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Abstract

Large Language Models have demonstrated re-001
markable capabilities in natural language pro-002
cessing tasks requiring multi-step logical rea-003
soning capabilities, such as automated theorem004
proving. However, challenges persist within005
automated theorem proving such as the iden-006
tification of key mathematical concepts, un-007
derstanding their interrelationships, and for-008
malizing proofs within a rigorous framework.009
We present a novel framework that leverages010
knowledge graphs to augment LLMs to con-011
struct and formalize mathematical proofs. Fur-012
thermore, we study the effects of scaling test-013
time compute within our framework. Our re-014
sults demonstrate significant performance im-015
provements across multiple datasets, with using016
knowledge graphs, achieving up to a 34% suc-017
cess rate on the MUSTARDSAUCE dataset on018
o1-mini and consistently outperforming base-019
line approaches by 2-11% across different mod-020
els. We show how this approach bridges the021
gap between natural language understanding022
and formal logic proof systems and achieves el-023
evated results for foundation models over base-024
line.025

1 Introduction026

The advent of Large Language Models has revo-027

lutionized natural language processing, enabling028

machines to perform complex reasoning tasks us-029

ing Transformer models (Vaswani et al., 2023;030

Peters et al., 2018; Brown et al., 2020; Srivas-031

tava et al., 2023). Transformer-based models have032

shown promise in mathematical problem-solving,033

which inherently requires multi-step logical infer-034

ence and a precise understanding of abstract con-035

cepts (Robinson and Voronkov, 2001; Guo et al.,036

2025). Despite these advancements, significant037

challenges remain in automating the identification038

of mathematical concepts, understanding their in-039

terrelations, and formalizing proofs within a math-040

ematical framework (Hendrycks et al., 2021).041

Work by (Polu and Sutskever, 2020) introduced 042

training language models to generate proofs in for- 043

mal languages and use such models to address a 044

key limitation in automated theorem provers: the 045

generation of original mathematical terms. They in- 046

troduced GPT-f, a proof assistant for the Metamath 047

formalization language, which successfully gener- 048

ated new proofs accepted by the Metamath com- 049

munity—marking a first in deep learning contribu- 050

tions to formal mathematics. By iteratively training 051

a value function on model-generated statements, 052

they achieved a result of 56.22% of proofs on a 053

test set, significantly surpassing previous bench- 054

marks. This suggests that transformer architectures 055

hold promise for advancing reasoning capabilities 056

in neural networks. 057

Recent advances in AI-driven mathematics have 058

targeted the integration of neurosymbolic architec- 059

tures with formal verification frameworks. Sys- 060

tems such as DeepMath and HOList (built atop 061

the HOL Light proof assistant) employ Monte 062

Carlo Tree Search (MCTS) guided by graph neu- 063

ral networks to prune combinatorial proof spaces 064

(Bansal et al., 2019). These frameworks combine 065

AlphaZero-style self-play reinforcement learning 066

with deductive backward-chaining, enabling heuris- 067

tic exploration of lemma sequences in interactive 068

theorem provers. While such systems prioritize 069

search-space reduction, they underscore the viabil- 070

ity of hybrid machine learning for formal reasoning 071

tasks. 072

Nonetheless, existing methodologies often lack 073

a comprehensive approach to extracting and struc- 074

turing mathematical content based on the current 075

task objective during inference time. 076

Our paper introduces a novel framework for au- 077

tomating mathematical proof generation by inte- 078

grating Large Language Models (LLMs) with a 079

knowledge graph derived from ProofWiki. The 080

approach employs retrieval-augmented generation 081

and a two-agent system for proof formalization, 082
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comprising search strategy implementation, proof083

generation, and proof formalization, as illustrated084

in Figure 1. The process begins with context re-085

trieval, using semantic search to extract relevant086

information from the knowledge graph. An LLM087

generates an informal proof, which is then trans-088

formed into a formal proof by an Autoformalizer089

and verified using Lean (de Moura and Ullrich,090

2021), with iterative refinement applied if verifica-091

tion fails.092

To enhance robustness, the framework incor-093

porates techniques such as "Best of N" selection,094

beam search, tree search, and multiple retries. By095

generating multiple candidate proofs, the system096

evaluates each for mathematical correctness and097

clarity, selecting the optimal solution for formal098

conversion. Beam and tree search methodologies099

explore various proof paths, while iterative retries100

refine proofs based on verification feedback. These101

strategies collectively ensure the generation of high-102

quality, formally verified proofs.103

In this paper, we:104

• Build a knowledge graph of over 60,000 nodes105

and 300,000 edges that represents mathemati-106

cal concepts and their interrelations, facilitat-107

ing traversal to alike subjects. achieving a 7-108

10% absolute gain over baseline approaches.109

• Utilize inference-based feedback-like ap-110

proaches granting additional traversals for fail-111

ure correction, allowing our knowledge graph112

method to consistently outperform the base-113

line.114

• Introduce an iterative refinement system based115

on a Heuristic evaluation by a model judge116

and beam search for further revisions. Improv-117

ing performance by over 26.4% over baseline118

and 21.8% over the default Knowledge Graph119

in certain scenarios.120

• Introduce a series of hyperparameters that we121

scale and test on a variety of scenarios.122

Our work aims to bridge the gap between natu-123

ral language understanding and formal logic. We124

provide a detailed methodology, evaluate the effec-125

tiveness of our framework, and discuss its scalabil-126

ity and potential impact on the field of automated127

theorem proving1.128

1Our code can be accessed on GitHub via
[ANONYMIZED FOR REVIEW]

