
G-Sim: Generative Simulations with Large Language Models
and Gradient-Free Calibration

Samuel Holt * 1 Max Ruiz Luyten * 1 Antonin Berthon 1 Mihaela van der Schaar 1

Abstract
Constructing robust simulators is essential for
asking “what if?” questions and guiding pol-
icy in critical domains like healthcare and logis-
tics. However, existing methods often struggle,
either failing to generalize beyond historical data
or, when using Large Language Models (LLMs),
suffering from inaccuracies and poor empirical
alignment. We introduce G-Sim, a hybrid frame-
work that automates simulator construction by
synergizing LLM-driven structural design with
rigorous empirical calibration. G-Sim employs an
LLM in an iterative loop to propose and refine a
simulator’s core components and causal relation-
ships, guided by domain knowledge. This struc-
ture is then grounded in reality by estimating its
parameters using flexible calibration techniques.
Specifically, G-Sim can leverage methods that
are both likelihood-free and gradient-free with
respect to the simulator, such as gradient-free
optimization for direct parameter estimation or
simulation-based inference for obtaining a pos-
terior distribution over parameters. This allows it
to handle non-differentiable and stochastic simu-
lators. By integrating domain priors with empiri-
cal evidence, G-Sim produces reliable, causally-
informed simulators, mitigating data-inefficiency
and enabling robust system-level interventions for
complex decision-making.

1. Introduction
Simulations are essential for testing decisions, developing
policies, and optimizing resource allocation in domains rang-
ing from healthcare to supply-chain management (Law &
Kelton, 2000; Banks, 1998; Banks et al., 2010). A well-
constructed simulator allows asking “what if ...?” and eval-

*Equal contribution 1University of Cambridge. Correspondence
to: Samuel Holt <sih31@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

uating interventions or stress tests without bearing the risk,
cost, or challenges of real-world experiments (Oliver, 2023).

Yet, manually building these simulations is often a time-
consuming, resource-intensive process demanding substan-
tial expert knowledge. The rise of Large Language Models
(LLMs), with their vast general knowledge and reasoning
capabilities (Bommasani et al., 2021; Chen et al., 2021),
coupled with the increasing availability of observational
data—albeit often fragmented—presents a compelling op-
portunity to automate simulator construction. Yet, despite
this potential, a comprehensive framework to fully realize it
has remained elusive.

Existing automated approaches, often termed “world mod-
els” (Ha & Schmidhuber, 2018; Tang et al., 2024), typi-
cally focus on model-based reinforcement learning. They
estimate environment transitions and rewards to improve
planning (Luo et al., 2024), primarily answering questions
such as, “What if the actor follows policy [X]?”.

Toward General-Purpose, Intervenable Simulators. In
contrast, a truly general-purpose simulator must enable
deeper investigations into the environment’s dynamics, ad-
dressing questions such as: “What if this underlying com-
ponent changes?” or “Is the system robust under this struc-
tural stress-test?”. Answering these requires a new class
of simulators supporting flexible, (P0) System-wide Ex-
perimentation. These simulators must integrate diverse
data sources, handle uncertainty, and generalize effectively.
To be effective, such simulators must possess several key
properties:

(P1) Plausible Generalization: Align with domain in-
sights, even out-of-distribution.
(P2) Empirical Alignment: Match available observa-
tional data.
(P3) Data Form Consistency: Preserve the nature (con-
tinuous, discrete, stochastic) of real-world components,
since knowing a distribution can lead to drastically dif-
ferent conclusions than using just the mean, especially in
high-stakes scenarios.

These properties ensure the simulator is both scientifically
valid and practically useful.

1

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

G-Sim: A Hybrid Approach. To instantiate a simulator-
builder meeting these needs, we introduce G-Sim, a frame-
work for automatic environment generation that uniquely
merges LLM-driven structural reasoning with robust, data-
driven calibration (Figure 1). G-Sim operates through an
iterative loop:

1. LLM-Driven Structural Reasoning (P1, P3): An
LLM, prompted with domain knowledge, proposes and
refines the simulator’s structure (submodules, causal
links), injecting expert priors for plausible dynamics.

2. Flexible Parameter Calibration (P2): We cali-
brate these structures against data using a choice of
likelihood-free and gradient-free techniques. This in-
cludes gradient-free optimization (GFO) (Toklu et al.,
2023) for parameter estimation or simulation-based in-
ference (SBI) for principled uncertainty quantification.

3. Iterative Refinement (P1–P3): Diagnostics (e.g., pre-
dictive discrepancies) flag weaknesses, guiding the
LLM via in-context learning to restructure and improve
the model until satisfactory alignment is achieved.

This cycle yields a “refinement loop” where the simulator’s
structure and parameters co-evolve, ensuring it is causally
plausible, empirically grounded, and addresses (P0)–(P3).

Contributions. Our work makes several contributions:

• We introduce a novel problem framing for environment-
building, centered on system-level experimentation for
real-world decision-making (Section 2).

• We propose G-Sim, an hybrid framework combining
LLM-guided structural search with flexible, data-driven
calibration via a choice of GFO or SBI (Section 3).

• We demonstrate G-Sim’s ability to achieve plausible
generalization and support new forms of system-level
analysis through experiments on three diverse environ-
ments (Section 5).

2. Problem Setting
We aim to build a simulatorM that mirrors the evolution
of a real-world system, enabling rigorous “what if...” exper-
imentation and policy1 analysis. Formally, this simulator
should:

1. Produce trajectories in a state space X that corresponds
directly to real-world configurations (P3).

2. Encode accurate transitions under both in-distribution
and novel (out-of-distribution) conditions (P1–P2).

1We italicize policy when it refers to interventions potentially
more general term than a typical RL policy (i.e. changes in the
environment itself, such as changing the physical layout of an
environment.).

3. Support submodule-level refinements and composi-
tional design to facilitate targeted updates and domain
adaptation (P0).

2.1. System State and Update Mechanisms

Let X be the (potentially high-dimensional) space of system
states and xt ∈ X the state at time t. Let ut ∈ U denote
exogenous controls, actions, or policy interventions. We
define a simulatorM by a transition operator

F : X × U ×Θ → X ,

with parameter space Θ. In a discrete-time setting:

xt+1 = F
(
xt,ut; θ

)
, (1)

where θ ∈ Θ encodes all parameters—both structural and
numerical—specifying how the simulator evolves. Such
parametric state-transition models have a long history in
control theory (Åström, 1970).

Submodule Partitioning and Composition. Complex
systems often factorize into smaller sub-processes (submod-
ules). Concretely, let

M = {M1,M2, . . . ,MK }

be a collection of submodules. Each Mk yields a local
mapping

F k : X × U ×Θk → Yk,

where Θk ⊂ Θ is the submodule’s parameter subset and
Yk is an intermediate output space (e.g., a partial update
or a rate in a Markov jump process). The global transition
operator F then composes these submodule outputs:

xt+1 = F0

(
F 1(xt,ut; θ

1), . . . , FK(xt,ut; θ
K), θ0

)
,

(2)
where θ0 captures cross-submodule coupling (e.g., shared
constraints, resource balances). Such compositional frame-
works align with agent-based models (Bonabeau, 2002), sys-
tem dynamics approaches, and block-structured simulations
(Law & Kelton, 2000; Banks et al., 2010). They allow asyn-
chronous or continuous-time versions by replacing (1)–(2)
with differential equations or event-driven formulations.

Structural vs. Numerical Parameters. We partition the
simulator’s parameter space Θ as

Θ = Λ× Ω,

λ ∈ Λ (structural params), ω ∈ Ω (numerical params).

The structural part λ indicates which submodules are ac-
tive (e.g., “Does this subsystem exist?”) or which causal
links connect them (e.g., “Is submodule A driven by B’s
output?”), while the numerical part ω encodes real-valued

2

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Simulator Code
class SimulatorStep():
def __init__(self):

def step(self, state, action, rng):

def parameter_prior(self):

Simulator Description
Three-disease Hospital Bed-
Allocation Simulator.

Variables:
day (day)
icu_occupancy (beds)
standard_occupancy (beds)
patients.disease_id (0, 1, 2)
patients.bed_type
...
Time: Days.

Description

Sim. Code

Val WASS Loss: 17.3

Iteration 1

<latexit sha1_base64="J186KKFX+eTVRzJsHImp+A2xcKg=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi1WVRFy4r2AdMh5JJM21oJhmSO0IZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJbe53n5g2XMlHmCYsiMlI8ohTAlby+zGBMSUiu5sNqjW37s6BV4lXkBoq0BpUv/pDRdOYSaCCGON7bgJBRjRwKtis0k8NSwidkBHzLZUkZibI5pFn+MwqQxwpbZ8EPFd/b2QkNmYah3Yyj2iWvVz8z/NTiK6DjMskBSbp4qMoFRgUzu/HQ64ZBTG1hFDNbVZMx0QTCralii3BWz55lXQu6l6j3ni4rDVvijrK6ASdonPkoSvURPeohdqIIoWe0St6c8B5cd6dj8VoySl2jtEfOJ8/eG+RZQ==</latexit>D
Obs. Dataset

GFO.{SBI, ES}

Simulate dataset
from prior

Train surrogate
model

Mechanistic Model
(e.g., SimulatorStep.step())

Prior
p(ω)

Observed Data
xo

Simulated Data
from p(ω)

Neural Density Estimator
(e.g., NPE model)

Approximate Posterior
p(ω|xo)

Consistent Sample

Inconsistent Sample

Neural Density
Estimator

Condition on
<latexit sha1_base64="zsls3JqNUeIwKx7Psb5lYHHAVZ0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dhBbBVZkRqS4LunBZwT5gOpRMmmlDM8mQZIQy9DPcuFDErV/jzr8x085CWw8EDufcS849YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3uZ+74kqzaR4NLOEBjEeCxYxgo2V/EGMzYRgnt3Nh9W623AXQOvEK0gdCrSH1a/BSJI0psIQjrX2PTcxQYaVYYTTeWWQappgMsVj6lsqcEx1kC0iz9G5VUYokso+YdBC/b2R4VjrWRzayTyiXvVy8T/PT010E2RMJKmhgiw/ilKOjET5/WjEFCWGzyzBRDGbFZEJVpgY21LFluCtnrxOupcNr9loPlzVW7WijjKcQQ0uwINraME9tKEDBCQ8wyu8OcZ5cd6dj+VoySl2TuEPnM8fbs+RRQ==</latexit>D

Simulate &
Evaluate each

candidate

Fitness
Evaluation

<latexit sha1_base64="h//MmU9Xpbi/y+zsP12/7ASdIuw=">AAACPXicbVBNSxxBEO3R+JH1I2s8emlcFBdkmZGgXgKCOYgnQ1wVdtalpqd2t7F7ZuiuEZdh/5gX/0Nu3rx4MIRcc03PusTPBw2PV6+qq16UKWnJ92+9ickPU9Mzsx8rc/MLi5+qS59PbJobgU2RqtScRWBRyQSbJEnhWWYQdKTwNLrYL+unl2isTJNjGmTY1tBLZFcKICd1qsfroQbqC1DF4XAjTDX24Fxu8lC5GTHU+Vcehnw9JLyiInb7ONOI/5D6yV/f/D/l27Be6VRrfsMfgb8lwZjU2BhHnerPME5FrjEhocDaVuBn1C7AkBQKh5Uwt5iBuIAethxNQKNtF6Prh3zNKTHvpsa9hPhIfd5RgLZ2oCPnLJe0r2ul+F6tlVN3t13IJMsJE/H4UTdXnFJeRsljaVCQGjgCwki3Kxd9MCDIBV6GELw++S052WoE243t719qe6vjOGbZCltlGyxgO2yPHbAj1mSCXbM79sB+eTfevffb+/NonfDGPcvsBby//wBOOK4C</latexit>

J (ωi,ε) =

dist(Sim(ωi), D)

Select the best

Selection &
Variation

(Elitism, Crossover,
Mutation)

Create next generation

Optimal
Parameters

Prior
<latexit sha1_base64="3mr/539jK71NAsCMl2MlGjWFgGs=">AAAB8HicbVDLSgNBEJyNrxhfUY9ehgQhXsKuSPQY8OIxgnlIsoTZSW8yZB7LzKwQQr7CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vdzG5tb2Tn63sLd/cHhUPD5pGZVqCk2quNKdiBjgTELTMsuhk2ggIuLQjsa3c7/9BNowJR/sJIFQkKFkMaPEOukxqfSUgCG56BfLftVfAK+TICNllKHRL371BoqmAqSlnBjTDfzEhlOiLaMcZoVeaiAhdEyG0HVUEgEmnC4OnuFzpwxwrLQrafFC/T0xJcKYiYhcpyB2ZFa9ufif101tfBNOmUxSC5IuF8Upx1bh+fd4wDRQyyeOEKqZuxXTEdGEWpdRwYUQrL68TlqX1aBWrd1fleulLI48OkMlVEEBukZ1dIcaqIkoEugZvaI3T3sv3rv3sWzNednMKfoD7/MHJJKP5Q==</latexit>

p(ω)

Simulated
Dataset

<latexit sha1_base64="267MWEhQQlucWExVpM2eQjuXKZc=">AAACBnicbVDLSsNAFJ3UV62vqEsRhhahgpREpLoRCm5cSQX7gCYNk+mkHTqZhJmJUEJWbvwVNy4Uces3uPNvnLZZaPXAhcM593LvPX7MqFSW9WUUlpZXVteK66WNza3tHXN3ry2jRGDSwhGLRNdHkjDKSUtRxUg3FgSFPiMdf3w19Tv3REga8Ts1iYkboiGnAcVIackzD50UVp0oJEPUpyew26fH0Mn6N15KL+3MMytWzZoB/iV2TiogR9MzP51BhJOQcIUZkrJnW7FyUyQUxYxkJSeRJEZ4jIakpylHIZFuOnsjg0daGcAgErq4gjP150SKQiknoa87Q6RGctGbiv95vUQFF25KeZwowvF8UZAwqCI4zQQOqCBYsYkmCAuqb4V4hATCSidX0iHYiy//Je3Tml2v1W/PKo1yHkcRHIAyqAIbnIMGuAZN0AIYPIAn8AJejUfj2Xgz3uetBSOf2Qe/YHx8A+kcl2o=</latexit>

{(ωi, Xi)}N
i=1

Simulation Based Inference

Evolutionary Strategies

Approximate
Posterior

<latexit sha1_base64="bKcPrE+gHoUXUgAkmXjJIOPTsl4=">AAACDXicbVDLSgMxFM3UV62vUZduQqtQQcqMSHVZ0IXLCvYBnaHcyaRtaOZBkhHK0B9w46+4caGIW/fu/Bsz7Sy09UDC4Zx7k3uPF3MmlWV9G4WV1bX1jeJmaWt7Z3fP3D9oyygRhLZIxCPR9UBSzkLaUkxx2o0FhcDjtOONrzO/80CFZFF4ryYxdQMYhmzACCgt9c3juOpEAR0CdgLm6wvUiABPb6Zn2OH6HR9OS32zYtWsGfAysXNSQTmaffPL8SOSBDRUhIOUPduKlZuCUIxwOi05iaQxkDEMaU/TEAIq3XS2zRSfaMXHg0joEyo8U393pBBIOQk8XZlNKxe9TPzP6yVqcOWmLIwTRUMy/2iQcKwinEWDfSYoUXyiCRDB9KyYjEAAUTrALAR7ceVl0j6v2fVa/e6i0ijncRTRESqjKrLRJWqgW9RELUTQI3pGr+jNeDJejHfjY15aMPKeQ/QHxucPi4+afw==</latexit>

p(ω | D,ε)

Pop. of
Candidates

<latexit sha1_base64="3mr/539jK71NAsCMl2MlGjWFgGs=">AAAB8HicbVDLSgNBEJyNrxhfUY9ehgQhXsKuSPQY8OIxgnlIsoTZSW8yZB7LzKwQQr7CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vdzG5tb2Tn63sLd/cHhUPD5pGZVqCk2quNKdiBjgTELTMsuhk2ggIuLQjsa3c7/9BNowJR/sJIFQkKFkMaPEOukxqfSUgCG56BfLftVfAK+TICNllKHRL371BoqmAqSlnBjTDfzEhlOiLaMcZoVeaiAhdEyG0HVUEgEmnC4OnuFzpwxwrLQrafFC/T0xJcKYiYhcpyB2ZFa9ufif101tfBNOmUxSC5IuF8Upx1bh+fd4wDRQyyeOEKqZuxXTEdGEWpdRwYUQrL68TlqX1aBWrd1fleulLI48OkMlVEEBukZ1dIcaqIkoEugZvaI3T3sv3rv3sWzNednMKfoD7/MHJJKP5Q==</latexit>

p(ω)

Feedback
1. Sigmoid-Bounded Probabilities
2. Neg. Binomial LOS Overdispersion
3. Time-Varying Arrival Rates …

Previous top-k models.
1. {Code}. Loss. 17.3

Now Reflect Verbally

Feedback

class SimulatorStep():
def __init__(self):

Initialize parameters
self._parameters = np.array([...])

def step(self, state: dict, rng: np.random.Generator) -> dict:
Extract raw parameters
log_arr0, log_arr1, log_arr2 = self._parameters[0] ...

def logistic(x):
return 1.0 / (1.0 + np.exp(-x))

Initialize next state
next_state = {

"day": state["day"] + 1,
"icu_occupancy": state["icu_occupancy"],
"standard_occupancy": state["standard_occupancy"],
"patients": []

}

Update existing patients
for patient in state["patients"]:

if not patient["is_alive"]:
already dead, ignore
continue

patient["day_in_hospital"] += 1
dis_id = patient["disease_id"]
...

def get_parameters_uniform_prior(self) -> np.ndarray:
...

Best fitting simulator returned

Simulator Description
Three-disease Hospital Bed-
Allocation Simulator.

Variables:
day (day)
icu_occupancy (beds)
standard_occupancy (beds)
...
Time: Days.

Simulator Code …

LLM Resp.

Regenerate Model

...Iteration 2 Iteration 3 Iteration 16

Val WASS Loss: 5.3

Feedback
1. Stay-Length–Scaled Mortality
2. ICU-vs-Standard Survival Split
3. Correlated Disease Arrivals …

Previous top-k models.
1. {Code}. Loss. 17.3
2. {Code}. Loss. 5.3
...

Feedback

Simulator Description
Three-disease Hospital Bed-
Allocation Simulator.

Variables:
day (day)
icu_occupancy (beds)
standard_occupancy (beds)
...
Time: Days.

Simulator Code …

LLM Resp.

Regenerate Model

Val WASS Loss: 2.1

Previous top-k models.
1. {Code}. Loss. 17.3
2. {Code}. Loss. 5.3
3. {Code}. Loss. 2.1
4. {Code}. Loss. 1.9
5. {Code}. Loss. 1.5
...

Feedback

Simulator Description
Three-disease Hospital Bed-
Allocation Simulator.

Variables:
day (day)
icu_occupancy (beds)
standard_occupancy (beds)
...
Time: Days.

Figure 1. Overview of the G-Sim framework for automatic simulator generation. The process integrates LLM-driven structural design
with empirical observational data (D) in an iterative refinement loop. (1) Propose: An LLM first generates simulator code (λ) from
a textual description. (2) Calibrate: This code’s numerical parameters (ω) are then calibrated against data using one of two parallel,
likelihood-free pathways: either Evolutionary Strategies (a form of GFO) to find optimal parameters by minimizing a fitness function, or
Simulation-Based Inference (SBI) to infer a full posterior distribution over parameters. (3) Refine: The performance of the calibrated
model (e.g., validation loss) is synthesized into a natural language feedback summary. This summary, along with past models, guides
the LLM to propose an improved structure in the next iteration. This cycle continues until performance converges, yielding a robust,
empirically-grounded simulator.

or discrete parameters (e.g., rates, coefficients, or thresh-
old levels). This factorization is particularly conducive to
domain-knowledge infusion, as experts or language models
can propose plausible topologies (i.e., λ) without specifying
precise numerical values.

2.2. Queries Enabled by the Simulator

Out-of-distribution Exploration. From an initial condi-
tion x0 and a sequence of inputs {ut} potentially outside
historical distributions, the simulator generates:

{x1, . . . ,xT } =
{
F (x0,u0; θ), F (x1,u1; θ), . . .

}
.

Robust extrapolation to these unseen regimes is critical for
stress-testing and scenario planning (Oliver, 2023; Rosen-
berger, 1993).

Submodule-level Interventions. More fundamentally,
since θ = (λ, ω) partitions structural and numerical pa-
rameters, a user may choose to modify or replace a subset
of submodules θk. Such modular updates are well-matched

to object-oriented simulation toolkits (Shewchuk & Chang,
1991), and are also valuable for stress-testing, scenario plan-
ning, and continous learning.

Policy Analysis. As done in previous work (Tang et al.,
2024), the simulator can also serve as a decision-support
tool by evaluating policy effects in a controlled environment,
which is central to model-based RL (Sutton & Barto, 2018)
and offline policy evaluation (Uehara et al., 2022).

2.3. Data and Domain Knowledge

Observational Data with Partial Overlaps. Real sys-
tems often produce fragmented data from multiple sources.
Let D =

{
D(1), . . . ,D(L)

}
, where each dataset D(l) typi-

cally logs partial trajectories (e.g., some submodules but not
others) or covers different time spans. Specific limitations
include:

1. Sparse coverage: States or interventions of interest
(e.g., extreme disruptions) rarely appear in observa-
tional data.

3

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

2. Asynchronous logging: Submodules might be sampled
at varying rates and be of different types (discrete, con-
tinuous, stochastic, etc.).

3. Privacy and partial observability: Some datasets might
not be paired or crucial variables (e.g., patient data)
may not be directly recorded.

Purely data-driven fitting often struggles here, as the disjoint
or partial data coverage renders many submodules unidenti-
fiable. Causal inference literature (Pearl, 2009; Peters et al.,
2017) demonstrates that even when data are plentiful, lack-
ing the right structural assumptions can make generalization
under interventions fundamentally ill-posed.

Domain Knowledge. Alongside D, we assume access to
domain knowledge K, encompassing:

• LLM Guidance: Large Language Models can incorporate
extensive textual corpora and suggest plausible topolo-
gies or parameter defaults. Their ability to generate
semantically consistent code or functional forms has
been noted in (Chen et al., 2021; Li et al., 2022).

• Textual resources: Manuals, guidelines, or domain-
specific documentation of operational protocols.

• Symbolic constraints or causal graphs: Hard constraints
(e.g., “throughput cannot exceed capacity”) or partial
causal diagrams (Spirtes et al., 2001).

