Under Review - Proceedings Track 1-27, 2025 Symmetry and Geometry in Neural Representations

Logit-Based Losses Limit the Effectiveness of
Feature Knowledge Distillation

Nicholas Cooper NICK.COOPER@COLORADO.EDU
Lijun Chen LIJUN.CHEN@QCOLORADO.EDU
Sailesh Dwivedy SAILESH.DWIVEDY @QCOLORADO.EDU
Danna Gurari DANNA.GURARIQCOLORADO.EDU

Department of Computer Science, University of Colorado Boulder

Editors: List of editors’ names

Abstract

Knowledge distillation (KD) methods transfer the knowledge of a parameter-heavy teacher
model to a light-weight student model. The status quo for feature KD methods is to
utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer
features (i.e., latent representations). Unlike previous approaches, we propose a feature KD
framework for training the student’s backbone using feature-based losses ezclusively (i.e.,
without logit-based losses such as cross entropy). Leveraging recent discoveries about the
geometry of latent representations, we introduce a knowledge quality metric for identifying
which teacher layers provide the most effective knowledge for distillation. Experiments
on three image classification datasets with four diverse student-teacher pairs, spanning
convolutional neural networks and vision transformers, demonstrate our KD method achieves
state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard
approaches. We publicly share our code to facilitate future work at this GitHub page.

1. Introduction

Knowledge distillation (KD) is a popular approach for model compression which infuses
“dark knowledge” from a parameter-heavy teacher model into a more compact student model.
Fundamental to KD is the question: What knowledge should be transferred? Prior work
proposes two answers. First, the pioneering KD paper (Hinton et al., 2015) standardized that
a student should be trained to mimic the teacher’s softened class probability distribution (i.e.,
temperature-scaled softmax). This is accomplished by regularizing cross entropy (CE) loss
with the KL divergence between the softened logits of the two models, making this method
solely reliant on logit-based supervision. Second, FitNets (Romero et al., 2015) pioneered the
popular trend of using additional loss terms to guide the student to also mimic the teacher’s
intermediate layer features (i.e., latent representations), by minimizing the distance between
their corresponding feature maps. We refer to these two techniques as vanilla knowledge
distillation (VKD) and feature knowledge distillation (FKD), respectively.

Our work is motivated by the hypothesis that the performance of FKD methods is
compromised by training student backbones with logit-based losses. This is inspired by the
observation that there are limits to the information logit-losses can transfer. Feature-based
losses are computed in very high dimensional spaces, enabling them to capture richer
information about a teacher’s representations. Logit-based losses, in contrast, are computed
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Figure 1: Illustration of our feature knowledge distillation framework and its two key distinc-
tions from prior work. First, while the status quo is to back-propagate logit-based
losses through the student backbone (—), our method back-propagates only CE
through just the classifier (—). Second, while the default strategy is to select
teacher layers to distill from the end of each ‘stage’ (—), we introduce a metric for
principledly selecting the layers with the highest knowledge quality which often
occur within a single stage (—).

in lower dimensional spaces, limiting the level of detailed knowledge they can transfer. We
suspect that such lower-dimensional losses dilute the potential effectiveness of FKD methods.

Accordingly, we propose a new FKD framework for training student backbones only with
feature-based losses (i.e., no logit-based loss terms), as illustrated in Figure 1. Here, the
student backbone refers to the layers which receive information from the teacher’s intermediate
layers. Our key insight is that this loss recipe often fails when standard techniques are used
to select intermediate teacher layers (Figure 4). We introduce a novel, geometry-aware layer
selection metric to select intermediate teacher layers with the highest knowledge quality (KQ)
for distillation. Experiments with three image classification datasets and four diverse student-
teacher pairs, spanning convolutional neural networks (CNNs) and vision transformers (ViT),
demonstrate that our proposed approach outperforms existing KD baselines by up to 15%
top-1 accuracy. Our fine-grained analyses reveal that (1) logit-based losses prevent the
student from fully benefiting from distillation and (2) our teacher layer selection method is
necessary to guarantee a performance boost when excluding logit-based losses.

2. Related Work

Feature Knowledge Distillation (FKD). FKD involves three intertwined steps: (1)
teacher layer selection, (2) teacher-to-student layer mapping, and (3) teacher-to-student
dimensional translation to match the teacher’s higher dimensional latent space to that of
the student. While much research focuses on the second step (Chen et al., 2021; Zhu et al.,
2024; Zhu and Wang, 2021) and third step (Romero et al., 2015; Zagoruyko and Komodakis,
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2017; Park et al., 2019; Tung and Mori, 2019; Guo et al., 2023), the initial step of teacher
layer selection has received little attention. Most works default to selecting the final layer
from each teacher model’s stage, defined as layers preceding a pooling operation. We instead
introduce the first automated metric for teacher layer selection, which identifies layers with
the highest knowledge quality.

