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Abstract

Knowledge distillation (KD) methods can transfer knowledge of a parameter-heavy teacher
model to a light-weight student model. The status quo for feature KD methods is to
utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer
features (i.e., latent representations). Unlike previous approaches, we propose a feature KD
framework for training the student’s backbone using feature-based losses exclusively (i.e.,
without logit-based losses such as cross entropy). Leveraging recent discoveries about the
geometry of latent representations, we introduce a knowledge quality metric for identifying
which teacher layers provide the most effective knowledge for distillation. Experiments
on three image classification datasets with four diverse student-teacher pairs, spanning
convolutional neural networks and vision transformers, demonstrate our KD method achieves
state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard
approaches. We publicly share our code to facilitate future work (anonymous.github.com).
Keywords: Knowledge Distillation, Representation Geometry, Intrinsic Dimension.

1. Introduction

Knowledge distillation (KD) is a popular approach for model compression which infuses
“dark knowledge” from a parameter-heavy teacher model into a more compact student model.
Fundamental to KD is the question: What knowledge should be transferred? Prior work
proposes two answers. First, the pioneering KD paper (Hinton et al. (2015)) standardized
that a student should be trained to mimic the teacher’s softened class probability distribution
(i.e., temperature-scaled softmax). This is accomplished by regularizing cross entropy (CE)
loss with the KL divergence between the softened logits of the two models, making this
method solely reliant on logit-based supervision. Second, FitNets (A. Romero and Bengio
(2015)) pioneered the popular trend of using additional loss terms to guide the student to also
mimic the teacher’s intermediate layer features (i.e., latent representations), by minimizing
the distance between their corresponding feature maps. We refer to these two techniques as
vanilla knowledge distillation (VKD) and feature knowledge distillation (FKD), respectively.

Our work is motivated by the hypothesis that the performance of FKD methods is
compromised by training student backbones with logit-based losses. This is inspired by the
observation that there are limits to the information logit-losses can transfer. Feature-based
losses are computed in very high dimensional spaces, enabling them to capture richer
information about a teacher’s representations. Logit-based losses, in contrast, are computed
in lower dimensional spaces, limiting the level of detailed knowledge they can transfer. We
suspect that such lower-dimensional losses dilute the potential effectiveness of FKD methods.

Accordingly, we propose a new FKD framework for training student backbones only with
feature-based losses (i.e., no logit-based loss terms), as illustrated in Figure 1. Here, the
student backbone refers to the layers which receive information from the teacher’s intermediate
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Figure 1: Illustration of our feature knowledge distillation framework and its two key distinc-
tions from prior work. First, while the status quo is to back-propagate logit-based
losses through the student backbone (—), our method back-propagates only CE
through the just the classifier (—). Second, while the default strategy is to select
teacher layers to distill from the end of each ‘stage’ (—), we introduce a metric for
automatically selecting the layers with the highest knowledge quality (—).

layers. Our key insight is that this loss recipe often fails when standard techniques are
used to select intermediate teacher layers for distillation (Figure 4). We introduce a novel,
geometry-aware layer selection metric to automatically select intermediate teacher layers
with the highest knowledge quality (KQ) for distillation. Experiments with three image
classification datasets and four diverse student-teacher pairs, spanning convolutional neural
networks (CNNs) and vision transformers (ViT), demonstrate that our proposed approach
outperforms existing KD baselines by up to 15% top-1 accuracy. Our fine-grained analyses
reveal that (1) logit-based losses prevent the student from fully benefiting from distillation
and (2) our latent geometry informed teacher layer selection method is necessary to guarantee
a performance boost when excluding logit-based losses.

2. Related Work

Feature Knowledge Distillation (FKD). FKD involves three intertwined steps: (1)
teacher layer selection, (2) teacher-to-student layer mapping, and (3) teacher-to-student
dimensional translation to match the teacher’s higher dimensional latent space to that of
the student. While much research focuses on the second step (Defang Chen and Chen
(2021); Honglin Zhu and Huang (2024); Yichen Zhu (2021)) and third step (A. Romero
and Bengio (2015); Defang Chen and Chen (2021); Sergey Zagoruyko (2017); Zhiwei Hao
(2023); Wonpyo Park and Cho (2019); Tung and Mori (2019)), the initial step of teacher
layer selection has received little attention. Most works default to selecting the final layer
from each teacher model’s stage, defined as layers preceding a pooling operation. We instead
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introduce the first automated metric for teacher layer selection, which identifies layers with
the highest knowledge quality.

Distillation Without Logit Losses. Several works have hinted at potential benefits
of training the student backbone without logit losses. For example, the classic FitNets
(A. Romero and Bengio (2015)) excluded logit losses during the first part of a two-stage process,
but then introduced them in the second phase. More recently, (Sihao Lin (2022)) showed
that removing the VKD loss term does not significantly affect performance. Most similar to
our work is (Yichen Zhu (2021)), which demonstrated that FKD methods suffer from mis-
alignment between gradients of the logit and feature losses. However, they addressed this issue
by dynamically disabling the feature loss rather than removing logit losses. Complementing
these works, we instead propose distilling student backbones without any logit losses.