The challenge is to integrate K with D in a balanced way,
ensuring that submodule structures and parameters remain
consistent with known causal principles while also aligning
with empirical evidence.

2.4. Failure Modes of Naive Approaches

Purely Data-Driven Fitting. One might attempt to learn
a single generative model M̂ from D by maximizing a
likelihood or minimizing reconstruction error. However:

• Lack of structural priors: When coverage of certain inter-
ventions is sparse, extrapolation is not only statistically
weak but can be causally ill-posed (Pearl, 2009; Peters
et al., 2017).

• Missed cross-submodule interactions: Limited pairing
or partial observability across submodules prevents co-
herent joint estimation.

• Rigid optimization requirements: Many generative mod-
eling approaches require differentiability, hindering the
inclusion of discrete or combinatorial elements (Sali-
mans et al., 2017).

• No intervention-readiness: The black-box nature of
many data-driven approaches makes it inherently hard to
intervene beyond shifting their inputs (Shin et al., 2022).

Purely LLM-Generated Simulators. Conversely, one
might rely entirely on LLMs to propose equations, code, or

entire submodules from textual guidance:

• Mismatched real-world statistics: Without quantitative
calibration, subtle parameter errors can accumulate and
degrade fidelity even on in-distribution settings (Lian
et al., 2024; Vafa et al., 2024).

• Undetermined modules: No mechanism exists to cal-
ibrate or refine key parameters that are undetermined
from K.

Neither approach alone suffices for demanding tasks such
as policy evaluation or out-of-distribution stress testing.

2.5. Need for a Hybrid Framework

Given these limitations, we advocate a hybrid solution that
integrates:

1. LLM-driven structural proposals (λ) to incorporate do-
main knowledge and causal heuristics, ensuring the
simulator remains grounded in plausible mechanisms.

2. Rigorous calibration of numerical parameters (ω) to
observational data. This is achieved via techniques that
are both likelihood-free and gradient-free w.r.t. the
simulator, such as GFO for point estimation (Sehnke
et al., 2010) or SBI for Bayesian inference (Cranmer
et al., 2020).

“What if?”︸ ︷︷ ︸
(P0)

←− OOD gen.︸ ︷︷ ︸
(P1)

+ D align.︸ ︷︷ ︸
(P2)

+ D form consist.︸ ︷︷ ︸
(P3)

By balancing domain-knowledge based structure with em-
pirical alignment, we move beyond purely data-driven or
purely knowledge-based simulators to achieve robust policy
evaluation and discovery in complex, real-world domains.

3. G-Sim: Hybrid Simulator Construction
We present G-Sim, a novel framework for automatic sim-
ulator generation that synergizes LLM-driven structural
reasoning with rigorous empirical calibration2. As de-
picted in Figure 1, G-Sim operates through an iterative cycle,
orchestrating three core phases: (1) proposing a simulator’s
architecture using an LLM, (2) grounding this structure
in data by calibrating its parameters, and (3) refining the
architecture based on diagnostic feedback. This section de-
tails each phase, highlighting how G-Sim achieves plausible
generalization (P1), empirical alignment (P2), data-form
consistency (P3), and system-wide experimentation (P0).

2Code is available at https://github.com/samholt/
generative-simulations and we provide a broader
research group code base at https://github.com/
vanderschaarlab/generative-simulations

4

https://github.com/samholt/generative-simulations
https://github.com/samholt/generative-simulations
https://github.com/vanderschaarlab/generative-simulations
https://github.com/vanderschaarlab/generative-simulations

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

3.1. LLM-Driven Structural Design

Proposing Compositional Structures. Real-world sys-
tems often decompose into interconnected submodules, each
governing specific dynamics like queueing, resource man-
agement, or disease progression (Shanthikumar & Wu, 1991;
Choudhury & Basak, 2018). G-Sim leverages this by hav-
ing an LLM propose a structural configuration, λ. This
configuration specifies which submodule templates (e.g., an
SIR model (Kermack et al., 1997; Batista et al., 2020))
are active and how they are linked by coupling rules. This
modular, block-structured approach (Section 2) facilitates
interpretable and intervenable designs (Shewchuk & Chang,
1991), providing a strong inductive bias for causal plausibil-
ity (Klinger et al., 2023; Schug et al., 2024).

Injecting Domain Knowledge via LLMs. We employ
an LLM as a generative engine to explore the space of
these structural configurations. Prompted with domain
knowledge K (textual descriptions, known constraints, see
Appendix E.4), the LLM generates simulator code: λ ∼
pLLM(λ | K). For example, given a description of hospital
workflows, it might propose modules for patient arrivals,
bed allocation, and discharge, linking them appropriately.
This process injects domain-level causal hypotheses and
expert heuristics (Pearl, 2009) directly into the simulator’s
structure, fostering plausible generalization (P1) and en-
suring consistency with real-world mechanisms (P3). We
assume that the LLM, guided by K and iterative feedback
(see §3.3), can explore a sufficiently rich space of structures,
including those closely approximating the true underlying
system.

3.2. Empirical Grounding via Likelihood-Free
Calibration

While the LLM defines the simulator’s structure (λ), its
numerical parameters (ω) must be aligned with empirical
data (D). LLMs alone are often unreliable for precise quan-
titative estimation (Vafa et al., 2024). G-Sim addresses
this by treating the simulator as a black box and offering a
choice between two powerful calibration approaches that
are both gradient-free and likelihood-free. This provides
maximum flexibility, accommodating the non-differentiable,
stochastic, and discrete components common in real-world
systems.

Pathway 1: Parameter Estimation with Gradient-Free
Optimization (GFO). The first option is to use GFO to
find a single best-fit set of parameters. We use evolutionary
strategies (ES), implemented via EvoTorch (Toklu et al.,
2023), to find a point estimate ω∗ that minimizes a fitness
function, J (ω, λ). This function measures the discrepancy
(e.g., MSE or MMD) between simulated trajectories and
observed dataD. By not requiring gradients of the simulator,

GFO excels at navigating the complex and often non-smooth
loss landscapes of realistic simulators. Full details are in
Appendix E.3.1.

Pathway 2: Bayesian Inference with Simulation-Based
Inference (SBI). Alternatively, when quantifying parame-
ter uncertainty is crucial, the user can choose SBI (Cranmer
et al., 2020). SBI is a principled Bayesian framework for
problems with intractable likelihoods but accessible simula-
tors. We primarily use Neural Posterior Estimation (NPE),
where a neural network (see Appendix E.3.2) is trained to
approximate the posterior distribution p(ω | D, λ). From
this learned posterior, a point estimate for the parameters
(e.g., the posterior mean or mode) is selected to instantiate
the final simulator. This approach provides not just a single
set of parameters but also a full characterization of their
uncertainty, which is vital for assessing model confidence.

3.2.1. A KEY CAVEAT WHEN USING SBI

SBI’s core strength is delivering principled uncertainty quan-
tification. The learned posterior p(ω | D, λ) allows for
robust analysis of parameter credible intervals and correla-
tions. However, it is crucial to acknowledge a fundamental
assumption: SBI’s theoretical guarantees hold when the sim-
ulator’s structure (λ) is correctly specified (Cranmer et al.,
2020). In G-Sim, we are actively searching for this structure.
Therefore, when we perform SBI with a candidate structure
λ(g), the resulting posterior p(ω | D, λ(g)) is conditioned
on a potentially misspecified model. While this posterior is
invaluable for calibrating the given structure, its uncertainty
estimates do not capture the structural uncertainty of the
model search itself. This highlights the synergistic, yet dis-
tinct, roles of LLM-driven structural search and SBI-based
parameter inference within G-Sim (Appendix B.4).

3.3. Diagnostics-Driven Iterative Refinement

A proposed structure, even when calibrated, might still ex-
hibit inaccuracies or miss crucial dynamics. G-Sim ad-
dresses this via an iterative refinement loop that identifies
weaknesses and guides the LLM toward better designs.

Diagnostic Evaluation. After calibration, we evaluate
the current simulator (λ, ω∗) using a diagnostic function,
Diag(λ, ω∗). This function aggregates signals indicating
mismatch, such as:

• Predictive Discrepancy (δpredictive): Metrics like
Wasserstein distance or MSE comparing simulated tra-
jectories to held-out data (Appendices E.8 and H).

• Domain Violations (δdomain): Checks for compliance
with known rules (e.g., capacity limits, conservation
laws) or plausibility under stress tests (Rauba et al., 2024;
Li & Yuan, 2024).

5

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

The iteration loop continues for eitherm total iterations (e.g.,
m = 16) or until Diag is below a convergence threshold ε
for the fitness function (see Appendix B.2).

Textual Feedback for In-Context Learning. When re-
finement is needed, G-Sim synthesizes the diagnostic find-
ings into a natural language summary. For example: “The
simulator overestimates ICU occupancy during weekends
and fails to capture the weekly seasonality present in the
data. Consider adding a time-dependent factor to arrival
or discharge modules.” This text is fed back into the LLM’s
prompt, leveraging its in-context learning capabilities to
guide the proposal of a revised structure, λ(g+1). This cycle
of proposing, calibrating, and refining (see Algorithm 1) al-
lows G-Sim to converge towards a simulator that is causally
plausible, empirically aligned, and robust.

3.4. Practical Considerations: Automation, Expertise,
and Prompts

While the G-Sim loop (Figure 1, Algorithm 1) is designed
for a high degree of automation, practical deployment ben-
efits from a nuanced understanding of its operation. The
core iterative process runs automatically once initial do-
main knowledge is provided. However, human expertise
can be optionally integrated. Domain experts can validate
LLM-proposed structures against domain insights, inter-
pret complex diagnostic results, or suggest specific stress
tests. This “expert-in-the-loop” approach enhances trust and
robustness, particularly in high-stakes applications.

Our prompt engineering strategy aims for efficiency: we use
general reusable core prompts (Appendix E.4) that outline
the task and code structure, supplemented by concise and
environment-specific details. This requires only moderate
effort, rather than extensive, custom-designed, prompt de-
sign. Detailed implementation specifics and code examples
can be found in Appendix E.

4. Related Work
We position G-Sim within four major research
streams—data-driven world models, foundation-model-
based and LLM-coded world models, and hybrid digital
twins—highlighting key limitations that G-Sim overcomes
for real-world simulation-building (an extended survey is
provided in Appendix A).

Data-Driven World Models. A large body of model-
based reinforcement learning work focuses on purely data-
driven approximations of environment dynamics (Ha &
Schmidhuber, 2018; Hafner et al., 2019; Alonso et al., 2023;
Micheli et al., 2023; Hafner et al., 2023; Ding et al., 2024;
Bruce et al., 2024). While these world models effectively
predict transitions and rewards in-distribution, they strug-

gle with sparse or fragmented data and fail under out-of-
distribution interventions (Pearl, 2009; Peters et al., 2017).

Foundation Models as World Models. Recent work ex-
plores harnessing large foundation models, including LLMs,
to simulate environments for decision-making (Gao et al.,
2024; Hao et al., 2023; Liu et al., 2024; Yang et al., 2024;
Xie et al., 2024; Wang et al., 2024b; Zhou et al., 2024;
Cherian et al., 2024). While even partially correct mod-
els can boost sample efficiency in MBRL, they frequently
produce biased or inconsistent trajectories when asked to
simulate real-world systems (Vafa et al., 2024). Subtle in-
accuracies and noise compounds over time (Lambert et al.,
2022), and their limited capacity to systematically track
multi-faceted interactions undermines their reliability for
complex, real-world simulations.

LLM-Coded Simulations. Several methods use LLMs
to generate environment code. OMNI-EPIC and GenSim
create open-ended environments for agent learning and do
not aim to mirror real systems (Faldor et al., 2024; Wang
et al., 2024a). WorldCoder (Tang et al., 2024) is a notable
work aimed at MBRL for deterministic, discrete logic but
is only partially calibrated to real-world evidence through
refinement. Consequently, it lacks robust mechanisms for
handling stochastic processes, partial observations, or prin-
cipled numerical parameter inference.

Hybrid Digital Twins. Hybrid digital twins combine
mechanistic models with data-driven corrections to capture
unmodeled dynamics (Holt et al., 2024b), but they often
assume continuous physical processes and do not fully gen-
eralize to discrete, stochastic, or heavily modular domains.

Comparison with Prior Work. In Table 1, we summarize
how G-Sim aligns with and diverges from these approaches.
G-Sim’s novelty lies in merging domain-knowledge-based
structural priors with flexible, gradient-free calibration of
discrete or stochastic modules. This combination accommo-
dates fragmented data and enables robust out-of-distribution
stress-testing and policy interventions, bridging the gap be-
tween purely data-driven and purely LLM-generated simu-
lators.

Table 1. Comparison of G-Sim with representative methods. ✗

indicates a missing feature, ✓ a supported one, while lim denotes
partial fulfillment. Structural Prior refers to uncovering simulator
topology from domain knowledge. Data-form Flexible indicates
support for continuous, discrete, or stochastic processes. Emp.
Calib. stands for data-driven parameter calibration. OOD Stress
means robust performance under out-of-distribution scenarios.

Method Structural
Prior

D-form-
Flex.

Emp.
Calib.

OOD
Stress

Hybrid Digital Twins ✓ ✗ ✗ ✓
WorldCoder ✓ ✗ lim ✓
Data-Driven World Model ✗ lim ✓ ✗

G-Sim (Ours) ✓ ✓ ✓ ✓

6

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

5. Experiments and Evaluation
In this section, we evaluate G-Sim to verify that it can gener-
ate simulators with higher fidelity than existing discovery or
data-driven world models. Our experiments use both GFO
and SBI for calibration.

Benchmark Environments. We evaluate G-Sim on three
real-world-inspired simulation tasks that together capture
(1) stochastic transitions, (2) rich, discrete state updates, and
(3) partially observed states. Each task provides a dataset
of state-action trajectories and a textual description of the
environment, sampled from a carefully hand-designed sim-
ulator. First, our COVID-19 epidemiological simulation
extends classical compartmental frameworks (Cooper et al.,
2020; AlQadi & Bani-Yaghoub, 2022) to incorporate dis-
crete, stochastic transitions; it tracks populations moving
across compartments (e.g., susceptible, infectious, recov-
ered). Second, the Supply Chain environment is based
on the well-known “beer game” (Sterman, 1989), which
simulates demand fluctuations and the resulting bullwhip
effect across multiple stages (retailer, wholesaler, distribu-
tor, manufacturer). This environment is partially observed
because orders are processed in a pipeline, causing delays
and uncertainty around incoming shipments. Finally, the
Hospital Bed Scheduling environment simulates patient
arrivals for three different diseases into a hospital with a
finite number of ICU and standard care beds (Green, 2006;
Koizumi et al., 2005; Brailsford, 2007). Each disease has
its own arrival rate, length-of-stay distribution, and daily
mortality probability, leading to partial observability and
discrete, stochastic transitions (e.g., admissions, discharges,
and deaths). We provide a detailed discussion of these tasks
and their datasets in Appendix C.

Evaluation Metrics. We adopt the Wasserstein distance as
our primary evaluation metric. From each initial state in the
held-out test set, we simulate N trajectories under both the
ground-truth and comparison simulators, then compute the
Wasserstein distance between these two sets of next-state
samples. We repeat this for all initial states in the test set
and average the distances, thereby measuring how well each
simulator reproduces the ground-truth distribution. We run
five independent trials with different seeds, reporting the
mean and 95% confidence intervals. Further details are
provided in Appendix H.

Benchmark Methods. We compare G-Sim against a di-
verse set of approaches covering three main categories. First,
data-driven world models learn environment dynamics from
state-action trajectories without explicit structural priors: we
employ a recurrent neural network (RNN) (Rumelhart et al.,
1986), a competitive causal Transformer (Melnychuk et al.,
2022), and a neural ordinary differential equation with ac-
tion inputs (DyNODE) (Chen et al., 2018; Alvarez et al.,
2020). Second, equation discovery methods aim to uncover

Table 2. Test Wasserstein distance (lower is better) on three
environment-generation tasks, averaged over five random seeds (±
denotes 95% CIs). Light-blue shading highlights our method.

Test Wasserstein distance (↓)
Method COVID-19 Supply Chain Hospital Beds

DyNODE 65.1± 2.21 38.3± 0.40 231± 0.14

SINDy 23.9± 0.40 18.2± 0.24 199± 0.04

RNN 16.7± 1.61 9.71± 2.21 199± 2.49

Transformer 3.30± 0.15 2.29± 0.06 199± 0.25

Genetic Program 63.6± 7.64 30.7± 1.41 231± 0.04

G-Sim-ES Abl. ZeroShot 1.17± 0.71 2.63± 2.79 102± 1.01

G-Sim-ES Abl. ZeroShotOptim 0.469± 0.107 9.89± 15.3 103± 2.06

G-Sim – SBI 0.351± 0.094 1.22± 1.68 5.24± 2.70

G-Sim – ES 0.405± 0.060 1.55± 1.39 101± 17.4

mechanistic or symbolic equations directly from data: we
use SINDy (Brunton et al., 2016) and a Genetic Program
(De Rainville et al., 2012) that searches for symbolic expres-
sions via evolutionary algorithms. Moreover we compare
two variants of G-Sim, of G-Sim with GFO of Evolutionary
Strategies (ES) (G-Sim – ES) and G-Sim with simulation
based inference (SBI) (G-Sim – SBI). Lastly, to isolate
the contributions of G-Sim’s iterative refinement, we in-
clude two ablations: (G-Sim-ES Abl. ZeroShot) uses the
LLM to generate simulator code once (with no parame-
ter calibration), and (G-Sim-ES Abl. ZeroShotOptim)
applies gradient-free optimization only to numerical param-
eters (without adjusting the structural design). All baselines
share the same training and evaluation splits, and detailed
implementation and hyperparameter settings are given in
Appendix D.

6. Main Results
We evaluated all benchmark methods across the three en-
vironments, with results tabulated in Table 2. G-Sim con-
sistently achieves the lowest Wasserstein distance on the
held-out test data, indicating that its generated simulators
model the ground-truth system dynamics with the highest
fidelity. The performance gap is particularly pronounced
in the complex Hospital Bed Scheduling task, where data-
driven methods struggle significantly.

Beyond predictive accuracy, we demonstrate G-Sim’s
unique capability to answer “what if?” questions involving
policy or structural interventions that lie outside the train-
ing data distribution. These insight experiments showcase
G-Sim’s ability to generalize to novel scenarios and inform
decision-making in complex systems, a task for which other
methods lack a direct mechanism.

7

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Figure 2. Lockdown intervention on COVID-19 SIR. We impose
a temporary lockdown (grey rectangles with opacity proportional
to intensity) by scaling the infection rate β 7→ αβ for different
start/end times and α ∈ {0.05, 0.1, 0.15, 0.3}. The solid lines are
ground truth; dashed lines are G-Sim’s predictions. G-Sim cor-
rectly adapts to these unseen interventions, maintaining predictive
performance.

6.1. Insight Experiments and Policy Interventions

SIR Lockdown Interventions. We first examine a
COVID-19 scenario where a lockdown multiplier α ∈ [0, 1]
scales the infection rate β for a specified interval [tstart, tend].
This models the effect of a temporary lockdown by reducing
the rate of new infections. We impose multiple lockdown
scenarios by varying α and the lockdown duration to as-
sess whether G-Sim can accurately replicate the resulting
infection trajectories.

Figure 2 compares the ground truth with G-Sim’s pre-
dictions under different lockdown intensities (α =
0.05, 0.1, 0.15, 0.3). Despite not encountering lockdown
events during training, G-Sim successfully captures the de-
layed and reduced infection peaks corresponding to the
imposed interventions. In contrast, the other baselines fail
to incorporate this structural change, rendering them inap-
plicable for such an analysis.

Policy Optimization. Next, we demonstrate G-Sim’s util-
ity for policy optimization by searching over a discrete set
of interventions in the Hospital Bed Scheduling task. The
interventions combine capacity expansion (∆B, additional
beds) and lockdown scheduling (τ , the start day of a fixed
20-day lockdown). The cost function to minimize is:

Cost = Overflow + 10×∆B + 20× lockdown duration,

where Overflow is the number of patients exceeding bed
capacity.

We optimize over the grid (τ,∆B) ∈ {0, 5, . . . , 95} ×
{0, 500, . . . , 9500}. Table 3 shows that the best policy
found using the G-Sim simulator is nearly identical to the
true optimal policy, demonstrating that policies optimized
with G-Sim are effective and transferable to the real envi-
ronment.

Supply Chain: Resource Optimization. We explore re-
source optimization in the supply chain environment by

Table 3. Comparison of optimal policies for Ground Truth and G-
Sim environments. We report the lockdown start day τ , additional
beds ∆B, and total cost. G-Sim identifies a policy that closely
approximates the ground truth’s optimal strategy with minimal
cost deviation.

Method τ∗ ∆B∗ Cost

Ground Truth Best 10 2500 29,274
G-Sim Best 15 2500 32,703

Figure 3. Supply-chain resource optimization. Heatmaps of total
cost Cost(∆C, ℓ) as a function of extra capacity ∆C and lead time
ℓ. Left: Ground truth. Right: G-Sim. Both heatmaps exhibit similar
cost landscapes, demonstrating that G-Sim effectively models the
cost trade-offs.

varying both ∆C (extra warehouse capacity) and ℓ (lead
time). Figure 3 presents heatmaps of the total cost as a
function of ∆C and ℓ for both the ground truth and G-Sim
environments. The striking similarity in the global struc-
ture of the cost landscapes indicates that G-Sim accurately
captures the trade-offs between capacity expansion and ship-
ping delays. Consequently, the optimal regions in the G-Sim
environment align closely with those in the ground truth, af-
firming G-Sim’s reliability for strategic resource allocation.

Supply Chain: Varying Lead Times. In Appendix I we
further stress-test the supply chain simulator by introducing
varying lead times ℓ, which were not explicitly present dur-
ing training, to test the simulator’s ability to handle unseen
delays.

7. Discussion and Conclusion
We introduced G-Sim, a novel framework that automates
simulator construction by synergizing LLM-driven struc-
tural design with rigorous empirical calibration. G-Sim’s
key innovation is its flexibility, offering a choice of powerful,
likelihood-free and gradient-free techniques: Gradient-
Free Optimization for direct parameter estimation or
Simulation-Based Inference for Bayesian posterior infer-
ence. This hybrid approach overcomes the critical limita-
tions of purely data-driven models (poor OOD generaliza-
tion) and purely LLM-generated ones (lacking empirical
grounding).

