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Abstract. Image captioning is a challenging task that combines Com-
puter Vision and Natural Language Processing to generate descriptive
and accurate textual descriptions for input images. Research efforts in
this field mainly focus on developing novel architectural components
to extend image captioning models and using large-scale image-text
datasets crawled from the web to boost final performance. In this work,
we explore an alternative to web-crawled data and augment the training
dataset with synthetic images generated by a latent diffusion model. In
particular, we propose a simple yet effective synthetic data augmenta-
tion framework that is capable of significantly improving the quality of
captions generated by a standard Transformer-based model, leading to
competitive results on the COCO dataset.

Keywords: Image Captioning - Synthetic Data - Vision-and-Language.

1 Introduction

Image captioning is a complex task that involves the description of an image in
natural language, posing challenges at the intersection of Computer Vision and
Natural Language Processing fields. The most promising solutions to tackle the
task are represented by deep learning-based captioning architectures which have
become the de facto standard for the task [46]. Despite achieving state-of-the-art
results, it is becoming difficult to further improve their performance, primarily
because of the struggles in finding datasets containing a satisfactory amount of
image-caption pairs. To overcome this issue, the predominant approach in the
field is to train captioning networks [13,20,51,58] on large-scale datasets collected
from the web [42,44], usually downloading an image along with the description
provided in its “alt” tag. As a matter of fact, there is no surprise in witnessing
more and more advanced deep learning-based models being trained on web-
collected data, especially after the spread of large-scale language models [10,59]
and cross-modal architectures [36]. The knowledge found on the web, indeed,
excels for size and variety, stimulating the robustness and sensibility of deep
learning models to long-tail concepts. However, its quality and ethics might be
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questionable, especially for image captioning which requires proper alignment
between visual and textual contents. Although there are successful attempts to
refine or distinguish web-based information [13,24], it is unfeasible to completely
filter out wrong and noisy data when its extent grows too much.

Synthetic data seems an appealing alternative to match the scaling require-
ments of modern neural networks while attenuating the drawbacks of web-
crawled data. In fact, synthetic data can be produced on-demand, are virtually
infinite, and their annotations are in most cases at no cost. Moreover, from an
ethical perspective, they usually offer better control over biases than their web
counterparts. While the usage of synthetically generated data has led to promis-
ing results in various Computer Vision tasks [1,5,9,11,16], limited research efforts
have been done in the context of image captioning.

Motivated by the recent advancements in Generative Al, in this work we
explore the usage of synthetic images to boost the performance of captioning ar-
chitectures. In particular, we leverage the well-known Stable Diffusion model [39]
to generate synthetic images associated with human-annotated textual sentences
and employ these newly generated data to augment the most widely used dataset
in the image captioning field (i.e. COCO [28]). From a technical point of view,
we introduce a simple yet effective framework to employ synthetic data that
probabilistically replace real pictures with fake ones and apply it to a standard
Transformer-based architecture [48]. To validate our proposal, we conduct ex-
tensive experiments to evaluate whether synthetic images can be leveraged to
improve the quality of generated captions. Experimental results on the popular
COCO dataset [28] demonstrate the effectiveness of our solution, which achieves
better results than a baseline model without synthetic data augmentation and
competitive performance compared to previously proposed approaches. We be-
lieve that our analysis can serve as a starting point for employing synthetically
generated images as an effective data augmentation strategy in the field of image
captioning and other vision-and-language tasks.

2 Related Work

Image Captioning. Early deep learning-based image captioning models were
based on a basic encoder-decoder scheme, with the use of RNNs and LSTMs
as popular choices for the text generation part along with CNNs to encode
the visual content [22,38,50]. Following these initial attempts, subsequent tech-
niques have steadily advanced both the image encoding and language generation
stages. Regarding the image encoding, remarkable progress has been achieved
through the introduction of additive attention mechanisms to incorporate spatial
knowledge, first from a grid of CNN features [55] and later utilizing image re-
gions extracted from pre-trained object detectors [4], eventually considering their
semantic and spatial relationships encoded by graph neural networks [56, 57].
Nowadays, Transformer-based architectures [48], initially designed for machine
translation and language comprehension purposes and then employed in a variety
of tasks [15,35,47], have been adopted in the domain of image captioning as well.
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These models are commonly used both in the visual encoding stage [12,21,29,53]
and as language models [14,17,30,60], also leading to the design of effective vari-
ants of the self-attention operator [14,21,33].

