the chosen settings.
Moreover, we evaluated the proposed FsNet on a real-life metagenome dataset, and FsNet outper-
formed the existing shallow models.
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APPENDIX

Algorithm 2 Training of FsNet
Input: data matrixX ∈ Rn×d, output labels y ∈ {1, · · · , L}),K target number of features, encoder
network ENCθe(·), decoder network DECθd(·), reconstruction function RECθr (·), classification
network fθc(·), weight prediction networks ϕωs

(·) & ϕωs
(·), learning rate η, start temperature τ0,

end temperature τE , and number of epochs E
Output: set of selected features S, model parameters Θ

1: Initialize Θ = {ωs,θe,θd,ωr,θc}.
2: for e ∈ {1, · · · , E} do
3: Update the temperature τ = τ0(τE/τ0)

e/E

4: (δs,1, · · · δs,d)← (ϕωs
(φ(u1)) · · ·ϕωs

(φ(ud)))

5: µ(k) ← Concrete(θ(k)s , τ) using (2)
6: M ← (µ(1), · · · ,µ(K))>

7: S ← uargmax(M>)

8: h←
{

ENCθe(Mxi) if training,
ENCθe(x

S) inference
9: ŷ ← fθ(h)

10: h̃← DECθd(h)
11: (θ

(1)
r , · · ·θ(d)r )← (ϕωr

(φ(u1)) · · ·ϕωr
(φ(ud)))

12: x̂← RECθr (h̃)
13: Define the loss L.
14: Compute∇ωr

L,∇θL,∇θdL, and ∇θeL using backpropagation.
15: Compute∇

ω
(k)
s
L using reparameterization trick

16: Update ωr ← ωr − η∇ωr
L, θ ← θ − η∇θL,

θd ← θd − η∇θdL, θe ← θe − η∇θeL, and
ω

(k)
r ← ω

(k)
r − η∇ω(k)

r
L

17: end for
18: return S,Θ

Table 4: Details of Datasets used in this paper
Dataset Classes Sample Size (n) Dimensions (d)
ALLAML 2 72 7,129
CLL SUB 3 111 11,340
GLI 85 2 85 22,283
GLIOMA 4 50 4,434
Prostate GE 2 102 5,966
SMK CAN 2 187 19,993
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Figure 5: Comparison among FsNet, supervised CAE, and Diet Network in terms of mean training
and testing accuracies over the epochs. For the neural-network-based approaches, we set the model
parameters to b = 10 and K = 10.

0 1000 2000 3000 4000

Number of Epoches

0.9

0.92

0.94

0.96

0.98

1

1.02

M
e

a
n

 R
e

c
o

n
. 

E
rr

o
r

TestCAE (Supervised) FsNet DIET_Network

0 1000 2000 3000 4000

Number of Epoches

0.8

0.9

1

1.1

M
e
a
n

 R
e
c
o

n
. 
E

rr
o

r

Test

0 1000 2000 3000 4000

Number of Epoches

0.9

0.95

1

1.05

M
e

a
n

 R
e

c
o

n
. 

E
rr

o
r

Test

(A) ALLAML (B) CLL SUB (C) GLI 85

0 1000 2000 3000 4000

Number of Epoches

0.6

0.7

0.8

0.9

M
e
a
n

 R
e
c
o

n
. 
E

rr
o

r

Test

0 1000 2000 3000 4000

Number of Epoches

0.5

0.6

0.7

0.8

0.9

M
e
a
n

 R
e
c
o

n
. 
E

rr
o

r

Test

0 1000 2000 3000 4000

Number of Epoches

0.6

0.7

0.8

0.9

1

1.1

1.2

M
e

a
n

 R
e

c
o

n
. 

E
rr

o
r

Test

(D) GLIOMA (E) Prostate GE SMK CAN

Figure 6: Comparison between the proposed FsNet and existing supervised CAE approaches in
terms of the mean test reconstruction error over the epochs.
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Figure 7: Comparison between the proposed FsNet and supervised CAE and Diet Network in terms
of the mean test classification accuracy over the epochs on metagenome dataset. The performance
of the FsNet and Diet Network is more stable than the supervised CAE.
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