G-Sim’s iterative refinement loop co-evolves a simulator’s

8

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

structure and parameters, driven by diagnostic feedback, to
achieve both causal plausibility and empirical alignment.
The option to use SBI is particularly powerful for applica-
tions requiring principled uncertainty quantification. How-
ever, a key technical nuance must be appreciated: SBI’s
guarantees assume a correct model structure. Within G-
Sim’s search process, SBI posteriors correctly reflect pa-
rameter uncertainty given a proposed structure, but do not
capture the overarching structural uncertainty. Modeling
this structural uncertainty explicitly is a vital frontier for
future research.

The practical implications of G-Sim are significant. By
producing intervenable simulators with plausible generaliza-
tion, G-Sim facilitates robust “what if?” analyses in critical
domains like epidemic planning, supply chain management,
and healthcare logistics. Our experiments demonstrate that
G-Sim not only replicates observed dynamics but also ac-
curately predicts system behavior under novel conditions,
offering a powerful tool for policy evaluation and design.

Limitations remain, notably the scalability to extremely
high-dimensional systems and ensuring the LLM’s proposed
structures are sufficiently diverse. We discuss these, along
with ethical considerations and future work, in Appendix G.

In conclusion, G-Sim offers a flexible and robust path
towards building more accurate, causally consistent, and
uncertainty-aware simulations. By integrating structural rea-
soning with data-driven calibration, it marks a significant
step forward in automatic simulation generation, enabling
deeper insights and better decisions in complex systems.

Acknowledgements
We extend our gratitude to the anonymous reviewers, area
and program chairs, and members of the van der Schaar lab
for their valuable feedback and suggestions. We also thank
Daniel Gedon for their insightful comments and suggestions
that ultimately improved this work. SH & ML gratefully
acknowledge the sponsorship and support of AstraZeneca.
AB acknowledges funding from Eedi. This work was sup-
ported by Azure sponsorship credits granted by Microsoft’s
AI for Good Research Lab and by Microsoft’s Accelerate
Foundation Models Academic Research Initiative.

Impact Statement
Our approach (G-Sim) can enhance decision-making in
fields like healthcare, logistics, and climate science by au-
tomating simulator construction from sparse data and do-
main knowledge, enabling safer, cost-effective “what if?”
analysis. However, reliance on LLM-generated structures or
calibration with biased data could risk misleading outcomes
if not properly validated. Appropriate oversight, domain

expertise, and transparency regarding assumptions are cru-
cial for responsible use, ensuring these simulators support
ethical and beneficial real-world applications.

References
Alonso, E., Micheli, V., and Fleuret, F. Towards efficient

world models. In Workshop on Efficient Systems for
Foundation Models @ ICML2023, 2023.

AlQadi, H. and Bani-Yaghoub, M. Incorporating global
dynamics to improve the accuracy of disease models: Ex-
ample of a covid-19 sir model. Plos one, 17(4):e0265815,
2022.

Alvarez, V. M. M., Roşca, R., and Fălcuţescu, C. G. Dyn-
ode: Neural ordinary differential equations for dynam-
ics modeling in continuous control. arXiv preprint
arXiv:2009.04278, 2020.

Åström, K. Introduction to stochastic control theory, vol-
ume 70 of Mathematics in science and engineering. Aca-
demic Press, 1970.

Banks, J. Handbook of simulation: principles, methodology,
advances, applications, and practice. John Wiley & Sons,
1998.

Banks, J., Carson, J., Nelson, B., and Nicol, D. Discrete-
Event System Simulation. Prentice-Hall, 5 edition, 2010.

Batista, F. K., del Rey, A. M., and Queiruga-Dios, A. A
Review of SEIR-D Agent-Based Model. In Distributed
Computing and Artificial Intelligence, 16th International
Conference, Special Sessions, pp. 133–140. Springer In-
ternational Publishing, 2020.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Bonabeau, E. Agent-based modeling: Methods and tech-
niques for simulating human systems. Proceedings of the
National Academy of Sciences, 99:7280–7287, 2002.

Brailsford, S. C. Tutorial: Advances and challenges in
healthcare simulation modeling. In 2007 Winter simula-
tion conference, pp. 1436–1448. IEEE, 2007.

Bruce, J., Dennis, M., Edwards, A., Parker-Holder, J., Shi,
Y., Hughes, E., Lai, M., Mavalankar, A., Steigerwald, R.,
Apps, C., Aytar, Y., Bechtle, S., Behbahani, F., Chan, S.,
Heess, N., Gonzalez, L., Osindero, S., Ozair, S., Reed,
S., Zhang, J., Zolna, K., Clune, J., de Freitas, N., Singh,
S., and Rocktäschel, T. Genie: Generative interactive
environments. arXiv, 2024.

9

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering
governing equations from data by sparse identification of
nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., and et al. Evaluating large language mod-
els trained on code. arXiv, 2021.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Cherian, A., Corcodel, R., Jain, S., and Romeres, D. Llm-
phy: Complex physical reasoning using large language
models and world models. arXiv, 2024.

Choudhury, A. and Basak, A. Statistical inference on traffic
intensity in an M / M / 1 queueing system. International
Journal of Management Science and Engineering Man-
agement, 13(4):274–279, 2018.

Cooper, I., Mondal, A., and Antonopoulos, C. G. A sir
model assumption for the spread of covid-19 in different
communities. Chaos, Solitons & Fractals, 139:110057,
2020.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016–2021.

Cranmer, K., Brehmer, J., and Louppe, G. The fron-
tier of simulation-based inference. Proceedings of
the National Academy of Sciences, 117(48):30055–
30062, 2020. doi: 10.1073/pnas.1912789117. URL
https://www.pnas.org/doi/abs/10.1073/
pnas.1912789117.

De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau,
M., and Gagné, C. Deap: A python framework for evo-
lutionary algorithms. In Proceedings of the 14th annual
conference companion on Genetic and evolutionary com-
putation, pp. 85–92, 2012.

Ding, J., Zhang, Y., Shang, Y., Zhang, Y., Zong, Z., Feng,
J., Yuan, Y., Su, H., Li, N., Sukiennik, N., Xu, F., and Li,
Y. Understanding world or predicting future? a compre-
hensive survey of world models. arXiv, 2024.

Faldor, M., Zhang, J., Cully, A., and Clune, J. Omni-epic:
Open-endedness via models of human notions of inter-
estingness with environments programmed in code. In
Intrinsically-Motivated and Open-Ended Learning Work-
shop@ NeurIPS2024, 2024.

Gao, C., Lan, X., Li, N., Yuan, Y., Ding, J., Zhou, Z., Xu,
F., and Li, Y. Large language models empowered agent-
based modeling and simulation: A survey and perspec-
tives. Humanities and Social Sciences Communications,
11(1):1259, 2024.

Green, L. Queueing analysis in healthcare. Patient flow:
reducing delay in healthcare delivery, pp. 281–307, 2006.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf,
B., and Smola, A. A kernel two-sample test. Journal of
Machine Learning Research, 13(25):723–773, 2012.

Griesemer, S., Cao, D., Cui, Z., Osorio, C., and Liu, Y.
Active sequential posterior estimation for sample-efficient
simulation-based inference. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=fkuseU0nJs.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2555–
2565. PMLR, 2019.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A., Begy,
V., and Louppe, G. A trust crisis in simulation-based
inference? your posterior approximations can be unfaith-
ful, 2022. URL https://arxiv.org/abs/2110.
06581.

Holt, S., Davchev, T., Tirumala, D., Moran, B., Lin, Y., Lau-
rens, A., Iscen, A., Frey, E., Wulfmeier, M., Romano, F.,
et al. Evolving control: Evolved high frequency control
for continuous control tasks. In CoRL Workshop on Safe
and Robust Robot Learning for Operation in the Real
World, 2024a.

Holt, S., Liu, T., and van der Schaar, M. Automatically
learning hybrid digital twins of dynamical systems. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024b.

10

http://pybullet.org
https://www.pnas.org/doi/abs/10.1073/pnas.1912789117
https://www.pnas.org/doi/abs/10.1073/pnas.1912789117
https://openreview.net/forum?id=fkuseU0nJs
https://openreview.net/forum?id=fkuseU0nJs
https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.06581

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Holt, S., Qian, Z., Liu, T., Weatherall, J., and van der Schaar,
M. Data-driven discovery of dynamical systems in phar-
macology using large language models. Advances in Neu-
ral Information Processing Systems, 37:96325–96366,
2024c.

Kacprzyk, K., Holt, S., Berrevoets, J., Qian, Z., and
van der Schaar, M. Ode discovery for longitudinal het-
erogeneous treatment effects inference. arXiv preprint
arXiv:2403.10766, 2024.

Kantorovich, L. V. Mathematical Methods of Organizing
and Planning Production. Management Science, 6(4):
366–422, 1960.

Kelly, R. P., Warne, D. J., Frazier, D. T., Nott, D. J.,
Gutmann, M. U., and Drovandi, C. Simulation-based
bayesian inference under model misspecification, 2025.
URL https://arxiv.org/abs/2503.12315.

Kermack, W. O., McKendrick, A. G., and Walker, G. T.
A contribution to the mathematical theory of epidemics.
Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Char-
acter, 115(772):700–721, 1997.

Khalifa, A., Bontrager, P., Earle, S., and Togelius, J. Pcgrl:
Procedural content generation via reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 16,
pp. 95–101, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Klinger, T., Liu, Q., Crouse, M., Dan, S., Ram, P., and Gray,
A. G. Compositional program generation for systematic
generalization. In International Joint Conference on Arti-
ficial Intelligence 2023 Workshop on Knowledge-Based
Compositional Generalization, 2023.

Koizumi, N., Kuno, E., and Smith, T. E. Modeling patient
flows using a queuing network with blocking. Health
care management science, 8:49–60, 2005.

Lambert, N., Pister, K., and Calandra, R. Investigating com-
pounding prediction errors in learned dynamics models.
arXiv, 2022.

Law, A. M. and Kelton, W. D. Simulation Modeling and
Analysis. McGraw-Hill, 2000.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp tasks.
arXiv, 2021.

Li, D., Sohn, S. S., Zhang, S., Chang, C.-J., and Kapadia, M.
From words to worlds: Transforming one-line prompts
into multi-modal digital stories with llm agents. In Pro-
ceedings of the 17th ACM SIGGRAPH Conference on
Motion, Interaction, and Games, pp. 1–12, 2024.

Li, K. and Yuan, Y. Large language models as test case
generators: Performance evaluation and enhancement.
arXiv, 2024.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Lian, X., Wang, S., Ma, J., Tan, X., Liu, F., Shi, L., Gao, C.,
and Zhang, L. Imperfect code generation: Uncovering
weaknesses in automatic code generation by large lan-
guage models. In Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineer-
ing: Companion Proceedings, ICSE-Companion ’24, pp.
422–423, 2024.

Liu, Z., Hu, H., Zhang, S., Guo, H., Ke, S., Liu, B., and
Wang, Z. Reason for future, act for now: a principled
architecture for autonomous llm agents. In Proceedings of
the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Loshchilov, I., Hutter, F., et al. Fixing weight decay regu-
larization in adam. arXiv preprint arXiv:1711.05101, 5,
2017.

Luo, F.-M., Xu, T., Lai, H., Chen, X.-H., Zhang, W., and
Yu, Y. A survey on model-based reinforcement learning.
Science China Information Sciences, 67(2):121101, 2024.

Melnychuk, V., Frauen, D., and Feuerriegel, S. Causal trans-
former for estimating counterfactual outcomes. In Inter-
national Conference on Machine Learning, pp. 15293–
15329. PMLR, 2022.

Micheli, V., Alonso, E., and Fleuret, F. Transformers are
sample-efficient world models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Nott, D. J., Drovandi, C., and Frazier, D. T. Bayesian
Inference for Misspecified Generative Models. An-
nual Review of Statistics and Its Application, 11:
179–202, 2024. ISSN 2326-8298, 2326-831X.
doi: 10.1146/annurev-statistics-040522-015915.
URL https://www.annualreviews.
org/content/journals/10.1146/
annurev-statistics-040522-015915.

Oliver, J. J. Scenario planning: Reflecting on cases of
actionable knowledge. Futures & Foresight Science, 5
(3-4):e164, 2023.

11

https://arxiv.org/abs/2503.12315
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040522-015915
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040522-015915
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040522-015915

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, 2nd edition, 2009.

Peters, J., Janzing, D., and Schlkopf, B. Elements of Causal
Inference: Foundations and Learning Algorithms. The
MIT Press, 2017.

Pouplin, T., Sun, H., Holt, S., and Van der Schaar, M.
Retrieval-augmented thought process as sequential de-
cision making. arXiv e-prints, pp. arXiv–2402, 2024.

Rauba, P., Seedat, N., Luyten, M. R., and van der Schaar, M.
Context-aware testing: A new paradigm for model testing
with large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Rosenberger, J. Configural polysampling: A route to practi-
cal robustness., 1993.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
323(6088):533–536, 1986.

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and
Chadha, A. A systematic survey of prompt engineering
in large language models: Techniques and applications.
arXiv, 2024.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I.
Evolution strategies as a scalable alternative to reinforce-
ment learning. arXiv, 2017.

Sammut, C. and Webb, G. I. Encyclopedia of machine
learning. Springer Science & Business Media, 2011.

Schmitt, M., Bürkner, P.-C., Köthe, U., and Radev, S. T.
Detecting model misspecification in amortized bayesian
inference with neural networks. In Köthe, U. and Rother,
C. (eds.), Pattern Recognition, pp. 541–557. Springer
Nature Switzerland, 2024. ISBN 978-3-031-54605-1.

Schug, S., Kobayashi, S., Akram, Y., Wolczyk, M., Proca,
A. M., Oswald, J. V., Pascanu, R., Sacramento, J., and
Steger, A. Discovering modular solutions that generalize
compositionally. In The Twelfth International Conference
on Learning Representations, 2024.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. Parameter-exploring policy
gradients. Neural Networks, 23(4):551–559, 2010.

Settles, B. Active learning literature survey. University of
Wisconsin-Madison Department of Computer Sciences,
52(55-66):11, 2009.

Shaker, N., Togelius, J., and Nelson, M. J. Procedural
content generation in games. 2016.

Shanthikumar, J. G. and Wu, C. On the starshapeness of
g/g/c queueing systems. Advances in Applied Probability,
23(2):431–435, 1991.

Shewchuk, J. and Chang, T.-C. An approach to object-
oriented discrete-event simulation of manufacturing sys-
tems. In 1991 Winter Simulation Conference Proceed-
ings., pp. 302–311, 1991.

Shin, S., Jo, Y., Ahn, S., and Lee, N. A closer look at
the intervention procedure of concept bottleneck models.
In Workshop on Trustworthy and Socially Responsible
Machine Learning, NeurIPS 2022, 2022.

Shlens, J. Notes on kullback-leibler divergence and likeli-
hood. arXiv, 2014.

Spirtes, P., Glymour, C., and Scheines, R. Causation, Pre-
diction, and Search. The MIT Press, 2001.

Spurio Mancini, A., Docherty, M. M., Price, M. A.,
and McEwen, J. D. Bayesian model comparison for
simulation-based inference. RAS Techniques and In-
struments, 2(1):710–722, 2023. ISSN 2752-8200. doi:
10.1093/rasti/rzad051. URL https://doi.org/10.
1093/rasti/rzad051.

Sterman, J. D. Modeling managerial behavior: Mispercep-
tions of feedback in a dynamic decision making experi-
ment. Management science, 35(3):321–339, 1989.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., and
Gelman, A. Validating bayesian inference algorithms
with simulation-based calibration, 2020. URL https:
//arxiv.org/abs/1804.06788.

Tang, H., Key, D. Y., and Ellis, K. Worldcoder, a model-
based LLM agent: Building world models by writing
code and interacting with the environment. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

Toklu, N. E., Atkinson, T., Micka, V., Liskowski, P., and
Srivastava, R. K. Evotorch: Scalable evolutionary com-
putation in python. arXiv, 2023.

Uehara, M., Shi, C., and Kallus, N. A review of off-policy
evaluation in reinforcement learning. arXiv, 2022.

Vafa, K., Chen, J. Y., Rambachan, A., Kleinberg, J., and
Mullainathan, S. Evaluating the world model implicit in
a generative model. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024.

12

https://doi.org/10.1093/rasti/rzad051
https://doi.org/10.1093/rasti/rzad051
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1804.06788

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, L., Ling, Y., Yuan, Z., Shridhar, M., Bao, C., Qin,
Y., Wang, B., Xu, H., and Wang, X. Gensim: Generating
robotic simulation tasks via large language models. In
The Twelfth International Conference on Learning Repre-
sentations, 2024a.

Wang, R., Todd, G., Xiao, Z., Yuan, X., Côté, M.-A., Clark,
P., and Jansen, P. Can language models serve as text-
based world simulators? arXiv, 2024b.

Wehenkel, A., Gamella, J. L., Sener, O., Behrmann, J.,
Sapiro, G., Cuturi, M., and Jacobsen, J.-H. Addressing
misspecification in simulation-based inference through
data-driven calibration, 2024. URL https://arxiv.
org/abs/2405.08719.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wei, X., Kumar, N., and Zhang, H. Addressing bias in
generative AI: Challenges and research opportunities in
information management. Information & Management,
62(2), 2025.

Xie, K., Yang, I., Gunerli, J., and Riedl, M. Making large
language models into world models with precondition
and effect knowledge. arXiv, 2024.

Yang, C., Wang, X., Jiang, J., Zhang, Q., and Huang, X.
Evaluating world models with llm for decision making.
arXiv, 2024.

Zhou, S., Zhou, T., Yang, Y., Long, G., Ye, D., Jiang, J.,
and Zhang, C. Wall-e: World alignment by rule learning
improves world model-based llm agents. arXiv, 2024.

13

https://arxiv.org/abs/2405.08719
https://arxiv.org/abs/2405.08719

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Appendix

Table of Contents
A Extended Related Work 16

A.1 Data-Driven World Models . 16

A.2 Foundation Models as World Models . 16

A.3 LLM-Coded Simulations . 16

A.4 Hybrid Digital Twins and Mechanistic Models . 16

A.5 Procedural Content Generation & Environment Simulation . 16

A.6 Active Learning and Iterative Refinement . 17

A.7 Comparison with Prior Work . 17

B Additional Theoretical Considerations and Implementation Details 18
B.1 LLM Coverage Assumption . 18

B.2 Structural Identifiability . 18

B.3 Prompt-Engineering for Broader LLM Coverage . 20

B.4 Limitations of Simulation-Based Inference in G-SIM . 21

C Benchmark Dataset Environment Details 22
C.1 COVID-19 SIR Environment . 22

C.2 Supply Chain Environment . 24

C.3 Hospital Bed Scheduling Environment . 25

C.4 Performing Intervention Insight Experiments . 28

D Implementation Details for Baseline Methods 29

E G-Sim Implementation Details 31
E.1 Overall G-Sim Framework . 31

E.2 Pseudocode . 31

E.3 Training and Calibration Details . 32

E.4 Prompt Templates and Structural Generation . 33

E.5 Diagnostics Computation and Refinement . 35

E.6 Implementation Notes . 35

E.7 Full G-Sim Workflow Summary . 36

E.8 Implementation of the Diagnostic Function Diag . 36

E.9 Observed Speed-Ups via Parallelization . 36

E.10 Handling Stochastic Simulators . 36

E.11 Summary of Key Implementation Steps . 36

F Illustrative G-Sim Prompt Example 38
F.1 Env Prompts . 39

G Future work and broader impact 42
G.1 Expanding the Scope of Simulation . 42

G.2 Potential Uses Beyond Intervention Testing . 43

G.3 Limitations and Future Directions . 43

14

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

G.4 Ethical Considerations and Mitigation Strategies . 44

H Evaluation Metrics 45

I Additional Experiments 46
I.1 Out-of-Distribution Generalization: Supply Chain Backlog . 46

I.2 Structural Accuracy via Causal Discovery Metrics . 47

I.3 Parameter Calibration: GFO vs. Simulation-Based Inference (SBI) . 47

I.4 Computational Performance: Training Times and Parameters . 48

I.5 Iterative Refinement by G-Sim: An Example . 48

15

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

A. Extended Related Work
Automatically building general-purpose simulators has been a longstanding challenge in machine learning and simulation
research. Below, we position our proposed approach (G-Sim) within several primary research streams—including data-driven
world models, foundation-model-based and LLM-coded world models, and hybrid digital twins—highlighting how G-Sim
uniquely addresses their respective limitations for real-world simulation-building. We then expand on additional threads
such as equation discovery, procedural content generation, and active learning.

A.1. Data-Driven World Models

A substantial body of work in model-based reinforcement learning (MBRL) focuses on learning parametric approximations
of environment dynamics purely from data (Ha & Schmidhuber, 2018; Hafner et al., 2019; Alonso et al., 2023; Micheli
et al., 2023; Hafner et al., 2023; Ding et al., 2024; Bruce et al., 2024). Typically referred to as world models, these methods
leverage neural networks to predict transitions and rewards, often in a compressed latent space, to improve sample efficiency
and planning performance. However, as discussed in our main paper, such purely data-driven approaches are ill-suited
to broader system-level questions such as structural interventions or scenario analyses (Pearl, 2009; Peters et al., 2017;
Kacprzyk et al., 2024). They also rely heavily on large and representative datasets, which are often unavailable in real-world
domains that suffer from sparse or fragmented data, and they tend to break down under out-of-distribution conditions.

A.2. Foundation Models as World Models

Recent work explores using large foundation models (including LLMs) as world models for decision-making (Gao et al.,
2024; Hao et al., 2023; Liu et al., 2024; Yang et al., 2024; Xie et al., 2024; Wang et al., 2024b; Zhou et al., 2024; Cherian
et al., 2024). These models can plausibly ”role-play” entire environments given enough textual context, sometimes boosting
sample efficiency in MBRL tasks. However, they frequently produce biased or inconsistent trajectories when asked to
simulate real-world systems (Vafa et al., 2024). The limited capacity of language models to systematically track multi-
faceted, time-evolving interactions leads to compounding errors (Lambert et al., 2022), undermining reliability in complex
settings.

A.3. LLM-Coded Simulations

Another line of research employs LLMs to generate environment code for simulation. For example, OMNI-EPIC and GenSim
build open-ended Pybullet (Coumans & Bai, 2016–2021) environments by synthesizing code in physics engines (Faldor
et al., 2024; Wang et al., 2024a). While effective for agent exploration, these methods rarely aim to mirror real-world systems
or align with empirical data. In contrast, the recent WorldCoder approach (Tang et al., 2024) does generate environment
code from textual descriptions, supporting some iterative refinement with real-world evidence. However, it remains limited
to deterministic logic, lacks robust mechanisms for handling partial observability or stochasticity, and cannot systematically
infer quantitative parameters from real data.