2 Related Work 129

Recent advancements in theorem proving have in- 130

creasingly focused on integrating structured knowl- 131

edge with LLMs. Notably, DeepSeek-Prover-V1.5 132

(Xin et al., 2024) represents a breakthrough by com- 133

bining reinforcement learning from proof assistant 134

feedback (RLPAF) with Monte-Carlo tree search 135

(RMaxTS). The model, pre-trained on formal math- 136

ematical languages like Lean 4, achieves state-of- 137

the-art results on miniF2F (63.5%) and ProofNet 138

(25.3%). It does so by dynamically exploring di- 139

verse proof paths through intrinsic-reward-driven 140

search. This builds on earlier work such as Le- 141

anDojo (Yang et al., 2023), which developed Re- 142

Prover, an LLM-based prover enhanced with re- 143

trieval capabilities to efficiently select premises 144

from extensive math libraries. Similarly, Hyper- 145

Tree Proof Search (Polu and Sutskever, 2020) 146

demonstrated that structured search algorithms 147

could enhance proof generation in formal systems 148

like Metamath. 149

Additionally, (Hübotter et al., 2024) propose a 150

"compute-optimal" strategy that dynamically ad- 151

justs resources based on task difficulty: iterative 152

revisions for simpler problems and parallel sam- 153

pling/tree search for complex ones. This approach 154

achieves 4x efficiency gains over traditional best- 155

of-N sampling and allows smaller models to out- 156

perform 14x larger counterparts in FLOPs-matched 157

evaluations. The strategy is broadly applicable in 158

various complex reasoning domains, including au- 159

tomated theory proving, where leveraging best-of- 160

N or beam search sampling can further bolster per- 161

formance and solution discovery. 162

In improving feedback mechanisms, DeepSeek- 163

Prover-V1.5 (Xin et al., 2024) employs RLPAF to 164

refine proofs using Lean’s error messages, achiev- 165

ing a 13.5% absolute gain over its predecessor. Sim- 166

ilarly, STP (Dong and Ma, 2025) uses self-play 167

between conjecturer and prover agents, while For- 168

mal Theorem Proving by Hierarchical Decomposi- 169

tion (Dong et al., 2024) rewards lemma decomposi- 170

tion via reinforcement learning. Finally, the MUS- 171

TARD project (Johnson et al., 2020) used an itera- 172

tive approach where the LLM generates a problem, 173

constructs an informal proof, converts it into Lean 174

(de Moura et al., 2015) format, and verifies the 175

proof with a Lean interpreter. MUSTARD frame- 176

work (Mathematics Understanding through Seman- 177

tic Theory and Reasoning Development) addresses 178

mathematical language grounding via structured se- 179
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Figure 1: Whereas many modern proof systems focus on training time improvements, we integrate Node retrieval
based on an interconnected knowledge graph into our proof system at inference time. Before generating a proof, we
inject the most similar nodes into the context, then verify the proof using Lean. If the verification is unsuccessful,
we grant the model the chance to traverse the graph deeper where the knowledge graph allows it to explore other
related concepts and theorems, on multiple attempts.

mantic parsing (Johnson et al., 2020). MUSTARD180

operates in three stages: sampling mathematical181

concepts, using generative models to create prob-182

lems and solutions, and employing proof assistants183

to validate these solutions. This process results184

in the MUSTARDSAUCE benchmark, compris-185

ing 5,866 validated data points with informal and186

formal proofs. Our analysis demonstrates MUS-187

TARD’s ability to produce high-quality, diverse188

data, enhancing the performance of smaller mod-189

els like Llama 2-7B, which showed significant im-190

provements in theorem proving and math problem-191

solving tasks. This work highlights the potential of192

combining LLMs with formal theorem provers to193

advance mathematical reasoning capabilities.194

Graph-based retrieval-augmented generation195

(RAG) techniques have also received growing196

attention for their ability to leverage structured197

relationships to enhance downstream tasks such198

as question answering and formal proof search.199

For instance, GraphRetriever combines a graph-200

structured knowledge base with question embed-201

dings to systematically identify salient nodes for202

more focused generative reasoning, outperform-203

ing text-only retrieval systems in factual QA tasks204

(Wang et al., 2022). Similarly, QAGNN intro-205

duces a graph neural network that encodes question-206

relevant knowledge subgraphs, thereby enabling 207

more interpretable and accurate reasoning within 208

language model generation (Verma et al., 2023). 209

Beyond question answering, hybrid systems like 210

GraFormer exploit graph-based encoders to refine 211

contextual embeddings retrieved from large cor- 212

pora, demonstrating improved performance in spe- 213

cialized domains such as biomedical discovery 214

(Zhao et al., 2021). Collectively, these works under- 215

score the potential of integrating knowledge graphs 216

with LLMs for complex reasoning tasks, where 217

explicit graph structures support more effective re- 218

trieval, iterative refinement, and formal protocol 219

adherence. 220

Our model builds upon these advancements by 221

uniquely integrating a knowledge graph derived 222

from ProofWiki with large language models to au- 223

tomate mathematical proof generation. By com- 224

bining retrieval-augmented generation with a two- 225

agent system for proof formalization, our approach 226

aligns with the principles seen in DeepSeek-Prover- 227

V1.5 and LeanDojo, leveraging structured knowl- 228

edge to enhance proof search efficiency and accu- 229

racy. Additionally, our use of graph-based RAG 230

techniques parallels the efforts of GraphRetriever 231

and QAGNN, enabling more focused and inter- 232

pretable reasoning. The iterative refinement and 233
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formal verification processes in our system echo234

