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Abstract
Conformal prediction provides a robust frame-
work for generating prediction sets with finite-
sample coverage guarantees, independent of the
underlying data distribution. However, existing
methods typically rely on a single conformity
score function, which can limit the efficiency and
informativeness of the prediction sets. In this pa-
per, we present a novel approach that enhances
conformal prediction for multi-class classifica-
tion by optimally averaging multiple conformity
score functions. Our method involves assigning
weights to different score functions and employ-
ing various data splitting strategies. Addition-
ally, our approach bridges concepts from confor-
mal prediction and model averaging, offering a
more flexible and efficient tool for uncertainty
quantification in classification tasks. We provide
a comprehensive theoretical analysis grounded
in Vapnik–Chervonenkis (VC) theory, establish-
ing finite-sample coverage guarantees and demon-
strating the efficiency of our method. Empirical
evaluations on benchmark datasets show that our
weighted averaging approach consistently outper-
forms single-score methods by producing smaller
prediction sets without sacrificing coverage.

1. Introduction
Conformal prediction (Vovk et al., 2005; Manokhin, 2022)
is a robust framework that generates prediction sets with
finite-sample coverage guarantees, irrespective of the un-
derlying data distribution (Angelopoulos et al., 2023). The
fundamental principle of conformal prediction is to con-
struct a prediction set for a new test instance based on the
training data, ensuring that the true label is included with
a probability of at least 1 − α. This coverage assurance
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holds regardless of the specific point prediction algorithm
employed, making conformal prediction a versatile tool for
uncertainty quantification in machine learning. In the split
conformal prediction framework (Papadopoulos et al., 2002;
Lei & Wasserman, 2014; Vovk et al., 2018), the training
data is partitioned into a training set and a calibration set.
The predictive model is trained on the training subset, while
the score functions are evaluated on the calibration sub-
set. The conformal prediction set then comprises all labels
whose conformity scores exceed a specific quantile, with
the quantile determined by the coverage level.

The choice of score function is critical in determining the
efficiency of the resulting prediction sets, especially for
multi-class classification. Well-chosen score functions can
lead to more informative and precise predictions. This flex-
ibility allows conformal prediction to adapt to the specific
characteristics of the data and distribution. Consequently,
developing score functions that optimize informativeness
and efficiency for various problem settings, including re-
gression (Papadopoulos et al., 2008; 2011; Romano et al.,
2019; Kivaranovic et al., 2020; Guan, 2023; Colombo, 2023;
2024) and multi-class classification (Sadinle et al., 2019; Ro-
mano et al., 2020; Angelopoulos et al., 2021; Huang et al.,
2024; Luo & Zhou, 2024; 2025c), remains an active area of
research. This work focuses on enhancing the efficiency of
prediction sets for classification tasks. While the underlying
idea can extend to regression, this paper will focus on the
tasks of multi-class classification. We will also extend the
method and theory to basic conformal regression problem.

Our approach assumes the availability of multiple score
functions for the same classification task, each differing due
to variations in the classification algorithm or the defini-
tion of the score. We propose assigning optimal weights
to aggregate these score functions. Using a validation set,
we determine a threshold to achieve the desired coverage
and identify the weight combination that minimizes the
prediction set size. The final prediction is then based on
this weighted score function. Our aim is to find the op-
timal weights for linear combinations of score functions,
thereby fully leveraging the strengths of existing score func-
tions. While our approach shares similarities with (Yang &
Kuchibhotla, 2024), it stands out in three key aspects:

1. Weighted Averaging of Score Functions: Instead of
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selecting the single best-performing score function, our
approach combines multiple score functions through
optimal weighting. This averaging can yield more effi-
cient prediction sets than any individual score function
while maintaining the desired coverage guarantees.

2. Novel Data Splitting Strategies: We explore and cat-
egorize several data splitting methods to determine the
optimal weights for combining score functions. In ad-
dition to Validity First Conformal Prediction (VFCP)
and Efficiency First Conformal Prediction (EFCP) dis-
cussed in (Yang & Kuchibhotla, 2024), we introduce
Data Leakage Conformal Prediction (DLCP) and its
variant DLCP+, which utilize all available data to en-
hance weight determination.

3. Theoretical Foundations Using VC Theory: We pro-
vide a theoretical analysis of our method that lever-
ages Vapnik–Chervonenkis theory to establish cover-
age guarantees and expected prediction set sizes. This
solid mathematical foundation underscores the validity
and efficiency of our approach across different data
splitting strategies.

Beyond its novel contributions to the conformal prediction
literature, our method is closely related to model averaging
(Claeskens & Hjort, 2008), a well-established technique
in machine learning. Unlike traditional model averaging,
which assigns weights to different models to improve predic-
tion accuracy, our method assigns weights to score functions.
This distinction requires the development of specific data
splitting techniques to ensure the desired coverage guaran-
tees. Consequently, our work can be viewed as an innovative
adaptation of model averaging principles to the conformal
prediction framework.

The remainder of the paper is organized as follows. In
Section 3, we detail our weighted averaging approach and
the various data splitting strategies employed. Section 3
presents the theoretical analysis, establishing coverage guar-
antees and expected prediction set sizes. In Section 4, we
demonstrate the effectiveness of our method through ex-
periments. Related works are discussed in Section 5. We
conclude in Section 6 and outline future research directions.

Notations. [K] denotes the set {1, . . . ,K} for positive
integer K. I1 ⊔ I2 denotes the union of the disjoint sets I1
and I2. ⟨a, b⟩ denotes the inner product of vector a and b.
|C| denotes the set size of a finite set C.

2. Methodology
2.1. Conformal Prediction for Classification

We start by assuming that a K-class classification algorithm
provides p̂y(x), which approximates P (Y = y|X = x)
for y ∈ [K]. While our method and theoretical analysis

Algorithm 1 Split Conformal Prediction

input Labeled data {(xi, yi) : i ∈ Itrain ⊔ Ical},
unlabeled data{xi : i ∈ Itest},
significance level α

output Prediction set Ĉ(xi) for i ∈ Itest
1: Train a model p̂(x) on {(xi, yi)}i∈Itrain .
2: q1−α ← ⌈(1 + |Ical|)(1− α)⌉-th largest score s(xi, yi)

for i ∈ Ical.
3: for i ∈ Itest do
4: Ĉ(xi, q1−α)← {y ∈ [K] : s(xi, y) ≥ q1−α}
5: end for

do not depend on the accuracy of this approximation, it is
beneficial to assume that higher values of p̂y(x) indicate a
greater likelihood of sample x having label y. We consider
this training procedure to be performed on a separate dataset,
ensuring that p̂y(x) is independent of the dataset used in
this paper.

We begin by defining a conformity score function, s(x, y),
which quantifies the agreement between a sample x and a
potential label y. Higher values of s(x, y) indicate a stronger
belief that y is the correct label for x. A common choice
for this score is the estimated class probability, s(x, y) =
p̂y(x) (this approach is related to scores used in methods
like (Sadinle et al., 2019), though original definitions may
vary, e.g., using non-conformity scores).

The conformal prediction procedure for classification can
then be outlined. Initially, a predictive model p̂y(x) is
trained on a dedicated training set Itrain. Subsequently, a
threshold q1−α is determined using a separate labeled cal-
ibration set Ical. This threshold is chosen such that the
conformity scores of true labels, s(xi, yi) for (xi, yi) ∈ Ical,
satisfy s(xi, yi) ≥ q1−α for at least a 1−α proportion of the
calibration samples. Finally, for any new test sample xj , this
threshold q1−α is used to construct the prediction set as the
collection of labels whose conformity scores meet or exceed
it: Ĉ(xj) = {y | s(xj , y) ≥ q1−α}. This set represents the
upper level set of the scoring function s(xj , ·).