A.4. Hybrid Digital Twins and Mechanistic Models

Another relevant trend involves hybrid digital twins, which combine known mechanistic or physical processes with data-
driven correctors (Holt et al., 2024b;c). These approaches excel in domains where a partial physical law or differential
equation is known and can be complemented by a learned residual neural module. Yet they generally require substantial
domain expertise to specify the underlying differential equation or other rigid differentiable forms, and do not generalize well
to systems with discrete, stochastic events or partially specified modules. Likewise, purely mechanistic equation-discovery
approaches (e.g., SINDy (Brunton et al., 2016) or PDE-based symbolic regression) can uncover closed-form ODEs from
data, but they often fail when the system is highly modular, partially observed, or contains discrete jumps.

A.5. Procedural Content Generation & Environment Simulation

Procedural generation techniques have long been used in game design to create diverse levels or scenarios automatically
(Shaker et al., 2016; Khalifa et al., 2020). LLM-based text-to-environment pipelines (Li et al., 2024) can also create
interesting scenarios from narrative descriptions. However, these approaches rarely incorporate real-world evidence or aim
to produce data-calibrated transition dynamics. By contrast, G-Sim seeks not only to produce environment code but also
to calibrate parameters against real (potentially fragmented) data, resulting in an environment that is both plausible and

16

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

empirically grounded.

A.6. Active Learning and Iterative Refinement

Active learning and simulation-based inference methods (Cranmer et al., 2020; Settles, 2009; Pouplin et al., 2024) have
been utilized to reduce data requirements and improve simulator fidelity. Gradient-free optimizers such as evolutionary
strategies (Sehnke et al., 2010; Toklu et al., 2023; Holt et al., 2024a) can handle non-differentiable or stochastic objectives
by repeatedly simulating candidate parameter sets. While effective for calibration, these methods alone assume a fixed
simulator structure; they do not address how to build or refine the structural design itself. G-Sim integrates LLM-based
structural generation and flexible calibration in an iterative loop, allowing the simulator’s topology to be revised whenever
diagnostics indicate insufficient fidelity or domain compliance.

A.7. Comparison with Prior Work

Table 1 summarizes key features of G-Sim in comparison to representative approaches. Purely data-driven (or purely LLM-
driven) pipelines struggle with complex, partially observed, or discrete systems; they also lack a mechanism for systematically
merging domain knowledge with real data. Hybrid digital twins require continuous or well-defined mechanistic equations,
while purely code-generating approaches often do not incorporate rigorous calibration steps. In contrast, G-Sim addresses
these gaps by:

1. Leveraging LLM-guided structural proposals to capture domain-appropriate topologies and submodules,

2. Using a choice of flexible, likelihood-free calibration methods (GFO or SBI) to tune parameters against real data,

3. Employing an iterative refinement loop that diagnoses discrepancies and re-queries the LLM for adjustments.

This hybrid, compositional approach unlocks new capabilities for real-world simulator creation, where partial observations,
non-differentiable transitions, and out-of-distribution policy interventions are present.

Key Differences and Contributions. In sum, no prior framework integrates LLM-based structural reasoning, flexible
parameter inference, and an iterative refinement mechanism to produce high-fidelity, data-grounded simulators in a
single pipeline. By unifying domain knowledge and empirical calibration, G-Sim offers robust scenario planning, policy
intervention testing, and OOD stress-testing in ways that purely data-driven or purely LLM-generated simulators cannot.
We believe this synthesis of large language models, GFO, and SBI opens a promising direction toward truly automatic
environment generation for high-stakes real-world domains.

17

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

B. Additional Theoretical Considerations and Implementation Details
This appendix provides a deeper look at the theoretical assumptions, identifiability properties, and practical implementations
that underpin our G-Sim framework. Section B.1 discusses the nonzero coverage assumption for the LLM’s structural
proposals, including potential failure modes. Section B.2 expands on structural identifiability and equivalence classes.
Section B.2 provides detailed guidelines for constructing the diagnostics function Diag. Finally, Section B.3 illustrates how
to ensure sufficiently rich prompts to maintain broad coverage from the LLM.

B.1. LLM Coverage Assumption

In the main text, we assume:
pLLM

(
λ | K

)
≥ α > 0 for all λ ∈ C∗(S),

where C∗(S) ⊆ C(S) is a set of feasible structural configurations that adequately represent the real-world system (up to a
certain approximation). This requirement guarantees that an iterative procedure—repeatedly prompting the LLM for revised
structures—can eventually propose a structure that is ”close enough” to the true environment to support accurate inference.

When Coverage Might Fail. Several practical factors can undermine this assumption:

• Under-trained or Domain-Mismatched LLM. If both the LLM’s training corpus and the explicit knowledge K lack
relevant domain knowledge or code examples (e.g., queueing systems, compartmental epidemic models), then many
relevant configurations may be assigned near-zero probability.

• Excessive Prompt Constraints. Overly restrictive or poorly designed prompts can steer the LLM away from generating
diverse substructures.

• Novel or Rarely Documented Submodules. If the true system relies on custom or highly specific domain processes
that rarely appear in public text corpora, the LLM might not “know” how to compose those substructures.

In such cases, either prompt-engineering K or partial fine-tuning can help restore coverage (see Appendix B.3 and
Appendix E.4). Ultimately, if no structural representation in supp(pLLM

(
λ | K

)
) is even approximately valid, no LLM

approach can succeed.

Approximate vs. Exact Structural Matches. In real applications, there may be no perfectly correct simulator structure.
Instead, C∗(S) can be a collection of good enough or functionally sufficient structures (e.g., ignoring minor confounders, or
grouping certain processes together). If one such structure is proposed by the LLM, subsequent calibration of ω should
suffice for robust predictions.

B.2. Structural Identifiability
Definition. Structural identifiability typically refers to whether the mapping

(λ, ω) 7→
{

possible data distributions from the simulator
}

is injective (one-to-one) in some relevant sense. In simpler terms: if two distinct structures or parameterizations generate
identical distributions over observable data, they are structurally unidentifiable from an empirical standpoint.

Why This Matters. In our context, an unidentifiable simulator might mean that even perfect (infinite) data is insufficient
to discriminate between different submodule configurations. One example is an environment that can be explained equally
well by either an M/M/c (Kermack et al., 1997) queue with a certain arrival rate or a more complex arrival process with
time-varying rates, as long as the overall distribution of arrival times matches. Under such conditions, the refinement loop
may not converge to a unique λ, and we might have to choose a heuristic such as Occam’s razor (Sammut & Webb, 2011).

Partial Identifiability and Equivalence Classes. In practice, especially with partially observed or unpaired data, we
often only identify equivalence classes of structures. That is, the set of candidate λ can remain multi-modal, with multiple
plausible subgraphs explaining the data. In such cases, the final output might be a distribution or set over competing
submodule graphs. One can still proceed to do policy evaluations or forward simulations by sampling from that distribution
over possible structures.

18

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Remedies. Two approaches can mitigate structural unidentifiability:

1. Additional Domain Knowledge. Imposing explicit structural constraints (e.g., ”patient severity depends on risk
factors, not on staff scheduling”) can prune the space of submodules and break identifiability symmetries.

2. Refined Diagnostics. Using more fine-grained checks (e.g., dissecting arrival patterns by time-of-day or day-of-week)
can help discriminate between seemingly identical structures.

Ultimately, structural identifiability in highly complex systems remains an open challenge. We thus recommend domain
experts remain in the loop to verify or reject certain submodule proposals as needed.

Design of the Diagnostics Function

The refinement loop (Section 3.3) in the main text relies on a diagnostic function

Diag
(
λ, ω∗) 7→ R≥0

to measure goodness-of-fit and highlight structural gaps. This function, which we denote as d, aggregates various signals
indicating how well the current simulator (λ, ω∗) matches the real system. Below, we offer more details on how to implement
Diag in a way that is both flexible and tractable, followed by how it is realised in practice.

PREDICTIVE CHECKS (PPC)

A standard tactic in statistics is to compare simulated data against real data. Specifically:

1. Generate Simulated Data: For the current structure λ and calibrated parameters ω∗, forward-simulate trajectories
x(m) ∼ f

(
· ; λ, ω∗). If using SBI, one would draw posterior samples ω(m) ∼ p̂(ω | D) and simulate for each.

2. Compute Summary Statistics: Calculate relevant summary statistics T
(
x(m)

)
(e.g., mean arrival rates, bed occupancy

distributions, trajectory-wise errors).

3. Measure Discrepancy: Compare the distribution of T
(
x(m)

)
to T

(
Dreal

)
using suitable distance metrics.

This predictive discrepancy, δpredictive, can be defined using metrics like:

• Wasserstein distance (W1) (Kantorovich, 1960): Measures the ’work’ required to transform one distribution into
another.

• Maximum Mean Discrepancy (MMD) (Gretton et al., 2012): A kernel-based distance often used in generative
modeling.

• Mean Squared Error (MSE): Useful for specific component outputs.

• Kullback-Leibler (KL) divergence (Shlens, 2014): Measures information loss.

One might define δpredictive = WASS
({
T (x(m))

}
, T (Dreal)

)
, or a weighted sum over multiple statistics.

PARAMETER UNCERTAINTY CRITERIA (FOR SBI)

When using Simulation-Based Inference (SBI) (Cranmer et al., 2020), the posterior distribution p̂(ω | D) itself can signal
model misspecification. A very large variance or multiple distinct modes might indicate that the current structure λ fails to
”pin down” key parameters. One could define a diagnostic like:

DiagVar =

d∑
i=1

1
(
Var

[
ωi

]
> τi

)
where τi is a threshold for the variance of each parameter ωi.

19

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

STRESS TESTING & PLAUSIBILITY CHECKS

To assess generalization and robustness, we can check the simulator’s behaviour under out-of-distribution (OOD) scenarios
or against known domain constraints (e.g., unit tests (Li & Yuan, 2024)).

δdomain =

J∑
j=1

1
(

Simulator yields implausible outputs under scenario Ωj

)
+

K∑
k=1

1(Rule k violated)

Here, each Ωj is a hypothetical stress test (e.g., a sudden surge in patient arrivals), and ”implausible outputs” might include
negative states or constraint violations.

COMBINING DIAGNOSTICS AND SETTING THE THRESHOLD (ϵ)

The individual diagnostic components (δpredictive, δdomain, etc.) can be aggregated into a single scalar score, d = Diag
(
λ, ω∗).

A common approach is a weighted sum:

Diag
(
λ, ω∗) = w1 δpredictive + w2 δdomain + · · ·

with weights wi ≥ 0. This score d is then compared against a predefined threshold ε. If d > ε, refinement is triggered.
When refinement occurs, the specific failing components inform the generation of textual feedback, guiding the LLM’s next
proposal.

PRACTICAL IMPLEMENTATION IN G-SIM

In our implementation, the diagnostic function (d) primarily relies on Posterior Predictive Checks. We calculate both the
Wasserstein distance and Mean Squared Error (MSE) between simulated trajectories (generated using parameters found
via calibration) and a held-out validation dataset. These metrics provide a quantitative measure of how well the simulator’s
outputs match empirical observations.

The Wasserstein distance is used as the primary metric (d = δpredictive = W1) for ranking different simulator structures
generated by the LLM within each iteration and for tracking overall progress. However, the feedback provided to the LLM
for refinement is more detailed. It includes not only the overall Wasserstein score but also the MSE broken down per
dimension of the simulator’s state space. This allows the LLM to understand which specific parts of the simulator are
performing poorly (e.g., underestimating ’infected’ counts or overestimating ’inventory’ levels) and propose more targeted
structural changes.

Regarding the threshold (ϵ), our framework uses an implicit approach. We do not set a specific numerical value for ϵ.
Instead, the refinement loop terminates based on two conditions:

1. Iteration Limit: A maximum number of G-Sim iterations (or ’generations’) is defined in the configuration. This sets a
hard limit on the computational budget.

2. Early Stopping: We monitor the best Wasserstein distance achieved in each generation. If this score does not improve
for a predefined number of consecutive generations (a ’patience’ parameter), the loop terminates early.

This strategy means the refinement process continues as long as it is finding significantly better simulator structures within
its budget, effectively setting ϵ based on observed progress rather than a fixed a priori value. When the loop terminates, the
simulator with the lowest achieved Wasserstein distance is selected as the final output.

B.3. Prompt-Engineering for Broader LLM Coverage

Since the LLM proposals λ govern the success of the refinement loop, prompt-engineering (Sahoo et al., 2024) is crucial for
ensuring that:

1. The LLM has enough freedom to propose submodules beyond an initial guess.

2. The domain knowledge K is well-articulated so that the LLM can access relevant structural ideas.

3. Textual feedback from the diagnostic function Diag is expressed in a sufficiently precise and instructive manner, so
that the LLM can respond by refining the submodule that is problematic with reasonable probability.

20

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Concrete Prompting Steps. In Appendix E.4 we provide the prompt templates that we use in our experiments.

In case one wished to explore multiple structural variants, they could sample multiple completions from the LLM (by
adjusting temperature or top-k sampling), score each proposed structure via Diag and retain the best structure(s) for
iteration. This approach follows an evolutionary search spirit in the space of submodule graphs. In practice, controlling
sampling temperature or employing specialized generation routines (e.g., “chain-of-thought” (Wei et al., 2022) prompts that
systematically reason about possible modules) can yield better coverage than a single pass (Wei et al., 2022). In any case,
we leave these iterations of our framework to future work.

Limitations. Even with carefully engineered prompts, the LLM might produce repetitive or irrelevant suggestions. If the
system remains stuck in a poor local optimum (see Appendix B.1), one might want to invoke direct expert intervention,
manually expanding K, providing a new submodule explicitly or specifying more explicit constraints. Indeed, while the
iterative refinement loop can help, it is not guaranteed to find a global optimum if the LLM’s proposal distribution or domain
constraints are too limited.

B.4. Limitations of Simulation-Based Inference in G-SIM

While Simulation-Based Inference (SBI) provides a principled route to parameter estimation and uncertainty quantification
(Cranmer et al., 2020), its naive adoption inside G-SIM requires special care because several of SBI’s core theoretical
assumptions are violated once the model structure is itself unknown.

The Model Mismatch Problem. Classical guarantees—e.g. posterior consistency, well-calibrated credible sets and
successful simulation-based calibration (SBC)—all rely on the simulator f(·;λ∗, ω) being correctly specified and fixed
(Cranmer et al., 2020; Talts et al., 2020). In G-SIM we deliberately explore candidate structures λ(g) generated by an
LLM; whenever λ(g) ̸= λ∗ we enter a misspecified regime. Theory shows that Bayesian posteriors can become biased or
over-confident under misspecification (Nott et al., 2024), and recent empirical studies demonstrate the same failure modes
for neural SBI algorithms (Hermans et al., 2022; Kelly et al., 2025). Hence the learned posterior qϕ(ω | y, λ(g)) may still
converge—but not to the distribution that reflects our true uncertainty under the correct model.

Observational Signatures and Future Directions. Empirically, severe misspecification often manifests as excessively
broad or oddly-shaped posteriors (Hermans et al., 2022). Posterior-shape diagnostics based on entropy or variance can flag
such cases in amortised SBI (Schmitt et al., 2024; Wehenkel et al., 2024). Integrating these metrics into the Diag function
would give G-SIM an automatic “early-warning” system for structural defects.

Looking ahead, three research directions appear particularly promising:

• Bayesian Model Averaging. Maintaining a weighted ensemble of plausible structures and marginalising over them
tackles structural as well as parametric uncertainty (Spurio Mancini et al., 2023; Wehenkel et al., 2024).

• Robust Guarantees under Approximate Correctness. Extending the analysis of Nott et al. (2024) to simulators, or
developing divergence-based bounds, could yield milder but still useful uncertainty guarantees even when λ(g) is only
approximately correct (Kelly et al., 2025).

• Active Learning for Structure Discovery. “Query-by-disagreement” strategies that maximise posterior divergence
between rival structures can accelerate the search process (Griesemer et al., 2024).

Equipping G-SIM with these tools would move it beyond the single-model assumption inherited from classical SBI and
towards a principled treatment of structural uncertainty.

21

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

C. Benchmark Dataset Environment Details
We evaluate our proposed approach on a suite of real-world-inspired benchmark tasks, each designed to reflect critical
properties of real system dynamics such as stochastic updates, discrete state transitions, and partial observability. These
benchmark environments serve as testbeds for assessing how well different simulator-building frameworks capture complex
behaviors, align with empirical data, and generalize to interventions that are absent from the training distribution. Here, we
describe in detail the structure, parameters, and data generation procedures for each environment, enabling reproducibility
and clarifying the unique modeling challenges each setting presents.

C.1. COVID-19 SIR Environment

Our COVID-19 SIR environment is inspired by the classic compartmental SIR framework and extends modern discrete-time
variants (Cooper et al., 2020; AlQadi & Bani-Yaghoub, 2022) by modeling discrete, stochastic transitions of individuals
among three key health states:

• S (Susceptible): Number of individuals who are healthy but can become infected.

• I (Infectious): Number of currently infected individuals capable of transmitting the pathogen.

• R (Recovered): Number of individuals who have recovered (or are otherwise removed) from the disease, and cannot
become infected again.

Simulation code and parameters. Listing 1 illustrates the core update procedure. The simulator maintains two parameters,
β and γ, which govern transition rates:

• β (base transmission rate): Higher β implies that infections spread more aggressively in the population.

• γ (daily recovery probability): Individuals in the I compartment recover and transition to R at a Binomial rate
characterized by γ.

At each step t, the environment receives the current state st = {St, It, Rt} and an action at. While classical epidemic
modeling may treat non-pharmaceutical interventions (NPIs) or policy actions as external controls, this particular version
does not yet incorporate any direct effect of action. However, the simulator is extensible so that future versions can
incorporate lockdowns, vaccination campaigns, or other interventions by modifying the effective β or γ in a time-varying
manner.

Listing 1. Core step function of the COVID-19 SIR simulator. The environment updates (S, I,R) by sampling the number of new
infections and new recoveries from a Binomial distribution.
c l a s s S i m u l a t o r S t e p :

d e f i n i t (s e l f) :
D e f a u l t p a r a m e t e r s : b e t a = 0 . 5 , gamma =0.1
s e l f . p a r a m e t e r s = np . a r r a y ([0 . 5 , 0 . 1] , d t y p e = f l o a t)

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t) −> d i c t :
”””
P e r f o r m s a s i n g l e − s t e p u p d a t e f o r a d i s c r e t e − t ime SIR model .
”””
E x t r a c t compar tmen t s
S = s t a t e [” S ”]
I = s t a t e [” I ”]
R = s t a t e [”R”]

Unpack p a r a m e t e r s
be t a , gamma = s e l f . p a r a m e t e r s

Compute t o t a l p o p u l a t i o n
N = S + I + R
i f N <= 0 :

r e t u r n {”S ” : 0 , ” I ” : 0 , ”R ” : 0} # D e g e n e r a t e c a s e

D e t e r m i n i s t i c i n f e c t i o n p r o b a b i l i t y (r a t e) from s u s c e p t i b l e t o i n f e c t e d
p r o b i n f e c t i o n = 1 . 0 − np . exp (− b e t a * I / N)
p r o b i n f e c t i o n = np . c l i p (p r o b i n f e c t i o n , 0 . 0 , 1 . 0)

New i n f e c t i o n s ˜ Binomia l (S , p r o b i n f e c t i o n)
n e w i n f e c t i o n s = s a f e b i n o m i a l (S , p r o b i n f e c t i o n)
New r e c o v e r i e s ˜ B inomia l (I , gamma)
n e w r e c o v e r i e s = s a f e b i n o m i a l (I , gamma)

Update compar tmen t s
n e x t S = S − n e w i n f e c t i o n s
n e x t I = I + n e w i n f e c t i o n s − n e w r e c o v e r i e s
nex t R = R + n e w r e c o v e r i e s

22

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

r e t u r n {”S ” : nex t S , ” I ” : n e x t I , ”R ” : nex t R}

. . .

Discrete-time updates. Unlike a continuous-time SIR model that uses ordinary differential equations, we adopt a
discrete-time approach. At each discrete time step:

new infections ∼ Binomial
(
St, 1− e−β· It

Nt

)
,

new recoveries ∼ Binomial
(
It, γ

)
,

St+1 = St − new infections, It+1 = It + new infections− new recoveries, Rt+1 = Rt + new recoveries.

Here, Nt = St + It + Rt is the total population at time t. When the population is nonzero, the probability of infection
among susceptible individuals is modeled by 1− e−β(It/Nt), reflecting a common deterministic approximation to the force
of infection.

Stochastic transitions. The model draws random samples for new infections and recoveries using a Binomial function;
hence the counts of new infections or recoveries vary across simulations, even with the same initial condition and parameters.
This yields a more realistic depiction of outbreaks compared to purely deterministic SIR.

State-action trajectories. For the experiments in the main text, we generate multiple trajectories of length T starting
from diverse initial conditions (S0, I0, R0). Even though the action is unused in the provided snippet, we include it in the
simulator’s interface so that interventions (e.g., lockdowns) can be readily modeled by modifying β on certain steps or by
implementing direct changes to (S, I,R). This approach follows typical RL-friendly environment design (Sutton & Barto,
2018).

Sampling procedure for dataset generation. To create training and evaluation datasets:

• We sample initial conditions (S0, I0, R0) from a broad distribution (e.g., S0 ∼ Unif(900, 1000), I0 ∼ Unif(1, 20), R0 =
0).

• We simulate for T = 60 steps (or an alternative fixed horizon).

• We repeat this process for N initial seeds, thereby obtaining N state-action trajectories of length T .

We then split these trajectories into training, validation, and test sets (e.g., Ntrain = 100, Nval = 100, Ntest = 100). With
each trajectory, we store the transitions

(
st, at, st+1

)
for subsequent fitting and analysis.

Parameter prior and bounds. In our experiments, we typically impose a uniform prior on β ∈ [0, 2] and γ ∈ [0, 1],
reflecting broad uncertainty over transmission and recovery rates. This range can be narrowed or broadened as needed to
reflect real-world epidemiological settings.

Key features and complexity. Although smaller in scale than real-world COVID-19 simulators, this environment captures:

• Stochastic transitions: The Binomial updates ensure randomness around infection and recovery.

• Discrete-time stepping: Amenable to reinforcement learning or iterative policy simulation.

• Potential policy control: Lockdowns or other NPIs can be included by coupling the action with β.