Geometry of Latent Representations. Recent observations about the latent geometry
of image classification models inspired the design of our metric for measuring the knowledge
quality of teacher layers. In particular, growing evidence shows that models process data in
two distinct ways: extraction and compression (Wojciech Masarczyk and Trzcinski (2023)).
The notion of compression first emerged with Deep Neural Collapse (DNC) (Vardan Papyan
and Donoho (2020)), which demonstrated that models learn to compress same-class points
towards the class mean in the final layer representations, and was later extended to latent
representations (Akshay Rangamani and Poggio (2023)). The notion of eztraction emerged
from observations about the intrinsic dimension of latent representations (Huang (2018);
Stefano Recanatesi and Shea-Brown (2019); Alessio Ansuini and Zoccolan (2019); Bradley
C.A. Brown and Loaiza-Ganem (2022)), showing that image classification models process
data by ezpanding representation dimensionality in their early layers (e.g., the first 70%
of layers) before compressing representation dimensionality in later layers (e.g., the final
30% of layers). Our proposed metric is based on three geometric properties of a teacher’s
feature representations,'. Experiments reveal that the transition layers between extraction
and compression exhibit the highest ‘knowledge quality’ and yield the best KD performance.

3. Methods

3.1. Basic Notation and Background

We consider teacher and student models as sequences of parameterized functions f(x) =
fio..foo fi(z) : RY — RY, where d is the dimensionality of the input, C' the number of class
labels, and [ the number of layers. The training dataset (X,Y) consists of a set X € RV*4
of N d-dimensional inputs and a set Y € {1,2, ..., C}" of ground truth labels.

We use the term representation to refer to the output from a sub-sequence of layers. For
example, the representations from the i*? layer, denoted by R;, is the set:

Ri={fioficio..fo(x)o fi(z) | z € X} C R%

where d; denotes the ambient dimension of the i*" layer’s representations, e.g., a linear layer
with 100 neurons has an ambient dimension of 100. Putting this together, models can be

1. While prior work (Theodorakopoulos and Tsourounis (2023)) explored latent feature geometry to improve
FKD, they focused on the dimensional translation step rather than teacher layer selection.



written in the following form:
fla):RE L R Ly R R Sty RO

Note that we do not consider architecture-specific tensor structure (e.g., CNN feature maps
with ¢ channels worth of h x w sized features are interpreted as “Hattened” vectors in R¢"),
The final layer’s representations, R; C R, are called logits.

For layer selection, we denote the index sets of the selected teacher and student layers by
LT C{1,2,..,1T} and L C {1,2, ...,19}, where IT and I denote the total number of teacher
and student layers respectively. The mapping between the teacher and student layers is then
defined by a mapping matriz A € RIZTIXILT] that assigns weights to the losses computed
between each of the teacher-student layer pairs. These weights can be dynamically learned
Defang Chen and Chen (2021) or adjusted via handcrafted rules Honglin Zhu and Huang

(2024); Yichen Zhu (2021).
FKD learning involves two types of the losses. First is the classic VKD loss (Hinton et al.
(2015)), computed as follows:

3 T
Lxr(Ry, Ry, t) =KL [softmax (Rt") , softmax (P;”)] (1)

where K L[-,] denotes the KL divergence, softmaz(-) the softmax function, ¢ the tempera-

ture, and t? a balancing constant that counteracts the decay of K L when logits are softened.
Second is a loss computed between pairs of teacher-student intermediate layers, resulting in
the following total loss:

Lrxkp=~Leg+LrL+ Y Y, AiLr(R] RY) (2)

i€LT jeLS

where Log denotes cross-entropy loss and Lp denotes the feature loss computed after
aligning the teacher and student ambient dimensions.

3.2. Proposed Method

In what follows, we formalize the two complementary innovations of our proposed FKD
framework, illustrated in Figure 1, and describe our implementation.

First, we modify the standard loss recipe in Equation 2 by removing all logit losses
from the student backbone during training. Here “backbone” is defined as the set of layers
{ff]i< l?inal}, where l?inal := max (L) denotes the last (deepest) student layer selected
for distillation. We drop the Lk term completely, and stop back-propagation of Lop at
lfm o1~ This means the student backbone is trained to minimize only the feature-based loss,

L, while the student classifier is trained to minimize only the cross-entropy loss L.

Second, for teacher layer selection (i.e, L), we choose the top-k layers with the highest
knowledge quality from our metric, which we denote by O. This metric combines three
geometric properties of layer representations as follows:

Q(R) :=S8(R) + VI(R)E(R) (3)

the components being measures of separation (S), information (Z), and efficiency (€).
These are computed from the average within-class dot product (avgDPW), between-class dot
product (avgDPB), minimum within-class dot product (minDPW), between-class distance
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(minDistB), and average norm (avgNorm) (full definitions provided in the appendices), of a

set of representations R = {ry,ra,--- ,rny} of the training dataset.
Separation measures the extent to which a representation distinguishes classes by using
the average within-class cosine similarity and between-class cosine similarity:

S(R) = avgDPW (R) — avgDPB(R) (4)

Prioritizing layers with higher scores ensures the selected teacher layers can convey rich
information about class labels to the student. As we will show in the experiments, separation
tends to increase during the compression layers of the model, which is consistent with prior
findings (Akshay Rangamani and Poggio (2023)).

Information measures the richness of a layer’s “dark knowledge" by considering its
embedding dimension and within-class variation. Our use of the embedding dimension aligns
with prior work (Bradley C.A. Brown and Loaiza-Ganem (2022)), which found that peak
intrinsic dimension (ID)—i.e., the maximum ID achieved across all layers—is correlated with
better model performance. While in practice it can be difficult to measure the intrinsic
dimension—specifically, the actual dimension of the latent feature manifold—from samples
(see Gonzalo Navarro and Bustos (2017); Edgar Chavez and Marroquin (2001); Elena Facco
and Laio (2017)), the embedding dimension serves as a reasonable proxy that is relatively
easy to compute (e.g., with principal component analysis). We also incorporate within-class
variance since the ground truth labels lack such information. Formally, we combine the
minimum within-class similarity (a proxy for within-class variance), and the average class-wise
normalized SVD Entropy (a measure of embedding dimension) as follows:

Z(R) = [1 — minDPW (R)] avgSV DE(R) (5)

where avgSV DE(-) is defined as:

C _
avgSVDE(R) = éz H(oc)

where H(G.) = — Z?;l 7ciln(0ei) is the Shannon Entropy of the normalized singular values
(G.) of the class covariance matrix and d, is the embedding dimension of class ¢ estimated by
PCA 2. H(G.) attains a maximum value of [n(N,) when all N, data points are equidistant
from the mean and mutually pair-wise orthogonal, so we normalize it to get values between
0 and 1. Intuitively, avgSV DFE measures the dimensionality of the representations weighted
by how evenly their variance is distributed across dimensions. We will show experimentally
that models increase Z during the extraction layers and then decrease Z in order to increase
S during the compression layers.