the dynamic resource allocation strategies proposed235

by (Hübotter et al., 2024), further optimizing com-236

putational efficiency. Collectively, these elements237

position our framework as a robust solution for238

advancing automated theorem proving, demonstrat-239

ing the synergistic potential of integrating LLMs240

with structured knowledge representations.241

3 Methodology242

Our framework automates mathematical proof gen-243

eration by integrating Large Language Models with244

a knowledge graph constructed from ProofWiki.245

We employ a multi-stage approach combining246

retrieval-augmented generation with a two-agent247

system for proof formalization. The system con-248

sists of three main components: search strategy249

implementation, proof generation, and proof for-250

malization. Figure 1 illustrates the overall work-251

flow.252

3.1 Knowledge Graph workflow253

Our knowledge graph component integrates as fol-254

lows, given a mathematical problem input:255

1. Context Retrieval: Semantic search retrieves256

relevant context from the knowledge graph.257

2. Informal Proof Generation: The LLM gen-258

erates an informal proof using the context.259

3. Formal Proof Generation: The Autoformal-260

izer converts the informal proof into a formal261

proof.262

4. Verification: The formal proof is verified us-263

ing a proof verifier (e.g Lean)264

5. Iterative Refinement: If verification fails, we265

retrieve another node, and the process is iter-266

ated to improve the proof.267

3.2 Knowledge Graph Components268

3.2.1 Retrieval269

Let G = (V,E) be a knowledge graph, where270

V represents all nodes as mathematical theorems271

and E represents (edges) between them. Given a272

proposition P , we use the below-signified similar-273

ity function that assigns a relevance score to each274

node based on its similarity to P .275

Here we opt for cosine similarity by generating276

an embedding vector vP for P and comparing the277

problem embedding to the embeddings viV of the 278

nodes in the knowledge graph : 279

S = sim(vP , vi) =
vP · vi

∥vP ∥∥vi∥
280

• vP and vi signify the given embedding vectors 281

• ∥vn∥ represents the Euclidean norm 282

If P can not be solved in the first iteration, we 283

introduce a depth parameter d that can be incre- 284

mented up to an allowed depth D. We iteratively 285

expand the context by selecting up to k additional 286

nodes that are related concepts of previously se- 287

lected nodes. 288

k1, k2, ki = arg max
Vd−1∈V

S(Vd, Vd−1) 289

Here we select all Nodes of the current depth, that 290

have Edges to Nodes of the previous depth and the 291

lowest distance to E and therefore have the highest 292

similarity scores. 293

This expansion continues until either: 294

• P is resolved by the language model. 295

• The maximum depth D is reached and the 296

amount of regenerating tries is expended. 297

3.2.2 Graph database 298

We parsed ProofWiki to extract mathematical defi- 299

nitions, theorems, proofs, and related content, fo- 300

cusing on name-spaces corresponding to defini- 301

tions, axioms, and proofs2 (ProofWiki, 2025). We 302

use Neo4j, as a graph database, to store and man- 303

age the nodes and relationships, forming our knowl- 304

edge graph (Webber, 2012). Nodes are created with 305

their respective properties, and relationships are es- 306

tablished based on internal links within the content, 307

capturing the interdependencies among concepts. 308

We store the nodes in Neo4j alongside with their 309

embedding vectors, enabling queries based on se- 310

mantic similarity. Relationships between nodes 311

were established3. 312

3.3 Proof Generation Steps 313

3.3.1 Informal Proof Generation 314

The Informal proof generation integrates retrieved- 315

context into the language model prompt and uses 316

the LLM to create a proof based on this enhanced 317

2Our constructed dataset shape can be referred to in Ap-
pendix E.1

3An example entry from our nodes collection can be found
in Appendix C
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input. If the proof is unsuccessful or incomplete,318