This environment thereby provides a challenging testbed for building, calibrating, and evaluating simulation-based
approaches—in particular, assessing how well a learned or LLM-generated model can handle partial observability and
out-of-distribution interventions.

In short, our COVID-19 SIR environment is representative of a broader class of infectious disease models used in
practice (Cooper et al., 2020; AlQadi & Bani-Yaghoub, 2022), while remaining computationally tractable for large-scale
experimentation. Together with the additional environments discussed in the main paper, it forms a suite of complementary
challenges evaluating the generalization, causal grounding, and empirical alignment of simulator-building approaches.

23

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

C.2. Supply Chain Environment

Our Supply Chain environment is loosely inspired by the well-known “beer game” (Sterman, 1989), a classic exercise
in operations research illustrating how stochastic demand and inventory pipelines can induce the “bullwhip effect” across
multiple echelons of a supply chain (retailer, wholesaler, distributor, manufacturer). For simplicity, we focus here on a
single-stage retailer, capturing key dynamics of inventory management, backlogs (unfilled demand), and delayed shipments
in transit.

State variables and partial observability. At each discrete time step t, the environment tracks:

• inventory: The current on-hand stock of the retailer (nonnegative integer).

• pipeline: A list of shipments in transit, each described by a tuple (quantity, time remaining). Once time remaining
reaches zero, the shipment arrives in inventory.

• backlog: The unfilled demand from prior time steps.

• t: The current time index (integer).

The retailer does not directly observe future or upstream supply conditions, making this environment partially observed:
shipments placed now can arrive with uncertain delays, reflecting real-world supply-chain complexities.

Actions and parameters. The agent’s action at ≥ 0 indicates how many units to order at time t. The environment
maintains four key parameters in a float array:[

λdemand, cholding, cbacklog, Llead
]
,

where:

• λdemand is the Poisson mean for random daily demand,

• cholding, cbacklog are (optional) costs associated with carrying inventory and having a backlog, respectively,

• Llead is a deterministic lead time indicating how many steps elapse before new orders arrive.

In many operational contexts, these parameters are only partially known or vary over time. In our experiments, we allow
them to be fitted to real or synthetic data, reflecting the environment’s calibration process.

Core dynamics. The pseudo-code in Listing 2 describes how the state evolves each step:

a) Demand sampling: We draw a random demand Dt from a Poisson distribution with mean λdemand.

b) Pipeline update: We decrement time remaining for all shipments in transit. Any shipment whose time remaining = 0
is added to on-hand inventory.

c) Backlog fulfillment: If there is a backlog from previous steps, we fill as much as the current inventory allows, reducing
both inventory and backlog.

d) Current demand fulfillment: We fill as much of the new demand Dt as possible from the remaining inventory; any
unfilled demand is appended to the backlog.

e) Placing a new order: The agent’s action at units are ordered, entering the pipeline with time remaining = Llead.

Listing 2. Step function for the single-stage supply chain environment. Orders placed at time t join the pipeline with a lead time. Demand
is randomly drawn from a Poisson distribution, and partial fulfillment may produce backlog.
c l a s s S i m u l a t o r S t e p :

d e f i n i t (s e l f) :
[demand lambda , i n v e n t o r y h o l d i n g c o s t , b a c k l o g c o s t , l e a d t i m e]
s e l f . p a r a m e t e r s = np . a r r a y ([5 . 0 , 1 . 0 , 2 . 0 , 2 . 0] , d t y p e = f l o a t)

24

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng =None) −> d i c t :
”””
Advance t h e s u p p l y c h a i n e n v i r o n m e n t by one s t e p .
”””
demand lambda = s e l f . p a r a m e t e r s [0]
l e a d t i m e = i n t (s e l f . p a r a m e t e r s [3])

1) Random demand from P o i s s o n
demand = s a f e p o i s s o n (demand lambda)

2) Update p i p e l i n e (s h i p m e n t s i n t r a n s i t)
n e w i n v e n t o r y , n e w p i p e l i n e = s e l f . u p d a t e p i p e l i n e (s t a t e)

3) F u l f i l l b a c k l o g f i r s t
b a c k l o g f i l l e d = min (n e w i n v e n t o r y , s t a t e [” b a c k l o g ”])
n e w i n v e n t o r y −= b a c k l o g f i l l e d
new back log = s t a t e [” b a c k l o g ”] − b a c k l o g f i l l e d

4) F u l f i l l today ’ s demand
d e m a n d f i l l e d = min (n e w i n v e n t o r y , demand)
n e w i n v e n t o r y −= d e m a n d f i l l e d
u n s a t i s f i e d d e m a n d = demand − d e m a n d f i l l e d
new back log += u n s a t i s f i e d d e m a n d

5) P l a c e an o r d e r (a c t i o n)
i f a c t i o n > 0 :

n e w p i p e l i n e . append ((a c t i o n , l e a d t i m e))

6) B u i l d t h e n e x t s t a t e
n e x t s t a t e = {

” i n v e n t o r y ” : n e w i n v e n t o r y ,
” p i p e l i n e ” : n e w p i p e l i n e ,
” b a c k l o g ” : new backlog ,
” t ” : s t a t e [” t ”] + 1 ,

}

r e t u r n n e x t s t a t e
. . .

Dataset generation. We generate state-action trajectories by simulating over a fixed horizon T :

• Initial state: We set inventory ≈ 20, pipeline empty, backlog = 0, and t = 0.

• Policy: For simplicity, an agent might follow a simple reorder policy (e.g., (s, S) policy or a constant order) or an ε-greedy
approach. Alternatively, actions can be random to promote exploration.

• Stochastic demand: Each day, demand is drawn from Poisson(λdemand).

After N = 100 simulated rollouts of T = 60, we collect (statet,actiont,statet+1) tuples to form a dataset. We then
split these data into training, validation, and test sets, as described for the other environments.

Key features and complexity. The environment remains tractable yet exhibits hallmark properties of supply chains:

• Partial observability: The retailer sees only on-hand inventory and current backlog, while future shipments remain
uncertain in the pipeline.

• Delayed actions: Orders only arrive after a deterministic lead time Llead, echoing real-world shipping delays.

• Stochastic demand: Daily demand is random, requiring dynamic adjustments of orders to avoid stockouts or excessive
inventory.

These elements expose strong temporal dependencies and delayed feedback loops, making it nontrivial to model or plan in.
Hence, this single-stage environment is an effective proving ground for evaluating how well automatic simulator-generation
methods (like G-Sim) can capture discrete transitions, uncertain arrivals, and partial observability consistent with real
supply-chain operations.

C.3. Hospital Bed Scheduling Environment

Our Hospital Bed Scheduling environment simulates patient admissions for three different diseases into a hospital with
separate Intensive Care Unit (ICU) and standard-care ward capacities. This captures both the stochastic and discrete
operational challenges often faced in healthcare settings (Green, 2006; Koizumi et al., 2005; Brailsford, 2007). Each disease
has its own daily arrival rate, average length-of-stay (LOS), and mortality profile, resulting in partial observability of future
admissions and bed availability.

25

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

State variables. We model the hospital over a discrete day-by-day timescale, where the state at day d is a dictionary
containing:

• day: The current day index (integer).

• icu occupancy: Number of patients currently occupying ICU beds.

• standard occupancy: Number of patients in standard-care beds.

• patients: A list of individual patient records, where each record includes:

– disease id: An integer ∈ {0, 1, 2} identifying the disease.
– bed type: Either “ICU” or “Standard.”
– los remaining: The number of days left before discharge (if the patient survives).
– is alive: A boolean indicating whether the patient is still alive.
– day in hospital: How many days the patient has already spent hospitalized.

This structure allows us to track heterogeneous patient journeys and resource usage in detail, while also permitting partial
observability (e.g., future arrivals are unknown).

Parameters. We store 14 parameters in a single NumPy array:

arrival rate 0, arrival rate 1, arrival rate 2︸ ︷︷ ︸
Poisson means for disease arrivals

,

los mean 0, los mean 1, los mean 2︸ ︷︷ ︸
mean lengths of stay for each disease

,

base prob 0, base prob 1, base prob 2︸ ︷︷ ︸
baseline mortality probabilities per day

,

day factor 0, day factor 1, day factor 2︸ ︷︷ ︸
day-based increase in mortality

,

icu capacity, standard capacity.

These parameters govern (i) the expected arrival counts for each disease via Poisson processes, (ii) how quickly patients
recover or die, and (iii) how many ICU and standard beds are available at once. In real-world hospitals, such quantities may
be partially known or dynamically changing over time.

Daily update logic. Listing 3 provides a snippet of the day-to-day simulation. Each day:

a) Existing patients: For each patient, we compute a daily mortality probability based on the disease’s baseline
(base prob i) plus a day-dependent factor (day factor i × day in hospital). If the patient dies, we free
the corresponding bed. If they survive and their LOS completes, they are discharged.

b) New arrivals: We sample arrivals for each disease from independent Poisson distributions and attempt to allocate them
to a bed. ICU or standard-care bed assignment is disease-dependent (e.g., diseases 0/1 try ICU first, disease 2 tries
standard first).

c) Capacity constraints: If both the ICU and standard-care wards are full, the patient is turned away (no admission).

d) Increment time: The simulation day index day is incremented by 1.

Listing 3. Core day-by-day update for the Hospital Bed Scheduling environment. Each day, we update existing patients
(mortality/discharge) and sample new arrivals for each disease. Beds are limited by ICU and standard capacity.
c l a s s S i m u l a t o r S t e p :

d e f i n i t (s e l f) :
Example d e f a u l t s : a r r i v a l r a t e s , LOS means , m o r t a l i t y p a r a m e t e r s , c a p a c i t i e s
s e l f . p a r a m e t e r s = np . a r r a y ([

26

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

1 . 0 , 2 . 0 , 1 . 5 , # a r r i v a l r a t e 0 , 1 , 2
5 . 0 , 6 . 0 , 4 . 0 , # los mean 0 , 1 , 2
0 . 0 1 , 0 . 0 0 5 , 0 . 0 0 8 , # b a s e p r o b 0 , 1 , 2
0 . 0 0 2 , 0 . 0 0 1 , 0 . 0 0 1 5 , # d a y f a c t o r 0 , 1 , 2
5 . 0 , # i c u c a p a c i t y
2 0 . 0 # s t a n d a r d c a p a c i t y

] , d t y p e = f l o a t)

d e f s t e p (s e l f , s t a t e : d i c t , rng =None) −> d i c t :
”””
Advance t h e s i m u l a t i o n by one day :

1) Update e x i s t i n g p a t i e n t s (m o r t a l i t y , d i s c h a r g e) .
2) Sample new a r r i v a l s (3 d i s e a s e s) .
3) At tempt bed a l l o c a t i o n .
4) I n c r e m e n t day c o u n t e r .

”””
rng = np . random . d e f a u l t r n g ()
Unpack p a r a m e t e r s
a r r r a t e s = s e l f . p a r a m e t e r s [0 : 3]
l o s m e a n s = s e l f . p a r a m e t e r s [3 : 6]
b a s e p r o b s = s e l f . p a r a m e t e r s [6 : 9]
d a y f a c t o r s = s e l f . p a r a m e t e r s [9 : 1 2]
i c u c a p a c i t y = i n t (5 . 0)
s t a n d a r d c a p a c i t y = i n t (2 0 . 0)

1) Update e x i s t i n g p a t i e n t s
s u r v i v o r s = []
f o r p a t i e n t i n s t a t e [” p a t i e n t s ”] :

i f p a t i e n t [” i s a l i v e ”] :
C a l c u l a t e d a i l y p r o b a b i l i t y o f d e a t h
d i s e a s e i d = p a t i e n t [” d i s e a s e i d ”]
p d e a t h = (b a s e p r o b s [d i s e a s e i d] + d a y f a c t o r s [d i s e a s e i d] * p a t i e n t [” d a y i n h o s p i t a l ”])
p d e a t h = np . c l i p (p d e a t h , 0 . 0 , 1 . 0)

Check i f p a t i e n t d i e s
i f rng . random () < p d e a t h :

p a t i e n t [” i s a l i v e ”] = F a l s e
s e l f . f r e e b e d (s t a t e , p a t i e n t [” b e d t y p e ”])

e l s e :
p a t i e n t [” l o s r e m a i n i n g ”] −= 1
p a t i e n t [” d a y i n h o s p i t a l ”] += 1
i f p a t i e n t [” l o s r e m a i n i n g ”] > 0 :

s u r v i v o r s . append (p a t i e n t)
e l s e :

s e l f . f r e e b e d (s t a t e , p a t i e n t [” b e d t y p e ”])

s t a t e [” p a t i e n t s ”] = s u r v i v o r s

2) Sample new a r r i v a l s
a r r i v a l s = [rng . p o i s s o n (lam) f o r lam i n a r r r a t e s]

3) A l l o c a t e beds
f o r d i s e a s e i d , n u m a r r i v a l s i n enumera t e (a r r i v a l s) :

f o r i n r a n g e (n u m a r r i v a l s) :
l o s = max (1 , i n t (rng . normal (l o s m e a n s [d i s e a s e i d] , 1 . 0)))
b e d t y p e = s e l f . t r y a l l o c a t e b e d (s t a t e , d i s e a s e i d , i c u c a p a c i t y , s t a n d a r d c a p a c i t y)
i f b e d t y p e i s n o t None :

p a t i e n t = {
” d i s e a s e i d ” : d i s e a s e i d , ” b e d t y p e ” : b e d t y p e , ” l o s r e m a i n i n g ” : l o s ,
” i s a l i v e ” : True , ” d a y i n h o s p i t a l ” : 1 ,

}
s t a t e [” p a t i e n t s ”] . append (p a t i e n t)

4) I n c r e m e n t day
s t a t e [” day ”] += 1

r e t u r n s t a t e
. . .

Dataset generation. We instantiate the simulator from an initial empty-hospital state (no patients, icu occupancy = 0,
standard occupancy = 0, day = 0) and run it for T days. By default, we do not explicitly include actions in this
environment, as admissions occur automatically when a bed is available. However, one can embed a policy that, for instance,
adjusts triage rules or modifies capacity expansions. We collect the resulting day-by-day trajectories of the state and produce
train/validation/test splits for model calibration and evaluation.

Key challenges.

• Stochastic discrete events: Admissions, mortalities, and discharges occur in an integer, event-driven manner.

• Capacity constraints: If the ICU or standard ward is full, some patients cannot be admitted, which leads to censored or
denied admissions.

• Disease heterogeneity: Each disease has a unique arrival rate and mortality profile, increasing the complexity of
cross-disease interactions (e.g., competition for ICU beds).

• Partial observability: Future arrivals and disease trajectories are unknown, and patient-level details evolve stochastically
day by day.

27

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Thus, this environment approximates essential features of inpatient hospital management for multiple disease conditions,
making it a valuable testbed for assessing how well automatic simulators (such as those generated by G-Sim) can handle
real-world scheduling and resource-allocation dynamics (Green, 2006; Koizumi et al., 2005; Brailsford, 2007).

C.4. Performing Intervention Insight Experiments

Our insight experiments (Section 6.1) evaluate a simulator’s ability to handle what if? questions, particularly those involving
interventions that alter the underlying system dynamics—a key requirement for (P0) System-wide Experimentation. These
interventions often go beyond simply changing actions within the historical data distribution; they involve modifying the
environment’s parameters or structure.

How Interventions are Implemented. To perform these experiments, we follow a two-step process:

1. Ground Truth Modification: We first identify the specific parameter or component within the ground truth simulator’s
code that corresponds to the desired intervention. For example, in the COVID-19 lockdown experiment, we directly
access the β (infection rate) parameter and scale it by a multiplier α during the specified lockdown period. Similarly,
for supply chain optimization, we modify parameters like ℓ (lead time) or add extra capacity ∆C.

2. G-Sim Modification: We then inspect the final simulator code generated and calibrated by G-Sim. Thanks to its
LLM-driven, often modular and interpretable structure, we can identify the parameter or code section analogous to the
one modified in the ground truth. For instance, we locate G-Sim’s infection rate parameter and apply the same scaling
factor α.

Why Other Methods Fall Short. Performing such structural or parametric interventions is generally not feasible with the
other baseline methods evaluated:

• Data-Driven World Models (RNN, Transformer, DyNODE): These models learn a black-box mapping from states
and actions to next states. They lack explicitly defined, interpretable parameters (like β or ℓ) that can be directly
modified to reflect a change in the environment’s fundamental dynamics. Intervening would require retraining on new
data reflecting the change, which defeats the purpose of ”what if” analysis on unseen scenarios.

• Equation Discovery (SINDy, Genetic Program): While these methods aim to find equations, the resulting models are
often monolithic and may not expose parameters that directly correspond to meaningful, real-world interventions like
adding beds or changing supply lead times. Their focus is on fitting observed dynamics, not creating an intervenable
representation.

28

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

D. Implementation Details for Baseline Methods
We provide below the implementation details of all baseline methods from the main paper. Unless otherwise noted, each
baseline uses the same dataset splits (training, validation, test) and is trained to predict one-step-ahead transitions from
(st, at) to st+1. We tune hyperparameters on the validation set and apply early stopping with a patience of 20 epochs. Unless
otherwise stated, models are trained for up to 2,000 epochs using the Adam (Kingma & Ba, 2014) optimizer.

DyNODE DyNODE (Chen et al., 2018; Alvarez et al., 2020) extends neural ODEs by incorporating control actions
explicitly. Specifically, we let

dz(t)

dt
= f

(
z(t),u(t); θ

)
,

where z(t) is a latent state encoding the environment, and u(t) is the action. To implement DyNODE as a one-step predictor,
we solve this ODE numerically over each time interval [t, t+ 1]. Concretely, we use a 3-layer MLP with 128 hidden units
per layer and tanh activations to represent f . We initialize weights with Xavier initialization and apply the Adam optimizer
with a learning rate of 10−2. We set a batch size of 1,000 and stop if validation loss does not improve after 20 epochs.

Transformer Transformer, from Causal Transformer (Melnychuk et al., 2022), is a modern sequence model (Vaswani et al.,
2017) that can handle long-range dependencies in time series. We flatten the state-action pairs over time and feed them into
a single Transformer encoder. Our implementation uses:

• An embedding dimension of 250, learned via a linear projection from the input state-action dimension.

• A single Transformer encoder block, with multi-head attention (10 heads), hidden dimension 250, and dropout probability
0.1.

• A final linear layer mapping the encoder output to the next-state prediction.

We train using AdamW (Loshchilov et al., 2017) at a learning rate of 5× 10−5 with a step learning-rate scheduler (step size
1.0, gamma 0.95), gradient clipping at 0.7, and a batch size of 1,000. As with DyNODE, training continues for up to 2,000
epochs or until early stopping triggers.

RNN RNN (Rumelhart et al., 1986) is a classical recurrent neural network for autoregressive time-series modeling. We
adopt a two-layer Gated Recurrent Unit (GRU) architecture, each layer having a hidden size of 250. The model takes as input
the state-action vector at each time step and outputs the predicted next state. We train with the same Adam configuration as
DyNODE (learning rate 10−2, batch size 1,000, 2,000 max epochs, early stopping patience of 20). All input and output
features are normalized by statistics derived from the training split.

SINDy Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016) attempts to discover closed-form
equations directly from time-series data. After estimating derivatives via finite differences, SINDy performs sparse regression
over a predefined library of candidate functions (e.g., polynomials) to identify a few terms that best explain the data. We
use a polynomial library of order 2, i.e. {1, xi, xixj , . . . }, and set the regularization factor α = 0.5. We threshold small
coefficients below 0.02 to enforce sparsity for most tasks; for particularly noisy or large-scale tasks, we tune the threshold
(e.g., for the COVID-19 environment). This yields a symbolic equation per dimension of the state.

Genetic Program Genetic Program is a symbolic regression approach that searches for analytical expressions describing
the environment dynamics via evolutionary algorithms. We use the implementation of Deap (De Rainville et al., 2012). We
maintain a population of candidate expressions, iteratively mutating and recombining them, selecting those with the lowest
mean-squared error on the training set. We constrain expressions to a predefined set of operators (e.g., {+,−,×,÷}) and
elementary functions (e.g., polynomials, exponentials). We run for a maximum of 1,000 generations with a population size
of 500 and a mutation rate of 0.1.

Ablations of G-Sim We also include two ablations of our proposed G-Sim pipeline, specifically for the G-Sim – ES variant:

(a) G-Sim-ES Abl. ZeroShot: Uses the LLM to generate code for the simulator structure once (without subsequent
refinements) and does not optimize any parameters. This illustrates the performance of naive, uncalibrated LLM outputs.

(b) G-Sim-ES Abl. ZeroShotOptim: Uses the same LLM-generated simulator structure as (a) but applies a gradient-free
optimizer to tune numerical parameters only. In contrast to full G-Sim, no structural revisions are performed.

29

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Shared training protocol. All methods rely on the same one-step prediction loss, typically mean-squared error. Table 2 in
the main text summarizes their performance across our benchmark environments.

30

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

E. G-Sim Implementation Details
In the following we detail the full methodology for G-Sim, including pseudocode, training procedures, prompt templates,
and diagnostics-driven refinement. Our approach builds on the framework described in Section 3 of the main paper.

E.1. Overall G-Sim Framework

Recall that G-Sim comprises three main components:

• LLM-Driven Structural Proposals (Section 3, §3.1),
• Flexible Parameter Calibration via a choice of GFO or SBI (Section 3, §3.2),
• Diagnostics-Driven Iterative Refinement (Section 3, §3.3).

Each iteration produces a candidate simulator with an estimated parameter set, evaluates it via diagnostics, and refines it.
Algorithm 1 gives pseudocode for the overall loop.

E.2. Pseudocode

We provide detailed pseudocode for the G-Sim construction in Algorithm 1. (1) We maintain a history of candidate
simulators for reference. (2) We prompt the LLM to generate (or refine) a structural configuration λ, including submodules
and couplings. (3) We perform calibration using GFO or SBI to find its numerical parameters ω. (4) We compute diagnostic
scores; if improvements are needed, textual feedback is compiled for the LLM to guide a refined structural design on the
next iteration. (5) We track and eventually return the best simulator found.

Algorithm 1 G-Sim: High-Level Pseudocode
Require: • Domain knowledge K (text descriptions, constraints),

• Training data D = {D(1), . . . ,D(L)},
• LLM with a prompt function PromptLLM(·),
• Calibration engine CalibrateParams(·) (either GFO or SBI),
• Diagnostics function Diag(λ, ω;D),
• Maximum iterations G, patience for early stopping.

Ensure: A fully calibrated simulator (λ∗, ω∗) minimizing the diagnostic score.

