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Abstract
Evaluating robustness of machine-learning mod-
els to adversarial examples is a challenging prob-
lem. Many defenses have been shown to provide a
false sense of security by causing gradient-based
attacks to fail, and they have been broken under
more rigorous evaluations. Although guidelines
and best practices have been suggested to im-
prove current adversarial robustness evaluations,
the lack of automatic testing and debugging tools
makes it difficult to apply these recommendations
in a systematic manner. In this work, we over-
come these limitations by (i) defining a set of
quantitative indicators which unveil common fail-
ures in the optimization of gradient-based attacks,
and (ii) proposing specific mitigation strategies
within a systematic evaluation protocol. Our ex-
tensive experimental analysis shows that the pro-
posed indicators of failure can be used to visual-
ize, debug and improve current adversarial robust-
ness evaluations, providing a first concrete step
towards automatizing and systematizing current
adversarial robustness evaluations.

1. Introduction
Neural networks are now deployed in settings where it is
important that they behave reliably and robustly (McDaniel
et al., 2016; Finlayson et al., 2019; Yuan et al., 2019; Biggio
& Roli, 2018). Unfortunately, these systems are vulnera-
ble to adversarial examples (Szegedy et al., 2014; Biggio
et al., 2013), i.e., inputs intentionally crafted to mislead
machine-learning classifiers at test time. This vulnerability
has caused a strong reaction from the community, with many
proposed defenses (Yuan et al., 2019; Papernot et al., 2016;
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Xiao et al., 2020; Roth et al., 2019). Early defenses often ar-
gued robustness by showing the defense could prevent prior
attacks, but not attacks tailored to that particular defense.
In particular, most attempted defenses to adversarial exam-
ples only succeed at increasing the difficulty of solving the
minimization formulation, and not at actually increasing the
robustness of the classifier (i.e., increasing the distance of
the decision boundary from the samples) (Carlini & Wagner,
2017a;b; Athalye et al., 2018; Tramer et al., 2020).
Adversarial examples are typically generated through gra-
dient descent: the adversary constructs a loss function so
that a minimum for that function is an adversarial example.
While gradient-based attacks are highly effective at finding
adversarial examples on undefended classifiers with smooth
loss functions, many defenses substantially hinder the at-
tack optimization by obfuscating gradients or by exhibiting
harder-to-optimize loss functions. Moreover, even though
guidelines and best practices have been suggested to im-
prove current adversarial robustness evaluations, the lack of
automatic testing and debugging tools makes it difficult to
apply these recommendations in a systematic manner.
We make the following contributions: (i) we intro-
duce a unified attack framework that captures the pre-
dominant styles of existing gradient-based attack meth-
ods, and allows us to categorize the five main causes
of failure (Sect. 2); (ii) we propose five indicators of
attack failures (IoAF), i.e., metrics and principles that
help understand why and when gradient-based attack al-
gorithms fail (Sect. 3); (iii) we empirically evaluate the
utility of our metrics on four recently-published defenses
(Sect. 4; and (iv) we provide open-source code and
data we used in this paper (https://github.com/
pralab/IndicatorsOfAttackFailure). We con-
clude by discussing limitations and future research direc-
tions (Sect. 5).

2. Gradient-based Attacks and Failures
We argue here that optimizing adversarial examples amounts
to solving a multi-objective optimization:

min
δ∈∆

(L(x+ δ, y;θ), ‖δ‖p) , (1)

https://github.com/pralab/IndicatorsOfAttackFailure
https://github.com/pralab/IndicatorsOfAttackFailure
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Algorithm 1: Our framework for computing ad-
versarial attacks

Input :x, the initial point; y, the true class of the
initial point; n, the number of iterations;
α, the learning rate; f , the target model;
∆, the considered region.