Efficiency measures how large the representations are relative to how large they must
be to allow their information (Z). This is motivated by our empirical observation that
representations of large norm often lead to student training instability, which we suspect
results from the corresponding increase in the magnitude of L. To formalize this, we consider
a hyper-spherical packing problem. Suppose there are N data points and a minimum distance
of ¢ is required between any two of them, i.e., ||r; — 7j||2 > €,Vi # j. Then, for ReLU-family

2. In our experiments, we use the number of principal components required to account for 95% of the
variance as an estimate of embedding dimension.



(e.g., ReLU, Leaky ReLU, GELU) activated D-dimensional Euclidean space, the radius of
the smallest hypersphere that can accommodate such points can be approximated by:

Tmin(‘% d) ~ 2Ke (6)

1
with K = (%) b-1_ Equation 6 describes how dimension and radius affect the number of

available “e-rooms” on a hypersphere’s surface. We set ¢ = minDist B(R), then define the
packing efficiency as the ratio between the empirical norm and the estimate of the smallest
required norm: nDistB(R)
2KminDistB

E(R) = avgNorm(R) @
Consistent with Z, we use a PCA estimate of the global embedding dimension for D. &£
signifies when representations are size efficient, with lower values indicating the norm is
unnecessarily inflated. This value facilitates selecting teacher layers which will improve the
student’s ability to converge during training. As we will show in the experiments, £ resembles
7 in that it increases during the extraction layers, then decreases during compression.

We make several implementation choices for our proposed KD method. We follow existing
work (Defang Chen and Chen (2021); Defang Chen (2022)) and set |L7| = |L°| = 4 with a
simple one-to-one layer mapping. We only consider representations of the training dataset X
when computing Q and selecting L”. We restrict the definition of “layer” to minimal sets
of functions ending with non-linear activation, since nonlinearities influence the geometric
properties of R;,®. For dimensional translation, we construct a single layer projector. It
consists of a pooling layer for spatial alignment, followed by a convolution layer with minimal
filters and no bias. We form it directly from the projectors used in (Defang Chen and Chen
(2021)) but reduce the number of layers to 1. In principal, this formulation of Ly, is very
similar to (A. Romero and Bengio (2015)). We use a 2D version for CNNs, and a 1D version
for transformers. They are identical up to the order of the parameter tensors. We constructed
our KQ metric from §,Z, and £ as shown in Equation 3 following preliminary empirical
analysis that showed this combination of the three components led to the best results.

4. Experiments

We now describe our experiments validating improvements from our proposed approach and
the importance of its different design choices.

Model Architectures. To demonstrate that our method is applicable to different archi-
tectures, we experiment with convolutional neural networks (CNNs) and vision transformers
(ViTs). For teachers, we chose VGG19 (Simonyan and Zisserman (2015)), ResNet34 (Kaim-
ing He and Sun (2016)), and ViT _B (Alexey Dosovitskiy and Houlsby (2021)) to examine
the efficacy of our @ metric on a “vanilla” CNN, a residual CNN, and an attention-based
architecture. For students, we chose VGG11, MobileNetV2 (Sandler and Chen (2018)),
ResNet9, and ViT _ET (extra tiny) to cover the same three classes of architecture.
Training Protocol. Models are trained for 50 epochs with the Adam optimizer (Kingma
and Ba (2015)) and a single cycle learning rate schedule (Smith and Topin (2017)). We
train without data augmentation so knowledge quality is measured in a reproducible manner.
Results with data augmentation are provided in the appendices, and reinforce our findings.

3. For example, ReLLU restricts all points to live in the non-negative orthant, the relative volume of which

vanishes in high dimension as 2%.
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Datasets. We use three datasets commonly employed for knowledge distillation experiments.
Two are CIFAR10 and 100 datasets A. Krizhevsky and Hinton (2009), which are composed of
60,000 32x32 color images from 10 and 100 classes respectively. The third is Tiny ImageNet Le
and Yang (2015) which consists of 110,000 64x64 color images from 200 classes.

Evaluation Metrics. We evaluate with top-1 accuracy and average® absolute relative
improvement (ARI) (Y. Tian and Isola (2020)). ARI indicates the benefit of K D; relative

to KDy: Acckgp, — Acckp,

ARI(KD,KDy) =
( ’ ) ACCKD2 - ACCBaseline

where Accpaseline denotes the accuracy of the student model without any distillation. For all
experiments, we report mean and standard deviations from three, randomly initialized runs.

4.1. Analysis: Where Does Peak KQ Occur?

Common trends for the knowledge quality curves are exemplified in Figure 2 for ResNet34
and ViT_B on CIFAR100. The components of Q—S&,Z, and E—exhibit clear extraction and
compression phases in both models, reinforcing prior work’s findings (Wojciech Masarczyk
and Trzcinski (2023)). In the final layers, separation increases at the cost of information and
efficiency, a trend that generalizes across datasets (see appendicies). These findings also show
Q peaks at different relative depths for the models with only ResNet34 exhibiting knowledge
quality decay in the final layers. This suggests that ViT B contains better knowledge at the
logits layer, which we validate experimentally.