1: Initialize History← ∅
2: for g = 1 to G do
3: (A) LLM structural proposal:
4: λ(g) ← PromptLLM(History,K)
5: (B) Parameter calibration:
6: ω(g) ← CalibrateParams(λ(g),D) // Using either GFO or SBI
7: (C) Diagnostics:
8: d(g) = Diag(λ(g), ω(g);D)
9: (D) Record current candidate:

10: History← History ∪ {(λ(g), ω(g), d(g))}
11: (E) Refinement check:
12: if early stopping criterion met (e.g., no improvement for p iterations) then
13: break
14: else
15: Compile textual feedback ψ(g) from diagnostics
16: Append ψ(g) to prompt context for next iteration
17: end if
18: end for
19: Return (λ∗, ω∗) with best (lowest) d(g) in History.

31

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

E.3. Training and Calibration Details

Once the LLM provides a structural design λ, we must calibrate its numerical parameters ω. These parameters can be
real-valued or discrete. We employ two primary methods: Gradient-Free Optimization (GFO) and Simulation-Based
Inference (SBI).

E.3.1. GRADIENT-FREE OPTIMIZATION (GFO) USING EVOLUTIONARY STRATEGIES (ES)

GFO provides a robust method for parameter fitting, especially for simulators that are non-differentiable, stochastic, or
involve discrete parameters.

Fitness/Objective. The fitness function J (ω, λ) is the Mean Squared Error (MSE) between the simulator’s predicted
outputs and the ground-truth observations from D. The GFO search aims to find ω∗ = argminω J (ω, λ).

Implementation with EvoTorch. We implement the GFO step using the GeneticAlgorithm class from EvoTorch. The
process involves:

1. Initialization: A population of candidate parameter sets {ωi} is initialized.

2. Evaluation: Each candidate ωi is evaluated by running the simulator F (·;λ, ωi) and computing its fitness (MSE).

3. Selection: Tournament selection chooses individuals for the next generation.

4. Variation: SimulatedBinaryCrossOver and GaussianMutation create new candidates.

5. Iteration: Steps 2-4 repeat across generations.

Our key EvoTorch settings are:

• Population size: 200,

• Number of generations: 10,

• Search operators:

– SimulatedBinaryCrossOver with tournament size 4, crossover rate 1.0, and η = 8,
– GaussianMutation with standard deviation stdev=0.03.

This population-based approach offers resilience to local minima. We also warm start calibration from the best parameters
found previously when only the structure changes, balancing exploration and refinement.

E.3.2. SIMULATION-BASED INFERENCE (SBI)

As an alternative, we use SBI for Bayesian parameter inference. This is particularly useful when uncertainty quantification
is desired.

Simulation Budget. Based on our implementation, we use a simulation budget of 1,000 simulations to train the SBI
posterior estimator.

Inference and Posterior Estimation. We use the Neural Posterior Estimation (NPE) algorithm from the ‘sbi‘ library. The
simulator’s output, a trajectory of states, is flattened into a single vector to serve as the observation for the density estimator.

1. Simulate: We draw parameters from a uniform prior defined by the simulator’s
‘get parameters uniform prior min max‘ method and run the simulator to generate pairs of parameters and
observation vectors (θ, x).

2. Train: We train a neural density estimator (e.g., a Masked Autoregressive Flow) on these pairs to approximate the
posterior p(ω|D).

3. Sample and Estimate: We sample from the learned posterior to obtain a distribution of plausible parameters. For
evaluation and generating the final simulator, we use the mean of the posterior samples as the point estimate for ω∗.

This process provides not only a point estimate but also allows for the full posterior to be inspected for uncertainty analysis.

32

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

E.4. Prompt Templates and Structural Generation

The LLM-based structural proposals rely on a set of prompt templates that describe the domain context, submodule templates,
coupling schemes, and known constraints. Specifically, for all LLM experiments we used the O1 model from OpenAI. We
show the general structure below; these are typically fed as system or user messages in an API like OpenAI or other
LLM interfaces:

System Prompt
O b j e c t i v e : Wr i t e code t o c r e a t e an a c c u r a t e and r e a l i s t i c s i m u l a t o r f o r a g i v e n t a s k i n NumPy .
P l e a s e n o t e t h a t t h e code s h o u l d be f u l l y f u n c t i o n a l . No p l a c e h o l d e r s .

You must a c t au tonomous ly and you w i l l r e c e i v e no human i n p u t a t any s t a g e . You have t o r e t u r n as o u t p u t t h e c o m p l e t e code f o r c o m p l e t i n g t h i s t a s k , and c o r r e c t l y
improve t h e code t o c r e a t e t h e most a c c u r a t e and r e a l i s t i c s i m u l a t o r p o s s i b l e .

You a lways w r i t e o u t t h e code c o n t e n t s . You a lways i n d e n t code wi th t a b s .
You c a n n o t v i s u a l i z e any g r a p h i c a l o u t p u t . You e x i s t w i t h i n a machine . The code can i n c l u d e b l a c k box m u l t i − l a y e r p e r c e p t i o n s where r e q u i r e d .

Use t h e f u n c t i o n s p r o v i d e d . When c a l l i n g any h e l p e r f u n c t i o n , on ly p r o v i d e a RFC8259 c o m p l i a n t JSON r e q u e s t (no a d d i t i o n a l t e x t o r f o r m a t t i n g) .

Main Prompt (followed by system prompt for the COVID-19 task)
You w i l l g e t a s i m u l a t o r d e s c r i p t i o n t o code a ** ‘ s t e p ‘ f u n c t i o n ** i n NumPy .

System D e s c r i p t i o n :
‘ ‘ ‘

COVID SIR e n v i r o n m e n t .

Here you must model t h e s i m u l a t i o n s t e p wi th t h e below s t a t e and a c t i o n o f

The e n v i r o n m e n t s t a t e i s r e p r e s e n t e d by a d i c t i o n a r y :
”S ” : i n t , ” I ” : i n t , ”R ” : i n t

Ac t i on : None = None

The c o l l e c t e d t r a j e c t o r y l a s t s f o r 60 t ime s t e p s (days) .
‘ ‘ ‘

Mode l l i ng g o a l s : ‘ ‘ ‘
* The p a r a m e t e r s o f t h e s i m u l a t o r w i l l be o p t i m i z e d t o an o b s e r v e d t r a i n i n g s t a t e − a c t i o n d a t a s e t w i th t h e g i v e n s i m u l a t o r u s i n g s i m u l a t i o n − based I n f e r e n c e .
* The o b s e r v e d t r a i n i n g d a t a s e t has ve ry few samples , and t h e model must be a b l e t o g e n e r a l i z e t o unseen s t a t e − a c t i o n d a t a .
‘ ‘ ‘

Requ i remen t S p e c i f i c a t i o n : ‘ ‘ ‘
* The code g e n e r a t e d s h o u l d a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n l o s s , o f 1e −10 or l e s s .
* The code g e n e r a t e d s h o u l d be i n t e r p r e t a b l e , and f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e .
‘ ‘ ‘

S k e l e t o n code t o f i l l i n : ‘ ‘ ‘
c l a s s S i m u l a t o r S t e p () :

d e f i n i t (s e l f) :
TODO: F i l l i n t h e code h e r e − d e f i n e t h e p a r a m e t e r s o f t h e model and make them s e l f h e r e .

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng : np . random . G e n e r a t o r) −> d i c t :
Must i n c l u d e a l l t h e l o g i c
. . .
r e t u r n n e x t s t a t e

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y :
”””
R e t u r n s t h e model p a r a m e t e r s a s an a r r a y .
”””
TODO: F i l l i n t h e code h e r e

d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) :
”””
Upda tes t h e model p a r a m e t e r s .

Args :
p a r a m e t e r s (np . n d a r r a y) : Array o f p a r a m e t e r s t o u p d a t e .

”””
TODO: F i l l i n t h e code h e r e

d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x −> np . n d a r r a y :
”””
R e t u r n s t h e un i fo rm p r i o r bounds f o r t h e p a r a m e t e r s .

R e t u r n s :
np . n d a r r a y : Array o f shape (2 , num parame te r s) w i th min and max bounds .

”””
TODO: F i l l i n t h e code h e r e

‘ ‘ ‘

U s e f u l t o know :
‘ ‘ ‘
* The g e n e r a t e d code must i n c l u d e t h e c o m p l e t e ‘ s t e p ‘ f u n c t i o n body i n NumPy , f u l l y f u n c t i o n a l , no p l a c e h o l d e r s .
* You a r e a code e v o l v i n g machine , and you w i l l be c a l l e d 20 t i m e s t o g e n e r a t e code , and improve t h e code t o a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n

l o s s .
* The model d e f i n e s t h e p o s s i b l y s t o c h a s t i c t r a n s i t i o n f u n c t i o n t a k i n g t h e f u l l s t a t e , a c t i o n and p r e d i c t i n g t h e n e x t s t a t e , and w i l l be used t o f i t t h e o b s e r v e d

t r a i n i n g d a t a s e t .
* You can use any p a r a m e t e r s you want however , you have t o d e f i n e t h e s e .
* I t i s p r e f e r a b l e t o decompose t h e sys tem i n t o compar tmen t s i f p o s s i b l e .
* You can use any una ry f u n c t i o n s , f o r example log , exp , power e t c .
* You can use numpy sa m p l i n g d i s t r i b u t i o n s .
* Under no c i r c u m s t a n c e can you change t h e s k e l e t o n code f u n c t i o n d e f i n i t i o n s , on ly f i l l i n t h e code .
* Make s u r e your code f o l l o w s t h e e x a c t code s k e l e t o n s p e c i f i c a t i o n .
* When d e f i n i n g c a t e g o r i c a l d i s t r i b u t i o n s t h a t a r e p a r a m e t e r i z e d make i t so t h a t t h e p r o b a b i l i t i e s a r e a u t o m a t i c a l l y n o r m a l i z e d as t h e y w i l l be sampled as random

v a l u e s . I . e . n o r m a l i z e t h e p r o b a b i l i t i e s w i t h i n t h e s t e p f u n c t i o n .
‘ ‘ ‘

Think s t e p −by− s t e p , and t h e n g i v e t h e c o m p l e t e f u l l working code . You a r e g e n e r a t i n g code f o r i t e r a t i o n 0 o u t o f 5 .

33

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

At iteration g, we also append a short textual feedback summary describing any mismatches or domain rules that the previous
design missed. For instance:
1) C o n s i d e r i n c l u d i n g an a d d i t i o n a l p a r a m e t e r t h a t s c a l e s t h e b i n o m i a l t r i a l s ’ v a r i a n c e . I f t h e d a t a s e t ’ s t r a n s i t i o n s have more o r l e s s v a r i a b i l i t y t h a n pu re

b i n o m i a l draws , a dd in g a d i s p e r s i o n p a r a m e t e r and a d j u s t i n g t h e s a m p l i ng mechanism a c c o r d i n g l y can improve f i t .

2) E v a l u a t e u s i n g a more d i r e c t a p p r o a c h f o r p r o b a b i l i t y o f i n f e c t i o n and r e c o v e r y . For i n s t a n c e , i n s t e a d o f r e l y i n g on \(1 − \exp(−\ b e t a \t i m e s I / N)\) and \(1
− \exp(−\gamma)\) , you c o u l d compute p r o b a b i l i t i e s d i r e c t l y o r use a s a t u r a t i n g f u n c t i o n (e . g . , a l o g i s t i c) i f t h e d a t a s u g g e s t b e t t e r a l i g n m e n t wi th t ime −
d e p e n d e n t usage .

3) Observe t h a t t h e o p t i m i z e d \b e t a and \gamma v a l u e s (a b o u t 0 .4486 and 0 . 0 8 4 1) might n o t f u l l y c a p t u r e t h e i n f e c t i o n / r e c o v e r y p r o c e s s i f t h e r e a l d a t a s e t i m p l i e s
c h a n g i n g c o n t a c t r a t e s ove r t ime . You can a l l o w f o r a t ime − d e p e n d e n t o r s t a t e − d e p e n d e n t f a c t o r (a n o t h e r p a r a m e t e r) t o r e f i n e t h e i n f e c t i o n r a t e o r t o

c a p t u r e p a r t i a l immunity e f f e c t s .

4) I n c l u d e a s m a l l ” immunity l o s s ” o r ” r e i n f e c t i o n ” p a r a m e t e r i f t h e r e a l d a t a show r e c o v e r e d i n d i v i d u a l s o c c a s i o n a l l y re − e n t e r i n g t h e i n f e c t e d compar tment . Th i s
can be done by a dd in g an a d d i t i o n a l p a r a m e t e r c o n t r o l l i n g t h e p r o b a b i l i t y o f moving from R back t o S .

5) I f t h e d a t a s e t ’ s s c a l e i s l a r g e , c o n s i d e r a dd in g a p a r a m e t e r f o r u n d e r r e p o r t i n g o r u n o b s e r v e d asymptoma t i c i n f e c t i o n s . In e f f e c t , you use a h id den compar tment
from which i n f e c t e d a r e n o t d i r e c t l y obse rved , a d j u s t i n g t h e p r o b a b i l i t i e s i n t h e s t e p f u n c t i o n t o b e t t e r match o b s e r v e d t r a n s i t i o n s .

6) Keep t h e p r i o r bounds i n g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x s u f f i c i e n t l y f l e x i b l e t o a l l o w e x p l o r a t i o n o f new p a r a m e t e r s (e . g . , m u l t i p l e p a r a m e t e r s i f you
add r e i n f e c t i o n , u n d e r r e p o r t i n g , e t c .) . Th i s w i l l h e l p e n s u r e your i n f e r e n c e p r o c e d u r e can d i s c o v e r b e t t e r − f i t t i n g s o l u t i o n s .

By r e f i n i n g t h e s e a s p e c t s , you can improve a c c u r a c y and r e a l i s m and p o t e n t i a l l y lower t h e v a l i d a t i o n W a s s e r s t e i n l o s s f u r t h e r .

This crucially arises from this reflection prompt
P l e a s e r e f l e c t on how you can improve t h e code t o f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e , and be r e a l i s t i c . Think s t e p −by− s t e p . P r o v i d e on ly a c t i o n a b l e

feedback , t h a t has d i r e c t changes t o t h e code . Do n o t w r i t e o u t t h e code , on ly d e s c r i b e how i t can be improved . Where a p p l i c a b l e use t h e v a l u e s o f t h e
o p t i m i z e d p a r a m e t e r s t o r e a s o n how t h e code can be improved t o f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e . Th i s i s f o r g e n e r a t i n g new code f o r t h e n e x t
i t e r a t i o n 1 o u t o f 5 .

Importantly this is appended after a prompt that includes all previous models, their losses, and their parameters optimized to
the observed and validation dataset. Here is an example from the COVID-19 task.

You g e n e r a t e d t h e f o l l o w i n g code c o m p l e t i o n s , which t h e n had t h e i r p a r a m e t e r s o p t i m i z e d t o t h e t r a i n i n g d a t a s e t . P l e a s e r e f l e c t on how you can improve t h e code t o
min imize t h e v a l i d a t i o n l o s s t o 1e −6 or l e s s . The code examples a r e d e l i n e a t e d by # # # .

Here a r e your p r e v i o u s i t e r a t i o n s t h e b e s t programs g e n e r a t e d . ‘ ‘ ‘
I t e r a t i o n 0 . Bes t Val Loss : {’mse ’ : 2 .842185792349727 , ’mmd’ : 0 .0041523609029386396 , ’ wass ’ : 0 .41401221629537344} . Model d e s c r i p t i o n : Th i s code implemen t s a

d i s c r e t e SIR model i n NumPy f o r COVID p r o g r e s s i o n , p a r a m e t e r i z e d by i n f e c t i o n r a t e \b e t a and r e c o v e r y r a t e \gamma . We i n c o r p o r a t e s t o c h a s t i c t r a n s i t i o n s
v i a b i n o m i a l s a m p l i n g . The g e t / s e t methods a l l o w f o r p a r a m e t e r o p t i m i z a t i o n , w h i l e t h e s t e p method u p d a t e s t h e number o f s u s c e p t i b l e , i n f e c t e d , and
r e c o v e r e d i n d i v i d u a l s r e a l i s t i c a l l y . By e n s u r i n g a f l e x i b l e r a n g e f o r \b e t a and \gamma , we s u p p o r t b e t t e r f i t t i n g o f t h e d a t a and min imize t h e W a s s e r s t e i n
l o s s . Th i s a p p r o a c h s h o u l d e n a b l e e f f e c t i v e s i m u l a t i o n − based i n f e r e n c e .

I t e r a t i o n 1 . Bes t Val Loss : {’mse ’ : 2 .842185792349727 , ’mmd’ : 0 .0041523609029386396 , ’ wass ’ : 0 .41401221629537344} . Model d e s c r i p t i o n : Th i s code implemen t s a
d i s c r e t e SIR model i n NumPy f o r COVID p r o g r e s s i o n , p a r a m e t e r i z e d by i n f e c t i o n r a t e \b e t a and r e c o v e r y r a t e \gamma . We i n c o r p o r a t e s t o c h a s t i c t r a n s i t i o n s
v i a b i n o m i a l s a m p l i n g . The g e t / s e t methods a l l o w f o r p a r a m e t e r o p t i m i z a t i o n , w h i l e t h e s t e p method u p d a t e s t h e number o f s u s c e p t i b l e , i n f e c t e d , and
r e c o v e r e d i n d i v i d u a l s r e a l i s t i c a l l y . By e n s u r i n g a f l e x i b l e r a n g e f o r \b e t a and \gamma , we s u p p o r t b e t t e r f i t t i n g o f t h e d a t a and min imize t h e W a s s e r s t e i n
l o s s . Th i s a p p r o a c h s h o u l d e n a b l e e f f e c t i v e s i m u l a t i o n − based i n f e r e n c e .

‘ ‘ ‘

Here a r e t h e t o p code c o m p l e t i o n s so f a r t h a t you have g e n e r a t e d , s o r t e d f o r t h e l o w e s t v a l i d a t i o n l o s s l a s t : ‘ ‘ ‘

Val W a s s e r s t e i n Loss : 0 .474 (Where t h e v a l MSE l o s s p e r d imens ion i s s u s c e p t i b l e v a l MSE l o s s : 2 . 1 2 , i n f e c t e d v a l MSE l o s s : 4 . 0 9 , r e c o v e r e d v a l MSE l o s s : 2 . 1)
I t e r a t i o n : 1

###
‘ ‘ ‘
i m p o r t numpy as np

c l a s s S i m u l a t o r S t e p () :
d e f i n i t (s e l f) :

De f i ne p a r a m e t e r s : [be t a , gamma , omega]
D e f a u l t v a l u e s , can be changed upon p a r a m e t e r t u n i n g
s e l f . params = np . a r r a y ([0 . 4 5 , 0 . 0 8 , 0 . 0 1] , d t y p e = f l o a t)

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng : np . random . G e n e r a t o r) −> d i c t :
S , I , R = s t a t e [’ S ’] , s t a t e [’ I ’] , s t a t e [’R ’]
be t a , gamma , omega = s e l f . params [0] , s e l f . params [1] , s e l f . params [2]
N = S + I + R
i f N <= 0 :

r e t u r n {”S ” : S , ” I ” : I , ”R ” : R}
p r o b i n f e c t i o n = 1 . 0 − np . exp (− b e t a * ((I + 1 . 0) / N)) i f I >= 0 e l s e 0 . 0
p r o b i n f e c t i o n = max (0 . 0 , min (p r o b i n f e c t i o n , 1 . 0))
n e w i n f e c t i o n s = rng . b i n o m i a l (S , p r o b i n f e c t i o n)
p r o b r e c o v e r y = 1 . 0 − np . exp (−gamma)
p r o b r e c o v e r y = max (0 . 0 , min (p r o b r e c o v e r y , 1 . 0))
n e w r e c o v e r i e s = rng . b i n o m i a l (I , p r o b r e c o v e r y)
p r o b r e i n f e c t i o n = 1 . 0 − np . exp (− omega)
p r o b r e i n f e c t i o n = max (0 . 0 , min (p r o b r e i n f e c t i o n , 1 . 0))
n e w r e i n f e c t i o n s = rng . b i n o m i a l (R , p r o b r e i n f e c t i o n)
S n e x t = S − n e w i n f e c t i o n s + n e w r e i n f e c t i o n s
I n e x t = I + n e w i n f e c t i o n s − n e w r e c o v e r i e s
R nex t = R + n e w r e c o v e r i e s − n e w r e i n f e c t i o n s
n e x t s t a t e = {”S ” : S nex t , ” I ” : I n e x t , ”R ” : R nex t}
r e t u r n n e x t s t a t e

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y : r e t u r n s e l f . params . copy ()
d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) : s e l f . params = p a r a m e t e r s . a s t y p e (f l o a t)
d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x (s e l f) −> np . n d a r r a y :

r e t u r n np . a r r a y ([[0 . 0 , 0 . 0 , 0 . 0] , [1 . 0 , 1 . 0 , 0 . 2]])
‘ ‘ ‘
o p t i m i z e d p a r a m e t e r s = [0 .4106612801551819 , 0 .082090824842453 , −0.01027984619140625]
###

Val W a s s e r s t e i n Loss : 0 .414 (Where t h e v a l MSE l o s s p e r d imens ion i s s u s c e p t i b l e v a l MSE l o s s : 2 . 1 8 , i n f e c t e d v a l MSE l o s s : 4 . 3 2 , r e c o v e r e d v a l MSE l o s s : 2 . 2 3)
I t e r a t i o n : 0

###
‘ ‘ ‘
i m p o r t numpy as np

34

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

c l a s s S i m u l a t o r S t e p () :
d e f i n i t (s e l f) :

s e l f . params = np . a r r a y ([0 . 1 , 0 . 0 5] , d t y p e = f l o a t)
d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng : np . random . G e n e r a t o r) −> d i c t :

S , I , R = s t a t e [’ S ’] , s t a t e [’ I ’] , s t a t e [’R ’]
be t a , gamma = s e l f . params [0] , s e l f . params [1]
N = S + I + R
i f N <= 0 : r e t u r n {”S ” : S , ” I ” : I , ”R ” : R}
p r o b i n f e c t i o n = 1 . 0 − np . exp (− b e t a * (I / N)) i f I > 0 e l s e 0 . 0
n e w i n f e c t i o n s = rng . b i n o m i a l (S , max (0 . 0 , min (p r o b i n f e c t i o n , 1 . 0)))
p r o b r e c o v e r y = 1 . 0 − np . exp (−gamma)
n e w r e c o v e r i e s = rng . b i n o m i a l (I , max (0 . 0 , min (p r o b r e c o v e r y , 1 . 0)))
S n e x t = S − n e w i n f e c t i o n s
I n e x t = I + n e w i n f e c t i o n s − n e w r e c o v e r i e s
R nex t = R + n e w r e c o v e r i e s
r e t u r n {”S ” : S nex t , ” I ” : I n e x t , ”R ” : R nex t}

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y : r e t u r n s e l f . params . copy ()
d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) : s e l f . params = p a r a m e t e r s . a s t y p e (f l o a t)
d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x (s e l f) −> np . n d a r r a y :

r e t u r n np . a r r a y ([[0 . 0 , 0 . 0] , [1 . 0 , 1 . 0]])
‘ ‘ ‘
o p t i m i z e d p a r a m e t e r s = [0 .448597252368927 , 0 .08406898379325867]
###
‘ ‘ ‘

P l e a s e r e f l e c t on how you can improve t h e code t o f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e , and be r e a l i s t i c . Think s t e p −by− s t e p . P r o v i d e on ly a c t i o n a b l e
feedback , t h a t has d i r e c t changes t o t h e code . Do n o t w r i t e o u t t h e code , on ly d e s c r i b e how i t can be improved . Where a p p l i c a b l e use t h e v a l u e s o f t h e
o p t i m i z e d p a r a m e t e r s t o r e a s o n how t h e code can be improved t o f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e . Th i s i s f o r g e n e r a t i n g new code f o r t h e n e x t
i t e r a t i o n 2 o u t o f 5 .