Distillation Without Logit Losses. Several works have hinted at potential benefits of
training the student backbone without logit losses. For example, the classic FitNets (Romero
et al., 2015) excluded logit losses during the first part of a two-stage process, but then
introduced them in the second phase. More recently, (Lin et al., 2022) showed that removing
the VKD loss term does not significantly affect performance. Most similar to our work is
(Zhu and Wang, 2021), which demonstrated that FKD methods suffer from mis-alignment
between gradients of the logit and feature losses. However, they addressed this issue by
dynamically disabling the feature loss rather than removing logit losses. Complementing
these works, we instead propose distilling student backbones without any logit losses.
Geometry of Latent Representations. Recent observations about the latent geometry
of image classification models inspired the design of our metric for measuring the knowledge
quality of teacher layers. In particular, growing evidence shows that models process data
in two distinct stages: extraction and compression (Masarczyk et al., 2023). The notion of
compression first emerged with Deep Neural Collapse (DNC) (Papyan et al., 2020), which
demonstrated that models learn to compress same-class points towards the class mean in the
final layer representations, and was later extended to latent representations (Rangamani et al.,
2023). The notion of extraction emerged from observations about the intrinsic dimension
of latent representations (Ansuini et al., 2019; Brown et al., 2022), showing that image
classification models process data by expanding representation dimensionality in their early
layers (e.g., the first 70% of layers) before compressing representation dimensionality in
later layers (e.g., the final 30% of layers). Our proposed metric is based on three geometric
properties of a teacher’s feature representations'. Experiments reveal that the transition
layers between extraction and compression exhibit the highest ‘knowledge quality’ and yield
the best KD performance.

3. Methods

3.1. Basic Notation and Background

We consider teacher and student models as sequences of parameterized functions f(z) =
fio..foo fi(z) : RY — RY where d is the dimensionality of the input, C' the number of class
labels, and [ the number of layers. The training dataset (X,Y) consists of a set X € RV*4
of N d-dimensional inputs and a set Y € {1,2, ..., C}" of ground truth labels.

We use the term representation to refer to the output from a sub-sequence of layers. For
example, the representations from the i*? layer, denoted by R;, is the set:

Ri={fioficio..fa(x)o fi(z) | x € X} C R%

where d; denotes the ambient dimension of the i'" layer’s representations, e.g., a linear
layer with 100 neurons has an ambient dimension of 100. Note that we do not consider

1. While prior work (Theodorakopoulos and Tsourounis, 2023) explored latent feature geometry to improve
FKD, they focused on the dimensional translation step rather than teacher layer selection.
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architecture-specific tensor structure (e.g., a c-channel h X w feature map is interpreted as a
“flattened” vector in R*"). The final layer’s representations, R; C RY, are called logits.
For layer selection, we denote the index sets of the selected teacher and student layers by
LT C{1,2,...,1T} and L° C {1,2, ...,19}, where IT and I denote the total number of teacher
and student layers respectively. The mapping between the teacher and student layers is then
defined by a mapping matriz A € RIZTIXIL®| that assigns weights to the losses computed
between each of the teacher-student layer pairs. These weights can be dynamically learned

(Chen et al., 2021) or adjusted via handcrafted rules (Zhu and Wang, 2021).
FKD learning involves two types of losses. First is the classic VKD loss (Hinton et al.,
2015), computed as follows:

S T
Lrr(RS,RY t) =t*KL [softma:n <Fi") , softmax (Rt")] (1)

where K L[-, -] denotes the KL divergence, softmaz(-) the softmax function, ¢ the temperature,
and t? a balancing constant that counteracts the decay of KL when logits are softened.
Second is a loss computed between pairs of teacher-student intermediate layers, resulting in
the following total loss:

Lrkp =Lcp+Lrr + Z z AL (R}, RY) (2)

i€LT jeLS

where Lo g denotes cross-entropy loss and L denotes the feature loss computed after aligning
the teacher and student ambient dimensions.

3.2. Proposed Method

We now formalize the two complementary innovations of our proposed FKD framework,
illustrated in Figure 1.

First, we modify the standard loss recipe in Equation 2 by removing all logit losses
from the student backbone during training. Here “backbone” is defined as the set of layers
{fPli< l?inal}v where l?mal := max(L®) denotes the last (deepest) student layer selected
for distillation. We drop the Lx term completely, and stop back-propagation of Lop at
l}?mal' This means the student backbone is trained to minimize only the feature-based loss

L, while the student classifier is trained to minimize only the cross-entropy loss Log.

Second, for teacher layer selection (i.e., LT), we choose the top-k layers with the highest
knowledge quality from our metric, which we denote by Q. This metric combines three
geometric properties of layer representations as follows:

Q(R) :=S8(R) + VI(R)E(R) (3)

with the components being measures of separation (S), information (I), and efficiency (£).
These are computed from the average within-class dot product (avgDPW), between-class dot
product (avgDPB), minimum within-class dot product (minDPW), between-class distance
(minDistB), and average norm (avgNorm). Due to space limits, we provide the full definitions
in the appendix.