5.00 ResNet34 Knowledge Quality on CIFAR 100 ViT B Knowledge Quality on CIFAR 100
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Figure 2: Per-layer knowledge quality analysis of ResNet34 (left) and ViT B (right) on
CIFAR100. X-axes: layer indices. Y-axis: S (dark blue), Z ( ), € (red),
Q ( ). circles indicate standard layer selections and indicate
maximal knowledge quality layers.

4.2. Distillation Results

Experiment 1: Ours vs. Baselines. We compare our FKD method to seven base-
lines: Vanilla KD (Van. KD Hinton et al. (2015)), Logit Standardization (Van. KD Std.
Shangquan Sun (2024)), Base FKD (a modernization of FitNets A. Romero and Bengio
(2015)), Base FKD + FC (base FKD with fully connected layer mapping), Similarity Pre-
serving (Sim. Pres. Tung and Mori (2019)), SemCKD (Defang Chen and Chen (2021)), and

4. Averaged over all relevant baseline distillation methods.
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Figure 3: Performance of proposed method and baselines. Vertical black lines denote baseline
student performance and the end of each bar shows standard deviation values from
three runs. Configurations which failed to converge are not plotted. ARI denotes
the mean ARI from our method to all baselines.

Reused Teacher Classifier (SimKD Defang Chen (2022)). These represent top-performing logit
and feature KD strategies. For the baselines, we use the widely accepted standard of selecting
teacher layers at the end of each model stage which occur next to pooling operations. For
ViT, which lacks pooling operations, we select layers mimicking the average relative depths
chosen for the CNNs. For baselines which use Lxr,, we adopt common practice (Defang Chen
and Chen (2021); Tung and Mori (2019)) and set ¢ = 4. Results are shown in Figure 3.

Overall, our method considerably outperforms all baselines. Moreover, we observe a
positive correlation between dataset difficulty and the performance gains achieved by our
method, with the highest ARI scores obtained on Tiny ImageNet. This suggests that the
benefit of training the student’s backbone without logit losses increases as the classification
task becomes less easily separable. We suspect this is because harder datasets result in
teacher representations with higher intrinsic dimensionality, thereby offering richer knowledge
for the student to learn from.

Examining the influence of model architecture, our method achieves similar absolute
benefits but smaller ARIs on transformers than CNNs. We attribute this difference to the
way CNNs and ViTs modify knowledge quality across their layers, as shown in Figure 2.
ViT B increases Q in an almost monotone fashion across its layers, whereas CNNs exhibit
degrading knowledge quality in their final layers. As predicted by this analysis, logit loss
based methods perform better (by ~ 2x) on this model pair because ViT contains higher
quality knowledge at its final layers than the CNNs.
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Figure 4: Performance of different teacher layer selection methods when paired with three
loss recipes: our loss recipe (Orange), CE loss used in backbone (Light blue), and
both CE and KL loss used in backbone (Dark blue). Configurations which failed
to converge are clipped to —3 for improved legibility. Ours and standard layer
selection are indicated by solid and striped bars, respectively.

Experiment 2: When Does Q-Based Layer Selection Matter? We next test both
our method and the Base FKD baseline (which are identical up to layer selection and
loss recipe) with all combinations of layer selection and loss recipe (holding dimensional
translation constant). Specifically, for our method, we added both the CE and KL logit losses
(“Ours+LL") and just the CE loss (“Ours+CE”). For Base FKD, we removed the KL loss
(“Base FKD-KL”) and all logit losses (“Base FKD-LL”). Results are in Figure 4. We found
our layer selection method is critical, as the student failed to converge during training for 6
of 12 cases using standard layer selection. When logit losses are used, our layer selection
method has a smaller benefit suggesting they safeguard against poor quality teacher layers,
despite preventing a student from fully learning a teacher’s knowledge.

Experiment 3: Ablation on Knowledge Quality Metric. Finally, we evaluate the
importance of each term in our KD metric by choosing layers based on each term independently
(i.e., S, Z, &) as well as the VZE term. The only strategy which always successfully converged
during training is our method with all three metrics: Q. The student did not converge in 4
of 12 cases when using only S, Z, or vZE€ and in 5 cases when using only &.

5. Conclusion

Training the student backbone without any logit-based losses and our geometry-aware novel
teacher layer selection method achieves state-of-the-art KD performance.



References

V. Nair A. Krizhevsky and G. Hinton. Cifar-10 and cifar100 datasets. 2009. URL https://www.cs.
toronto.edu/kriz/cifar.html.

S. E. Kahou A. Chassang C. Gatta A. Romero, N. Ballas and Y. Bengio. Fitnets: Hints for thin
deep nets. In ICLR, 2015.

Tomer Galanti Akshay Rangamani, Marius Lindegaard and Tomaso Poggio. Feature learning in deep
classifiers through intermediate neural collapse. In ICML, 2023.

Jakob H. Macke Alessio Ansuini, Alessandro Laio and Davide Zoccolan. Intrinsic dimension of data
representations in deep neural networks. In NeurIPS, 2019.

Alexander Kolesnikov Dirk Weissenborn Xiaohua Zhai Thomas Unterthiner Mostafa Dehghani
Matthias Minderer Georg Heigold Sylvain Gelly Jakob Uszkoreit Alexey Dosovitskiy, Lucas Beyer
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
ICLR, 2021.

Anthony L. Caterini Bradley C.A. Brown, Jordan Juravsky and Gabriel Loaiza-Ganem. Relating
regularization and generalization through the intrinsic dimension of activations. In Workshop on
Optimization for Machine Learning, 2022.