Output :x?, the solution found by the algorithm
1 x0 ← initialize(x)

2 θ̂ ← approximation(θ)
3 δ0 ← 0
4 for i ∈ [1, n] do
5 δ′ ← δi − α∇xi

L(x0 + δi, y; θ̂)
6 δi+1 ← apply-constraints(x0, δ

′,∆)

7 δ? ← best(δ0, ..., δn)
8 return δ?

where x ∈ [0, 1]d is the input sample, y ∈ {1, . . . , c} is
either its label (for untargeted attacks) or the label of the
target class (for targeted attacks), and δ ∈ ∆ is the pertur-
bation optimized to have the perturbed sample x′ = x+ δ
misclassified as desired, within the given input domain. The
target model is parameterized by θ. The given problem
presents an inherent tradeoff: minimizing L amounts to
finding an adversarial example with large misclassification
confidence and perturbation size, while minimizing ‖δ‖p
penalizes larger perturbations (in the given `p norm) at the
expense of decreasing misclassification confidence.1 Typ-
ically the attacker loss L is defined as the Cross-Entropy
(CE) loss, or the logit difference (Carlini & Wagner, 2017b).

Adversarial attacks often need to use an approximation θ̂
of the target model, since the latter may be either non-
differentiable, or not sufficiently smooth (Athalye et al.,
2018), hindering the gradient-based attack optimization pro-
cess. In this case, once the attacker loss has been optimized
on the surrogate model θ̂, the attack is considered successful
if it evades the target model θ.

Attack Algorithm. According to the previous discussion,
all gradient-based adversarial attacks can be seen as searches
for solutions to Eq. 1. Thus, their main steps can be summa-
rized as detailed in Algorithm 1: (i) an initialization point
(line 1) needs to be set, and this can be done by directly
using the input point x, or a different point; (ii) the attacker
might have to chose a surrogate model θ̂ that approximates
the real target θ (line 2); (iii) the attack iteratively updates
the initial point searching for a better adversarial example
(line 4), computing in gradient descent steps (line 5); (iv) the

1Note that the sign of L may be adjusted internally in our
formulation to properly account for both untargeted and targeted
attacks.

(a) Impl. problems. (b) Non-conv. attack.

(c) Bad local optimum. (d) Non-adaptive attack.

Figure 1. The four failures that can be encountered during the
optimization of an attack. The failed attack path is shown in gray,
the successful attack is displayed in black. The point x0 is marked
with the red dot, the returned point of the failed attack with a red
cross, and the successful adversarial point with the green star. The
loss landscape is represented as L(x + av1 + bv2, yi;θ). v1 is
the normalized direction (xn − x0), while v2 is a representative
direction for the displayed case.

perturbation δi+1 is obtained by enforcing the constraints
defined in Eq. (line 6); (v) at the end of the iterations, the
attacker has to select the solution among the perturbations
collected along the iterations, formalized as the attack path
(line 7).

2.1. Attack failures

We can now isolate four failures that can be encountered
while optimizing adversarial attacks using Algorithm 1, and
we bound each of them to specific steps of such procedure.
F1: Implementation Problems. It might be possible that
the used implementation include errors or bugs.
F2: Non-converging attack. Attacks sometimes do not
converge to any local minimum, as shown in Fig. 1b. This
can be caused by either the step size, i.e., the algorithm is
not exploring the space, or the number of steps of the attack,
i.e., the optimization is stopped too early (respectively
parameters α and n Algorithm 1, line 5 and line 4).
F3: Bad local optimum. The attack might reach a region
where there is little or useless information to exploit, as
shown in Fig. 1c. This might happen because of gradient
obfuscation, i.e. the gradients are (nearly) zero (i.e. flat
regions), or noisy (line 5 of Algorithm 1).
F4: Non-adaptive attack. The loss function that the
attacker optimizes does not match the actual loss of the
target system, and this is caused by a bad choice of the
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surrogate model (line 2 of Algorithm 1), as shown in Fig. 1d.

3. Indicators of Attack Failure
In this section we describe our Indicators of Attack Failures,
i.e. tests that help an analyst debug a failing attack. Each
of these tests outputs a value bounded between 0 and 1,
where values towards 1 implies the presence of the failure
described by the test.