the framework iteratively deepens the context by319

one level in the knowledge graph, selecting the320

top-k semantically closest neighboring nodes to321

uncover missing key concepts. The updated con-322

text is then used for subsequent proof generation323

attempts.324

3.3.2 Formal Proof Generation325

The Autoformalizer generates the formal proof by326

first preparing the prompt4, which involves com-327

bining the code prefix and the informal proof. It328

then invokes the model to generate the formal proof329

based on this prompt. Finally, it parses the model’s330

response to extract the Lean 4 code.331

3.4 Lean 4 integration332

To ensure the formal correctness of the proofs gen-333

erated by our framework we adopted the Lean ver-334

ification method from DeepSeek-Prover-V1.5 to335

enhance the formalization step in our proof genera-336

tion process utilizing RLPAF to refine our model’s337

ability to generate proofs that are verifiable in Lean338

(Jiang et al., 2024). By integrating proof-assistant339

feedback, our models are more robust in producing340

proofs that adhere to the strict syntactic and logical341

requirements of Lean.342

The formal proofs were verified using Lean 4343

to ensure correctness. The generated proof code344

was submitted to Lean, and the results were ana-345

lyzed. If verification failed, error messages were346

extracted and used to refine the proof iteratively.347

The Autoformalizer adjusted the prompt or proof348

based on these errors, repeating the process up to a349

set attempt limit until the proof passed verification350

or the limit was reached.351

3.4.1 Best of N & Tree Search352

Self-consistency has proven itself as strongly ef-353

fective, on commonly used reasoning as well as354

mathematical tasks, making use of the different355

approaches a language model might take while356

sampling multiple responses. (Wang et al., 2023)357

To make use of this phenomenon we integrate a358

system that generates multiple candidates for each359

math problem. A dedicated model then acts as a360

judge, evaluating each candidate’s proof across di-361

mensions of mathematical correctness, clarity, and362

reasoning completeness. The judge assigns scores363

from 0-10 and provides justification for each eval-364

uation. Candidates are then sorted by their scores,365

4The prompting framework can be found in Appendix D.1

with the highest-scoring proof selected as the "opti- 366

mal" solution to convert into Lean. 367

The tree search process begins by generating an 368

initial n candidate proofs and then creates an initial 369

beam of candidate proofs based on the top selec- 370

tion of previous generations. For each candidate, 371

the system attempts formal Lean verification and 372

generates refinements based on verification feed- 373

back (Sun et al., 2023). These refinements are 374

then scored and ranked, with the top k candidates 375

retained for subsequent iterations. The process 376

repeats for a predetermined number of depths, ulti- 377

mately returning the "best" proof that is both high- 378

quality in terms of interpretability and formally 379

verifiable. 380

4 Experiment Design 381

4.1 Models 382

To create semantic representations in the 383

form of embeddings, we used OpenAI’s 384

text-embedding-3-large model (Neelakantan 385

et al., 2022). 386

For informal proof generation, we utilized GPT- 387

4o-mini, as well as Claude 3.5 Sonnet and a col- 388

lection of LLAMA 3 models (OpenAI, 2024; An- 389

thropic, 2024; Grattafiori et al., 2024). We mea- 390

sure performance on the COT-reasoning models 391

Deepseek-R1 and o1-mini.5(DeepSeek-AI et al., 392

2025) 393

As an Autoformalizer we use DeepSeek-Prover- 394

V1.5 (Jiang et al., 2024) which is an open-source 395

language model, designed for theorem proving in 396

Lean (de Moura and Ullrich, 2021). We use the 397

Model explicitly only for the translation of the al- 398

ready generated informal proof into Lean format. 399

4.2 Datasets 400

To evaluate the effectiveness of our framework, 401

we conducted experiments on multiple bench- 402

marks commonly used in automated theorem 403

proving: miniF2F, ProofNet and MUSTARD- 404

SAUCE (Zheng et al., 2022; Azerbayev et al., 405

2023; Huang et al., 2024). MiniF2F is a benchmark 406

dataset of formal mathematics problems sourced 407

from undergraduate-level mathematics competi- 408

tions, specifically the International Mathematical 409

Olympiad (IMO). ProofNet is a large-scale dataset 410

5All generator models are evaluated together with a custom
prompt. The prompt can be found in Appendix D.2 that was
designed to provide a clear problem statement and incorporate
the retrieved context
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of mathematical proofs and theorem statements,411

ranging in difficulty and domain. MUSTARD-412

SAUCE is the dataset MUSTARD generated itself413

using GPT-4.414

All datasets present their samples with natural415

language and a formal statement in Lean, which we416

use as ground truth to compare against. Our exact417

dataset configuration can be found in Appendix F.418

5 Results419

5.1 Knowledge Graph Performance420

As visualized in Table 1, knowledge graphs consis-421

tently outperform baseline proof systems and over422

Retrieval Augmented Generation. Performance423

gains of knowledge graphs ranged from 2-11%424

across different models6. Notionally, Llama 3.1425

8B achieved a 31.97% success rate on miniF2F,426

compared to a 20.49% baseline.427

ProofNet represents the most challenging dataset428

with the lowest overall performance (2-7% success429

rates). This can be attributed to the difficulty of430

the problems. They require higher abstract math-431

ematical reasoning and more intricate proof struc-432

tures. The miniF2F dataset showed moderate per-433

formance (20-31% success) because it includes434

more structured mathematical problems, interme-435

diate complexity of proofs, and more predictable436

reasoning patterns.437

MUSTARDSAUCE demonstrated moderate per-438

formance as well (24-34% success). MUSTARD-439

SAUCE was created by prompting GPT-4 on dif-440

ferent levels of mathematics (from elementary to441

college level) and on different fields (Huang et al.,442

2024). Since these problems were created by GPT-443

4, there may be inherent biases that reflect GPT-444

4o’s internal reasoning patterns and align with GPT-445

4o’s problem-solving approach. Thus, this dataset446

is potentially optimized for large language model447

reasoning.448

However, it is important to note that we only ran449

a single run. A difference of a percentage point450

could be due to statistical variance or model initial-451

ization randomness.452

5.2 Graph Networks453

Our framework successfully constructed a knowl-454

edge graph comprising 60,535 nodes and 305,452455

6Although top − k = 5 is a fixed parameter, the actual
value can be smaller depending on the number of related nodes
available at the current depth.

relationships, implemented into an easily repro- 456

ducible framework for proof retrieval. 457

5.3 Best of N Tree Search 458

As visualized in Table 2 459

6 Additional Studies 460

6.1 Failure Scenarios 461

Although we see strong performance across multi- 462

ple proof benchmarks, there are certain scenarios 463

in which models & techniques fail to function opti- 464

mally. Across multiple runs, we found the follow- 465

ing possible errors: 466

• The informal proof is correct but the conver- 467

sion into a formal proof fails. 468

• The required knowledge is not in the graph 469

and other topics are too briefly related to ex- 470

trapolate. 471

Through manual analysis, we observed that 35% 472

of the questions fail because the formal proof is in- 473

correct even when the informal proof is correct. By 474

examining specific questions, we find that informal 475

English language proofs often contain implicit as- 476

sumptions, and use high-level reasoning, whereas 477

Lean 4 demands explicit steps, well-defined quan- 478

tifiers, and precise theorem applications. Common 479

errors include missing hypotheses, ambiguous ref- 480

erences to theorems, and incorrect translations of 481

algebraic manipulations or induction arguments. 482

Additionally, informal proofs tend to use flexible 483

language constructs, such as "it follows that" or "by 484

symmetry," which lack direct formal counterparts. 485

These issues indicate that these failures are often 486

not due to a lack of mathematical knowledge but 487

rather the inability to impose structured, machine- 488

verifiable logic onto loosely written informal rea- 489

soning. 490

It is rare that traversal doesn’t gather relevant 491

information or that the knowledge is not available 492

and only apparent on particularly hard questions. 493

However, for difficult questions, such as those pro- 494

posed by the International Math Olympiad, the 495

graph cannot find the most relevant nodes. 496

6.2 Hyperparameter Study 497

For our evaluations, we introduce multiple parame- 498

ters that can be varied. 499

In our evaluations: 500
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Dataset (↑) Method Claude 3.5
Sonnet