Recent advancements have been obtained by large-scale vision-and-language
pre-training which usually employs noisy image-text pairs to increase the number
of training samples, thus further enhancing the performance of fully-attentive
image captioning models [13, 20, 51, 58]. Effective alternatives also involve the
use of visual features from large-scale cross-modal architectures [7,8,45] like
CLIP [36]. These multimodal architectures also allow for the enrichment of pre-
dicted textual sentences employing retrieval components, that can be added to
the captioning model, and external knowledge from which to extract additional
information to improve the final performance [26,32,41].

Synthetic Data. To the best of our knowledge, there is a limited amount of
works that explore the usage of synthetic data in image captioning. In particu-
lar, Hossain et al. [19] introduced artificial images into a captioning system, by
creating new pictures thanks to generative adversarial networks. More recently,
Xiao et al. [54] leveraged a latent diffusion model [39] to augment the training
dataset, also employing paraphrasing sentences to pair with the generated pic-
tures. However, they only achieved promising results when using limited training
instances or when switching to an unpaired image captioning setting. Concur-
rently, Li et al. [25] proposed to employ fake images as a replacement for difficult
samples to finetune a large-scale vision-and-language model for captioning. In
this work, we stick with the same latent diffusion model to generate fake images
(i.e. Stable Diffusion [39]), but we do not require any additional textual data
outside of captions from the COCO dataset, demonstrating the effectiveness of
synthetic data augmentation for the standard image captioning task.

3 Proposed Method

In this section, we introduce SynthCap, a novel image captioning architecture
trained with the proposed synthetic augmentation strategy. Fig. 1 shows an
overview of our complete model.

3.1 Model Architecture

Visual encoder. Our architecture is based on a fully-attentive Transformer net-
work that takes as input visual features extracted from a pre-trained visual en-
coder. For the latter, we leverage the image encoder of a pre-trained CLIP-based
model [36] and we freeze its weights throughout all the experiments. Specifically,
we opt for the CLIP ViT-L/14 version which is based on the Vision Transformer
(ViT) backbone [15].

Transformer model. Our language model is a standard encoder-decoder Trans-
former network [48]. Each encoder layer is made of a self-attention block followed
by a feed-forward layer. The former refines the supplied visual tokens via bi-
directional self-attention. The latter operates on single tokens with two dense
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Fig. 1. Overview of the proposed method: (a) we select either a real or a synthetic
image, according to a A; weight; (b) the CLIP-based visual encoder converts the input
image into a sequence of visual tokens; (c) the encoder-decoder Transformer network
generates the caption grounded on the visual token.

layers, featuring a GELU non-linearity in between. The output of each block
is summed along with its input through a residual connection and then nor-
malized. The decoder network shows a similar architecture to the encoder, but
it comprises a cross-attention block interposed between the self-attention and
feed-forward block. This additional component is critical, as here occurs the
cross-modal integration between visual and textual modalities. In detail, the to-
kens representing the partial caption generated by the decoder up to time t act as
queries, that attend the visual tokens from the encoder, i.e. keys and values. Un-
like the encoder self-attention block, the decoder self-attention requires a causal
mask to prevent tokens from attending to the future. Specifically, masking is
implemented by artificially zeroing the entries of the self-attention matrix with
row-column indexes (¢,5)vj>i. The output of the decoder is a token sequence
X = {@1}4=1,.. .~ whose length is equal to the input. To select the next word
Zt+1, we sample from a probability distribution over all the possible words in
the reference vocabulary, obtained by feeding Z, to a linear and a softmax layer.
At inference time, the decoder works in an auto-regressive manner, meaning that
the token produced at time ¢ will be included in the input for time ¢ + 1.

3.2 Synthetic Data Augmentation

Our goal is to probe whether synthetic images can be a valuable source of in-
formation to train captioning algorithms. We leverage Stable Diffusion [39] to
generate fake images to extend the training set of the COCO dataset [22], which
is originally composed of more than half a million image-caption pairs (I", ),
with k =1,2,3,4,5, i.e. there are five different reference descriptions available for
each image. By conditioning the Stable Diffusion model on ¢, we build an extra
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dataset of synthetic (or fake) images paired with the original captions (I}, cx). As
we show in the experimental section, the synthetically generated images prove
to have a good correspondence with the captions they have been generated from
and therefore can be a valuable data augmentation strategy to train an image
captioning model. Conversely, training a model exclusively on synthetic images
and corresponding captions leads to unsatisfactory results. Therefore, we argue
that both real and artificial pictures are useful for the task of image captioning,
and they may be complementary to each other.