I1: Silent Success. This indicator is designed as a binary
flag that triggers when the attack is failing, but a legitimate
adversarial example is found inside the attack path, as de-
scribed by the implementation problem failure (F1).
I2: Break-point angle. This indicator is designed to quan-
tify the non-convergence of the attack (F2) caused by poor
choice of hyperparameters. We normalize the loss along the
attack path, and we draw a triangle whose vertices are the
first and last point in the loss curve, and the point further to
that segment, defining angle β (a figure showing how angle
β is obtained can be found in the Appendix, as Fig. 3a). We
measure 1 − |cosβ|: when β ≈ π, the triangle is flat, i.e.
the loss is still decreasing; when β ≈ π

2 the loss has not yet
reached convergence.
I3: Increasing loss. This indicator is designed to quantify
either the non-convergence of the attack (F2), or the inability
of converging to a good local optimum (F3), both caused
by the presence of noisy gradients, where the loss of the
attack is increasing while optimizing. We normalize the loss
of the attack and the iterations as we did in I2, we extract
from it only the portions where it increases, and we sum its
area (a figurative example of such metric can be found in
the Appendix, as Fig. 3b).
I4: Zero gradients. This indicator is designed to quantify
the bad-local optimum failure (F3), caused by the absence of
gradient information. We compute how many times, along
the attack path, the gradients of the loss function are zero.
This indicator is close to 1 when most of the norms of the
gradient are 0, causing the attack step to fail.
I5: Non-transferability. This indicator detects the non-
adaptive failure (F4), by measuring if the optimized attack
fails against the real target model, while succeeding against
the surrogate one. If the attack transfers successfully, the
indicator is set to 0, otherwise it is set to 1.

3.1. Mitigate the Failures of Security Evaluations

Once the robust accuracy of a model has been computed,
the attacker should now check the feedback of the indicators
and mitigate accordingly the detected failures.
M1: Fix the implementation. If I1 is active, the attack is
considered failed, but there exists an adversarial point inside
the computed path that satisfies the attack objective. The
implementation should be changed.

Table 1. Robust accuracies (%) after patching the security evalua-
tions with the prescribed mitigations.

Model Rob. acc.
k-WTA (Xiao et al., 2020) 58%

M1 → 36%
M3 → 6%

Distillation (Papernot et al., 2016) 94%
M3 → 0%

Ens. Div. (Pang et al., 2019) 38%
M1 → 36%
M2 → 9%

TWS (Yu et al., 2019) 35%
M5 → 0%

M2: Tune the hyperparameters. If I2 activates, it means
that the optimization can be improved, and hence both the
step size and iteration hyperparameters can be increased.
Otherwise, if I3 activates, the attack should consider a
smaller step, as it might be overshooting local minima.
M3: Use a different loss function. If I3 activates, and the
decrement of the step size did not work, the attack should
change the loss to be optimized (Tramer et al., 2020), pre-
ferring one that has a smoother behavior. If I4 activates, the
attack should consider loss functions that do not saturate
(e.g. avoid the softmax) (Carlini & Wagner, 2016), or in-
crease the step size to avoid regions with zero gradients.
M4: Consider different restarts for the attack. If I3 or
I4 activates, the attack might also consider to repeat the
experiments with more initialization points and restarts, as
the failure could be the result of added randomness or an
unlucky initialization.
M5: Perform adaptive attacks. Lastly, if none of the above
applied, the attack might be optimizing against a bad sur-
rogate model. If I5 is active, the attack should be repeated
by changing the surrogate to better approximate the target,
or include the defense inside the attack itself (Tramer et al.,
2020). This implies repeating the evaluation, as such change
might trigger other previously-fixed failures.

When attacks fail even after the applications of these mit-
igations, the designer of the defense should try as hard as
possible to break the proposed defense with further investi-
gations (Carlini et al., 2019).