Deepseek
R1

Llama 3.1
8B

Llama 3.3
70B GPT 4o o1

-mini

ProofNet
Base 2.69% 2.69% 3.76% 2.15% 3.23% 3.76%
RAG 3.76% 3.76% 3.76% 3.76% 5.38% 5.91%
Graphs 4.84% 5.38% 4.30% 4.30% 6.45% 6.99%

miniF2F
Base 22.95% 20.08% 20.49% 25.00% 23.36% 23.77%
RAG 28.69% 22.54% 24.59% 24.59% 28.69% 28.28%
Graphs 31.15% 28.28% 31.97% 30.74% 30.74% 30.74%

MUSTARDSAUCE
Base 28.00% 20.00% 24.00% 25.60% 28.00% 24.80%
RAG 28.40% 25.00% 28.00% 28.8% 28.00% 26.80%
Graphs 30.00% 27.00% 27.60% 32.5% 30.00% 34.00%

Table 1: Comparison of models across ProofNet, miniF2F, and MUSTARDSAUCE datasets. Accuracy scores
reflect the performance of a single run with a maximum of three attempts per proof, measured as a percentage of
successful proof generations. The bolded numbers show the largest performance gain from baseline to knowledge
graphs for each dataset, achieving more than 11% gain.

Dataset Model 0 1 2 3 4 5 6

ProofNet Llama 8B 5.38% 7.53% 8.60% 8.60% 9.14% 9.68% 10.75%

miniF2F Llama 8B 31.15% 36.48% 38.52% 39.34% 40.57% 40.98% 41.34%

MUSTARDSAUCE Llama 8B 32.40% 40.80% 44.80% 45.60% 47.20% 49.60% 50.40%

Table 2: Comparing different depths for the best of N + tree search methods on a set of parameters that are n = 5,
beam width 3, depth 6.

• k signifies the amount of selected nodes from501

the current depth descending based on seman-502

tic similarity.503

• r signifies the provided amount of attempts504

on one individual proof.505

• d defines the depth the retriever is allowed to506

traverse in the knowledge graph.507

• n defines the number of candidates generated508

by best of N509

• w or beam defines the width of the beam for510

the best of N + tree search implementation511

• search_depth defines the depth of the tree512

during the tree search513

6.2.1 Judging the Best of N Tries514

Interestingly, the results in Table 3 reveal a non-515

linear relationship in more challenging datasets516

like ProofNet, where an intermediate value (e.g.,517

N = 6) did not always outperform a lower or518

higher N . This suggests that simply increasing the519

number of candidates is not universally beneficial;520

the quality of each candidate and the effectiveness 521

of the judging mechanism play critical roles. As 522

such, finding the right balance in model tempera- 523

tures is crucial because an optimal setting enhances 524

the judging process by providing a diverse pool of 525

high-quality candidates7. 526

Dataset Model Best of N

N=2 N=6 N=10

ProofNet Llama 8B 6.45% 5.38% 8.60%

miniF2F Llama 8B 30.33% 30.74% 31.97%

Mustard Llama 8B 30.00% 32.80% 33.6%

Table 3: Results by dataset with the graph approach,
comparing “Best of N” values between 2 and 10.

6.2.2 Scaling Traversal Depth 527

To allow the model for failure correction and im- 528

provement, the graph system has multiple consecu- 529

tive attempts defined as r. Each attempt allows the 530

7Both best of N and best of N + tree search method eval-
uations had LLama 3.1 8B set on a temperature of 0.7
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Model Dataset (↑) r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

LLAMA minif2f 24.59% 29.10% 31.56% 32.38% 33.61% 34.84 % 35.25%
o1-mini minif2f 25.82% 30.33% 32.38% 33.280% 34.02% 34.02 % 34.84%

LLAMA ProofNet 2.96% 3.76% 4.30% 4.30% 4.84% 4.84% 5.38%
o1-mini ProofNet 4.30% 5.91% 6.45% 6.99% 6.99% 7.53% 8.06%

LLAMA MUSTARDSAUCE 14.40% 26.40% 30.40% 33.60% 35.60% 37.20% 38.0%
o1-mini MUSTARDSAUCE 18.00% 26.8% 32.4% 36.80% 38.40% 40.40% 41.60%

Table 4: Scaling experiment of increasing traversal depth to a maximum of 7 while using our Graph Network on
LLAMA 3.1 8B.