Hailin Zhang Can Wang Yan Feng Chun Chen Defang Chen, Jian-Ping Mei. Knowledge distillation
with the reused teacher classifier. In CVPR, 2022.

Yuan Zhang Can Wang Zhe Wang Yan Feng Defang Chen, Jian-Ping Mei and Chun Chen. Cross-layer
distillation with semantic calibration. In AAAI pages 7028-7036, 2021.

Ricardo Baeza-Yates Edgar Chavez, Gonzalo Navarro and Jose Luis Marroquin. Searching in metric
spaces. ACM Computing Surveys, 33:273-321, 2001.

Alex Rodriguez Elena Facco, Maria d’Errico and Alessandro Laio. Estimating the intrinsic dimension
of datasets by a minimal neighborhood information. In Nature Sci Rep, 2017.

Nora Reyes Gonzalo Navarro, Rodrigo Paredes and Cristian Bustos. An empirical evaluation of
intrinsic dimension estimators. In Information Systems, pages 206-218, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint, page arXiv:1503.02531, 2015.

Jialiang Tang Honglin Zhu, Ning Jiang and Xinlei Huang. Knowledge distillation via information
matching. In Neural Information Processing, ICONIP., pages 405-417, 2024.

Haiping Huang. Mechanisms of dimensionality reduction and decorrelation in deep neural networks,
2018.

Shaoqing Ren Kaiming He, Xiangyu Zhang and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. 2015. URL https://api.
semanticscholar.org/CorpusID: 16664790.

10



LocIiT-BASED LOSSES LIMIT THE EFFECTIVENESS OFFEATURE KNOWLEDGE DISTILLATION

A. G.; Zhu-M.; Zhmoginov A.; Sandler, M.; Howard and L. Chen. Mobilenetv2: Inverted residuals
and linear bottlenecks. In CVPR, 2018.

Nikos Komodakis Sergey Zagoruyko. Paying more attention to attention: Improving the performance
of convolutional neural networks via attention transfer. In ICLR, 2017.

Raffaello Seri. Asymptotic distributions of covering and separation measures on the hypersphere. In
Discrete and Computational Geometry, 2023.

Jingzhi Li-Rui Wang Xiaochun Cao Shangquan Sun, Wenqi Ren. Logit standardization in knowledge
distillation. In CVPR, 2024.

Bing Wang-Kaicheng Yu Xiaojun Chang Xiaodan Liang Gang Wang Sihao Lin, Hongwei Xie.
Knowledge distillation via the target-aware transformer. In CVPR, pages 10915-10924, 2022.

K.; Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In ICLR, 2015.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates, 2017.

Madhu Advani-Timothy Moore Guillaume Lajoie Stefano Recanatesi, Matthew Farrell and Eric
Shea-Brown. Dimensionality compression and expansion in deep neural networks, 2019.

Tlias Theodorakopoulos and Dimitrios Tsourounis. A geometric perspective on feature-based distilla-
tion. Studies in Computational Intelligence, pages 33-63, 2023.

F. Tung and G. Mori. Similarity-preserving knowledge distillation. In CVPR, page 1365-1374, 2019.

X.Y. Han Vardan Papyan and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. In PNAS, 2020.

Ehsan Imani-Razvan Pascanu Piotr Milos Wojciech Masarczyk, Mateusz Ostaszewski and Tomasz
Trzcinski. The tunnel effect: Building data representations in deep neural networks. In NIPS,
2023.

Yan Lu Wonpyo Park, Dongju Kim and Minsu Cho. Relational knowledge distillation. In CVPR,
page 3967-3976, 2019.

D. Krishnan Y. Tian and P. Isola. Contrastive representation distillation. In ICLR, 2020.

Yi Wang Yichen Zhu. Student customized knowledge distillation: Bridging the gap between student
and teacher. In ICCV, pages 5057, 5066, 2021.

Kai Han-Yehui Tang Han Hu Yunhe Wang Chang Xu Zhiwei Hao, Jianyuan Guo. One-for-all: Bridge
the gap between heterogeneous architectures in knowledge distillation. In NeurIPS, 2023.

11



Appendix

Additional information about the material in the main paper is provided in the following sections
about the following topics:

1.
2.

Complete definitions of all quantities used in the construction of the knowledge quality metric.

Proof of the hyperspherical packing result (equation 6 of main paper) used in the definition of
& (supplements section 3.2 of main paper, equation 6).

Additional background on the intrinsic and embedding dimensions in neural networks (supple-
ments section 3.2 of main paper).

. Full hyperparameter and model architecture details (supplements section 4 of main paper).

. Additional validation experiments (supplements section 4.2 of main paper).

Accuracy vs. epoch plots for all student distillation methods (supplements section 4.2 of main
paper).

Knowledge quality (Q) plots for all teacher models on all datasets (supplements section 4.1 of
main paper).

Layer translation tables for facilitating future work (supplements section 4 of main paper).

All selected teacher layer indices for facilitating reproducibility (supplements section 4 of main
paper).

Appendix A. Theoretical Appendix

A.l.