In our training framework, we propose to probabilistically replace a real
image with its fake counterpart during each training iteration. When we feed
the model with a real image I", one reference caption is sampled among the five
ground-truth sentences available in the dataset. When instead a synthetic image
I} is given as input, the network should only focus on the words specifically
mentioned in ¢y, as ¢ alone has been considered by the Stable Diffusion model
when generating I;. Formally, given a caption ci, we build an image-text pair
(I,¢), in which the visual component is chosen as follows:

I Ip ife< A (1)
I"  otherwise,

where A is a hyperparameter controlling the probability of using synthetic data
at each training iteration and e ~ U(0,1). When we set A\; = 0, the training
set is the original one without any synthetic data augmentation, while when
As = 1 the training set is composed only of fake images and corresponding
textual sentences. Note that, regardless of g, the amount of processed samples
per epoch remains the same as in the original training process.

Training procedure. We adhere to the two-phase training typically used in
image captioning [46] which consists of a pre-training step with cross-entropy
loss followed by a finetuning phase based on the self-critical sequence training
(SCST) proposed in [38], which optimizes the captioning model with reinforce-
ment learning using the CIDEr metric [49] as a reward.

During SCST optimization, the baseline reward is chosen as the average
score over all the sequences sampled using beam search within the same beam,
following [14]. According to this setup, whenever we require a synthetic image to
replace its associated real one, we opt to randomly draw from the five available
fake images. Formally, I} ~ {I},I5,I5,1;,I¢}. Note that, although for each
k, the synthetic image I; has been created from a single description cj, the
CIDEr metric still measures the consensus of the captions generated by our
model among all five reference captions cx—1,... 5.

4 Experimental Evaluation

4.1 Implementation Details

Dataset and evaluation metrics. We evaluate our proposal on the Microsoft
COCO dataset [28], using the standard Karpathy splits [22]. We report the
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results according to evaluation metrics typically used for image captioning:
BLEU [34], METEOR [6], ROUGE [27], CIDEr [49], and SPICE [3].

Architecture. Before being fed to the CLIP visual encoder, each input image
undergoes a pre-processing pipeline. The first step involves a resize to reduce the
longer side length to a maximum of 224 pixels, keeping the original aspect ratio.
It follows a center crop plus a channel-wise normalization. The resulting input
is a tensor with shape 3 x 224 x 224, from which the ViT-based CLIP encoder
extracts a grid of 256 x 1024 features, i.e. the visual tokens. Our Transformer-
based image captioning network comprises L = 3 layers in both the encoder
and decoder, operating on a hidden size d = 512. We therefore apply a linear
projection over the CLIP visual features to match this dimensionality. We employ
multi-head attention with 8 different heads in each attentive layer, plus dropout
with probability 0.1. To convert words into tokens, we leverage the same byte-
pair encoding (BPE) tokenizer [43] used by the CLIP text module.

Training details. During cross-entropy optimization, we stick with the setup
suggested in [26] using a batch size of 32 and the learning rate scheduling strategy
of [48] with warmup equal to 20,000 iterations. In the SCST phase, we use a
batch size of 16, a constant learning rate of 10~%, and apply beam search decoding
with a beam size equal to 5. For both training phases, we employ Adam [23] as
optimizer. All experiments have been carried out with mixed precision [31] and
ZeRO memory offloading [37], using the Huggingface Transformers library [52].

Synthetic data generation. All synthetic images are generated following [2],
by feeding Stable Diffusion with the reference captions from the COCO Karpathy
training split using the standard prompt “An image of”. As Stable Diffusion
model, we employ the implementation provided by the Huggingface library?>.

4.2 Ablation Studies and Analysis

In this section, we conduct ablation studies to discuss the main design choice of
our proposal and validate the proposed synthetic data augmentation strategy.

Overall validation of synthetic images. We first validate the correspondence
of generated synthetic images with associated textual sentences by computing
the image-text similarity between cross-modal embeddings extracted from CLIP-
based visual and textual backbones. As demonstrated in recent literature [18,40],
this image-text similarity is effective for evaluating image captioning models. As
shown in Table 1, on average, synthetic images seem to have a slightly higher
affinity with their descriptions compared to the real ones. This suggests that
they could be a valuable source of information to feed an image captioning
model during training.

Percentage of synthetic data. In our framework, we control the probability
to replace a real image with a synthetic one thanks to As. Table 2 presents the
results when varying this parameter in comparison with a baseline model trained
without synthetic data. When Ay = 1.0, we entirely rely on synthetic images and

% https://huggingface.co/CompVis/stable-diffusion-vi-4
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Table 1. CLIP-based image-text similarity scores for real and synthetic images and
corresponding textual sentences.