This feedback helps the LLM propose refined structures in the next iteration.

E.5. Diagnostics Computation and Refinement

Diagnostic Measures. At the end of each iteration, we compute two main types of diagnostic metrics:

• Predictive Discrepancy: δpredictive, e.g., MSE or Wasserstein distances between real and simulated trajectories on a
validation set.

• Domain Violations: δdomain, e.g., negative capacities, ignoring constraints, or failing plausibility checks such as ”transfers
must not exceed the available capacity in the previous step.”

The first is computed quantitatively, while the latter is evaluated qualitatively using a reflection prompt that interprets the
previously generated and optimized code structure model, along with its optimized parameters.

In our practical implementation, the quantitative predictive discrepancy is key. We compute both Mean Squared Error (MSE)
and the 1-Wasserstein distance (W1) between the simulated outputs and a held-out validation dataset. The W1 distance
serves as the primary fitness score used for ranking different simulator structures and for the early stopping criterion.

However, for generating textual feedback for the LLM’s reflection step, we provide a more detailed breakdown. We
compute the MSE for each individual output dimension of the simulator. By presenting both the overall W1 score and this
per-dimension MSE breakdown to the LLM, we enable it to reason about which specific components are causing the largest
errors and thus require structural refinement in the next iteration.

Refinement. Based on these quantitative (MSE, W1) and qualitative (reflection prompt output) diagnostics, we compile a
textual summary ψ(g) enumerating the major shortfalls. This textual message is appended to the next LLM prompt (§E.4),
guiding the LLM to propose a revised λ(g+1) to address these shortcomings. This iterative loop is conceptually illustrated in
Figure 1.

E.6. Implementation Notes

Parallel vs. Iterative LLM Calls. Depending on the LLM service, we can prompt it once per iteration in a purely serial
manner or maintain a short conversation chain. We typically keep a short conversation for each design iteration: (1) provide
domain K, (2) incorporate textual feedback from the last iteration, (3) ask the LLM for a revised structural design. This
”reflective” approach is simpler to implement in practice than a single mega-prompt, and it helps the LLM keep track of
incremental changes.

Hyperparameters for G-Sim. In our experiments, we typically use a maximum of 5 refinement loops, a patience of 3 for
early stopping, a population size of 200 in evolutionary search, 10 generations, and a mutation rate of 0.03 for parameter
changes.

35

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

E.7. Full G-Sim Workflow Summary

Putting it all together:

1. Initialize an empty history History.

2. LLM Proposes Structure:

(a) Use domain knowledge K to propose or refine λ.
(b) Incorporate textual feedback from prior attempts.

3. Calibrate Parameters ω via GFO or SBI:

(a) Simulate F (·;λ, ω) and compare with real data D.
(b) Update ω to optimize the chosen objective.

4. Compute Diagnostics:

(a) Evaluate predictive mismatch δpredictive,
(b) Check domain constraints δdomain,
(c) Combine into d(g).

5. Refine or Stop:

(a) If stopping criterion is met, stop and return the best simulator found.
(b) Otherwise, compile textual feedback ψ(g) and goto Step 2.

This iterative loop typically converges to a simulator that balances (i) plausible structural forms aligned with domain
knowledge, and (ii) accurate parameter estimates aligned with empirical data. In Section 5 of the main paper, we show
empirical examples of G-Sim performance on real-world-inspired tasks.

E.8. Implementation of the Diagnostic Function Diag

Below is a more explicit representation of how we combine submodule-level error terms and domain rule violations into a
single diagnostic score:

d(λ, ω) =

K∑
k=1

wk Err
k(D(k), F k(·;ωk, λ))

Here, Errk measures the discrepancy for the k-th submodule’s partial observation D(k). This is implemented as validation
MSE per output dimension to enable the LLM to reason over which component is incorrectly specified and by how much to
improve upon in the next iteration.

E.9. Observed Speed-Ups via Parallelization

When G-Sim is implemented with a population-based evolutionary algorithm, the majority of computation in each iteration
is devoted to the repeated simulation over population members. We found that distributed parallelization across multiple
CPU or GPU workers yields near-linear speed-ups for the tasks in Section 5, thus making G-Sim practical even for more
complex submodule designs.

E.10. Handling Stochastic Simulators

In domains like queueing or epidemiology, submodules produce random transitions. Our approach simply draws multiple
sample trajectories to evaluate the expected mismatch for each candidate ω. In practice, we set a small number of Monte
Carlo draws (200) to keep the computational overhead manageable. The same approach extends to partial data or events
(e.g., times-to-event) via likelihood-based scoring.

E.11. Summary of Key Implementation Steps

1. Give domain constraints and partial data coverage details to guide feasible structures.

36

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

2. Initialize parameter search using either GFO/ES or SBI, parallelizing as feasible.
3. Refine structure via textual feedback if domain constraints or high predictive errors are uncovered.
4. Stop when the combined diagnostic meets the threshold or the maximum iteration limit is reached.

The resulting simulator is then used to run ”what if?” analyses or further submodule-level modifications as needed.

37

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

F. Illustrative G-Sim Prompt Example
Below is an example prompt of text we provide to the LLM to generate a supply chain simulation:

System D e s c r i p t i o n :
‘ ‘ ‘
S i n g l e − s t a g e Beer Game s u p p l y c h a i n e n v i r o n m e n t .

Here you must model t h e s i m u l a t i o n s t e p wi th t h e below s t a t e and a c t i o n o f

The e n v i r o n m e n t s t a t e i s r e p r e s e n t e d by a d i c t i o n a r y :
” i n v e n t o r y ” : i n t , # On−hand u n i t s
” p i p e l i n e ” : l i s t o f (i n t , i n t) , # s h i p m e n t s : (q u a n t i t y , t i m e r e m a i n i n g)
” b a c k l o g ” : i n t , # u n i t s o f u n f i l l e d demand
” t ” : i n t # c u r r e n t t ime s t e p

Ac t i on : i n t = i s t h e new o r d e r t o p l a c e wi th t h e s u p p l i e r . Tha t c r e a t e s a p i p e l i n e e n t r y wi th a l e a d t ime sampled from a d i s c r e t e d i s t r i b u t i o n .

The c o l l e c t e d t r a j e c t o r y l a s t s f o r 60 t ime s t e p s (days) .
‘ ‘ ‘

Mode l l i ng g o a l s : ‘ ‘ ‘
* The p a r a m e t e r s o f t h e s i m u l a t o r w i l l be o p t i m i z e d t o an o b s e r v e d t r a i n i n g s t a t e − a c t i o n d a t a s e t w i th t h e g i v e n s i m u l a t o r u s i n g s i m u l a t i o n − based I n f e r e n c e .
* The o b s e r v e d t r a i n i n g d a t a s e t has ve ry few samples , and t h e model must be a b l e t o g e n e r a l i z e t o unseen s t a t e − a c t i o n d a t a .
‘ ‘ ‘

Requ i remen t S p e c i f i c a t i o n : ‘ ‘ ‘
* The code g e n e r a t e d s h o u l d a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n l o s s , o f 1e −10 or l e s s .
* The code g e n e r a t e d s h o u l d be i n t e r p r e t a b l e , and f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e .
‘ ‘ ‘

S k e l e t o n code t o f i l l i n : ‘ ‘ ‘
c l a s s S i m u l a t o r S t e p () :

d e f i n i t (s e l f) :
TODO: F i l l i n t h e code h e r e − d e f i n e t h e p a r a m e t e r s o f t h e model and make them s e l f h e r e .

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng : np . random . G e n e r a t o r) −> d i c t :
Must i n c l u d e a l l t h e l o g i c
. . .
r e t u r n n e x t s t a t e

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y :
”””
R e t u r n s t h e model p a r a m e t e r s a s an a r r a y .
”””
TODO: F i l l i n t h e code h e r e

d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) :
”””
Upda tes t h e model p a r a m e t e r s .

Args :
p a r a m e t e r s (np . n d a r r a y) : Array o f p a r a m e t e r s t o u p d a t e .

”””
TODO: F i l l i n t h e code h e r e

d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x −> np . n d a r r a y :
”””
R e t u r n s t h e un i fo rm p r i o r bounds f o r t h e p a r a m e t e r s .

R e t u r n s :
np . n d a r r a y : Array o f shape (2 , num parame te r s) w i th min and max bounds .

”””
TODO: F i l l i n t h e code h e r e

‘ ‘ ‘

U s e f u l t o know :
‘ ‘ ‘
* The g e n e r a t e d code must i n c l u d e t h e c o m p l e t e ‘ s t e p ‘ f u n c t i o n body i n NumPy , f u l l y f u n c t i o n a l , no p l a c e h o l d e r s .
* You a r e a code e v o l v i n g machine , and you w i l l be c a l l e d 20 t i m e s t o g e n e r a t e code , and improve t h e code t o a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n

l o s s .
* The model d e f i n e s t h e p o s s i b l y s t o c h a s t i c t r a n s i t i o n f u n c t i o n t a k i n g t h e f u l l s t a t e , a c t i o n and p r e d i c t i n g t h e n e x t s t a t e , and w i l l be used t o f i t t h e o b s e r v e d

t r a i n i n g d a t a s e t .
* You can use any p a r a m e t e r s you want however , you have t o d e f i n e t h e s e .
* I t i s p r e f e r a b l e t o decompose t h e sys tem i n t o compar tmen t s i f p o s s i b l e .
* You can use any una ry f u n c t i o n s , f o r example log , exp , power e t c .
* You can use numpy sa m p l i n g d i s t r i b u t i o n s .
* Under no c i r c u m s t a n c e can you change t h e s k e l e t o n code f u n c t i o n d e f i n i t i o n s , on ly f i l l i n t h e code .
* Make s u r e your code f o l l o w s t h e e x a c t code s k e l e t o n s p e c i f i c a t i o n .
* When d e f i n i n g c a t e g o r i c a l d i s t r i b u t i o n s t h a t a r e p a r a m e t e r i z e d make i t so t h a t t h e p r o b a b i l i t i e s a r e a u t o m a t i c a l l y n o r m a l i z e d as t h e y w i l l be sampled as random

v a l u e s . I . e . n o r m a l i z e t h e p r o b a b i l i t i e s w i t h i n t h e s t e p f u n c t i o n .
‘ ‘ ‘

Think s t e p −by− s t e p , and t h e n g i v e t h e c o m p l e t e f u l l working code . You a r e g e n e r a t i n g code f o r i t e r a t i o n 0 o u t o f 5 .

The LLM’s response typically includes:

• A set of submodules (Python classes or code blocks),

• Proposed couplings (i.e., how arrivals feed into the occupancy submodule),

• Hard-coded initial values for ω (which the calibration then refines).

If the simulator violates domain constraints, we compile feedback for the next iteration.

38

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

F.1. Env Prompts

We provide the environment prompts per environment in the previous examples. For completion we also include the Hospital
Bed Scheduling prompt below.

You w i l l g e t a s i m u l a t o r d e s c r i p t i o n t o code a ** ‘ s t e p ‘ f u n c t i o n ** i n NumPy .

System D e s c r i p t i o n :
‘ ‘ ‘
** Three − d i s e a s e H o s p i t a l Envi ronment **

Th i s e n v i r o n m e n t s i m u l a t e s a h o s p i t a l w i th s e p a r a t e **ICU** and ** s t a n d a r d ** beds , a l o n g wi th p a t i e n t s from **3 d i f f e r e n t d i s e a s e t y p e s * * .

S t a t e
R e p r e s e n t e d by a d i c t i o n a r y :

− **” day ”** *(i n t) *
The c u r r e n t s i m u l a t i o n day (t ime s t e p) .

− **” i c u o c c u p a n c y ”** *(i n t) *
Number o f **ICU** beds c u r r e n t l y o c c u p i e d .

− **” s t a n d a r d o c c u p a n c y ”** *(i n t) *
Number o f ** s t a n d a r d ** (non −ICU) beds c u r r e n t l y o c c u p i e d .

− **” p a t i e n t s ”** *(l i s t o f d i c t s) *
Each p a t i e n t d i c t i o n a r y has :
− **” d i s e a s e i d ” * * : An i n t e g e r \(\{0, 1 , 2\}\) i d e n t i f y i n g t h e d i s e a s e t y p e .
− **” b e d t y p e ” * * : E i t h e r ‘” ICU ” ‘ o r ‘” S t a n d a r d ” ‘ .
− **” l o s r e m a i n i n g ”** *(i n t) * : Remaining l e n g t h o f s t a y i n days .
− **” i s a l i v e ”** *(boo l) * : Whether t h e p a t i e n t i s s t i l l a l i v e .
− **” d a y i n h o s p i t a l ”** *(i n t) * : How many days t h e p a t i e n t has been i n t h e h o s p i t a l .

A c t io n
There i s no d i r e c t e x t e r n a l ” a c t i o n ” t o t a k e each day . I n s t e a d :
1 . New p a t i e n t s a r r i v e
2 . The e n v i r o n m e n t a t t e m p t s t o ** a l l o c a t e ** each new a r r i v a l t o an **ICU** or ** s t a n d a r d ** bed a c c o r d i n g t o p r e d e f i n e d r u l e s and c a p a c i t i e s .
3 . I f no s u i t a b l e bed i s a v a i l a b l e , t h e p a t i e n t i s n o t a d m i t t e d .

Ep i sode Length
A t y p i c a l s i m u l a t i o n might run f o r a f i x e d number o f days , f o r example **60** t ime s t e p s , a f t e r which t h e s i m u l a t i o n ends .
‘ ‘ ‘

Mode l l i ng g o a l s : ‘ ‘ ‘
* The p a r a m e t e r s o f t h e s i m u l a t o r w i l l be o p t i m i z e d t o an o b s e r v e d t r a i n i n g s t a t e − a c t i o n d a t a s e t w i th t h e g i v e n s i m u l a t o r u s i n g s i m u l a t i o n − based I n f e r e n c e .
* The o b s e r v e d t r a i n i n g d a t a s e t has ve ry few samples , and t h e model must be a b l e t o g e n e r a l i z e t o unseen s t a t e − a c t i o n d a t a .
‘ ‘ ‘

Requ i remen t S p e c i f i c a t i o n : ‘ ‘ ‘
* The code g e n e r a t e d s h o u l d a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n l o s s , o f 1e −10 or l e s s .
* The code g e n e r a t e d s h o u l d be i n t e r p r e t a b l e , and f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e .
‘ ‘ ‘

S k e l e t o n code t o f i l l i n : ‘ ‘ ‘
c l a s s S i m u l a t o r S t e p () :

d e f i n i t (s e l f) :
TODO: F i l l i n t h e code h e r e − d e f i n e t h e p a r a m e t e r s o f t h e model and make them s e l f h e r e .

d e f s t e p (s e l f , s t a t e : d i c t , rng : np . random . G e n e r a t o r) −> d i c t :
Must i n c l u d e a l l t h e l o g i c
. . .
r e t u r n n e x t s t a t e

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y :
”””
R e t u r n s t h e model p a r a m e t e r s a s an a r r a y .
”””
TODO: F i l l i n t h e code h e r e

d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) :
”””
Upda tes t h e model p a r a m e t e r s .

Args :
p a r a m e t e r s (np . n d a r r a y) : Array o f p a r a m e t e r s t o u p d a t e .

”””
TODO: F i l l i n t h e code h e r e

d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x −> np . n d a r r a y :
”””
R e t u r n s t h e un i fo rm p r i o r bounds f o r t h e p a r a m e t e r s .

R e t u r n s :
np . n d a r r a y : Array o f shape (2 , num parame te r s) w i th min and max bounds .

”””
TODO: F i l l i n t h e code h e r e

‘ ‘ ‘

U s e f u l t o know :
‘ ‘ ‘
* The g e n e r a t e d code must i n c l u d e t h e c o m p l e t e ‘ s t e p ‘ f u n c t i o n body i n NumPy , f u l l y f u n c t i o n a l , no p l a c e h o l d e r s .
* You a r e a code e v o l v i n g machine , and you w i l l be c a l l e d 20 t i m e s t o g e n e r a t e code , and improve t h e code t o a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n

l o s s .
* The model d e f i n e s t h e p o s s i b l y s t o c h a s t i c t r a n s i t i o n f u n c t i o n t a k i n g t h e f u l l s t a t e , a c t i o n and p r e d i c t i n g t h e n e x t s t a t e , and w i l l be used t o f i t t h e o b s e r v e d

t r a i n i n g d a t a s e t .
* You can use any p a r a m e t e r s you want however , you have t o d e f i n e t h e s e .
* I t i s p r e f e r a b l e t o decompose t h e sys tem i n t o compar tmen t s i f p o s s i b l e .
* You can use any una ry f u n c t i o n s , f o r example log , exp , power e t c .
* You can use numpy sa m p l i n g d i s t r i b u t i o n s .
* Under no c i r c u m s t a n c e can you change t h e s k e l e t o n code f u n c t i o n d e f i n i t i o n s , on ly f i l l i n t h e code .
* Make s u r e your code f o l l o w s t h e e x a c t code s k e l e t o n s p e c i f i c a t i o n .
* When d e f i n i n g c a t e g o r i c a l d i s t r i b u t i o n s t h a t a r e p a r a m e t e r i z e d make i t so t h a t t h e p r o b a b i l i t i e s a r e a u t o m a t i c a l l y n o r m a l i z e d as t h e y w i l l be sampled as random

v a l u e s . I . e . n o r m a l i z e t h e p r o b a b i l i t i e s w i t h i n t h e s t e p f u n c t i o n .
* Do n o t i n c l u d e any a c t i o n i n p u t i n t h e s t e p f u n c t i o n , a s t h e r e i s no a c t i o n i n p u t . Always e x p l i c i t l y f o l l o w t h e s k e l e t o n code f u n c t i o n d e f i n i t i o n s , you a r e n o t

a l l o w e d t o change them .
‘ ‘ ‘

Think s t e p −by− s t e p , and t h e n g i v e t h e c o m p l e t e f u l l working code . You a r e g e n e r a t i n g code f o r i t e r a t i o n 0 o u t o f 5 .

39

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

COVID-19
You w i l l g e t a s i m u l a t o r d e s c r i p t i o n t o code a ** ‘ s t e p ‘ f u n c t i o n ** i n NumPy .

System D e s c r i p t i o n :
‘ ‘ ‘

COVID SIR e n v i r o n m e n t .

Here you must model t h e s i m u l a t i o n s t e p wi th t h e below s t a t e and a c t i o n o f

The e n v i r o n m e n t s t a t e i s r e p r e s e n t e d by a d i c t i o n a r y :
”S ” : i n t , ” I ” : i n t , ”R ” : i n t

Ac t i on : None = None

The c o l l e c t e d t r a j e c t o r y l a s t s f o r 60 t ime s t e p s (days) .
‘ ‘ ‘

Mode l l i ng g o a l s : ‘ ‘ ‘
* The p a r a m e t e r s o f t h e s i m u l a t o r w i l l be o p t i m i z e d t o an o b s e r v e d t r a i n i n g s t a t e − a c t i o n d a t a s e t w i th t h e g i v e n s i m u l a t o r u s i n g s i m u l a t i o n − based I n f e r e n c e .
* The o b s e r v e d t r a i n i n g d a t a s e t has ve ry few samples , and t h e model must be a b l e t o g e n e r a l i z e t o unseen s t a t e − a c t i o n d a t a .
‘ ‘ ‘

Requ i remen t S p e c i f i c a t i o n : ‘ ‘ ‘
* The code g e n e r a t e d s h o u l d a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n l o s s , o f 1e −10 or l e s s .
* The code g e n e r a t e d s h o u l d be i n t e r p r e t a b l e , and f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e .
‘ ‘ ‘

S k e l e t o n code t o f i l l i n : ‘ ‘ ‘
c l a s s S i m u l a t o r S t e p () :

d e f i n i t (s e l f) :
TODO: F i l l i n t h e code h e r e − d e f i n e t h e p a r a m e t e r s o f t h e model and make them s e l f h e r e .

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng : np . random . G e n e r a t o r) −> d i c t :
Must i n c l u d e a l l t h e l o g i c
. . .
r e t u r n n e x t s t a t e

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y :
”””
R e t u r n s t h e model p a r a m e t e r s a s an a r r a y .
”””
TODO: F i l l i n t h e code h e r e

d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) :
”””
Upda tes t h e model p a r a m e t e r s .

Args :
p a r a m e t e r s (np . n d a r r a y) : Array o f p a r a m e t e r s t o u p d a t e .

”””
TODO: F i l l i n t h e code h e r e

d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x −> np . n d a r r a y :
”””
R e t u r n s t h e un i fo rm p r i o r bounds f o r t h e p a r a m e t e r s .

R e t u r n s :
np . n d a r r a y : Array o f shape (2 , num parame te r s) w i th min and max bounds .