Full Definitions

Below are the complete definitions of the average within-class dot product (avgDPW), between-
class dot product (avgDPB), minimum within-class dot product (minDPW), between-class distance
(minDistB), and average norm (avgNorm):

avgDPW (R Z Z |N|2 |N\

c=1 (4, J)EN2

avgDPB(R) CZ Z Z Z \N |

c=1c'=c+1i€N.jEN_/

1
inDPW (R) = — in |(r; -7
min (R) =7 4 G min, 1)
minDistB(R) C CE 2 g leNm;relN 17 —75ll2

1
avgNorm(R) = i Z I7: |2

where (r; - 7;) = m is the normalized dot product (i.e., cosine similarity), N, is the subset of

indices corresponding to class ¢, and (i,7) € N2 denotes a distinct pair of such indices.
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A.2. Hyperspherical Packing

We provide here the proof of the result on hyperspherical packing that is used to define efficiency £.
Recall the ReLU activation function:

ReLU(x) = max{z,0}.
The D-dimensional ReLU activated space is thus the non-negative orthant Rf .
Theorem: Given a set of N distinct points p; in D-dimensional ReLU activated space:
P ={p1, p2, p3,--+, PN}
and a minimum distance d,,;, > 0 between these points, the smallest radius of the D-dimensional hy-

persphere SP~1 centered at the origin that can accommodate the set P of points can be approximated
by:

1
N\ D1
Tmin = 2dnun (71’) .

Proof: Note that the surface area of hypersphere S”~! of radius r is given by:

D+1
D1 2m 2

Surf(SP~1(r))

where I'(+) is the gamma function. We approximate the problem by finding how many (D — 1)-balls
of radius d,i, fit in the surface area. This is a good approximation when the number of points
N is large; e.g., N > 50,000 for CIFAR10/100 and Tiny ImageNet. For a proper treatment of
the asymptotic behavior (with respect to N) of this question, see Seri (2023). The volume of a
(D — 1)-ball is given by:
D—1
Vol(BP~Y(dpin)) = d27 1 2.
(B> i) = 425! iy
The positive orthant only accounts for a factor of 2= of the hypersphere. So, the number of
(D — 1)-balls of radius d,;, that can fit on the non-negative orthant portion of the hypersphere of
radius 7 is approximated by:
27 PSurf(SP1(r)
= Vol(BP~Y(dpmin))

- D+1
rP=1 9=

D—1 D—1
dmin ™ 2

D—-1
T
=
(2dmzn> ’

1
NPT
s

Remark: We consider ReLU because of its popularity and simple geometric interpretation and
analytic properties. Similar results can be obtained for other activation functions, such as Leaky
ReLU and GeLU.

27D

from which we obtain:
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A.3. Intrinsic and Embedding Dimension Background

To facilitate understanding of the important geometric concept of intrinsic dimension, we provide a
visualization of the differences between the ambient, intrinsic, and embedding dimensions in Figure
5. Pictured there is 3-D Euclidean space with two embedded sub-manifolds; the circle and the plane.
Because the circle has a “true” dimension of 1, its ID is 1. Intuitively, this is because at any point on
the circle, there are only two possible directions to move; counter-clockwise and clockwise. However,
because we cannot draw circles in 1-D Euclidean space, the embedding dimension of the circle is 2.

Figure 5: Relationship between the intrinsic, embedding, and ambient dimensions (ID, ED,
AD). The blue circle has ID 1, because it is a 1-dimensional manifold. However,
it has ED 2 (dashed lines), because it cannot exist in R", when n < 2. Yet, the
circle is drawn in AD 3. Generally, ID < ED < AD.

Visualizing what an increase in embedding dimension might look like can be non-obvious at first
glance. To see how embedding dimension can increase via processing in non-linear neural networks,
consider Figure 6.

<3

s -

Loc---

Figure 6: Example of increased embedding dimension as a result of ReLLU activation.

Starting on the left, 3 points on a line in R? (red dots) with embedding dimension 1. Then, a new
basis is defined by a linear layer (dashed lines) and the red dots are reinterpreted in this new basis
(right). ReLU activation is applied (blue dots), increasing the embedding dimension to 2 (dashed
blue lines). Intuitively, the data are “bent" around a mold of shape defined by the activation function.
The position of this mold is determined by the learned change of basis.

Appendix B. Technical Appendix

B.1. Model Architecture Details

ResNet9. ResNetl8 consists of 2 residual blocks Kaiming He and Sun (2016) per stage, meaning
there are 2 blocks for each spatial dimension of the representations. ResNet9 is formed simply by
reducing this to 1 residual block per stage. All other layers, such as the initial convolution prior to
the residual blocks, remain unaltered.
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Model MaxLR
VGG19 0.005
VGGI1 0.005

ResNet34 0.0075
ResNet9 0.0075
MobileNetV2 | 0.0075
ViT_ B 0.0001
ViT _ET 0.001

Table 1: Maximum learning rates for each architecture. Kept fixed for all datasets and all
KD configurations.
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Figure 7: Training protocol validation. Our method is trained for 50 epochs. Baselines are
given ~ 5x training time of 240 epochs (striped bars). VKD-T2 denotes Vanilla
KD w/ T' = 2. Configurations which failed to converge are not plotted.

ViT ET. For the “extra tiny" vision transformer, we follow the structure of ViT _B Alexey Doso-
vitskiy and Houlsby (2021) but reduce the number of layers, hidden dimension, and number of
attention heads. Recall that ViT B has 12 layers with 12 attention heads, and a hidden dimension
of 768. ViT _ET has 8 layers with 6 attention heads, and a hidden dimension of 192. This results in
a total of ~ 3M parameters, which is comparable to MobileNetV2 Sandler and Chen (2018) at 2.5M
parameters. For additional context, VGG11 Simonyan and Zisserman (2015) has 28 M and ResNet9
has 5M.
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Figure 8: Training protocol validation ARIs. Our method is trained for 50 epochs. Baselines
are given ~ 5X training time of 240 epochs (striped bars). Unstable ARI indicates
unrepresentative values due to poor baseline performance. Configurations which
failed to converge are not plotted.
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B.2. Optimization Details

We used the Adam Kingma and Ba (2015) optimizer to train all models. Weight decay was set
to 0.01, 81 = 0.9, B2 = 0.999, and the numerical stabilization term was set to 1le — 8. We trained
all models for 50 epochs. We used the One Cycle learning rate scheduler Smith and Topin (2017),
with its suggested technique for choosing the maximum learning rate; i.e., training baseline models
(without any distillation) with a range of different maximum learning rates for 25 epochs to select the
optimal value. This was done for each architecture, and then the result was fixed for all experiments.
See Table 1 for the specific values.