Separation measures the extent to which a representation distinguishes classes by using
the average within-class cosine similarity and between-class cosine similarity:

S(R) = avgDPW (R) — avgDPB(R) (4)
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Selecting layers with higher scores ensures the teacher layers can convey rich information
about class labels to the student. As we will empirically show, separation increases during
the compression stage, which is consistent with prior findings (Rangamani et al., 2023).
Information measures the richness of a layer’s “dark knowledge” by considering its
embedding dimension and within-class variation. Our use of the embedding dimension aligns
with prior work (Brown et al., 2022), which found that peak intrinsic dimension (ID)—i.e.,
the maximum ID achieved across all layers—is correlated with better model performance.
While in practice it can be difficult to measure the intrinsic dimension—specifically, the
actual dimension of the latent feature manifold—from samples (Navarro et al., 2017; Chavez
et al., 2001; Facco et al., 2017), the embedding dimension serves as a reasonable proxy that
is relatively easy to compute (e.g., with principal component analysis). We also incorporate
within-class variance since the ground truth labels lack such information. Formally, we
combine the minimum within-class similarity (a proxy for within-class variance), and the
average class-wise normalized SVD Entropy (a measure of embedding dimension) as follows:

Z(R) = [1 — minDPW (R)] avgSV DE(R) (5)

where avgSV DE(-) is defined as:

C _
1 H(oe)
DE = —
avgSV DE(R) c cz:; (V)
where H(6.) = — Z?;l 7ciln(0ei) is the Shannon Entropy of the normalized singular values

(6.) of the class covariance matrix and d, is the embedding dimension of class ¢ estimated by
PCA 2. H(G.) attains a maximum value of In(N.) when all N, data points are equidistant
from the mean and mutually pair-wise orthogonal, so we normalize it to get values between
0 and 1. Intuitively, avgSV DFE measures the dimensionality of the representations weighted
by how evenly their variance is distributed across dimensions. We will show experimentally
that models increase Z during the extraction layers and then decrease Z in order to increase
S during the compression layers.

Efficiency measures how large the representations are relative to how large they must
be to allow their information (Z). This is motivated by our empirical observation that
representations of large norm often lead to student training instability, which we suspect
results from the corresponding increase in the magnitude of L. To formalize this, we consider
a hyper-spherical packing problem. Suppose there are N data points and a minimum distance
of € is required between any two of them, i.e., ||r; —7j||2 > €,Vi # j. Then, for ReLU-family
(e.g., ReLU, Leaky ReLU, GELU) activated D-dimensional Euclidean space, the radius of
the smallest hypersphere that can accommodate such points can be approximated by:

rmm(s, d) ~ 2Ke (6)

1
with K = (%) D=1 Equation 6 describes how dimension and radius affect the number of
available “e-rooms” on a hypersphere’s surface. We set € = minDist B(R), then define the
packing efficiency as the ratio between the empirical norm and the estimate of the smallest
required norm:

2. We use the number of principal components required to account for 95% of the variance as an estimate of
embedding dimension.
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_ 2KminDistB(R)
E(R) = avgNorm(R)

Consistent with Z, we use a PCA estimate of the global embedding dimension for D. £
signifies when representations are size efficient, with lower values indicating the norm is
unnecessarily inflated. This value facilitates selecting teacher layers which will improve the
student’s ability to converge during training. As we will show in the experiments, £ resembles
7 in that it increases during the extraction layers, then decreases during compression.

We make several implementation choices for our proposed KD method. We follow existing
work (Chen et al., 2021, 2022) and set |LT| = |L®| = 4 with a simple one-to-one layer
mapping. We only consider representations of the training dataset X when computing O
and selecting L. We restrict the definition of “layer” to minimal sets of functions ending
with non-linear activation, since nonlinearities influence the geometric properties of R;3. For
dimensional translation, we construct a single layer projector. It consists of a pooling layer
for spatial alignment, followed by a convolution layer with minimal filters and no bias. We
form it directly from the projectors used in (Chen et al., 2021) but reduce the number of
layers to 1. In principle, this formulation of £, is very similar to (Romero et al., 2015). We
use a 2D version for CNNs, and a 1D version for transformers. They are identical up to the
order of the parameter tensors. We constructed our KQ metric from §,Z, and £ as shown in
Equation 3 following preliminary empirical analysis that showed this combination of the
three components led to the best results.

(7)

4. Experiments

We now describe our experiments validating improvements from our proposed approach and
the importance of its different design choices.

Model Architectures. To demonstrate that our method is applicable to different archi-
tectures, we experiment with convolutional neural networks (CNNs) and vision transformers
(ViTs). For teachers, we chose VGG19 (Simonyan and Zisserman, 2015), ResNet34 (He et al.,
2016), and ViT B (Dosovitskiy et al., 2021) to examine the efficacy of our Q metric on a
“vanilla” CNN, a residual CNN, and an attention-based architecture. For students, we chose
VGG11, MobileNetV2 (Sandler et al., 2018), ResNet9, and ViT _ET (extra tiny) to cover
the same three classes of architecture.