Mean Median  Min Max
Real images 0.256  0.257 0.004 0.463
Synthetic images  0.263 0.262 0.098 0.437

Table 2. Analysis using different percentages of synthetic data. Results are reported
after cross-entropy pre-training.

Synth. Data A, B-1 B4 M R C S
- 775 372 30.0 58.6 126.5 23.3

0.1 773 37.1 30.3 58.8 127.2 23.5
02 775 379 303 59.0 128.1 234
0.3 777 377 303 59.1 1277 23.5
04 778 37.8 304 59.0 128.3 23.5
0.5 777 37.6 30.3 58.9 128.6 23.4
0.6 779 376 30.1 58.8 127.5 23.3
07 774 37.0 30.0 58.7 126.5 23.4
1.0 727 29.2 255 53.1 100.2 19.0

SSNSNSSSSNSN | x

experience a consistent drop with respect to the baseline. This behavior can be
due to the reality gap between real and synthetic images which prevents the
model to generalize on real data when it is trained on synthetically generated
samples only. This means that synthetic images, despite the advancements in
Generative Al, are still far from exactly mimicking pictures from the natural
distribution. On the other hand, all other models benefit from augmented train-
ing with synthetic images. In detail, we reach the highest CIDEr score when
feeding the model with fake images half of the time (i.e. Ay = 0.5), but we still
observe improvements with up to 60% of synthetic images. The positive effects
of synthetic data appear to worsen with A = 0.7, even though the performance
is still competitive against the baseline without synthetic data augmentation.

Effectiveness of synthetic data. To prove that the observed improvements
truly come from using synthetic images to augment our training set, we repeat
the setup explained in Sec. 3.2 but change the source of visual input for aug-
mentation. Since a synthetic image is naturally similar to the original image, a
reasonable comparison should rely on visually similar but real images. Thus, in
this case, given an image I from the COCO dataset, we replace it with proba-
bility A\s with I}, that corresponds to a real image randomly selected among the
top-k similar images with respect to I. In particular, following [41], we extract
a feature vector for each image from a pre-trained CLIP model. Then, given an
encoded query image, the k most similar ones are retrieved with k =1, 3,5, us-
ing the cosine similarity between pairs of feature vectors as a similarity measure.
For this experiment, we employ A; = 0.5 that corresponds to the configuration
leading to the highest CIDEr score in the previous analysis. According to the
results reported in Table 3, we can notice that our synthetic data augmentation
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Table 3. Analysis using our best configuration (i.e. As = 0.5), replacing synthetic
images with real ones selected among the top-k similar images. Results are reported
after cross-entropy pre-training.

Synth. Data B-1 B-4 M R C S

Transformer X 77.5 372 30.0 58.6 126.5 23.3
Transformer (w/ similar images, k = 1) X 77.6 37.0 29.8 583 125.1 2238
Transformer (w/ similar images, k = 2) X 76.7 37.0 30.0 58.5 125.5 23.1
Transformer (w/ similar images, k = 3) X 76.8 37.0 29.8 582 124.6 229
SynthCap v 77.7 37.6 30.3 58.9 128.6 23.4

Table 4. Comparison with the state of the art on the COCO Karpathy test.

Cross-Entropy Loss CIDEr Optimization
B-1 B4 M R C S B-1 B4 M R C S
Up-Down [4] 772 36.2 270 56.4 113.5 203 79.8 36.3 27.7 56.9 120.1 214
GCN-LSTM [57] 77.3 36.8 279 57.0 116.3 209 80.9 38.3 28.6 585 128.7 22.1
SGAE [56] 776 36.9 277 572 116.7 209 81.0 39.0 28.4 589 129.1 22.2
AoANet [21] 774 372 284 575 119.8 21.3 80.2 389 29.2 58.8 129.8 224
M? Transformer [14] - - - - - - 80.8 39.1 29.2 58.6 131.2 22.6
X-Transformer [33] 77.3 370 28.7 575 120.0 21.8 80.9 39.7 29.5 59.1 132.8 234
DLCT [30] - - - - - - 81.4 39.8 29.5 59.1 133.8 23.0
RSTNet [60] - - - - - - 81.8 40.1 29.8 59.5 135.6 23.3
DIFNet [53] - - - - - - 81.7 40.0 29.7 59.4 136.2 23.2
CaMEL 8] 78.3 39.1 294 585 125.7 222 82.8 41.3 30.2 60.1 140.6 23.9
COS-Net [26] 79.2 39.2 29.7 58.9 1274 22.7 82.7 42.0 30.6 60.6 141.1 24.6
Transformer 775 372 30.0 58.6 126.5 23.3 829 422 30.7 60.9 141.9 24.6
SynthCap 777 376 30.3 58.9 128.6 23.4 83.0 42.4 30.8 61.1 143.1 24.7

strategy achieves the best performance compared to both the baseline and the
employed retrieval-based augmentation solution.