The other parameters of the scheduler are as follows: 30% of the iterations were spent increasing
the learning rate (1), at the start of training n = %7 and at the end n = A{g(’f&fi. We used cosine
annealing, with base and peak momentums set to 0.85 and 0.95, respectively.

B.3. Extra Validation Experiments

Is 50 Epochs Long Enough? We now justify our training approach (Section B.2) by showing
our findings from experiment 1 of the main paper are consistent even when leveraging other training
strategies. Specifically, we follow prior work Defang Chen and Chen (2021); Honglin Zhu and Huang
(2024); Defang Chen (2022) by also training student models for 240 epochs using stochastic gradient
descent (SGD). This analysis is intended to address potential concerns that our findings are due to
baseline methods not properly converging. We call this the “standard" optimization scheme. We
use momentum of 0.9 following a multi-step learning rate scheduler, where the learning rate was
stepped down by a factor of 10 at epochs 150, 180, and 210. For ResNet9 and MobileNetV2, the
initial learning rate was 0.05, while for VGG11 it was set to 0.01 because 0.05 resulted in failure to
converge. We omit the vision transformer model pair (ViT_B — ViT ET) from this experiment
because we observed significant performance degradation (~ —10%) in the student model when using
this optimization scheme.

Results are shown in Figure 7, with updated ARI values provided in Figure 8. Despite being
provided with almost 5x more training time, none of the baseline techniques surpass the performance
of our method presented in the main paper. Instead, we still observe the same conclusions as
articulated in the main paper: (1) our method achieves superior performance, (2) its best results
are on Tiny ImageNet, and (3) its worst results are on the vision transformer model pair. See
Section C.1 training curves of the student models. Additionally, our method often surpasses the
(non-distillation) student’s accuracy after only 10 — 30 epochs. This is distinctly different behavior
from all baseline methods, which appear to demand significantly increased computational budget.

Is T = 4 Too High? We also investigated if an overly high temperature could be the cause
of poor baseline performance. This is inspired in part by our observation during baseline training
that the Lk loss term was sometimes larger than the cross-entropy loss. We re-trained VKD with
a reduced temperature of 2. This configuration is denoted by “VKD-T2". Results are shown in
Figure 7. We observe that the temperature choice of T' = 4 is superior to 1" = 2, with the reduced
temperature resulting in considerable performance degradation in most cells.

Data Augmentation Experiments. As discussed in the main paper, we did not use data
augmentation in the main experiments to ensure reproducible knowledge quality computation.
To validate our method’s effectiveness when trained with data augmentation, we re-trained all
configurations with a standard data augmentation recipe of random horizontal flips (with 50%
probability) and random crops from zero padded images. We used a padding size of 4 on all sides of
the images. Figure 9 contains the results.

Once again, we re-observe the same conclusions articulated in the main paper. That is, our
method outperforms all the baselines, and achieves its best (relative) results on Tiny Imagenet and
worst results on the ViT model pair. In fact, our method achieves a new best recorded result for
MobileNetV2 on CIFAR100 at 73.36% accuracy.
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Figure 9: Data Augmentation validation results. Configurations which failed to converge are
not plotted. Unstable ARI indicates unrepresentative values due to proximity to
baseline student.

Appendix C. Complete Results
C.1. Training Curves

We provide accuracy versus epoch curves for all model pairs presented in Experiment 1 of the main
paper. Horizontal black lines are drawn at the baseline student’s peak accuracy. For legibility, we
plot a representative subset of baselines against the original student (without any distillation) and
our method. Vertical lines are drawn at the first epoch where the student surpasses the baseline (no
KD) accuracy. Results are shown in (Figures 10, 11, 12, and 13).
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Figure 10:
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X-axis: epochs.

Y-axis: top-

1 accuracy. Our method shown in orange. Vertical lines indicate when each
distillation method surpasses the baseline student’s accuracy.
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CIFAR 10: ResNet34 -> ResNet9
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Figure 11: ResNet34 — ResNet9 Training Curves. X-axis: epochs. Y-axis: top-1 accuracy.
Our method shown in orange. Vertical lines indicate when each distillation
method surpasses the baseline student’s accuracy.
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CIFAR 10: ResNet34 -> MobileNetV2
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Figure 12: ResNet34 — MobileNetV2 Training Curves. X-axis: epochs. Y-axis: top-1
accuracy. Our method shown in orange. Vertical lines indicate when each
distillation method surpasses the baseline student’s accuracy.
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CIFAR 10: VIiT_B -> VIiT_ETT
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Figure 13: ViT_B — ViT ET Training Curves. X-axis: epochs. Y-axis: top-1 accuracy.
Our method shown in orange. Vertical lines indicate when each distillation
method surpasses the baseline student’s accuracy.
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C.2. Knowledge Quality Plots

We present plots for all teachers and datasets. Per-layer curves of §,7, £ are provided for all dataset-
teacher combinations (Figures 14 15 16). As noted before, none of these curves were obtained with
data augmentation to ensure reproducibility. Results begin on the next page.
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Figure 14: Breakdown of VGG19 Knowledge Quality. From top to bottom: CIFARIO0,
CIFAR100, Tiny ImageNet.
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ResNet34 Layerwise Knowledge Quality on CIFAR10
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Figure 15: Breakdown of ResNet34 Knowledge Quality. From top to bottom: CIFARIO0,
CIFAR100, Tiny ImageNet.
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Figure 16: Breakdown of ViT B Knowledge Quality. From top to bottom: CIFARIO,
CIFAR100, Tiny ImageNet.
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C.3. Teacher Layer Selections