Training Protocol. Models are trained for 50 epochs with the Adam optimizer (Kingma
and Ba, 2015) and a single cycle learning rate schedule (Smith and Topin, 2017). We train
without data augmentation so knowledge quality is measured in a reproducible manner.
Results with data augmentation are provided in the appendices, and reinforce our findings.
Datasets. We use three datasets commonly employed for knowledge distillation experiments.
Two are CIFAR10 and 100 datasets (Krizhevsky et al., 2009), which are composed of 60,000
32x32 color images from 10 and 100 classes, respectively. The third one is Tiny ImageNet (Le
and Yang, 2015) that consists of 110,000 64x64 color images from 200 classes.

Evaluation Metrics. We evaluate with top-1 accuracy and average—over all relevant
baseline distillation methods—relative improvement (ARI) (Tian et al., 2020). ARI indicates
the benefit of KDy relative to K Ds:

3. E.g., ReLU restricts all points to the non-negative orthant, the relative volume of which vanishes in high

dimension as 2%.



LocIiT-BASED LOSSES LIMIT THE EFFECTIVENESS OFFEATURE KNOWLEDGE DISTILLATION

ARI(K Dy, K D) = —ACCKDy = Acckp,

ACCKDQ - AccBaseline

where Accpgseline denotes the accuracy of the student model without any distillation. For all
experiments, we report mean and standard deviations from three, randomly initialized runs.

4.1. Analysis: Where Does Peak KQ Occur?

Common trends for the knowledge quality curves are exemplified in Figure 2 for ResNet34
and ViT_B on CIFAR100. The components of Q—S,Z, and £—exhibit clear extraction
and compression phases in both models, reinforcing prior work’s findings (Masarczyk et al.,
2023). In the final layers, separation increases at the cost of information and efficiency, a
trend that generalizes across datasets (see appendicies). These findings also show Q peaks at
different relative depths for the models with ResNet34 exhibiting knowledge quality decay
in the final layers. This suggests that ViT B contains better knowledge at the logits layer,
which we validate experimentally.

.00, ResNet34 Knowledge Quality on CIFAR 100 ViT B Knowledge Quality on CIFAR 100

1.75
1.50
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1.00
0.75
0.50
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0.00!
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Figure 2: Per-layer knowledge quality analysis of ResNet34 (left) and ViT B (right) on
CIFAR100. X-axes: layer indices. Y-axis: S (dark blue), Z ( ), € (red),
Q ( ). circles indicate standard layer selections and indicate
maximal knowledge quality layers.

4.2. Distillation Results

Experiment 1: Ours vs. Baselines. We compare our FKD method to seven baselines:
Vanilla KD (Van. KD (Hinton et al., 2015)), Logit Standardization (Van. KD Std. (Sun
et al., 2024)), Base FKD (a modernization of FitNets (Romero et al., 2015)), Base FKD +
FC (base FKD with fully connected layer mapping), Similarity Preserving (Sim. Pres. (Tung
and Mori, 2019)), SemCKD ((Chen et al., 2021)), and Reused Teacher Classifier (SimKD
Chen et al. (2022)). These represent top-performing logit and feature KD strategies. For
the baselines, we use the widely accepted standard of selecting teacher layers at the end
of each model stage which occur next to pooling operations. For ViT, which lacks pooling
operations, we select layers mimicking the average relative depths chosen for the CNNs. For
baselines which use Lk, we adopt common practice (Chen et al., 2021; Tung and Mori,
2019) and set t = 4. Results are shown in Figure 3.

Overall, our method considerably outperforms all baselines. Moreover, we observe a
positive correlation between dataset difficulty and the performance gains achieved by our
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Figure 3: Performance of proposed method and baselines. Vertical black lines denote baseline
student performance and the end of each bar shows standard deviation values from
three runs. Configurations which failed to converge are not plotted. ARI denotes
the mean ARI from our method to all baselines.

method, with the highest ARI scores obtained on Tiny ImageNet. This suggests that the
benefit of training the student’s backbone without logit losses increases as the classification
task becomes less easily separable. We suspect this is because harder datasets result in
teacher representations with higher intrinsic dimensionality, thereby offering richer knowledge
for the student to learn from.

Examining the influence of model architecture, our method achieves similar absolute
benefits but smaller ARIs on transformers than CNNs. We attribute this difference to the
way CNNs and ViTs modify knowledge quality across their layers, as shown in Figure 2.
ViT B increases Q in an almost monotone fashion across its layers, whereas CNNs exhibit
degrading knowledge quality in their final layers. As predicted by this analysis, logit loss
based methods perform better (by ~ 2x) on this model pair because ViT contains higher
quality knowledge at its final layers than the CNNs.