4.3 Comparison to the State of the Art

We now test SynthCap against other state-of-the-art captioning models. In our
analysis, we include earlier approaches featuring LSTM as language models and
attention over image regions, like Up-Down [4], eventually boosted with graph-
based encoding (GCN-LSTM [57] and SGAE [56]) or self-attention, such as
AoANet [21]. Further, we include more recent proposals that rely on the Trans-
former network, namely M? Transformer [14], X-Transformer [33], DLCT [30],
RSTNet [60], DIFNet [53], CaMEL [8], and COS-Net [26]. We report the results
in Table 4. As it can be seen, SynthCap beats the baseline across all the metrics,
in both the cross-entropy pre-training and CIDEr-based optimization stages.
Compared to the other better-performing approaches, our framework achieves
competitive results, while being based on a simple encoder-decoder Transformer
model without any other specific architectural component.

To further confirm the effectiveness of our data augmentation strategy, we
report the results on the COCO online test server in Table 5. Following previous
literature, we leverage an ensemble of four models trained using different random



SynthCap: Augmenting Transformers with Synthetic Data 9

Table 5. Leaderboard of various methods on the online COCO test server.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5  c40 ¢S5 c40 c5 40 c5  c40 c5  c40 c5 40 cH c40
Up-Down [4] 80.2 95.2 64.1 88.8 49.1 794 369 685 27.6 36.7 57.1 724 117.9 120.5
SGAE [56] 81.0 95.3 65.6 89.5 50.7 80.4 385 69.7 28.2 372 586 73.6 123.8 126.5
AoANet [21] 81.0 95.0 65.8 89.6 51.4 81.3 394 71.2 29.1 385 589 745 1269 129.6

M? Transformer [14] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 294 39.0 59.2 748 129.3 132.1
X-Transformer [33] 81.9 95.7 66.9 90.5 524 825 403 724 29.6 39.2 59.5 75.0 131.1 133.5

RSTNet [60] 82.1 96.4 67.0 91.3 522 83.0 40.0 73.1 29.6 39.1 59.5 74.6 131.9 134.0
DLCT [30] 824 96.6 67.4 91.7 52.8 838 40.6 74.0 29.8 39.6 59.8 753 133.3 1354
COS-Net [26] 83.3 96.8 68.6 92.3 542 84.5 42.0 747 304 40.1 60.6 76.4 136.7 138.3
CaMEL (8] 83.2 97.3 68.3 927 53.6 848 41.2 749 30.2 39.7 60.2 756 137.5 140.0
SynthCap 83.7 97.6 69.2 93.5 54.9 86.3 42.8 77.1 30.9 41.3 61.4 77.7 140.1 142.6

Transformer: A woman wearing  Transformer: A girl blowing out ~ Transformer: A close up of a  Transformer: An old truck

a bunch of bananas on her head.  candles on a spoon. zebra behind a fence. sitting in a field of flowers.

SynthCap: A woman wearing a  SynthCap: A girl is sitting at a  SynthCap: A zebra standing  SynthCap: An old rusty truck is
costume with a bunch of table with a birthday cake with  behind a chain link fence. parked in a field with yellow
bananas on her head. a candle. flowers.

Fig. 2. Qualitative comparison between SynthCap and the baseline on sample images
from the COCO dataset.

seeds. Also in this setting, SynthCap achieves the best results according to all
evaluation metrics. Finally, in Fig. 2, we show some qualitative results on sample
images from the COCO dataset, comparing captions generated by our model
with those generated by the baseline without synthetic data augmentation.

5 Conclusion

In this work, we propose a novel image captioning framework enhanced with a
synthetic data augmentation strategy. In particular, we leverage the well-known
Stable Diffusion model to generate additional images that can be effectively
employed as additional training samples. The proposed strategy is widely usable,
given the easy accessibility of advanced text-to-image generative models and
their increasingly impressive results. Experimentally, the proposed solution is
capable of boosting the performance of a standard Transformer-based model,
working only at the data level and maintaining the exact same network.
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