C.3.1. INDEX TRANSLATION TABLES

As discussed in the main paper, we consider only activated representations because of the geometric
implications. This results in layer indices which may not have immediately obvious relationships
to the traditional definition of “layer". Hence, we provide translation tables. They can be used to
infer which “layers" (in the traditional sense) were selected based on the knowledge quality plots and
other tables to come. Note that many of the layer types listed below end in non-linear activation;
e.g. residual blocks and transformer layers. We do not subdivide either of these. Flatten layers are
included when they occur in activated space. For the CNNs, we also indicate the stages each layer
belongs to. Tables 2, 3, 4, 5 contain this information.
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’ Layer Type ‘ Stage H Index ‘

| VGG19

|

Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

MaxPool2D
Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

MaxPool2D
Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

MaxPool2D
Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

Conv2D
BatchNorm2D
ReLU

10

Conv2D
BatchNorm2D
ReLU

LW W WWWWWWWWWwWwWwhom N NN NN NN NP PR RER RO O oo O o

11

Table 2: VGG19 Layer Translation Table pt.

1.

Stage indicates representation spatial

resolution. Index denotes the layer indexing system throughout this paper.
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’ Layer Type ‘ Stage H Index ‘

’ VGG19 Cont. ‘

MaxPool2D
Conv2D
BatchNorm2D

ReLU 12

Conv2D
BatchNorm2D

ReLU 13

Conv2D
BatchNorm2D

ReLU 14

Conv2D
BatchNorm2D

ReLU 15

MaxPool2D
AdaptAvgPool2D

Flatten 16

Linear

ReLU 17

Dropout
Linear

ReLU 18

Dropout
Linear

LR | RS RS IS RS IR ] RS S 21 | IV SGRN SO SN I SO SN TSSOSO

Table 3: VGG19 Layer Translation Table pt. 2. Stage indicates representation spatial
resolution. Index denotes the layer indexing system throughout this paper.
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Layer Type ‘ Stage H Index ‘

ResNet34 ‘

Conv2D
BatchNorm2D
ReLU

MaxPool2D
BasicBlock

BasicBlock

BasicBlock

BasicBlock

BasicBlock

BasicBlock

BasicBlock

BasicBlock

BasicBlock

BasicBlock

—_ =
2l S|o| ||| oo k|| w| o] —

BasicBlock

BasicBlock
BasicBlock

BasicBlock
BasicBlock
BasicBlock

AdaptAvgPool2D
Flatten

Linear ‘

—_
[\)

—_
w

—_
s

—_
ot

—_
(@]

17

I |

Table 4: ResNet34 Layer Translation Table pt. 1. Stage indicates representation spatial
resolution. Index denotes the layer indexing system throughout this paper.

QU O O[> ][R Q| W W W WIN NN~ RO O O
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|

Layer Type

H Index ‘

|

ViT_B

|

ViT Input

Pos. Embedding

Dropout
EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

EncoderBlock

= =
| B =1 R RN T RN R EUN OV EC) e e

LayerNorm
Flatten

—_
[\

Linear

I

|

Table 5: ViT B Layer Translation Table pt.

1.

LocIiT-BASED LOSSES LIMIT THE EFFECTIVENESS OFFEATURE KNOWLEDGE DISTILLATION

Stage indicates representation spatial

resolution. Index denotes the layer indexing system throughout this paper.
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C.3.2. TABLE OF SELECTED INDICES

Table 6 contains all selected teacher layer indices L for all selection strategies used in the main
paper.

LT | CIFAR10 | CIFAR100 | Tiny ImageNet
] VGG19 |
Std 3,7, 11, 15] | [3,7,11,15] | [3,7, 11, 13]
Ours | [11,12, 13, 15] | [11, 12, 13, 15] | [11, 12, 13, 16]
Q=38 | [15,16, 17, 18] | [15, 16, 17, 18] | [15, 16, 17, 18]

Q=1 8,9, 10, 11] 8, 9, 10, 11] [9, 10, 11, 12]
Q=¢ [7, 8,9, 10] [7, 8,9, 11] 8,9, 10, 11]
Q=1I¢ [7, 8,9, 11] [7, 8,9, 11] [8, 9, 10, 11]

’ ResNet34 ‘

Std 3,7,13,16] [ [3,7,13,16] [ [3,7, 13, 16]
Ours | [12, 13, 14, 15] | [12, 13, 14, 15] | [12, 13, 14, 15|
Q=35 |[14,15,16, 17| | [14, 15, 16, 17] | [14, 15, 16, 17|
Q=1 |[11,12, 13, 14] | [11, 12, 13, 14] | [11, 12, 13, 14]
Q=¢ | [11,12, 13, 14] | [12, 13, 14, 15] | [11, 12, 13, 14]

Q=1I¢ | [11,12,13,14] | [11, 12,13, 14] | [12, 13, 14, 15]
| ViT_B |

Std 2, 4, 8, 10] [2, 4, 8, 10] [2, 4, 8, 10]
Ours | [9,10, 11,12] | [7,10, 11,12 | [7,8, 11, 12|
Q=38 | [9,10,11,12] | [9,10,11,12] | [9, 10, 11, 12]
Q=1 | [9,10,11,12] | [7,10,11,12] | 7,8, 10, 11]
Q=¢& | [7,8,10,11] | [7,10,11,12] | 6,7, 8, 11|

Q=1 | [9,10,11,12] | [7,10,11,12] | [7,8,09,11]

Table 6: Indices resulting from all teacher layer selection strategies used in the main paper.
Indices can be interpreted via. the layer translation tables.
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