Experiment 2: When Does Q-Based Layer Selection Matter? We next test both
our method and the Base FKD baseline (which are identical up to layer selection and
loss recipe) with all combinations of layer selection and loss recipe (holding dimensional
translation constant). Specifically, for our method, we added both the CE and KL logit losses
(“Ours+LL") and just the CE loss (“Ours+CE”). For Base FKD, we removed the KL loss
(“Base FKD-KL”) and all logit losses (“Base FKD-LL”). Results are in Figure 4. We found
our layer selection method is critical, as the student failed to converge during training for 6
of 12 cases using standard layer selection. When logit losses are used, our layer selection
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Figure 4: Performance of different teacher layer selection methods when paired with three
loss recipes: our loss recipe (Orange), CE loss used in backbone (Light blue), and
both CE and KL loss used in backbone (Dark blue). Configurations which failed
to converge are clipped to —3 for improved legibility. Ours and standard layer
selection are indicated by solid and striped bars, respectively.

method has a smaller benefit suggesting they safeguard against poor quality teacher layers,
despite preventing a student from fully learning a teacher’s knowledge.

Experiment 3: Ablation on Knowledge Quality Metric. Finally, we evaluate the
importance of each term in our KD metric by choosing layers based on each term independently
(i.e., S, Z, &) as well as the VZE term. The only strategy which always successfully converged
during training is our method with all three metrics: Q. The student did not converge in 4
of 12 cases when using only S, Z, or v/Z& and in 5 cases when using only &.

5. Conclusion

We have demonstrated that our geometry-aware novel teacher layer selection method enables
training the student backbone without any logit-based losses which achieves state-of-the-art
KD performance. Directions for future work include: (1) exploring how the S, Z, and
& measures relate to model generalization outside of KD, (2) studying how student layer
selection influences distillation, and (3) investigating if other tasks benefit from similar loss
recipe refinements.
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Appendix A. Theoretical Appendix
A.1. Definitions

Below are the complete definitions of the average within-class dot product (avgDPW), between-
class dot product (avgDPB), minimum within-class dot product (minDPW), between-class distance
(minDistB), and average norm (avgNorm):

c
i)
e Z 2 W
c=1 J)EN2 ¢ c
wDPBR) = Y Y T S
c=1 c¢’=c+1iEN., jEN .
c
minDPW (R min .
z:: (4,9) eN2 i)l
minDistB min r— T
" C ;c/_z:ﬂlGNc,jeNC, I ill2

N
1
avgNorm(R) = N Z 7|2

where (r; - r;) = Hrﬁ;ﬁ is the normalized dot product (i.e., cosine similarity), N, is the subset of
i J
indices corresponding to class ¢, and (i,7) € N2 denotes a distinct pair of such indices.

A.2. Hyperspherical Packing

We provide here the proof of the result on hyperspherical packing that is used to define efficiency £.
Recall the ReLU activation function:

ReLU(x) = max{z, 0}.
The D-dimensional ReLLU activated space is thus the non-negative orthant Rf .
Theorem: Given a set of N distinct points p; in D-dimensional ReLLU activated space:
P = {p17 P2, P3,- pN}

and a minimum distance d,,;, > 0 between these points, the smallest radius of the D-dimensional hy-
persphere SP~1 centered at the origin that can accommodate the set P of points can be approximated

by:

1
N\ D1
Tmin ~ 2dmin <7T> .

Proof: Note that the surface area of hypersphere SP~! of radius r is given by:

D+1

)

D127
I(

Surf(SDfl(r)) =r )

where T'(+) is the gamma function. We approximate the problem by finding how many (D — 1)-balls
of radius d,,i, fit in the surface area. This is a good approximation when the number of points

S
N
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N is large; e.g., N > 50,000 for CIFAR10/100 and Tiny ImageNet. For a proper treatment of
the asymptotic behavior (with respect to N) of this problem, see (Seri, 2023). The volume of a
(D — 1)-ball is given by:

D—1
D-1 T 2

D-1
VOZ(B (dmzn)) — Ymin I\(Di%l)

The positive orthant only accounts for a factor of 27 of the hypersphere. So, the number of
(D — 1)-balls of radius d;,;, that can fit on the non-negative orthant portion of the hypersphere of
radius r is approximated by:

N 27D Surf(SP~1(r))

7 Vol(BPY(dpmin))

_ D+1
rP=lox=2

D—1 D—1
dmin ™ 2

D—-1
r
= ’ﬂ— 5
(Qdmzn>

1
N\ DT
m

Remark: We consider ReLU because of its popularity and simple geometric interpretation and
analytic properties. Similar results can be obtained for other activation functions such as Leaky
ReLU and GeLU.

=9 D

from which we obtain:

A.3. Intrinsic and Embedding Dimensions

To facilitate understanding of the important geometric concept of intrinsic dimension, we provide a
visualization of the differences between the ambient, intrinsic, and embedding dimensions in Figure
5. Pictured there is 3-D Euclidean space with two embedded sub-manifolds; the circle and the plane.
Because the circle has a “true” dimension of 1, its ID is 1. Intuitively, this is because at any point on
the circle, there are only two possible directions to move; counter-clockwise and clockwise. However,
because we cannot draw circles in 1-D Euclidean space, the embedding dimension of the circle is 2.