model to traverse further in graph and explore more531

nodes. As more proofs get injected into the con-532

text and the model gets more tries to correct initial533

mistakes the accuracy scales higher per iterative534

refinement step. This effect is most predominant535

in smaller parameter models, such as Llama 3.1536

8b. This behavior is captured in Table 4. We can537

see that with more nodes injected the performance538

continues539

7 Conclusion & Discussion540

We present a framework that automates mathemat-541

ical proof generation by integrating LLMs with542

a knowledge graph to utilize inter-dependencies543

across mathematical proofs. Our approach demon-544

strates the potential of combining multiple mathe-545

matical concepts in an intertwined graph. By do-546

ing so, language models can be effectively guided547

toward correct proof generation, resulting in im-548

proved accuracy and enhanced abilities in formal-549

izing proofs according to standards such as Lean550

4.551

We establish that existing foundation models552

can achieve similar or higher performing results as553

fine-tuned models, by simple context injections of554

related concepts during inference time, without re-555

quiring any additional pre-training, expert iteration,556

or training system of any kind.557

8 Limitations558

Despite the advancements in capturing semantic559

relationships in text via vectorized embeddings, em-560

beddings can potentially suffer from issues such as561

loss of fine-grained logical structure, and difficul-562

ties in preserving contextual dependencies across563

larger passages. This can lead to challenges in accu-564

rately retrieving relevant mathematical statements,565

especially in formalized settings where precise def-566

initions and logical consistency are crucial. While 567

we filter and discard irrelevant details, signs and 568

other minutiae, XML dumps can introduce noise 569

that might disrupt of affect the semantic search and 570

embeddings. 571

While our approach successfully formalizes 572

proofs from structured datasets, its performance on 573

entirely novel or highly abstract mathematical prob- 574

lems remains uncertain. Models trained on existing 575

proofs may struggle with creative problem-solving 576

or unconventional mathematical approaches. 577

Large Language Models have finite context win- 578

dows, meaning lengthy or complex proofs may ex- 579

ceed the model’s processing capacity. This might 580

result in incomplete reasoning, loss of critical 581

details, or forgetting earlier steps in multi-stage 582

proofs. 583

Future work may enhance the knowledge graph 584

and improve the autoformalization process to han- 585

dle more complex mathematical concepts. 586

9 Reproducibility Statement 587

Our experiments were conducted using publicly 588

available Datasets and Models. GPT-4o, 4o- 589

mini, o1-mini and text-embedding-3-large can be 590

accessed via https://openai.com/api/. Both 591

Deepseek-R1 and the LLAMA 3 collection are 592

open-sourced models. Claude models can be ac- 593

cessed via their respective API endpoints, under 594

https://www.anthropic.com/api. 595

ProofNet and miniF2F, and MUSTARDSAUCE 596

are publicly available datasets. Our Code is pub- 597

licly available on GitHub, we encourage anyone 598

to validate and extend our findings. The Neo4j- 599

based graph database can be used under https: 600

//neo4j.com and could potentially be replaced 601

with alternative graph databases as desired. 602
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10 Ethical Considerations & Risks603

Our knowledge base is derived from ProofWiki,604

an open database for formal proofs. While the605

page is moderated, adversaries could attempt to606

incorporate harmful content or incorrect factual607

information into the extracted pages. However, we608

consider this risk to be unlikely.609

Although alignment work continues to progress610

Large Language Models can introduce biases to-611

wards certain marginalized groups or other minori-612

ties. All of our introduced models are moderated613

and have content filters that should prevent models614

from generating harmful content. However said615

filters aren’t perfect, models can still be exploited616

via sophisticated prompting and other adversarial617

techniques. Given our contribution to the frame-618

work, we expect no increased risk in any of the619

given safety evaluation measures proposed.620

10.1 GPU usage621

GPU model Watts approx. usage Time

Nvidia A40 300 W 650 hours
Nvidia RTX A5000 300 W 50 hours

Table 5: Estimated GPU usage for all Evaluations.

The shown GPU usage may only partially re-622

flect an accurate measure of the computational re-623

sources required, as major models are only avail-624

able through API endpoints. We estimate the infer-625

ence time on said APIs to be roughly 150 hours.626
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Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike 1035
Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, 1036
Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor 1037
Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun 1038
Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari 1039
Krakover, Nicholas Cameron, Nicholas Roberts, 1040
Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas 1041
Deckers, Niklas Muennighoff, Nitish Shirish Keskar, 1042
Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan 1043
Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, 1044
Omer Levy, Owain Evans, Pablo Antonio Moreno 1045
Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, 1046
Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, 1047
Percy Liang, Peter Chang, Peter Eckersley, Phu Mon 1048
Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, 1049
Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing 1050
Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta 1051
Rudolph, Raefer Gabriel, Rahel Habacker, Ramon 1052
Risco, Raphaël Millière, Rhythm Garg, Richard 1053
Barnes, Rif A. Saurous, Riku Arakawa, Robbe 1054
Raymaekers, Robert Frank, Rohan Sikand, Roman 1055
Novak, Roman Sitelew, Ronan LeBras, Rosanne 1056
Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhut- 1057
dinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan 1058
Teehan, Rylan Yang, Sahib Singh, Saif M. Moham- 1059
mad, Sajant Anand, Sam Dillavou, Sam Shleifer, 1060
Sam Wiseman, Samuel Gruetter, Samuel R. Bow- 1061
man, Samuel S. Schoenholz, Sanghyun Han, San- 1062
jeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan 1063
Ghosh, Sean Casey, Sebastian Bischoff, Sebastian 1064
Gehrmann, Sebastian Schuster, Sepideh Sadeghi, 1065
Shadi Hamdan, Sharon Zhou, Shashank Srivastava, 1066
Sherry Shi, Shikhar Singh, Shima Asaadi, Shixi- 1067
ang Shane Gu, Shubh Pachchigar, Shubham Tosh- 1068
niwal, Shyam Upadhyay, Shyamolima, Debnath, 1069
Siamak Shakeri, Simon Thormeyer, Simone Melzi, 1070
Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, 1071
Spencer Torene, Sriharsha Hatwar, Stanislas De- 1072
haene, Stefan Divic, Stefano Ermon, Stella Bider- 1073
man, Stephanie Lin, Stephen Prasad, Steven T. Pi- 1074

12



antadosi, Stuart M. Shieber, Summer Misherghi, Svet-1075
lana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal1076
Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,1077
Te-Lin Wu, Théo Desbordes, Theodore Rothschild,1078
Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo1079
Schick, Timofei Kornev, Titus Tunduny, Tobias Ger-1080
stenberg, Trenton Chang, Trishala Neeraj, Tushar1081
Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera1082
Demberg, Victoria Nyamai, Vikas Raunak, Vinay1083
Ramasesh, Vinay Uday Prabhu, Vishakh Padmaku-1084
mar, Vivek Srikumar, William Fedus, William Saun-1085
ders, William Zhang, Wout Vossen, Xiang Ren, Xi-1086
aoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen,1087
Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,1088
Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding1089
Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang1090
Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian1091
Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. 2023.1092
Beyond the imitation game: Quantifying and extrap-1093
olating the capabilities of language models. Preprint,1094
arXiv:2206.04615.1095