4. Experiments
We now show the correlation between the feedback of our
indicators, and the false sense of security given by badly-
evaluated defenses. We apply the following pipeline: (i) we
test the defense with the original attack strategy proposed by
the author of the defense; (ii) we select the failure cases and
inspect the feedback of our indicators per-sample; (iii) for
each cause of failure, we apply the specific remediation sug-
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Figure 2. Evaluation of our metrics for different models. Robust
accuracy vs. average value of the indicators, for the initial eval-
uation (denoted with ’◦’), with the evaluation after-mitigation
(denoted with ’×’)

gested by the metric; and (iv) we show that the attack now
succeeds, thus reducing the robust accuracy of the target
model, and also the values of the indicators. We select four
defenses that have been reported as failing, and we show
that our indicators would have detected such evaluation er-
rors, reporting the results of the process in Table 1. Each
evaluation was conducted with 5 random restarts.

k-Winners-Take-All (kWTA), proposed by Xiao et al. (2020)
uses only the top-k outputs from each layer, generating many
discontinuities in the loss landscape, and hence resulting in
failure F2. For many failing attacks, the I1 indicator triggers,
implying that the attack found an adversarial example in-
side the path. We then apply mitigation M1, and we lower
accordingly the robust accuracy of the model to 36,4%. We
analyze the feedback of I3, for inspecting the presence of
noisy gradients. We apply mitigation M3, and we change
the loss of the attack as described by Tramer et al. (2020).
This attack averages the gradient of each single point of the
attack path with the information of the surrounding ones.
The resulting direction is then able to correctly descent to-
ward a minimum. After such mitigation, the robust accuracy
drops to 6.4%, and so follows the indicator.

Distillation, proposed by Papernot et al. (2016), works by
training a model to have zero gradients around the training
points, leading gradient-based attacks towards F3. All the
attacks fail because of the absence of gradient information
in the cross-entropy loss used by the attacks, leading to bad
local optima (F3), and such is highlighted by the feedback
of I3. We apply mitigation M3, and we change the loss
optimized during the attack, following the strategy applied
by Carlini & Wagner (2016), into the logit of the model
rather than the final softmax layer. We repeat the PGD
attack with such fix, and the robust accuracy drops to 0%,
along with the indicator I3.

Ensemble diversity, proposed by Pang et al. (2019), is com-
posed with different neural networks, trained with a regu-
larizer that encourages diversity. Firstly, I1 highlighted the
presence of F1, implying that some failing attacks are due
to the implementation itself. We apply mitigation M1, and
the robust accuracy decreases to 36%. Also, I2 is active,
implying that the loss of of failing attacks could be opti-
mized more. For this reason, we apply mitigation M2, and
we increase the step size to 0.05 and the iterations to 50.
This patch lowers the robust accuracy to 9%.

Turning a Weakness into a Strenght (TWS), proposed by
Yu et al. (2019), measures how much the decision changes
locally around samples to detect adversarial attacks. We
consider only part of this defense, as we wish to show that
attacks optimized neglecting such term will trigger the non-
adaptive failure (F4). The detector is rejecting adversarial
attacks successfully computed on the undefended model,
triggering the I5 indicator. Hence we apply mitigation M5,
and we adapt the attack to consider also the rejection class.
This version of PGD minimizes the usual loss function of
the attacker, but it also minimizes the score of the rejection
class when encountered, allowing it to evade the rejection.
We run the attack, obtaining a new robust accuracy of 0%.

As a additional analysis, we want to understand if our indi-
cators are correlated with faults of the security evaluations
of defenses. Each original evaluation is characterized by
high values of one or more indicator, while the opposite
happens for stronger attacks. To gain a quantitative evalu-
ation of out hypothesis, we compute both the p-value and
the correlation between the average score of the indicators
and the robust accuracy, depicting this result in Fig. 2. Both
p-value and correlation suggest a strong connection between
these analyzed quantities, confirming our initial belief.