This algorithm constructs prediction sets Ĉ(xi, q1−α) for
each i ∈ Itest, based on the conformity scores and a thresh-
old determined by the desired coverage probability 1− α.
In conformal prediction, we assume the samples in Ical and
Itest are exchangeable. The threshold q1−α is chosen to
ensure the desired coverage probability under the exchange-
ability assumption.

2.2. Various Score Functions for Classifications

In conformal prediction, the choice of score function s(x, y)
critically influences the prediction sets. These functions act
as conformity measures that quantify how appropriately a
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{(xi, yi)}i∈Itrain {(xi, yi)}i∈I3

{(xi, yi)}i∈I1
{(xi, yi)}i∈I2

q
(1)
1−α(w) by (2)

(
Ĉ(xi,w, q

(1)
1−α(w))

)
i∈I2

by (3)

ŵ by (4) q
(2)
1−α by (5)

{xi}i∈Itest

Ä
Ĉ(xi, ŵ, q

(2)
1−α)
ä
i∈Itest

by (6)

Figure 1. This example illustrates a framework for data splitting into I1, I2, I3, and Itest. Algorithm 2 presents the complete procedure.
Briefly, I1 and I2 are used in Steps 1-2 to select the optimal weight ŵ, while I3 is used in Step 3 as the calibration set for Itest predictions.
We present four options: VFCP, EFCP, DLCP, and DLCP+. Their coverage and size properties are discussed theoretically in Section 3 and
empirically in Section 4.

label matches an input.

Score functions are determined by two primary factors:
(1) The predictive model’s quality in estimating p̂y(x) ≈
P(Y = y | X = x), and (2) The specific methodology for
converting these probability estimates into scores. We will
consider approaches:

1. Threshold (THR) (Sadinle et al., 2019): sTHR(x, y) =
p̂y(x)

2. Adaptive Prediction Sets (APS) (Romano et al., 2020):
sAPS(x, y) =

∑
y′∈[K] p̂y′(x)1{p̂y′(x) ≤ p̂y(x)}

3. Rank-based (RANK) (Luo & Zhou, 2024):
sRANK(x, y) = |{y′ ∈ [K] : p̂y′(x) < p̂y(x)}|

These score functions integrate directly with Algorithm 1.
While the original formulations include additional refine-
ments to achieve exact 1− α coverage guarantees, these re-
finements do not materially affect our combination method-
ology and are omitted for simplicity. Our theoretical anal-
ysis remains invariant to specific score function design
choices. Other notable approaches like RAPS (Angelopou-
los et al., 2021) and SAPS (Huang et al., 2024) demonstrate
alternative methodologies for deriving scores from p̂y(x).

2.3. Averaging Score Functions

In (Yang & Kuchibhotla, 2024), the authors propose their
method with multiple score functions. Their approach se-
lects the score function that yields the smallest average pre-
diction set size among the available score functions. They
also introduce two data splitting methods: Efficiency First
Conformal Prediction (EFCP) and Validity First Conformal
Prediction (VFCP).

Given a vector of score functions s(x, y) =

(s1(x, y), . . . , sd(x, y))
⊤, instead of simply choosing

the score that provides the smallest prediction set on a
calibration set, we propose assigning weights w ∈ W ⊆ Rd

to the conformity scores and defining the weighted score
function:

⟨w, s(x, y)⟩ =
d∑

j=1

wjsj(x, y). (1)

By leveraging different scores to create a completely new
score function, we expect the weighted score to outperform
any individual score. This approach allows for more flexi-
bility in combining the strengths of various score functions,
potentially leading to improved prediction set efficiency.

2.4. The Optimal Weight and the Threshold

In this section, we present a detailed procedure for deter-
mining the optimal weight vector w in the context of the
weighted score approach introduced in (1). This procedure
extends Algorithm 1 by incorporating an additional step
to minimize the expected size of the prediction set. The
following steps outline the process:

1. Train the model p̂ using samples in Itrain and obtain the
score functions s1, . . . , sd.

2. Extract I1, I2, I3 from the Ival. We can first assume
they are partitions of Ival. More options will be de-
scribed in Section 2.5.

3. Let W ⊆ Rd be the set for the candidates of w can-
didates. A typical choice is the a discretized simplex
W = ∆d−1. We systematically explore candidate
weights via grid search with step size ε = 0.01, as
detailed in Appendix A.
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Algorithm 2 Conformal Score Averaging

input Labeled data {(xi, yi) : i ∈ Ival},
unlabeled data{xi : i ∈ Itest},
significance level α,
score functions s = (s1, . . . , sd),
set of possible weights: W ⊆ Rd

output Prediction set Ĉ(xi) for i ∈ Itest
1: Decide I1 ⊆ Ival, I2 ⊆ Ival ∪ Itest, and I3 ⊆ Ival.
2: for w ∈ W do
3: ▷ Compute quantile for every w:
4: q

(1)
1−α(w)← Calibration(I1, s,w, α)

5: for i ∈ I2 do
6: ▷ Find a temporary prediction set:
7: C̃(xi;w)← Evaluation(xi, s,w, q

(1)
1−α(w))

8: ▷ Compute average prediction set size:
9: S(w) = 1

|I2|
∑

i∈I2
|C̃(xi;w)|

10: end for
11: end for
12: ▷ Find the most efficient w:
13: ŵ ← argminw∈W S(w)
14: ▷ Compute quantile for ŵ:
15: q

(2)
1−α ← Calibration(ŵ, I3, α)

16: ▷ Find the final prediction set:
17: for i ∈ Itest do
18: Ĉ(xi, ŵ)← Evaluation(xi, s, ŵ, q

(2)
1−α)

19: end for
20: Return Ĉ(xi, ŵ) for i ∈ Itest

4. Calculate the threshold for every w ∈ W on I1. In the
set I1, calculate the threshold for every w ∈ W:

q
(1)
1−α(w) = ⌈(1 + |I1|)(1− α)⌉-th largest

value of {⟨w, s(xi, yi)⟩ : i ∈ I1}.
(2)

5. Determine the prediction set for data in I2. For a given
w and threshold q

(1)
1−α(w), define the prediction set for

each sample xi, i ∈ I2 as:

C̃(xi,w) = {y ∈ [K] : ⟨w, s(xi, y)⟩ ≥ q
(1)
1−α(w)}.

(3)
These are the prediction sets for all w ∈ W . Our goal
is to minimize the prediction set size. This intuitively
leads to the next step.

6. The optimal weight vector ŵ is obtained by minimiz-
ing the empirical prediction set size:

ŵ ∈ arg min
w∈W

1

I2

∑
i∈I2

|C̃(xi,w)|. (4)

7. For given ŵ, I3 is treated as the calibration set Algo-

Function 1 Calibration
input Labeled data {(xi, yi) : i ∈ I},

score functions s = (s1, . . . , sj),
weight w ∈ W ,
significance level α

output q1−α

1: q1−α ← ⌈(1 + |I|)(1 − α)⌉-th largest score
⟨w, s(xi, yi)⟩ from scores computed for i ∈ I.

2: Return q1−α.

Function 2 Evaluation
input Unlabeled data x,

score functions s = (s1, . . . , sj),
weight w ∈ W ,
quantile q

output Ĉ(x)

1: Ĉ(x)← {y ∈ [K] : ⟨w, s(x, y)⟩ ≥ q1−α}.
2: Return Ĉ(x)

rithm 1, and we obtain:

q
(2)
1−α = ⌈(1+|I3|)(1− α)⌉-th largest (5)

value of {⟨ŵ, s(xi, yi)⟩ : i ∈ I3}.

If I1 = I3, then this quantile has been computed in (2),
i.e., q(2)1−α = q

(1)
1−α(ŵ).