Figure 5: Relationship between the intrinsic, embedding, and ambient dimensions (ID, ED,
AD). The blue circle has ID 1, because it is a 1-dimensional manifold. However,
it has ED 2 (dashed lines), because it cannot exist in R", when n < 2. Yet, the
circle is drawn in AD 3. Generally, ID < ED < AD.

Visualizing what an increase in embedding dimension might look like can be non-obvious at first
glance. To see how embedding dimension can increase via processing in non-linear neural networks,
consider Figure 6.
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Figure 6: Example of increased embedding dimension as a result of ReLLU activation.

Model MaxLR
VGGI19 0.005
VGG11 0.005

ResNet34 0.0075
ResNet9 0.0075
MobileNetV2 | 0.0075
ViT_ B 0.0001
ViT _ET 0.001

Table 1: Maximum learning rates for each architecture. Kept fixed for all datasets and all
KD configurations.

Starting on the left, 3 points on a line in R? (red dots) with embedding dimension 1. Then, a new
basis is defined by a linear layer (dashed lines) and the red dots are reinterpreted in this new basis
(right). ReLU activation is applied (blue dots), increasing the embedding dimension to 2 (dashed
blue lines). Intuitively, the data are “bent" around a mold of shape defined by the activation function.
The position of this mold is determined by the learned change of basis.

Appendix B. Technical Appendix

B.1. Model Architecture Details

ResNet9. ResNetl8 consists of 2 residual blocks (He et al., 2016) per stage, meaning there are 2
blocks for each spatial dimension of the representations. ResNet9 is formed simply by reducing this
to 1 residual block per stage. All other layers, such as the initial convolution prior to the residual
blocks, remain unaltered.

ViT ET. For the “extra tiny" vision transformer, we follow the structure of ViT _B (Dosovitskiy
et al., 2021) but reduce the number of layers, hidden dimension, and number of attention heads.
Recall that ViT B has 12 layers with 12 attention heads, and a hidden dimension of 768. ViT ET
has 8 layers with 6 attention heads, and a hidden dimension of 192. This results in a total of ~ 3M
parameters, which is comparable to MobileNetV2 (Sandler et al., 2018) at 2.5M parameters. For
additional context, VGG11 (Simonyan and Zisserman, 2015) has 28 M and ResNet9 has 5M.

B.2. Optimization Details

We used the Adam (Kingma and Ba, 2015) optimizer to train all models. Weight decay was set
to 0.01, 51 = 0.9, B2 = 0.999, and the numerical stabilization term was set to 1le — 8. We trained
all models for 50 epochs. We used the One Cycle learning rate scheduler (Smith and Topin, 2017),
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Figure 7: Training protocol validation. Our method is trained for 50 epochs. Baselines are
given ~ 5x training time of 240 epochs (striped bars). VKD-T2 denotes Vanilla
KD w/ T = 2. Configurations which failed to converge are not plotted.

with its suggested technique for choosing the maximum learning rate; i.e., training baseline models
(without any distillation) with a range of different maximum learning rates for 25 epochs to select the
optimal value. This was done for each architecture, and then the result was fixed for all experiments.
See Table 1 for the specific values.

The other parameters of the scheduler are as follows: 30% of the iterations were spent increasing
the learning rate (1), at the start of training n = M92LE "and at the end n = Ma2LE We ysed cosine

25 10000
annealing, with base and peak momentums set to 0.85 and 0.95, respectively.

B.3. Extra Validation Experiments

Is 50 Epochs Long Enough? We now justify our training approach (Section B.2) by showing
our findings from experiment 1 of the main paper are consistent even when leveraging other training
strategies. Specifically, we follow prior work (Chen et al., 2021; Zhu et al., 2024; Chen et al., 2022) by
also training student models for 240 epochs using stochastic gradient descent (SGD). This analysis is
intended to address potential concerns that our findings are due to baseline methods not properly
converging. We call this the “standard" optimization scheme. We use momentum of 0.9 following a
multi-step learning rate scheduler, where the learning rate was stepped down by a factor of 10 at
epochs 150, 180, and 210. For ResNet9 and MobileNetV2, the initial learning rate was 0.05, while for
VGGI11 it was set to 0.01 because 0.05 resulted in failure to converge. We omit the vision transformer
model pair (ViT_B — ViT_ET) from this experiment because we observed significant performance
degradation (~ —10%) in the student model when using this optimization scheme.

Results are shown in Figure 7, with updated ARI values provided in Figure 8. Despite being
provided with almost 5x more training time, none of the baseline techniques surpass the performance
of our method presented in the main paper. Instead, we still observe the same conclusions as
articulated in the main paper: (1) our method achieves superior performance, (2) its best results
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Figure 8: Training protocol validation ARIs. Our method is trained for 50 epochs. Baselines
are given ~ 5X training time of 240 epochs (striped bars). Unstable ARI indicates
unrepresentative values due to poor baseline performance. Configurations which
failed to converge are not plotted.
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are on Tiny ImageNet, and (3) its worst results are on the vision transformer model pair. See
Section C.1 training curves of the student models. Additionally, our method often surpasses the
(non-distillation) student’s accuracy after only 10 — 30 epochs. This is distinctly different behavior
from all baseline methods, which appear to demand significantly increased computational budget.