Hao Sun, Xiao Liu, Yeyun Gong, Yan Zhang, Daxin1096
Jiang, Linjun Yang, and Nan Duan. 2023. Allies:1097
Prompting large language model with beam search.1098
In Findings of the Association for Computational Lin-1099
guistics: EMNLP 2023, pages 3794–3805, Singapore.1100
Association for Computational Linguistics.1101

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob1102
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz1103
Kaiser, and Illia Polosukhin. 2023. Attention is all1104
you need. Preprint, arXiv:1706.03762.1105

Shreyas Verma, Manoj Parmar, Palash Choudhary, and1106
Sanchita Porwal. 2023. Fusionmind – improving1107
question and answering with external context fusion.1108
arXiv preprint arXiv:2401.00388.1109

Dingmin Wang, Shengchao Liu, Hanchen Wang,1110
Bernardo Cuenca Grau, Linfeng Song, Jian Tang,1111
Song Le, and Qi Liu. 2022. An empirical study1112
of retrieval-enhanced graph neural networks. arXiv1113
preprint arXiv:2206.00362.1114

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,1115
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and1116
Denny Zhou. 2023. Self-consistency improves chain1117
of thought reasoning in language models. Preprint,1118
arXiv:2203.11171.1119

J. Webber. 2012. A programmatic introduction to neo4j.1120
In Proceedings of the 3rd annual conference on Sys-1121
tems, programming, and applications: software for1122
humanity (SPLASH ’12).1123

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao,1124
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,1125
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, De-1126
jian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and1127
Chong Ruan. 2024. Deepseek-prover-v1.5: Har-1128
nessing proof assistant feedback for reinforcement1129
learning and monte-carlo tree search. arXiv preprint1130
arXiv:2408.08152.1131

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chala- 1132
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan 1133
Prenger, and Anima Anandkumar. 2023. Leandojo: 1134
Theorem proving with retrieval-augmented language 1135
models. NeurIPS. 1136

Weixi Zhao, Yunjie Tian, Qixiang Ye, Jianbin Jiao, and 1137
Weiqiang Wang. 2021. Graformer: Graph convo- 1138
lution transformer for 3d pose estimation. arXiv 1139
preprint arXiv:2109.08364. 1140

K. Zheng, J. M. Han, and S. Polu. 2022. Minif2f: a 1141
cross-system benchmark for formal olympiad-level 1142
mathematics. arXiv preprint arXiv:2109.00110. 1143

13

https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://doi.org/10.18653/v1/2023.findings-emnlp.247
https://doi.org/10.18653/v1/2023.findings-emnlp.247
https://doi.org/10.18653/v1/2023.findings-emnlp.247
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171


A Structural Improvement1144

Few shot learning, even with briefly related exam-1145

ples has shown to improve performance across a1146

variety of tasks and domains.1147

Therefore we hypothesize that even only partly1148

related proof nodes will improve not only the proof1149

understanding but will also benefit the structured1150

formalization that is required for the correct inter-1151

pretation and conversion of informal natural lan-1152

guage into lean4.1153

B Deterministic Evaluations1154

Unless specified otherwise we use greedy decod-1155

ing for all of our experiments. Additionally, the1156

semantic search in our Graph knowledge base will1157

yield identical outputs, given that the input doesn’t1158

change between different runs.1159

While this behavior can be favorable in some sit-1160

uations, other evaluations may benefit from slight1161

variations in different seeds. To introduce a slight1162

stochasticity other evaluations may vary the tem-1163

perature parameter of the employed models, and1164

use the introduced method in Appendix B.1 to in-1165

troduce randomness into our knowledge graph.1166

B.1 Knowledge Graph Stochasticity1167

To mitigate fully repetitive outputs Nodes from1168

the knowledge graph we propose top-k shuffling,1169

where we retrieve the k-highest ranked nodes, shuf-1170

fle them, and select a subset. This method en-1171

sures diversity in individual generations. We favor1172

this implementation over random sampling over a1173

broader set of candidate nodes, selecting from a1174

pool beyond the strict top-k. Due to the potentially1175

less relevant knowledge, trading off precision for1176

increased coverage.1177

The level of stochasticity can be tuned dynami-1178

cally based on confidence scores or response vari-1179

ance metrics1180

C Node example1181

• from_id: The ID of the current node.1182

• to_id: The ID of the linked node (found using1183

the title-name-to-ID mapping).1184

• type: There are 6 different relationship cate-1185

gories:1186

USES_DEFINITION,1187

RELATED_DEFINITION,1188

USES_AXIOM,1189

SIMILAR_PROOF, 1190

PROOF_DEPENDENCY, 1191

PROOF_TECHNIQUE. 1192

1193

An example from our relationships collection: 1194

from_id, to_id, type 1195

149, 167, LINK 1196

149, 41289, PROOF_TECHNIQUE 1197

67015,6780, USES_DEFINITION 1198

D Prompt Examples 1199

D.1 Prompt Example 1 1200

The model was provided with the informal proof 1201

and a code template, and it generated the corre- 1202

sponding formal proof in Lean 4. Each element 1203

was processed to extract the title, namespace, and 1204

content. 1205

You are a Lean 4 code generator. 1206

We have: 1207

HEADER: 1208

{header} 1209

1210

INFORMAL PROOF: 1211

{informal_proof} 1212

1213

PREFIX: 1214

{informal_prefix} 1215

1216

STATEMENT: 1217

{formal_statement} 1218

1219

GOAL (optional): 1220

{goal} 1221

1222

INSTRUCTIONS: 1223

1. Output exactly one triple-backtick code 1224

block containing valid Lean 4 code. 1225

2. Do not include any text or explanations 1226

outside the code block. 1227

3. Make sure it compiles in Lean 4. 1228

1229

Required Format: 1230

# Start 1231

```lean4 1232

<Lean code here> 1233

``` 1234

# End 1235

D.2 Prompt Example 2 1236

You are a mathematics expert focused on 1237
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generating clear informal proofs.1238