5. Conclusions
We propose the use of Indicators of Attack Failure (IoAF),
quantitative tests that help debug faulty-conducted security
evaluations, and fix them through the systematic applica-
tion of specific mitigations. We select defenses that have
been previously shown to be weak against adversarial at-
tacks, and we evaluate them with the lens of our indicators,
showing that their misconduct could have been detected
easily in advance. We empirically prove that the indicators
are correlated with overestimated robust accuracies, while
their values drop when attacks are correctly performed. We
acknowledge that we do not provide a fully-autonomous
pipeline for adapting attack to an existing defense, but rather
helping the adaption to existing attacks by the usage of our
work. As future work, we envision the development of in-
teractive dashboards, that can be inspected while debugging
the attack. Also, we would like to include our indicators
inside the results of other benchmarks (Croce et al., 2020).
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Laskov, P., Giacinto, G., and Roli, F. Evasion attacks
against machine learning at test time. In Blockeel, H.,
Kersting, K., Nijssen, S., and Železný, F. (eds.), Machine
Learning and Knowledge Discovery in Databases (ECML
PKDD), Part III, volume 8190 of LNCS, pp. 387–402.
Springer Berlin Heidelberg, 2013.

Carlini, N. and Wagner, D. Defensive distillation is not
robust to adversarial examples, 2016.

Carlini, N. and Wagner, D. A. Adversarial examples are
not easily detected: Bypassing ten detection methods.
In Thuraisingham, B. M., Biggio, B., Freeman, D. M.,
Miller, B., and Sinha, A. (eds.), 10th ACM Workshop on
Artificial Intelligence and Security, AISec ’17, pp. 3–14,
New York, NY, USA, 2017a. ACM.

Carlini, N. and Wagner, D. A. Towards evaluating the
robustness of neural networks. In IEEE Symposium on
Security and Privacy, pp. 39–57. IEEE Computer Society,
2017b.

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber,
J., Tsipras, D., Goodfellow, I., Madry, A., and Kurakin,
A. On evaluating adversarial robustness, 2019.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks. In ICML, 2020.

Croce, F., Andriushchenko, M., Sehwag, V., Flammarion,
N., Chiang, M., Mittal, P., and Hein, M. Robustbench:
a standardized adversarial robustness benchmark. arXiv
preprint arXiv:2010.09670, 2020.

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam,
A. L., and Kohane, I. S. Adversarial attacks on medical
machine learning. Science, 363(6433):1287–1289, 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

McDaniel, P., Papernot, N., and Celik, Z. B. Machine
learning in adversarial settings. IEEE Security & Privacy,
14(3):68–72, May 2016.

Pang, T., Xu, K., Du, C., Chen, N., and Zhu, J. Improv-
ing adversarial robustness via promoting ensemble di-
versity. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4970–4979. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/
v97/pang19a.html.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. Distillation as a defense to adversarial perturbations
against deep neural networks. In 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582–597, May 2016.
doi: 10.1109/SP.2016.41.

Roth, K., Kilcher, Y., and Hofmann, T. The odds are odd:
A statistical test for detecting adversarial examples. In
International Conference on Machine Learning, pp. 5498–
5507. PMLR, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. In International Confer-
ence on Learning Representations, 2014. URL http:
//arxiv.org/abs/1312.6199.

Tramer, F., Carlini, N., Brendel, W., and Madry, A. On adap-
tive attacks to adversarial example defenses. Advances in
Neural Information Processing Systems, 33, 2020.

Xiao, C., Zhong, P., and Zheng, C. Resisting adversarial
attacks by k-winners-take-all. 2020.

Yu, T., Hu, S., Guo, C., Chao, W., and Weinberger, K. A new
defense against adversarial images: Turning a weakness
into a strength. In Proceedings of the 33rd Conference on
Neural Information Processing Systems (NeurIPS 2019),
Oct. 2019.

Yuan, X., He, P., Zhu, Q., and Li, X. Adversarial examples:
Attacks and defenses for deep learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 30(9):
2805–2824, 2019. doi: 10.1109/TNNLS.2018.2886017.

http://proceedings.mlr.press/v97/pang19a.html
http://proceedings.mlr.press/v97/pang19a.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199


Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples

Appendix

A. Hyperparameters for the attacks
k-WTA: We test the robustness of this model by attacking
it with `∞-PGD (Madry et al., 2018) with a step size of
α = 0.003, maximum perturbation ε = 8/255 and 50
iterations, with 5 restarts for each attack, scoring a robust
accuracy of 58% on 100 samples.
In the patched attack, we run `∞-PGD with the same
parameters, but smoothing the gradients by averaging
100 neighboring points from a normal distribution
N (µ = xi, σ = 0.031), where xi is a point in the attack
path. Distillation: We apply, to a model trained on MNIST,
`∞-PGD, with step size α = 0.01, maximum perturbation
ε = 0.3 for 50 iterations on 100 samples, resulting in a
robust accuracy of 94,2%.
Ensemble Diversity: We apply `∞-PGD, with step size
α = 0.001, maximum perturbation ε = 0.01 for 10
iterations on 100 samples, resulting in a robust accuracy of
38%.
TWS: We attack a ResNet model defended with such mech-
anism with `∞-PGD, with step size α = 0.1, maximum
perturbation ε = 0.3 for 50 iterations on 100 samples, and
then we query the defended model with all the computed
adversarial examples. While the attacks works against the
standard model, some of them are rejected by the defense,
resulting in a robust accuracy of 35%, highlighted by the
trigger of the I5 indicator.

B. Details on the indicators
We report here graphical examples that can help the reader
to fully understand indicator I2 (Fig. 3a and I3 (Fig. 3b).
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(a) I2 indicator.
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(b) I3 indicator.

C. Additional results
Values of the indicators We report in Table 2 the mean val-
ues of all the indicators over 100 samples, computed on each
selected attack, against the selected defenses. We report also
the results of the version of AutoPGD (APGD) (Croce &
Hein, 2020) that uses the difference of logit (DLR) as a
loss to optimize. This strategy will take care to automati-
cally tune its hyperparameters while optimizing, reducing
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Figure 4. Evaluation of our metrics for different models. Robust
accuracy vs. average value of the indicators, for the initial eval-
uation (denoted with ’◦’), with the evaluation after-mitigation
(denoted with ’×’), and the evaluation with APGD (denoted with
’?’)

possible errors that occur while deciding the values of step
size, and iterations. We also report the mean values of the
indicators, showing that such is correlated with the robust
accuracy of the analyzed model.

Visualizing the effects of adaptive attacks We report in
Fig. 5 the mean values of each indicators for the original
attack, and the adaptive one. We highlight that the latter de-
creases the values of the indicators, hinting their correlation
with the failures of gradient-based attacks. To further show
such correlation, we also report the effectiveness of AutoAt-
tack DLR in Fig. 4, where we observe a similar pattern as
the one described before.

Init. eval.: 58.2
Final eval.: 6.4

(a) k-WTA

Init. eval.: 94.2
Final eval.: 0.4

(b) Distillation
Init. eval.: 38.0
Final eval.: 9.0

(c) Ens. Div.

Init. eval.: 35.0
Final eval.: 0.0

(d) TWS
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I2: Break-Point Angle
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Figure 5. The values of our indicators and the success rate (SR) of
the attack, before (semi-transparent colored area) and after (solid
colored area) fixing the failures, computed for the analyzed models.
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Model Attack I1 I2 I3 I4 I5 Ī RA
PGD 0.33 0.43 0.77 - - 0.306 58%

k-WTA (Xiao et al., 2020) APGD - 0.31 0.33 - - 0.128 36%
PGD? 0.07 0.48 0.55 - - 0.220 6%
PGD - 0.98 - 0.97 - 0.39 94%

Distillation (Papernot et al., 2016) APGD - 0.40 0.21 - - 0.122 0%
PGD? - 0.04 - - - 0.008 0%
PGD - 0.76 - - - 0.152 38%

Ensemble Div. (Pang et al., 2019) APGD - 0.37 0.14 - - 0.102 0%
PGD? 0.08 0.17 0.15 - - 0.080 9%
PGD - 0.49 0.07 - 0.37 0.186 35%

TWS (Yu et al., 2019) APGD - 0.41 0.09 - - 0.100 0%
PGD? - 0.37 0.10 - - 0.094 0%

Table 2. Values of the Indicators of Attack Failures, computed for all the attacks against all the evaluated models. We denote the attacks
that apply also the mitigations as PGD?.