8. The final output is the confidence set for samples i ∈
Itest in the test set:

Ĉ(xi, ŵ) = {y ∈ [K] : ⟨ŵ, s(xi, y)⟩ ≥ q
(2)
1−α}. (6)

This procedure comprises two primary steps: Threshold
Calibration: Determining appropriate thresholds using
Equations (2) and (5) based on the calibration subsets I1 and
I3. Prediction Set Evaluation: Constructing the prediction
sets for I2 and Itest as outlined in Equations (3) and (6).
These steps are encapsulated in Function 1 and Function 2,
respectively. The entire procedure of the proposed method
is summarized in Algorithm 2.

2.5. Data Splitting

In Algorithm 2, the method for splitting the data into I1,
I2, and I3 has not been specified. To explore potential
data splitting approaches, we first highlight the following
two key observations. Firstly, After determining ŵ, the
calibration procedure (5) and prediction set construction (6)
mirror the step of finding quantile and prediction set in
Algorithm 1. Prior steps aim to identify a weight vector w
optimizing algorithm performance. Secondly, (2) and (5)
find quantiles, requiring sample labels. Equations (3) and (6)
define prediction sets, needing only feature x. Thus, the test
set can be included in (3) and (6).
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Based on the observations above, we introduce the following
four possible ways of data splitting.

(a) Validity First Conformal Prediction (VFCP) (Yang
& Kuchibhotla, 2024): I1 = I2 ⊆ Ival, and I3 =
Ival \ I1. Divides Itrain into two partitions. Marginal
coverage probability is guaranteed to be at least 1− α
under exchangeability of samples in I3 and Itest.

(b) Efficiency First Conformal Prediction (EFCP) (Yang
& Kuchibhotla, 2024): I1 = I2 = I3 = Itrain. Uses
all training data to determine ŵ, resulting in more
accurate estimation of optimal w. This method equires
stronger assumptions for coverage guarantee.

(c) Data Leakage Conformal Prediction (DLCP): I1 =
I3 = Itrain, and I2 = Itest. Minimizes prediction set
on Itest in finding ŵ in (4). Called "data leakage" as it
uses test data in training procedure of ŵ.

(d) Data Leakage Conformal Prediction+ (DLCP+): I1 =
I3 = Itrain and I2 = Itrain ∪ Itest. Uses all available
data in each step, including Itest in I2 to maximize
sample size for finding ŵ in (4).

There are various possible methods for data splitting. In
the following sections, we focus on these four specific ap-
proaches, examining their theoretical properties and evalu-
ating their performance through experiments.

3. Theoretical Analysis
3.1. Overview of the Results

We investigate the theoretical properties of the proposed
methods in terms of validity and efficiency.

Validity: We assess whether the output prediction set
achieves the desired coverage rate of 1− α. For the VFCP
method, the coverage rate is guaranteed under the exchange-
ability assumption. However, for the other three methods,
establishing validity is more complex due to the selection
bias introduced by ŵ. Consequently, our aim is to demon-
strate that the optimization over w ∈ W has small impact
on validity.

Efficiency: We observe that the prediction set attains the
smallest possible expected size only if the true conditional
probabilities p(y|x) are known. In this section, let us define

Ĉ(x,w, q) = {y ∈ [K] : ⟨w, s(x, y)⟩ ≥ q}.

We can define the population level optimal weight

w∗ = arg min
w∈W

min
q∈R

E
î
|Ĉ(X,w, q)|

ó
s.t. P

Ä
Y ∈ Ĉ(X,w, q)

ä
≥ 1− α.

w∗ is the weight vector that minimizes the expected predic-
tion set size while ensuring that, together with an appropriate

threshold q, the prediction set maintains a desired coverage
rate of 1− α. Equivalently, we can define

q1−α(w) := sup{q ∈ R : P(Y ∈ Ĉ(X,w, q)) ≥ 1− α}

and using this definition, we define

w∗ ∈ arg min
w∈W

E
î
|Ĉ(X,w, q1−α(w))|

ó
.

Since w∗ and q1−α(w
∗) are deterministic once α and the

true distribution are given, we can succinctly denote the
optimal prediction set for x:

Ĉ∗
1−α(x) := Ĉ(x,w∗, q1−α(w

∗)).

Our analysis of efficiency focuses on the difference between
the size of the prediction set produced by the proposed
methods using ŵ and the expected size of Ĉ∗

1−α(x). In
other words, we analyze the discrepancy between the pre-
diction set sizes generated by ŵ and the optimal w∗. We
will demonstrate that this difference is negligible given a
sufficiently large dataset.

We note that this analysis differs from verifying whether ŵ
converges to w∗, which would require assumptions about
the smoothness of the function mapping the weight to the
prediction set size. Instead, our analysis makes fewer as-
sumptions on the optimal prediction set size.

3.2. Results by Vapnik–Chervonenkis Theory

We begin by defining the following events on the prob-
ability space of pairs of exchangeable random variables
(Xi, Yi)i∈I . The event Ω(I, η) is defined as:

sup
w∈Rd,q∈R

∣∣∣ 1

|I|
∑
i∈I

1{⟨w, s(Xi, Yi)⟩ ≥ q}

− EX,Y [1{⟨w, s(X,Y )⟩ ≥ q}]
∣∣∣ ≤ η,

(7)

where (X,Y ) has the same distribution as (X1, Y1) and
the expectation is for the joint distribution of (X,Y ). Let
Γ(I, ξ) denotes the event

sup
w∈Rd,q∈R

∣∣∣ 1

|I|
∑
i∈I

∑
y∈[K]

1{⟨w, s(Xi, y)⟩ ≥ q}

− EX

 ∑
y∈[K]

1{⟨w, s(X, y)⟩ ≥ q}

 ∣∣∣ ≤ ξ,

(8)

Here, the expectation is taken over X only.

Ω(I, η) is about the uniform concentration of the coverage,
and Γ(I, ξ) is about the uniform concentration of the pre-
diction set size. This is because by the definition of Ĉ1−α
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in (2) or (5),

1{⟨w, s(x, y)⟩ ≥ q} = 1
{
y ∈ Ĉ1−α(x,w, q)

}
and∑

y∈[K]

1{⟨w, s(x, y)⟩ ≥ q} =
∣∣Ĉ1−α(x,w, q)

∣∣.
The following lemma shows that these two events hold with
high probability.
Lemma 1. Suppose the samples in I are i.i.d., then

(a) Ω
(
I, 8

√
(d+1) log(|I|+1)

|I| + δ
)

hold with probability

at least 1− exp
(
− |I|δ2

2

)
.

(b) Γ
(
I, 8K

√
(d+1) log(|I|+1)

|I| +Kδ
)

hold with proba-

bility at least 1− exp
(
− |I|δ2

2

)
.

The proof of this lemma appears in Section B in the ap-
pendix. This lemma establishes that Ω(I, η) and Γ(I, ξ)
hold with high probability provided that η, ξ ≳

√
d log |I|

|I| .
The proof, presented in the appendix, applies subgraph
classes from Vapnik-Chervonenkis (VC) theory. Addition-
ally, if the inequalities in Equations (7) and (8) hold for
w ∈ Rd, they naturally extend to w ∈ W ⊂ Rd.
Remark. Part (b) of Lemma 1 limits the generalization of
our current theoretical results to classification tasks. Com-
pared to the bound in Equation (7) (for coverage), the bound
in Equation (8) (for prediction set size) involves a summa-
tion over the K classes. In our proof, this summation is
handled using a union bound over y ∈ [K] when analyzing
the concentration of individual terms 1{⟨w, s(X, y)⟩ ≥ q}.
However, for regression tasks where prediction sets are
typically intervals and their size is measured by Lebesgue
measure, a simple union bound over discrete classes is not
directly applicable. Therefore, our primary theoretical anal-
ysis focuses on classification.