1239

Given the following mathematical problem1240

and context, generate a clear and detailed1241

informal proof in natural language.1242

1243

Context: [Retrieved context]1244

1245

Problem: [Problem statement]1246

1247

Provide your proof in the following format:1248

1249

Informal Proof:1250

[Your proof here]1251

E Graph Dataset1252

We parsed an XML dump of ProofWiki, where1253

each <page> element was processed. Irrelevant1254

sections were filtered, and the wikitext was cleaned1255

to obtain structured content.1256

E.1 Node structure1257

We represented each mathematical concept as a1258

node in the knowledge graph, storing attributes1259

such as:1260

• id: Unique identifier.1261

• type: Content type (e.g., definition, theorem).1262

• title: Page title.1263

• name: Extracted from the title.1264

• content: Main text content.1265

F Benchmarks1266

By utilizing miniF2F, ProofNet, and MUSTARD-1267

SAUCE, we assess our framework’s ability to gen-1268

erate and formalize proofs across diverse mathe-1269

matical problems. The datasets provided a stan-1270

dardized evaluation setting, allowing us to com-1271

pare our results uniformly with existing approaches1272

and to analyze the strengths and limitations of our1273

Method. However, it is possible that our setup de-1274

viates from the ones introduced in the respective1275

papers of the dataset, which explains a varied per-1276

formance across tasks, which is especially apparent1277

on MUSTARDSAUCE. To set up a comparable1278

evaluation, we compute the baseline of our setup1279

as well rather than taking the previous State-of-the-1280

Art.1281

F.1 Used splits 1282

We ran 186 problems from the test split of ProofNet, 1283

244 problems from the test split of miniF2F, and 1284

randomly selected 250 theorem-proving problems 1285

from MUSTARDSAUCE. 1286

G Search Strategies within the 1287

Knowledge Graph 1288

To optimize the process of automated proof gener- 1289

ation, we explored different methods for navigat- 1290

ing the constructed knowledge graph. Specifically, 1291

we implemented two primary search strategies: 1292

Breadth-First Search (BFS) and semantic search 1293

using vector embeddings. This section elaborates 1294

on these methodologies, their implementation in 1295

our framework, and analyzes their respective ad- 1296

vantages and disadvantages in our scenario. 1297

G.0.1 Breadth-First Search (BFS) 1298

Breadth-First Search is a classic graph traversal 1299

algorithm that systematically explores the vertices 1300

of a graph in layers, starting from a given root node 1301

and expanding outward to neighboring nodes at 1302

increasing depths. In our framework, BFS was 1303

utilized as follows: 1304

1. Zero-Shot Prompting: We initially present 1305

the problem statement directly to the GPT 1306

model without any additional context, request- 1307

ing a proof in a zero-shot setting. 1308

2. First-Level Traversal: If the zero-shot at- 1309

tempt is unsuccessful, we perform a BFS to 1310

explore the immediate neighboring nodes of 1311

the problem statement node. Specifically, we 1312

retrieve up to the nearest 50 nodes connected 1313

directly to the root node. 1314

3. Contextual Prompting: We then prompt 1315

the GPT model again, providing the problem 1316

statement along with the content from the re- 1317

trieved neighboring nodes to supply additional 1318

context for proof generation. 1319

4. Iterative Expansion: If the proof remains in- 1320

complete or incorrect, we extend the BFS to 1321

the next level by including nodes that are two 1322

edges away from the root, effectively expand- 1323

ing the context window before re-prompting 1324

the GPT model. 1325

The advantage of BFS is that it allows for a 1326

systematic exploration of the knowledge graph, en- 1327

suring that all nodes within a certain depth are 1328
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considered, which may uncover relevant but non-1329

obvious connections. By incrementally increasing1330

the depth of traversal, we can control the amount of1331

additional information provided to the GPT model,1332

potentially improving the quality of the generated1333

proof.1334

However, BFS can be computationally expen-1335

sive, especially in densely connected graphs, as the1336

number of nodes grows exponentially with each1337

additional level of depth. Including a broad set1338

of neighboring nodes may introduce irrelevant or1339

redundant information, which could overwhelm1340

the GPT model and hinder its ability to generate a1341

coherent proof.1342

G.0.2 Semantic Search Using Embeddings1343

Semantic search leverages vector embeddings to1344

identify nodes that are semantically similar to a1345

given query (Neelakantan et al., 2022). Each node1346

in our knowledge graph is associated with a high-1347

dimensional embedding vector, enabling similarity1348

computations.1349

1. Hierarchical Prompting: Similar to the BFS1350

approach, we begin with a zero-shot prompt.1351

If unsuccessful, we incrementally include the1352

most similar nodes into the context when re-1353

prompting the GPT model, effectively per-1354

forming one-shot, two-shot prompting, and so1355

on.1356

Semantic search is computationally less inten-1357

sive than BFS, as it avoids exhaustive traversal1358

and focuses only on nodes with high semantic rele-1359

vance. By prioritizing nodes that are semantically1360

similar to the problem statement, we provide the1361

GPT model with highly pertinent information, po-1362

tentially improving proof generation quality. The1363

disadvantages are that the effectiveness of semantic1364

search is contingent upon the embedding model’s1365

ability to accurately capture mathematical seman-1366

tics, which may be challenging for complex or ab-1367

stract concepts. Important nodes that are not seman-1368

tically similar based on the embedding (e.g., foun-1369

dational axioms or lemmas) may be overlooked,1370

potentially omitting crucial information required1371

for the proof.1372

Regardless of the search method used, we1373

adopted an iterative prompting strategy with the1374

GPT model. This approach allows us to manage1375

the amount of information provided to the GPT1376

model, aiming to strike a balance between context1377

richness and the model’s capacity to process and 1378

utilize the information effectively. 1379
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