Is T = 4 Too High? We also investigated if an overly high temperature could be the cause
of poor baseline performance. This is inspired in part by our observation during baseline training
that the Lk loss term was sometimes larger than the cross-entropy loss. We re-trained VKD with
a reduced temperature of 2. This configuration is denoted by “VKD-T2". Results are shown in
Figure 7. We observe that the temperature choice of T' = 4 is superior to 1" = 2, with the reduced
temperature resulting in considerable performance degradation in most cells.

Data Augmentation Experiments. As discussed in the main paper, we did not use data
augmentation in the main experiments to ensure reproducible knowledge quality computation.
To validate our method’s effectiveness when trained with data augmentation, we re-trained all
configurations with a standard data augmentation recipe of random horizontal flips (with 50%
probability) and random crops from zero padded images. We used a padding size of 4 on all sides of
the images. Figure 9 contains the results.

Once again, we re-observe the same conclusions articulated in the main paper. That is, our
method outperforms all the baselines, and achieves its best (relative) results on Tiny Imagenet and
worst results on the ViT model pair. In fact, our method achieves a new best recorded result for
MobileNetV2 on CIFAR100 at 73.36% accuracy.

Appendix C. Complete Results
C.1. Training Curves

We provide accuracy versus epoch curves for all model pairs presented in Experiment 1 of the main
paper. Horizontal black lines are drawn at the baseline student’s peak accuracy. For legibility, we
plot a representative subset of baselines against the original student (without any distillation) and
our method. Vertical lines are drawn at the first epoch where the student surpasses the baseline (no
KD) accuracy. Results are shown in (Figures 10, 11, 12, and 13).
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CIFAR 10: VGG19 -> VGG11
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Figure 10: VGG19 — VGGI11 Student Training Curves. X-axis: epochs. Y-axis: top-

1 accuracy. Our method shown in orange. Vertical lines indicate when each
distillation method surpasses the baseline student’s accuracy.
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CIFAR 10: ResNet34 -> ResNet9
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Figure 11: ResNet34 — ResNet9 Training Curves. X-axis: epochs. Y-axis: top-1 accuracy.
Our method shown in orange. Vertical lines indicate when each distillation
method surpasses the baseline student’s accuracy.
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CIFAR 10: ResNet34 -> MobileNetV2
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Figure 12: ResNet34 — MobileNetV2 Training Curves. X-axis: epochs. Y-axis: top-1

accuracy. Our method shown in orange. Vertical lines indicate when each
distillation method surpasses the baseline student’s accuracy.
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CIFAR 10: ViT_B -> ViT_ETT
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Figure 13: ViT B — ViT ET Training Curves. X-axis: epochs. Y-axis: top-1 accuracy.
Our method shown in orange. Vertical lines indicate when each distillation

method surpasses the baseline student’s accuracy.
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C.2. Knowledge Quality Plots

We present plots for all teachers and datasets. Per-layer curves of §,Z, £ are provided for all dataset-
teacher combinations (Figures 14 15 16). As noted before, none of these curves were obtained with
data augmentation to ensure reproducibility.
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Figure 14: Breakdown of VGG19 Knowledge Quality. From top to bottom: CIFARIO0,
CIFAR100, Tiny ImageNet.
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ResNet34 Layerwise Knowledge Quality on CIFAR10
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Figure 15: Breakdown of ResNet34 Knowledge Quality. From top to bottom: CIFARIO0,
CIFAR100, Tiny ImageNet.
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ViT_B Layerwise Knowledge Quality on CIFAR10
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Figure 16: Breakdown of ViT B Knowledge Quality. From top to bottom: CIFARIO,
CIFAR100, Tiny ImageNet.
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C.3. Teacher Layer Selections

C.3.1. INDEX TRANSLATION TABLES

As discussed in the main paper, we consider only activated representations because of the geometric
implications. This results in layer indices which may not have immediately obvious relationships
to the traditional definition of “layer”. Hence, we provide translation tables. They can be used to
infer which “layers” (in the traditional sense) were selected based on the knowledge quality plots and
other tables to come. Note that many of the layer types listed below end in non-linear activation;
e.g., residual blocks and transformer layers. We do not subdivide either of these. Flatten layers are
included when they occur in activated space. For the CNNs, we also indicate the stages each layer
belongs to. Tables 2 and 3 contain this information.