Nonetheless, our framework shows promise for certain re-
gression settings. Consider the class of prediction sets
A := {{y : ⟨w, s(x, y)⟩ ≥ t} : w ∈ Rd, t ∈ R}. If
the individual score functions sj(x, y) are concave in y (for
non-negative weights wj ≥ 0), then the weighted score
⟨w, s(x, y)⟩ is also concave in y. In such cases, the super-
level sets {y : ⟨w, s(x, y)⟩ ≥ t} are intervals (or empty, or
the whole real line). The class of all intervals in R has a VC
dimension of 2. If the weighted score functions in a regres-
sion context produce such interval-valued prediction sets,
the analysis of prediction set size concentration might sim-
plify considerably, potentially avoiding the K-dependency.
This suggests that our method could be extended to handle
weighted averages of concave score functions in regression,
such as those used in Conformalized Quantile Regression
(CQR) (Romano et al., 2019), a direction we leave for future
research.

3.3. Consistency of VFCP

The statistical guarantees of VFCP requires a few additional
assumptions, e.g., the continuity between the quantile and
the prediction set. To get rid off such assumptions and
present the result in a neater way, we will only prove a
modified version of VFCP. We will change α in (2) to a
slightly smaller α′. The condition for α′ will be specified in
the theorem.

Theorem 1. Let ĈVFCP
1−α (x) be the output of Algorithm 2 with

the setting of VFCP, and modified as mentioned above. Sup-
pose the samples in {(Xi, Yi)}i∈I3∪Itest are exchangeable,
then for (X,Y ) in the test set, the coverage probability

P
Ä
Y ∈ ĈVFCP

1−α (X)
ä
≥ 1− α.

Moreover, if Ω(I1, η1),Ω(I3, η3) and Γ(I2, ξ2) are satis-
fied, and α′ + η1 + η3 ≤ α, then for test sample X ,

E
î∣∣ĈVFCP

1−α (X)
∣∣ó ≤ E

î∣∣Ĉ∗
1−α1

(X)
∣∣ó+ 2ξ2,

where 1− α1 = 1
|I3|

⌈(1 + |I3|)(1− α′)⌉ − η3.

The proofs of all theorems appear in Section C and Sec-
tion D and the appendix.

The validity of VFCP requires minimal assumption (ex-
changeability), while it is less efficient than other method.
We will verify this fact in empirical studies.

3.4. Consistency of EFCP

In the setting of EFCP, I1 = I2 = I3 = Ival. We denote
this set by Ival.

Theorem 2. Let ĈEFCP
1−α (x) be the output of Algorithm 2 with

the setting of EFCP. Suppose the data in Ival and Itest are
independent and Ω(Ival, ηval) is satisfied. Then for (X,Y )
in the test set, the coverage probability

P
Ä
Y ∈ ĈEFCP

1−α (X)
ä
≥ 1− α1 where

1− α1 =
1

|Ival|
⌈(1 + |Ival|)(1− α)⌉ − ηval.

Moreover, if Γ(Ival, ξval) is satisfied, then for any X in the
test set,

E
î∣∣ĈEFCP

1−α (X)
∣∣ó ≤ E

î∣∣Ĉ∗
1−α1

(X)
∣∣ó+ 2ξval.

3.5. Consistency of DLCP

In the setting of DLCP, I1 = I3 = Ival and I2 = Itest. We
will denote this by Ival and Itest respectively. In this case,
the test set and ŵ become dependent. The prediction set
size is presented differently than previous results.

Theorem 3. Let ĈDLCP
1−α (x)) be the output of Algorithm 2

for a test sample x with the setting of DLCP. Suppose
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Ω(Ival, ηval) and Ω(Itest, ηtest) hold, then the coverage pro-
portion satisfies

1

|Itest|
∑

i∈Itest

1{yi ∈ ĈDLCP
1−α (xi)} ≥ 1− α1 − ηtest where

1− α1 =
1

|Ival|
⌈(1 + |Ival|)(1− α)⌉ − ηval.

In addition, if Γ(Itest, ξtest) holds, then

1

|Itest|
∑
i∈Itest

|ĈDLCP
1−α (xi)| ≤ E

î∣∣Ĉ∗
1−α1

(X)
∣∣ó+ ξtest.

3.6. Consistency of DLCP+

Similar as the DLCP setting, ŵ depends on the test set, so
the result of prediction set size is presented in a similar way.
In the following theorem, we use I2 to denote Ival ∪ Itest.

Theorem 4. Let ĈDLCP+
1−α (x, ŵ)) be the output of Algo-

rithm 2 with the setting of DLCP+. Suppose Ω(Ival, ηval)
and Ω(Itest, ηtest) hold, then the coverage proportion

1

|Itest|
∑
i∈Itest

1{yi ∈ ĈDLCP+
1−α (xi, ŵ)} ≥ 1− α′ − ηtest

where 1− α′ =
1

|Ival|
⌈(1 + |Ival|)(1− α)⌉ − ηval.

In addition, if Γ(I2, ξ2) holds, then for test sample X ,

E[|ĈDLCP+
1−α (X)|] ≤ E

î∣∣Ĉ∗
1−α′(X)

∣∣ó+ 2ξ2.

3.7. Conclusion of Theoretical Results

We integrate the results of Lemma 1 with our main theo-
rems. The Lemma 1 indicates that as the size of the set
I approaches infinity, the events Ω(I, η) and Γ(I, ξ) hold
with probability 1− o(1) even if η, ξ → 0 is at a sufficient
slow rate. Consequently, the terms ηi and ξi in our theo-
rems become negligible. This suggests that the proposed
methods achieve coverage rates close to 1− α and exhibit
near-optimal efficiency.

4. Experiments
4.1. Score Weighting

We conducted an experiment to compare the performance
of various score functions score functions discussed in Sec-
tion 2.2: THR (Sadinle et al., 2019), APS (Romano et al.,
2020), and RANK (Luo & Zhou, 2024) given by a pretrained
classifier p̂y(x). Additional details about implementation
can be found in Section E in the appendix. Throughout the
experiment, we assumed that a pretrained classifier p̂y(x)
was available, and the split of the dataset unseen during the
training of the pretrained classifier.
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Figure 2. Boxplot comparison of different score functions at a
significance level of α = 0.01 on CIFAR-100. Our weighted
combination method achieves the guaranteed coverage of 99%
while maintaining the smallest prediction set size.
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Figure 3. Comparison of size vs. coverage for various score func-
tions and our proposed method across α values (0.01-0.05). Our
weighted combination method (red) consistently outperforms the
other baseline methods by achieving the desired coverage rate with
smaller prediction set sizes.

In the experiments on CIFAR-10 and CIFAR-100, testing
images, which were not used during the pretraining of the
model, were used as the Itrain and Itest sets. The experiments
were performed for different significance levels α ranging
from 0.01 to 0.05. 100 runs with different index splits
were conducted to ensure robustness. We have additional
experiments on data splitting ratio, which can be found in
Section G in the supplementary file.

The primary objective of our experiments was to evaluate
the performance of the proposed weighted score function
in comparison with three foundational base score functions:
APS, THR, and RANK. Additionally, we compared our
method against two competitive baseline score functions,
RAPS (Angelopoulos et al., 2021) and SAPS (Huang et al.,
2024).

Figure 2 compares coverage and prediction set sizes across
methods at α = 0.01 on CIFAR-100, while Figure 3 eval-
uates performance across α ∈ [0.01, 0.05]. Using VFCP
splits for consistency, our method achieves guaranteed cov-
erage with the smallest prediction sets overall. The advan-
tages are particularly pronounced on CIFAR-10 across all α
values and on CIFAR-100 for α ≤ 0.02.
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α = 0.01 α = 0.05
Method Coverage Size Coverage Size
VFCP 0.990 (0.003) 13.782 (1.114) 0.950 (0.005) 3.890 (0.266)
EFCP 0.989 (0.003) 13.306 (0.464) 0.949 (0.005) 3.754 (0.096)
DLCP 0.989 (0.003) 13.298 (0.461) 0.949 (0.005) 3.752 (0.097)
DLCP+ 0.989 (0.003) 13.299 (0.459) 0.949 (0.005) 3.753 (0.097)
APS 0.990 (0.003) 40.217 (1.786) 0.949 (0.006) 19.545 (1.022)
THR 0.989 (0.003) 26.949 (2.198) 0.949 (0.006) 4.519 (0.381)
RANK 0.990 (0.003) 27.161 (2.421) 0.950 (0.006) 6.298 (0.395)
RAPS 0.990 (0.003) 26.403 (2.505) 0.950 (0.005) 5.581 (0.263)
SAPS 0.990 (0.003) 25.096 (2.298) 0.950 (0.006) 5.036 (0.302)

Table 1. Coverage and size of different methods for α = 0.01 and
α = 0.05 on CIFAR-100 dataset. Results are shown as mean
(standard deviation). The first four methods corresponds to the
splitting methods in Section 2.5.

Notably, THR exhibits strong performance on less chal-
lenging tasks (CIFAR-10), where our weighting scheme
naturally assigns it dominant weights. In these cases, score
averaging provides limited improvement. However, for
complex multi-class scenarios (CIFAR-100) or stringent sig-
nificance levels (α < 0.05), our method demonstrates clear
superiority by optimally combining score functions.

Furthermore, to explore the influence of different data split-
ting strategies (as discussed in Section 2.4), we conducted
additional comparisons of our weighted score function using
various split approaches. We also included the performance
results of the five individual score functions when utilizing
the VFCP split method. Table 1 provides a comprehensive
summary of the coverage and size metrics at significance
levels of α = 0.01 and α = 0.05. These results highlight
the effectiveness of the different data splitting strategies. It is
important to note that while APS aims to achieve conditional
coverage, the other methods, including our approach, do
not specifically target conditional coverage. Consequently,
it is not surprising that the alternative methods exhibit bet-
ter efficiency compared to APS. Additional experimental
results comparing our method with baseline approaches and
Synergy Conformal Prediction on MNIST, Fashion-MNIST,
and ImageNet-Val datasets are provided in Appendix F.

4.2. Model Weighting

In addition to choosing the score functions in Section 2.2,
we further conducted an experiment to compare the per-
formance of various models and their weighted combi-
nations for prediction set construction on CIFAR-10 and
CIFAR-100. For CIFAR-10, we used the models ResNet-
56, ShuffleNetV2 (1.0x), and VGG16-BN. For CIFAR-100,
we used the models VGG16-BN, RepVGG-A2, and Mo-
bileNetV2 (1.0x). The performance of the weighted combi-
nation method was compared against individual models.

Specifically, for each of the four score functions: THR,
APS, RAPS, and SAPS, we generated prediction sets by
combining the scores of different models using weights

selected by our proposed method. The results are visualized
in Figures 4 and 5, which demonstrate the effectiveness
of our weighted combination method in terms of weighing
scores of different models.
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Figure 4. Across various score functions, our weighted combina-
tion of models outperformed any individual model and achieved
optimal size on the CIFAR-10 dataset across α values (0.01–0.05).

5. Related Work
Conformal prediction (CP) (Vovk et al., 2005) is a method-
ology designed to generate prediction regions for variables
of interest, facilitating the estimation of model uncertainty
by providing prediction sets rather than point estimates. CP
has been successfully applied to both classification (Luo
& Zhou, 2024; Luo & Colombo, 2024) and regression
tasks (Luo & Zhou, 2025c;d). Its flexibility allows adap-
tation to various real-world scenarios, including segmenta-
tion (Luo & Zhou, 2025a), games (Luo et al., 2024; Bao
et al., 2025), time-series forecasting (Su et al., 2024), and
graph-based applications (Luo et al., 2023; Tang et al., 2025;
Luo & Zhou, 2025b; Wang et al., 2025; Luo & Colombo,
2025; ?).

Our work builds upon advances in conformal prediction, par-
ticularly in model averaging and calibration. In model aggre-
gation, Yang et al. (Yang & Kuchibhotla, 2024) introduced
two selection algorithms to minimize the width of prediction
intervals by aggregating and selecting from multiple regres-
sion estimators. Various VC dimension techniques have
been employed in (Yang & Kuchibhotla, 2024) and (Candès
et al., 2023): in Section D.2 of (Yang & Kuchibhotla, 2024),
the uniform probability bound is established over a finite
set, whereas (Candès et al., 2023) considers maximization
over real numbers. However, neither approach incorporates
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Figure 5. Across various score functions, our weighted combina-
tion of models outperformed any individual model and achieved op-
timal size on the CIFAR-100 dataset across α values (0.01–0.05).

subgraph theory techniques as in our method. Additionally,
the model aggregation methods in (Carlsson et al., 2014; Li-
nusson et al., 2017) can combine predictions from multiple
models for conformal prediction, but they do not emphasize
optimizing efficiency.

A concurrent preprint (Liang et al., 2024) examines
parametrized score functions sλ(x, y) for λ ∈ Λ within
regression settings. While their general framework supports
arbitrary parameter spaces, it faces challenges in control-
ling Rademacher complexity, except in certain specialized
cases. In contrast, our approach linearly combines pre-
defined score functions, introducing a structural constraint
that allows theoretical guarantees to depend solely on the
number of constituent scores, rather than the complexity of
the function class.

6. Conclusion and Discussion
Our weighted score aggregation method enables efficient
and valid prediction set construction for multi-class classifi-
cation through optimized combinations of score functions
and strategic data splitting. Theoretically, we establish finite-
sample coverage guarantees and oracle inequalities quanti-
fying the efficiency gap between our method and optimal
weights. Empirically, experiments demonstrate consistent
maintenance of coverage requirements with minimal pre-
diction set sizes compared to single-score baselines. This
work bridges model averaging and conformal prediction,
providing a flexible framework for uncertainty quantifica-
tion that adapts to dataset characteristics through optimal

score combinations.

These results suggest several directions for future work:

1. Regression Extension: Algorithmic adaptation to re-
gression requires new theoretical tools due to contin-
uous output spaces, where finite-class union bounds
become inapplicable. Potential approaches include
metric entropy analysis or covering number techniques.

2. Optimization Enhancement: Developing gradient-
based alternatives to grid search, such as differentiable
conformal objectives or online weight adaptation dur-
ing model training, would improve scalability with
many score functions.

Acknowledgment
This work was partially supported by Hong Kong RGC and
City University of Hong Kong grants (Project No. 9610639
and 6000864), DFG grant No. 389792660, and Volkswa-
genStiftung Grant AZ 98514. Zhixin Zhou’s research was
supported by the Genesis Award for Scientific Breakthrough
from Alpha Benito LLC.

Impact Statement
This work contributes to the broader goal of improving ma-
chine learning models’ reliability and uncertainty quantifi-
cation, which has the potential for positive societal impact
across various domains.

References
Angelopoulos, A. N., Bates, S., Jordan, M., and Malik, J.

Uncertainty sets for image classifiers using conformal
prediction. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=eNdiU_DbM9.

Angelopoulos, A. N., Bates, S., et al. Conformal predic-
tion: A gentle introduction. Foundations and Trends® in
Machine Learning, 16(4):494–591, 2023.

Bao, J., Dang, C., Luo, R., Zhang, H., and Zhou, Z. En-
hancing adversarial robustness with conformal prediction:
A framework for guaranteed model reliability. In Pro-
ceedings of the Forty-second International Conference
on Machine Learning (ICML), 2025. to appear.

Candès, E., Lei, L., and Ren, Z. Conformalized survival
analysis. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 85(1):24–45, 2023.

Carlsson, L., Eklund, M., and Norinder, U. Aggregated con-
formal prediction. In Artificial Intelligence Applications
and Innovations: AIAI 2014 Workshops: CoPA, MHDW,

9

https://openreview.net/forum?id=eNdiU_DbM9
https://openreview.net/forum?id=eNdiU_DbM9


Conformity Score Averaging for Classification

IIVC, and MT4BD, Rhodes, Greece, September 19-21,
2014. Proceedings 10, pp. 231–240. Springer, 2014.