’ Layer Type \ Stage H Index ‘

’ ResNet34 ‘
Conv2D 0
BatchNorm2D 0 ’ Layer Type H Index ‘
ReLU 0 0 | ViT_B |
MaxPool2D 1 ViT Input
BasicBlock 1 1 Pos. Embedding
BasicBlock 1 2 Dropout
BasicBlock 1 3 EncoderBlock 0
BasicBlock 5 1 EncoderBlock 1
BasicBlock 5 5 EncoderBlock 2
BasicBlock 5 6 EncoderBlock 3
BasicBlock 5 7 EncoderBlock 4
; EncoderBlock 5
BaS}CBIOCk 3 8 EncoderBlock 6
BaS}CBIOCk 3 ) EncoderBlock 7
BasicBlock 3 10 EncoderBlock 8
BasicBlock 5 1 EncoderBlock 9
Basg:Block 3 12 EncoderBlock 10
BasicBlock 3 13 EncoderBlock 11
BasicBlock 4 14 LayerNorm
BasicBlock 4 15 Flatten 19
BasicBlock 4 16 ’ Cinoar H ‘
Adapt AvgPool2D 5
Flatten 5 17
’ Linear ‘ 5 H ‘

Table 2: ResNet34 (left) and ViT B (right) Layer Translation Tables. Stage indicates repre-
sentation spatial resolution. Index denotes the layer indexing system throughout
this paper.

25



CoOOPER CHEN DWIVEDY GURARI

’ Layer Type ‘ Stage H Index ‘

y VGG19 |
Conv2D 0 ’ Layer Type ‘ Stage H Index ‘
BatchNorm2D 0 ’ VGG19 Cont. ‘
ReLU 0 0 Conv2D 3
Conv2D 0 BatchNorm2D 3
BatchNorm2D 0 ReLU 3 10
ReLLU 0 1 Conv2D 3
MaxPool2D 1 BatchNorm2D 3
Conv2D 1 ReLU 3 11
BatchNorm2D 1 MaxPool2D 4
ReLU 1 2 Conv2D 4
Conv2D 1 BatchNorm2D 4
BatchNorm2D 1 ReLU 4 12
ReLU 1 3 Conv2D 4
MaxPool2D 2 BatchNorm2D 4
Conv2D 2 ReLU 4 13
BatchNorm2D 2 Conv2D 4
ReLLU ) 4 BatchNorm2D 4
Conv2D 2 ReLU 4 14
BatchNorm2D 2 Conv2D 4
ReL,U ) 5 BatchNorm2D 4
Conv2D 2 ReLU 4 15
BatchNorm2D 2 MaxPool2D 5
ReLU 2 6 Adapt AvgPool2D 5
Conv2D 2 Flatten 5 16
BatchNorm2D 2 Linear 5
ReLU 2 7 ReLLU 5 17
MaxPool2D 3 Dropout 5
Conv2D 3 Linear 5
BatchNorm2D 3 ReLU 5 18
ReLLU 3 8 Dropout 5
Conv2D 3 Linear 5
BatchNorm2D 3
ReLU 3 9

Table 3: VGG19 Layer Translation Table. Stage indicates representation spatial resolution.
Index denotes the layer indexing system throughout this paper.
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C.3.2. TABLE OF SELECTED INDICES

Table 4 contains all selected teacher layer indices L for all selection strategies used in the main
paper.

LT | CIFARI0 | CIFARIO0 | Tiny ImageNet
| VGG19 \
Std [3,7,11,15] | [3,7,11,15] [ [3,7, 11, 15]
Ours | [11, 12, 13, 15] | [11, 12, 13, 15] | [11, 12, 13, 16]
Q=3 | [15,16, 17, 18] | [15, 16, 17, 18] | [15, 16, 17, 18]
Q=717 | [89,10,11] | [8,9,10,11] | [9, 10, 11, 12]

Q=¢£ [7, 8, 9, 10] [7, 8,9, 11] 8,9, 10, 11]
Q=1I¢& [7, 8,9, 11] [7, 8,9, 11] [8, 9, 10, 11]
’ ResNet34 ‘

Std [3,7,13,16] | [3,7, 13,16] | [3,7, 13, 16]
Ours | [12, 13, 14, 15] | [12, 13, 14, 15] | [12, 13, 14, 15]
Q=38 | [14, 15, 16, 17] | [14, 15, 16, 17] | [14, 15, 16, 17]
Q=71 |[11,12, 13, 14] | [11, 12, 13, 14] | [11, 12, 13, 14]

Q=¢ |[11,12,13, 14] | [12, 13, 14, 15] | [11, 12, 13, 14]
Q=7I¢ | [11,12,13,14] | [11, 12, 13, 14] | [12, 13, 14, 15]
| ViT_B |
Std [2, 4, 8, 10] [2, 4, 8, 10] 2, 4, 8, 10]

Ours | [9,10,11,12] | [7, 10,11, 12] | [7,8, 11, 12]
Q=38 | [9,10,11,12] | [9, 10,11, 12] | [9, 10, 11, 12]
Q=7 | [9,10,11,12] | [7,10,11,12] | [7,8, 10, 11]
Q=¢& | [7,8,10,11] | [7,10,11,12] | [6, 7,8, 11]
Q=71¢&| [9,10,11,12] | [7,10,11,12] | |7, 8,9, 11]

Table 4: Indices resulting from all teacher layer selection strategies used in the main paper.
Indices can be interpreted via. the layer translation tables.
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