Claeskens, G. and Hjort, N. L. Model selection and model
averaging. Cambridge books, 2008.

Colombo, N. On training locally adaptive cp. In Conformal
and Probabilistic Prediction with Applications, pp. 384–
398. PMLR, 2023.

Colombo, N. Normalizing flows for conformal regression.
In The 40th Conference on Uncertainty in Artificial Intel-
ligence, 2024. URL https://openreview.net/
forum?id=acgwLdoB3d.

Gauraha, N. and Spjuth, O. Synergy conformal prediction.
In Conformal and Probabilistic Prediction and Applica-
tions, pp. 91–110. PMLR, 2021.

Guan, L. Localized conformal prediction: A generalized in-
ference framework for conformal prediction. Biometrika,
110(1):33–50, 2023.

Huang, J., Xi, H., Zhang, L., Yao, H., Qiu, Y., and Wei, H.
Conformal prediction for deep classifier via label ranking,
2024. URL https://openreview.net/forum?
id=zkVm3JqJzs.

Kivaranovic, D., Johnson, K. D., and Leeb, H. Adaptive,
distribution-free prediction intervals for deep networks.
In International Conference on Artificial Intelligence and
Statistics, pp. 4346–4356. PMLR, 2020.

Lei, J. and Wasserman, L. Distribution-free prediction bands
for non-parametric regression. Journal of the Royal Sta-
tistical Society: Series B: Statistical Methodology, pp.
71–96, 2014.

Liang, R., Zhu, W., and Barber, R. F. Conformal prediction
after efficiency-oriented model selection. arXiv preprint
arXiv:2408.07066, 2024.

Linusson, H., Norinder, U., Boström, H., Johansson, U., and
Löfström, T. On the calibration of aggregated conformal
predictors. In Conformal and probabilistic prediction and
applications, pp. 154–173. PMLR, 2017.

Luo, R. and Colombo, N. Entropy reweighted conformal
classification. In The 13th Symposium on Conformal and
Probabilistic Prediction with Applications, pp. 264–276.
PMLR, 2024.

Luo, R. and Colombo, N. Conformal load prediction with
transductive graph autoencoders. Machine Learning, 114
(3):1–22, 2025.

Luo, R. and Zhou, Z. Trustworthy classification through
rank-based conformal prediction sets. arXiv preprint
arXiv:2407.04407, 2024.

Luo, R. and Zhou, Z. Conditional conformal risk adaptation.
arXiv preprint arXiv:2504.07611, 2025a.

Luo, R. and Zhou, Z. Conformalized interval arithmetic with
symmetric calibration. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pp. 19207–
19215, 2025b.

Luo, R. and Zhou, Z. Conformal thresholded intervals for ef-
ficient regression. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 19216–19223,
2025c.

Luo, R. and Zhou, Z. Volume-sorted prediction set: Efficient
conformal prediction for multi-target regression. arXiv
preprint arXiv:2503.02205, 2025d.

Luo, R., Nettasinghe, B., and Krishnamurthy, V. Anoma-
lous edge detection in edge exchangeable social network
models. In Conformal and probabilistic prediction with
applications, pp. 287–310. PMLR, 2023.

Luo, R., Bao, J., Zhou, Z., and Dang, C. Game-theoretic
defenses for robust conformal prediction against ad-
versarial attacks in medical imaging. arXiv preprint
arXiv:2411.04376, 2024.

Manokhin, V. Awesome conformal prediction. If you use
Awesome Conformal Prediction. please cite it as below,
2022.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman,
A. Inductive confidence machines for regression. In Ma-
chine Learning: ECML 2002: 13th European Conference
on Machine Learning Helsinki, Finland, August 19–23,
2002 Proceedings 13, pp. 345–356. Springer, 2002.

Papadopoulos, H., Gammerman, A., and Vovk, V. Normal-
ized nonconformity measures for regression conformal
prediction. In Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications
(AIA 2008), pp. 64–69, 2008.

Papadopoulos, H., Vovk, V., and Gammerman, A. Regres-
sion conformal prediction with nearest neighbours. Jour-
nal of Artificial Intelligence Research, 40:815–840, 2011.

Romano, Y., Patterson, E., and Candes, E. Conformalized
quantile regression. Advances in neural information pro-
cessing systems, 32, 2019.

Romano, Y., Sesia, M., and Candes, E. Classification with
valid and adaptive coverage. Advances in Neural Infor-
mation Processing Systems, 33:3581–3591, 2020.

Sadinle, M., Lei, J., and Wasserman, L. Least ambiguous
set-valued classifiers with bounded error levels. Journal
of the American Statistical Association, 114(525):223–
234, 2019.

10

https://openreview.net/forum?id=acgwLdoB3d
https://openreview.net/forum?id=acgwLdoB3d
https://openreview.net/forum?id=zkVm3JqJzs
https://openreview.net/forum?id=zkVm3JqJzs


Conformity Score Averaging for Classification

Su, X., Zhou, Z., and Luo, R. Adaptive conformal inference
by particle filtering under hidden markov models. arXiv
preprint arXiv:2411.01558, 2024.

Tang, L., Luo, R., Zhou, Z., and Colombo, N. Enhanced
route planning with calibrated uncertainty set. Machine
Learning, 114(5):1–16, 2025.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Vovk, V., Nouretdinov, I., Manokhin, V., and Gammerman,
A. Cross-conformal predictive distributions. In conformal
and probabilistic prediction and applications, pp. 37–51.
PMLR, 2018.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wang, T., Zhou, Z., and Luo, R. Enhancing trustworthiness
of graph neural networks with rank-based conformal train-
ing. Proceedings of the AAAI Conference on Artificial
Intelligence, 39(20):21261–21268, 2025.

Yang, Y. and Kuchibhotla, A. K. Selection and aggregation
of conformal prediction sets. Journal of the American
Statistical Association, pp. 1–13, 2024.

11



Conformity Score Averaging for Classification

A. Grid Search Implementation
To solve (4), we discretize the probability simplex:

∆d−1 =

w ∈ Rd
+ :

d∑
j=1

wj = 1


using a grid resolution ε = 0.01. Candidate weights are generated as:

W =

w = (k1ε, . . . , kdε)

∣∣∣∣ kj ∈ N,
d∑

j=1

kj = ⌈1/ε⌉

 ,

yielding
(⌈1/ε⌉+d−1

d−1

)
distinct weight vectors. For d = 3 scores, this produces 5,151 candidates, ensuring comprehensive

coverage of the parameter space while remaining computationally tractable through parallel evaluation.

B. Proof of Lemma 1
B.1. VC Dimension of the Subgraph Classes

Proposition 1. Both of the following classes of functions

{(x, y) 7→ 1{⟨w, s(x, y)⟩ ≥ t} : w ∈ Rd, t ∈ R} (9)

and

{x 7→ 1{⟨w, s(x, y)⟩ ≥ t} : w ∈ Rd, t ∈ R}, (10)

where y ∈ [K] is fixed, have VC-dimension at most d+ 1.

Proof. Both of the classes are the subgraph classes of vector space of functions with dimension d+ 1. By Proposition 4.20
of (Wainwright, 2019), these subgraph classes have dimension at most d+ 1. This is also a direct result of Example 4.21 in
the book.

B.2. Proof of the Lemma

This proof basically follows from Vapnik–Chervonenkis theory. We will use the theorems and lemmas in (Wainwright,
2019) as reference. The proof of both parts of the lemma are almost identical. We will focus on part (a). Let ϵi, i ∈ I be
i.i.d. symmetric random variables take value −1 or 1, i.e., P(ϵi = −1) = P(ϵi = 1) = 0.5. Then we define the Rademacher
complexity for the function class in (9),

R(I) := E

[
sup
w,t

∣∣∣∣∣ 1

|I|
∑
i∈I

ϵi1{⟨w, s(Xi, Yi)⟩ ≥ t}
∣∣∣∣∣
]
.

By Theorem 4.10 in the book,

P (Ω (I, 2R(I) + δ)) ≥ 1− exp

Å
−|I|δ

2

2

ã
. (11)

By Proposition 1, the VC dimension of the function class in (9) is d+ 1. Then altogether with Lemma 4.14 and Proposition
4.18 in the book,

R(I) ≤ 4

 
(d+ 1) log(|I|+ 1)

|I|
(12)
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We combine (11) and (12) to obtain the result of part (a). The proof of part (b) of the lemma follows analogously, using the
VC dimension result for the function class in (10). Let us define

Γy(I, η) = sup
w∈Rd,t∈R

∣∣∣∣∣ 1

|I|
∑
i∈I

1{⟨w, s(Xi, y)⟩ ≥ t} − E[1{⟨w, s(X, y)⟩ ≥ t}]
∣∣∣∣∣ ≤ η.

For I ⊆ Itrain ∪ Itest,

P
Ç
Γy

Ç
I, 8
 

(d+ 1) log(|I|+ 1)

|I|
+ δ

åå
≥ 1− exp

Å
−|I|δ

2

2

ã
.

It is clear that ⋃
y∈[K]

Γy(I, η) ⊆ Γ(I,Kη).

Taking the union bound on y ∈ [K] implies the result of part (b).

C. Preliminary Lemmas for the Theorems
C.1. Bounds for Coverage Probability

The following result requires the data for optimizing ŵ are independent with the calibration set and the test set. The
algorithm satisfying these conditions have the most reliable coverage probability.

Lemma 2. Let Ĉ1−α(x) be the output of Algorithm 2. Suppose

(i) {(Xi, Yi)}i∈I3∪Itest are exchangeable.

(ii) {(Xi, Yi)}i∈I1∪I2
and {(Xi, Yi)}i∈I3∪Itest are independent.

Then for (X,Y ) in the test set, the coverage probability

P(Y ∈ Ĉ1−α(X)) ≥ 1− α.

Proof. ŵ only depends on {(Xi, Yi)}i∈I1∪I2 , so it is independent of {(Xi, Yi)}i∈I3∪Itest . The weighted score function
{⟨ŵ, s(Xi, Yi)⟩}i∈I3∪Itest are also exchangeable. For any (X,Y ) in the test set, the rank of s(X,Y ) is smaller than
q1−α(ŵ, I3) with probability ⌈(1+|I3|)(1−α)⌉

1+|I3| ≥ 1− α.

Lemma 3. Let Ĉ1−α(x) be the output of Algorithm 2. Suppose

(i) Ω(I3, η3) is satisfied.

(ii) {(Xi, Yi)}i∈I1∪I2
and {(Xi, Yi)}i∈Itest are independent.

Then for (X,Y ) in the test set, the coverage probability

P(Y ∈ Ĉ1−α(X)) ≥ 1

|I3|
⌈(1 + |I3|)(1− α)⌉ − η3.

Proof. Let us write the threshold in (5) q(2)1−α := q1−α(ŵ, I3) to emphasize that this quantile depends on ŵ and the samples
in I3. By the procedure of the algorithm, we have

P
Ä
Y ∈ Ĉ1−α(X)

ä
= P (⟨ŵ, s(X,Y )⟩ ≥ q1−α(ŵ, I3)) .

13
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Assuming the event Ω(I3, η3),

q1−α(ŵ, I3) = sup

{
t ∈ R :

1

|I3|
∑
i∈I3

1{⟨ŵ, s(xi, yi)⟩ ≥ t} ≥ 1

|I3|
⌈(1 + |I3|)(1− α)⌉

}

≥ sup

ß
t ∈ R : P(⟨ŵ, s(X,Y )⟩ ≥ t) ≥ 1

|I3|
⌈(1 + |I3|)(1− α)⌉ − η3

™
= Q1−α′(ŵ),

(13)

where 1− α′ = 1
|I3|⌈(1 + |I3|)(1− α)⌉ − η3. By the definition of the quantile,

P(⟨ŵ, s(X,Y )⟩ ≥ q1−α(ŵ, I3)) ≥ P(⟨ŵ, s(X,Y )⟩ ≥ Q1−α′(ŵ)) = 1− α′. (14)

The proof is complete.

Lemma 4. Let Ĉ1−α(X; ŵ) be the output of Algorithm 2. Suppose Ω(I3, η3) and Ω(Itest, ηtest) hold, then the coverage
proportion satisfies

1

|Itest|
∑
i∈Itest

1{yi ∈ Ĉ(xi)} ≥
1

|I3|
⌈(1 + |I3|)(1− α)⌉ − η3 − ηtest.

Proof. Under the event Ω(Itest, ηtest), for all w ∈ W ,∣∣∣∣∣∣ 1

|Itest|
∑
i∈Itest

1{⟨ŵ, s(Xi, Yi)⟩ ≥ q1−α(ŵ, I3)} − E(X,Y )[1{⟨ŵ, s(X,Y )⟩ ≥ q1−α(ŵ, I3)}]

∣∣∣∣∣∣
≤ sup

w∈Rd,t∈R

∣∣∣∣∣∣ 1

|Itest|
∑
i∈Itest

1{⟨w, s(Xi, Yi)⟩ ≥ t} − E(X,Y )[1{⟨w, s(X,Y )⟩ ≥ t}]

∣∣∣∣∣∣ ≤ ηtest,

where (X,Y ) is an i.i.d. copy of (Xi, Yi) in the test set. In particular, we let w = ŵ and t = q1−α(ŵ, I3), we have

E[1{⟨ŵ, s(X,Y )⟩ ≥ Q1−α′(ŵ, I3)} | ŵ ] = P(⟨ŵ, s(X,Y )⟩ ≥ q1−α(ŵ, I3) | ŵ) = 1− α.

The remaining proof has similar argument as (13) and (14), and is omitted here.

C.2. Bounds for Prediction Set Size

Lemma 5. Suppose the samples in I1 and I2 satisfy Ω(I1, η1) and Γ(I2, ξ2) respectively, and suppose Q1−α′(ŵ, I1) ≤
q1−α(ŵ, I3), then for X in the test set, the expected prediction set size satisfies

1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ q1−α(ŵ, I3)} ≤ E

 ∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α1
(w∗)}

+ ξ2,

where 1− α1 = 1
|I1|⌈(1 + |I1|)(1− α′)⌉+ η1.

Proof. Under the assumption Q1−α′(ŵ, I1) ≤ q1−α(ŵ, I3), for w ∈ W , we have

1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w, s(Xi, y)⟩ ≥ q1−α(w, I3)} ≤
1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w, s(X, y)⟩ ≥ Q1−α′(w, I1)}.

ŵ is obtained from

ŵ ∈ arg min
w∈W

1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w, s(X, y)⟩ ≥ Q1−α′(w, I1)}

14
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Therefore,

1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ Q1−α′(ŵ, I1)} ≤
1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α′(w∗, I1)}.

Given the event Ω(I1, η1), for w ∈ W and t ∈ R,

P(⟨w, s(X,Y )⟩ ≥ t) = E[1{⟨w, s(X,Y )⟩ ≥ t}] ≤ 1

|I1|
∑
i∈I1

1{⟨w, s(X,Y ) ≥ t}+ η1.

The lower bound of the LHS is also a lower bound of the RHS, so we have

Q1−α′(w∗, I1) = sup

{
t ∈ R :

1

|I1|
∑
i∈I1

1{⟨w, s(xi, yi)⟩ ≥ t} ≥ 1

|I1|
⌈(1 + |I1|)(1− α′)⌉

}

≥ sup

ß
t ∈ R : P(⟨w∗, s(X,Y )⟩ ≥ t) ≥ 1

|I1|
⌈(1 + |I1|)(1− α′)⌉+ η1

™
= Q1−α1(w

∗),

(15)

where 1 − α1 = 1
|I1|⌈(1 + |I1|)(1 − α′)⌉ + η1 and Q1−α1(w

∗) is the (1 − α1)-quantile of the population distribution
⟨w, s(X,Y )⟩. Now we can conclude that

1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α′(w∗, I1)} ≤
1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α1
(w∗)}.

On the event Γ(I2, ξ2),

1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α′(w∗)} ≤ E

 ∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α1
(w∗)}

+ ξ2.

The proof is complete.

D. Proof of the Theorems
D.1. Proof of Theorem 1

Under the assumption of the theorem, the setting of VFCP satisfies the condition of Lemma 2. This proves the coverage
probability in the theorem. For the expected prediction set size, under the event Γ(I2, ξ2), by Lemma 5, for X in the test set,

E

 ∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ q1−α(w, I3)}

 ≤ 1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ q1−α(w, I3)}+ ξ2.

This implies the coverage probability of the theorem.

D.2. Proof of Theorem 2

Under the assumption of the theorem, the setting of VFCP satisfies the condition of Lemma 3. This proves the coverage
probability in the theorem. For the expected prediction set size, since I1 = I3 and Γ(I2, ξ2) is satisfied, by Lemma 5, for X
in the test set,

E

 ∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ q1−α(w, I3)}

 ≤ 1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ q1−α(w, I3)}+ ξ2.

This implies the coverage probability of the theorem.
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D.3. Proof of Theorem 3

Since I1 = I3 = Itrain and I2 = Itest, one can verify that the theorem is the direct result of Lemma 4 and Lemma 5.

D.4. Proof of Theorem 4

Similar as the setting of DLCP, the coverage probability is the direct result of Lemma 4. For the prediction set size, suppose
Γ(I2, ξ2) holds, then for X in the test set,

E[|ĈDLCP+
1−α (X)|] ≤ 1

|I2|
∑
i∈I2

∑
y∈[K]

1{⟨ŵ, s(Xi, y)⟩ ≥ q1−α(ŵ, I3)}+ ξ2

≤ E

 ∑
y∈[K]

1{⟨w∗, s(X, y)⟩ ≥ Q1−α′(w∗)}

+ 2ξ2.

E. Additional Discussion on Score Functions
The three basic score functions used in our experiment were:

Least Ambiguous Set Values Classifier (THR) (Sadinle et al., 2019). The score function of THR is defined as:

sTHR(x, y) = p̂y(x).

This score function is straightforward: it assigns a higher score to labels with a higher estimated probability. The prediction
set includes labels with the highest estimated probabilities. This is the score function we have to include because if p̂ is the
true posterior probability, then the score function itself can achieve the smallest expected prediction set size.

Adaptive Prediction Set (APS) (Romano et al., 2020). The score function of APS is defined as:

sAPS(x, y) =
∑

y′∈[K]

p̂y′(x)1{p̂y′(x) ≤ p̂y(x)},

where 1{·} is the indicator function. This score function can be interpreted as the complement of the p-value for label k. It
measures the sum of the estimated probabilities of all labels that have the same or a smaller estimated probability than label
k.

Rank-based Score Function (RANK) (Luo & Zhou, 2024). The score function of RANK is defined as:

sRANK(x, y) =
|{k′ ∈ [K] : p̂k′(x) < p̂k(x)}|

K − 1
,

This score function assigns a score based on the rank of the estimated probability p̂y(x) among all the estimated probabilities
for input x. The rank is divided by K − 1 so that the range of the score is from 0 to 1. The prediction set gives higher
priority to labels with larger ranks.

The three score functions, THR, APS, and RANK, employ different strategies for assigning scores based on the estimated
probabilities. THR directly utilizes the estimated probabilities as scores. APS, on the other hand, considers the cumulative
probability of labels that have the same or lower estimated probabilities compared to the label of interest. RANK, in contrast,
focuses on the relative ranking of the estimated probabilities among all possible labels. It is important to note that all these
score functions preserve the order of the labels, which means that, for fixed x, the order of labels based on their estimated
probabilities, p̂y(x), remains the same when ranked according to their scores, s(x, y).
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F. Additional Experiments with Different Datasets
We conducted additional experiments on MNIST, Fashion-MNIST, and ImageNet-Val, including comparisons with the
Synergy Conformal Prediction (SCP) method (Gauraha & Spjuth, 2021), suggested by Reviewer bRdZ. Each experiment
used 2000 samples, 100 runs with different calibration/test splits (as in Table 1, Section 4.1), the APS score function, and
the EFCP split method. Results show our method consistently achieves smaller prediction sets while maintaining coverage
at α = 0.01 and α = 0.05.

F.1. MNIST

Method Coverage (α = 0.01) Size (α = 0.01) Coverage (α = 0.05) Size (α = 0.05)

Ours 0.988 (0.005) 1.577 (0.061) 0.951 (0.011) 1.001 (0.011)
SVM 0.990 (0.005) 2.323 (0.135) 0.950 (0.011) 1.033 (0.014)
Random Forest 0.990 (0.005) 2.205 (0.108) 0.951 (0.013) 1.181 (0.023)
Logistic Regression 0.990 (0.005) 3.695 (0.123) 0.950 (0.012) 1.557 (0.065)
SCP 0.990 (0.005) 1.771 (0.083) 0.951 (0.012) 1.018 (0.011)

Table 2. Results on MNIST dataset.

F.2. Fashion-MNIST

Method Coverage (α = 0.01) Size (α = 0.01) Coverage (α = 0.05) Size (α = 0.05)

Ours 0.988 (0.006) 2.296 (0.108) 0.948 (0.012) 1.265 (0.031)
SVM 0.991 (0.005) 2.941 (0.156) 0.952 (0.012) 1.449 (0.044)
Random Forest 0.990 (0.006) 3.264 (0.187) 0.949 (0.012) 1.612 (0.035)
Logistic Regression 0.989 (0.006) 3.325 (0.120) 0.949 (0.012) 1.841 (0.050)
SCP 0.991 (0.005) 2.446 (0.100) 0.951 (0.013) 1.315 (0.030)

Table 3. Results on Fashion-MNIST dataset.

F.3. ImageNet-Val

Method Coverage (α = 0.01) Size (α = 0.01) Coverage (α = 0.05) Size (α = 0.05)

Ours 0.989 (0.006) 48.264 (4.019) 0.949 (0.013) 6.670 (0.618)
ResNet101 0.990 (0.005) 53.744 (3.940) 0.950 (0.013) 6.798 (0.631)
VGG16 0.991 (0.005) 100.683 (9.445) 0.950 (0.011) 15.149 (0.831)
ResNet18 0.990 (0.006) 110.401 (11.694) 0.949 (0.011) 18.323 (1.422)
SCP 0.991 (0.005) 77.243 (5.667) 0.950 (0.011) 10.661 (0.630)

Table 4. Results on ImageNet-Val dataset.
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G. Additional Experiments with Different Data Splitting Ratio
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(a) Comparison of coverage and size for different data split methods at a significance level of α = 0.05 when Itrain : Itest = 80:20. EFCP,
DLCP, and DLCP+ exhibit similar size results, but DLCP has the smallest coverage and the largest gap from the desired coverage level of
1− α = 0.95. VFCP attains the desired coverage at the cost of having the largest prediction set size.
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(b) Comparison of coverage and size for different data split methods at a significance level of α = 0.05 when Itrain : Itest = 99:1. DLCP
achieves the smallest size among the compared methods. VFCP attains the desired coverage at the cost of having the largest prediction set
size.

Figure 6. Comparison of coverage and size for different data split methods at α=0.05.
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