”””
TODO: F i l l i n t h e code h e r e

‘ ‘ ‘

U s e f u l t o know :
‘ ‘ ‘
* The g e n e r a t e d code must i n c l u d e t h e c o m p l e t e ‘ s t e p ‘ f u n c t i o n body i n NumPy , f u l l y f u n c t i o n a l , no p l a c e h o l d e r s .
* You a r e a code e v o l v i n g machine , and you w i l l be c a l l e d 20 t i m e s t o g e n e r a t e code , and improve t h e code t o a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n

l o s s .
* The model d e f i n e s t h e p o s s i b l y s t o c h a s t i c t r a n s i t i o n f u n c t i o n t a k i n g t h e f u l l s t a t e , a c t i o n and p r e d i c t i n g t h e n e x t s t a t e , and w i l l be used t o f i t t h e o b s e r v e d

t r a i n i n g d a t a s e t .
* You can use any p a r a m e t e r s you want however , you have t o d e f i n e t h e s e .
* I t i s p r e f e r a b l e t o decompose t h e sys tem i n t o compar tmen t s i f p o s s i b l e .
* You can use any una ry f u n c t i o n s , f o r example log , exp , power e t c .
* You can use numpy sa m p l i n g d i s t r i b u t i o n s .
* Under no c i r c u m s t a n c e can you change t h e s k e l e t o n code f u n c t i o n d e f i n i t i o n s , on ly f i l l i n t h e code .
* Make s u r e your code f o l l o w s t h e e x a c t code s k e l e t o n s p e c i f i c a t i o n .
* When d e f i n i n g c a t e g o r i c a l d i s t r i b u t i o n s t h a t a r e p a r a m e t e r i z e d make i t so t h a t t h e p r o b a b i l i t i e s a r e a u t o m a t i c a l l y n o r m a l i z e d as t h e y w i l l be sampled as random

v a l u e s . I . e . n o r m a l i z e t h e p r o b a b i l i t i e s w i t h i n t h e s t e p f u n c t i o n .
‘ ‘ ‘

Think s t e p −by− s t e p , and t h e n g i v e t h e c o m p l e t e f u l l working code . You a r e g e n e r a t i n g code f o r i t e r a t i o n 0 o u t o f 5 .

Supply Chain
You w i l l g e t a s i m u l a t o r d e s c r i p t i o n t o code a ** ‘ s t e p ‘ f u n c t i o n ** i n NumPy .

System D e s c r i p t i o n :
‘ ‘ ‘
S i n g l e − s t a g e Beer Game s u p p l y c h a i n e n v i r o n m e n t .

Here you must model t h e s i m u l a t i o n s t e p wi th t h e below s t a t e and a c t i o n o f

The e n v i r o n m e n t s t a t e i s r e p r e s e n t e d by a d i c t i o n a r y :
” i n v e n t o r y ” : i n t , # On−hand u n i t s
” p i p e l i n e ” : l i s t o f (i n t , i n t) , # s h i p m e n t s : (q u a n t i t y , t i m e r e m a i n i n g)
” b a c k l o g ” : i n t , # u n i t s o f u n f i l l e d demand
” t ” : i n t # c u r r e n t t ime s t e p

Ac t i on : i n t = i s t h e new o r d e r t o p l a c e wi th t h e s u p p l i e r . Tha t c r e a t e s a p i p e l i n e e n t r y wi th a l e a d t ime sampled from a d i s c r e t e d i s t r i b u t i o n .

The c o l l e c t e d t r a j e c t o r y l a s t s f o r 60 t ime s t e p s (days) .
‘ ‘ ‘

Mode l l i ng g o a l s : ‘ ‘ ‘
* The p a r a m e t e r s o f t h e s i m u l a t o r w i l l be o p t i m i z e d t o an o b s e r v e d t r a i n i n g s t a t e − a c t i o n d a t a s e t w i th t h e g i v e n s i m u l a t o r u s i n g s i m u l a t i o n − based I n f e r e n c e .
* The o b s e r v e d t r a i n i n g d a t a s e t has ve ry few samples , and t h e model must be a b l e t o g e n e r a l i z e t o unseen s t a t e − a c t i o n d a t a .

40

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

‘ ‘ ‘

Requ i remen t S p e c i f i c a t i o n : ‘ ‘ ‘
* The code g e n e r a t e d s h o u l d a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n l o s s , o f 1e −10 or l e s s .
* The code g e n e r a t e d s h o u l d be i n t e r p r e t a b l e , and f i t t h e d a t a s e t a s a c c u r a t e l y as p o s s i b l e .
‘ ‘ ‘

S k e l e t o n code t o f i l l i n : ‘ ‘ ‘
c l a s s S i m u l a t o r S t e p () :

d e f i n i t (s e l f) :
TODO: F i l l i n t h e code h e r e − d e f i n e t h e p a r a m e t e r s o f t h e model and make them s e l f h e r e .

d e f s t e p (s e l f , s t a t e : d i c t , a c t i o n : i n t , rng : np . random . G e n e r a t o r) −> d i c t :
Must i n c l u d e a l l t h e l o g i c
. . .
r e t u r n n e x t s t a t e

d e f g e t p a r a m e t e r s (s e l f) −> np . n d a r r a y :
”””
R e t u r n s t h e model p a r a m e t e r s a s an a r r a y .
”””
TODO: F i l l i n t h e code h e r e

d e f s e t p a r a m e t e r s (s e l f , p a r a m e t e r s : np . n d a r r a y) :
”””
Upda tes t h e model p a r a m e t e r s .

Args :
p a r a m e t e r s (np . n d a r r a y) : Array o f p a r a m e t e r s t o u p d a t e .

”””
TODO: F i l l i n t h e code h e r e

d e f g e t p a r a m e t e r s u n i f o r m p r i o r m i n m a x −> np . n d a r r a y :
”””
R e t u r n s t h e un i fo rm p r i o r bounds f o r t h e p a r a m e t e r s .

R e t u r n s :
np . n d a r r a y : Array o f shape (2 , num parame te r s) w i th min and max bounds .

”””
TODO: F i l l i n t h e code h e r e

‘ ‘ ‘

U s e f u l t o know :
‘ ‘ ‘
* The g e n e r a t e d code must i n c l u d e t h e c o m p l e t e ‘ s t e p ‘ f u n c t i o n body i n NumPy , f u l l y f u n c t i o n a l , no p l a c e h o l d e r s .
* You a r e a code e v o l v i n g machine , and you w i l l be c a l l e d 20 t i m e s t o g e n e r a t e code , and improve t h e code t o a c h i e v e t h e l o w e s t p o s s i b l e v a l i d a t i o n W a s s e r s t e i n

l o s s .
* The model d e f i n e s t h e p o s s i b l y s t o c h a s t i c t r a n s i t i o n f u n c t i o n t a k i n g t h e f u l l s t a t e , a c t i o n and p r e d i c t i n g t h e n e x t s t a t e , and w i l l be used t o f i t t h e o b s e r v e d

t r a i n i n g d a t a s e t .
* You can use any p a r a m e t e r s you want however , you have t o d e f i n e t h e s e .
* I t i s p r e f e r a b l e t o decompose t h e sys tem i n t o compar tmen t s i f p o s s i b l e .
* You can use any una ry f u n c t i o n s , f o r example log , exp , power e t c .
* You can use numpy sa m p l i n g d i s t r i b u t i o n s .
* Under no c i r c u m s t a n c e can you change t h e s k e l e t o n code f u n c t i o n d e f i n i t i o n s , on ly f i l l i n t h e code .
* Make s u r e your code f o l l o w s t h e e x a c t code s k e l e t o n s p e c i f i c a t i o n .
* When d e f i n i n g c a t e g o r i c a l d i s t r i b u t i o n s t h a t a r e p a r a m e t e r i z e d make i t so t h a t t h e p r o b a b i l i t i e s a r e a u t o m a t i c a l l y n o r m a l i z e d as t h e y w i l l be sampled as random

v a l u e s . I . e . n o r m a l i z e t h e p r o b a b i l i t i e s w i t h i n t h e s t e p f u n c t i o n .
‘ ‘ ‘

Think s t e p −by− s t e p , and t h e n g i v e t h e c o m p l e t e f u l l working code . You a r e g e n e r a t i n g code f o r i t e r a t i o n 0 o u t o f 5 .

41

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

G. Future work and broader impact
Multiscale or Hybrid Time Steps. While we focus on discrete-time or event-based submodules, future expansions could
unify different timescales. The LLM can propose which submodules update hourly vs. daily. GFO remains applicable so
long as we can run the simulation for each candidate parameter set.

Complex Domain Constraints. If domain constraints are complex (e.g., partial differential equations or advanced PDE-
based physics), structural generation can remain feasible but might require specialized symbolic analysis. Alternatively, the
user can provide a ”template code skeleton” that the LLM must only fill in, ensuring compliance with advanced physics
laws.

Large Submodule Libraries. As we scale to hundreds of submodule templates, the search space for λ expands exponen-
tially. Methods like ”top-k structural proposals” or hierarchical LLM prompting may help prune unpromising structural
expansions.

Diagnostics in Active Learning. One could extend the diagnostic function to query new data or domain experts to
disambiguate uncertain modules. This aligns with active learning strategies in simulator design.

Overall, the G-Sim approach is flexible and can be adapted for many real-world tasks by appropriately shaping the submodule
library, domain constraints, and prompt engineering.

While the discussion in Appendix A and the main text has highlighted immediate applications of G-Sim, there remain
abundant opportunities to extend and enrich its capabilities, as well as substantial questions regarding its implications for
society and technology. Below, we elaborate on how G-Sim could evolve in the near future, what types of contexts it might
be applied to, and which open research problems still need to be addressed to fully realize its potential.

G.1. Expanding the Scope of Simulation

Although the above use-cases hint at specific challenging scenarios that our framework could address, next we discuss them
more “abstractly”.

Combining Multiple Data Sources That Cannot Be Directly Merged. One of the powerful, potential properties of
G-Sim is its ability to reconcile and unify incomplete, heterogeneous datasets through the non-differentiable parameter-
inference and the iterative structural refinement loop. This aligns closely with real-world situations where data is “locked”
in separate silos (e.g., due to privacy constraints, mismatched time scales, or proprietary concerns). G-Sim could potentially
be applied to a scenario where one dataset tracks daily admissions but omits discharge times, while another captures only
average occupancy levels, and a third logs policy changes intermittently. Through its flexible calibration framework, G-Sim
can synthesize these partial or non-overlapping datasets into a cohesive simulator that is still grounded by real observations,
yet remains flexible enough to propose creative structural linkages derived from domain knowledge or large language models
(LLMs). Future research could focus on formalizing guarantees on consistency and convergence when combining more than
two or three data sources, each with distinct observational modalities or temporal resolutions.

Continual learning. Because the environment is constructed as a composition of submodules, each representing distinct
components of the system (e.g., patient arrivals, disease progression, resource management), updates to individual modules
can be made without disrupting the entire simulator. This modularity allows the framework to incrementally integrate
new data or reflect distributional changes in specific subcomponents (e.g., new patient arrival patterns during a pandemic)
while preserving previously learned dynamics in other unaffected modules. Furthermore, the iterative refinement process
inherently supports continual adaptation by identifying and isolating discrepancies between the simulator’s outputs and
newly observed data, prompting targeted adjustments. This ensures that the simulator evolves smoothly to accommodate
gradual or abrupt distributional shifts.

Integrating Data at Multiple Time Scales. Real systems often evolve across different granularities. In public health,
disease incidence may be reported weekly or monthly, while hospital admissions are tracked daily or even hourly. In supply
chains, some processes (e.g., production) update at a weekly scale, while logistics or e-commerce interactions can evolve by
the hour or minute. A natural extension would allow G-Sim to handle multi-scale data more explicitly: each module can
evolve at its own frequency and pass aggregated signals or constraints to modules on different time scales. In principle, the

42

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

modular calibration of G-Sim is well-suited to this task, but further methodological refinement is needed to ensure stable
parameter inference, particularly when different submodules have drastically different update cadences.

Structured Coarse-to-Fine Validation. Because G-Sim’s calibration can handle sparse or aggregate-level data, there
arises the possibility of building a hierarchy of simulators that operate at different levels of detail. An initial coarse-grained
simulator could match higher-level statistics of a system (e.g., average weekly admissions), and then subsequent layers
introduce more detailed or fine-grained modeling (e.g., individual patient characteristics). Iterative refinement would
proceed at these nested levels, ensuring each finer simulator remains consistent with coarser macro-level aggregates. This
coarse-to-fine validation could also be guided by domain knowledge or by an LLM’s feedback on plausible submodule
expansions, yielding significantly deeper and more scalable multi-resolution simulators.

G.2. Potential Uses Beyond Intervention Testing
Safe Reinforcement Learning and Policy Training. Although other works already enable this, G-Sim could serve as a
reliable environment to train reinforcement learning (RL) agents, particularly to assess them under distribution shifts and in
domains where real-world experimentation is expensive or risky (e.g., healthcare, finance, or transportation). Agents trained
in this simulator could be encouraged (through reward shaping or robust policy learning) to avoid certain regions if they
might be associated with unacceptable real-world risk.

Curriculum and Continual Learning. Another way to leverage G-Sim is in the spirit of OMNI-EPIC-like approaches
(Faldor et al., 2024): (1) Start with a simpler environment (fewer modules or constraints, denser rewards) for an agent to
learn basic dynamics and decision policies. (2) Gradually make the environment more complex, either by adding submodules
discovered by the LLM, by shifting the distribution of parameters or by making the reward sparser or more complex. This
could create a curriculum that systematically challenges and develops the agent’s capacity for generalization.

G.3. Limitations and Future Directions

While our approach enables flexible simulator construction even under partial data and complex structural requirements,
several open challenges remain.

Scalability First, scalability poses a concern: gradient-free searches can become computationally expensive as the number
of parameters or submodules grows, especially for large or high-resolution systems. Parallelization partially addresses
this but may still be infeasible for multi-scale, multi-region simulators with thousands of discrete or stochastic elements.
More efficient search techniques and tailored surrogate models—potentially leveraging hierarchical or active-learning
schemes—offer promising ways to accommodate such complexity. Future work could also explore exploiting the causal
structure hypothesized by the LLM to train sequentially the existing sub-components that might be independent of others
conditioned on certain features to alleviate complexity.

Structural Coverage by the LLM Second, structural coverage by the LLM is not guaranteed when domain knowledge
is sparse or highly specialized. If the language model never proposes a submodule or coupling essential for fidelity,
calibration cannot recover the correct dynamics. Domain experts must still review and guide the simulator-building process,
particularly in safety-critical applications like healthcare or critical infrastructure. Iterative prompt design (Sahoo et al.,
2024), retrieval-augmented generation (i.e., letting the LLM consult curated references) (Lewis et al., 2021), and manual
injection of known constraints may further improve coverage.

Multi-Timescale and Partial Observability Third, multi-timescale and partial observability introduce subtleties in
scoring and inference. While the method theoretically should already supports heterogeneity in data type and coverage,
future work could refine diagnostic criteria for simulator mismatch (e.g., across daily, weekly, and monthly scales) or more
seamlessly piece together observations spanning asynchronous submodules.

Biases from Data and LLM Priors Fourth, biases from both data and LLM priors warrant careful scrutiny. When
historical data reflect inequitable policies or an LLM’s training corpus omits certain domain factors, the resulting simulator
may embed inaccurate or unfair assumptions (Wei et al., 2025). Strengthening mechanisms that detect such issues—perhaps
by incorporating fairness constraints or domain-specific plausibility checks—will be essential before deploying these
simulators in sensitive real-world settings.

43

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

G.4. Ethical Considerations and Mitigation Strategies

The deployment of simulators like G-Sim, especially in sensitive domains such as healthcare, logistics, and epidemic
planning, carries significant ethical responsibilities. The potential for these simulators to inform high-stakes decisions
requires a proactive approach to identifying and mitigating risks, particularly those related to bias and societal impact.

Potential Risks and Biases. The primary risks arise from potential biases embedded within either the foundational LLMs
used for structural generation or the empirical data used for calibration. LLMs may carry biases from their vast training
corpora, potentially leading to simulator structures that overlook or misrepresent certain sub-populations or dynamics.
Similarly, historical datasets can reflect past inequities or contain measurement errors, which, if unaddressed during
calibration, could lead to simulators that perpetuate or even amplify these biases, resulting in unfair or harmful policy
recommendations.

Mitigation Strategies in G-Sim. Our framework is designed with several features to mitigate these risks and promote
responsible use:

• Transparency and Inspectability: G-Sim generates simulator structures as explicit, human-readable code. This
transparency allows domain experts to thoroughly inspect, understand, and verify the underlying mechanisms and
assumptions, facilitating accountability and trust.

• Expert-in-the-Loop: We strongly emphasize the indispensable role of domain experts. G-Sim is designed to augment,
not replace, human expertise. Experts are crucial for providing context, validating LLM proposals, interpreting diagnostic
results, stress-testing the simulator against known edge cases, and ensuring its outputs align with established knowledge
and ethical guidelines.

• Iterative Diagnostics and Refinement: The framework’s diagnostic loop enables rigorous evaluation against empirical
data and domain-specific constraints. This process can help identify and rectify biases or inaccuracies. Future extensions
could explicitly incorporate fairness metrics or adversarial checks into these diagnostics.

• Uncertainty Quantification: Integrating methods like SBI allows for approximate (albeit with challenges already
discussed) quantification of uncertainty in parameter estimates. Communicating this uncertainty is vital for decision-
makers to understand the confidence levels associated with simulation outcomes.

Responsible Deployment. G-Sim should be viewed as a powerful tool for exploration and decision support, not an
infallible oracle. Its deployment, particularly in real-world applications with societal consequences, must be accompanied
by rigorous validation, continuous oversight, and a transparent articulation of its assumptions and limitations. Ensuring that
these simulators support ethical, equitable, and beneficial outcomes remains a shared responsibility between developers,
domain experts, and decision-makers.

44

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

H. Evaluation Metrics
To rigorously assess how closely the learned simulators align with the ground-truth generative process, we employ evaluation
metrics designed to compare probability distributions. Our primary metrics are the Wasserstein distance (Kantorovich,
1960) (also known as Earth Mover’s Distance) and the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). These
metrics are particularly well-suited for our benchmark tasks, many of which exhibit stochastic or discrete transitions where
capturing the full distributional shape is crucial.

Concretely, for each initial state x0 in our test set Dtest (along with any corresponding actions or controls), we generate two
sets of next-state samples:

1. Ground-Truth Samples: We run the ground-truth simulator N times (typically N = 1000) from x0 to obtain {x(g)
1,i }Ni=1.

2. Comparison Samples: We run the candidate simulator N times from the same x0 to get {x(c)
1,i}Ni=1.

We then compute the Wasserstein distance and MMD between these two empirical distributions, {x(g)
1,i } and {x(c)

1,i}. We
repeat this across all initial states in Dtest and report the average distances.

The Wasserstein distance intuitively captures the minimum ”cost” (or work) required to transform one distribution into the
other, providing a holistic comparison of their shapes. MMD measures the distance between distributions by comparing
their mean embeddings in a Reproducing Kernel Hilbert Space (RKHS); a zero MMD implies the distributions are identical.
Both offer significant advantages over simpler pointwise metrics.

Limitations of Mean Squared Error (MSE). MSE measures the average squared difference between individual pre-
dictions and ground-truth values. When dealing with stochastic transitions, a simulator aiming to minimize MSE will be
incentivized to predict the mean of the next-state distribution. This approach fails to capture the inherent variability and
potentially multi-modal nature of the true process. A simulator that perfectly predicts the mean but ignores the variance or
shape of the distribution would achieve a low MSE but would be a poor representation of the system’s dynamics. Therefore,
we prioritize Wasserstein and MMD for assessing the distributional fidelity of our generated simulators.

We run each method for ten independent seeds (unless stated otherwise) and report the mean and 95% confidence intervals
for each metric. All experiments and training were performed using a single Intel Core i9-12900K CPU @ 3.20GHz, 64GB
RAM with an Nvidia RTX3090 GPU 24GB.

45

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

I. Additional Experiments
To further validate the capabilities and robustness of G-Sim, we conducted several additional experiments. These investi-
gations focused on (1) out-of-distribution generalization in the supply chain environment, (2) the structural accuracy of
the generated simulators using causal discovery metrics, (3) a comparison between Gradient-Free Optimization (GFO)
and Simulation-Based Inference (SBI) for parameter calibration, (4) the computational performance of G-Sim relative to
baselines, and (5) an illustration of the iterative refinement process.

I.1. Out-of-Distribution Generalization: Supply Chain Backlog

A critical requirement for effective simulators is their ability to generalize to scenarios not seen during training, particularly
those involving interventions or shifts in system dynamics. We tested G-Sim’s out-of-distribution (OOD) performance by
varying the lead times ℓ in the supply-chain environment beyond the range observed during the initial training phase.

Figure 4 displays the backlog trajectories for both the ground-truth environment and the G-Sim-generated simulator under
increasing lead times. As observed:

• For short lead times (ℓ = 1, 2, 3), consistent with or close to the training data, both the true system and G-Sim maintain
a near-zero backlog, indicating accurate calibration in the known regime.

• As the lead time increases (ℓ = 4, 5, 6), creating a significant OOD challenge, both systems exhibit pronounced backlog
spikes due to delayed inventory replenishment.

• Crucially, G-Sim plausibly predicts both the timing and magnitude of these spikes, even though it was not explicitly
trained on these longer delays.

This strong OOD performance underscores G-Sim’s ability to capture the underlying causal mechanisms of the supply chain.
By leveraging the LLM to propose a structurally plausible model (including inventory, pipeline, and backlog dynamics) and
then calibrating its parameters, G-Sim learns a representation that is not only correlational but also reflects the system’s
core dynamics. This structural grounding enables it to extrapolate reliably, a capability often lacking in purely data-driven
models and essential for evaluating ”what if” scenarios involving policy shifts or external shocks, such as supply disruptions.

Figure 4. Backlog vs. time in the supply-chain environment for varying lead times ℓ. Blue circles and dashed lines indicate the true
environment’s backlog, while orange squares and dash-dot lines show the G-Sim environment. For short lead times (ℓ = 1, 2), both
maintain near-zero backlog. Longer lead times (ℓ = 4, 5, 6) cause backlog spikes at similar times, indicating G-Sim closely tracks the real
system’s OOD dynamics.

46

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Table 4. Causal Discovery Metrics for G-Sim across three environments. We report Structural Hamming Distance (SHD) ↓ and F1
Score (%) ↑, averaged over five random seeds, with ± denoting 95% confidence intervals. G-Sim demonstrates high structural accuracy,
recovering near-perfect or perfect causal graphs.

COVID-19 Supply Chain Hospital Beds Scheduling
Metric Value Value Value

F1 Score (%) ↑ 95.5 ± 4.09 93.3 ± 6 100.0 ± 0.0
SHD ↓ 1.5 ± 1.35 0.333 ± 0.3 0 ± 0

I.2. Structural Accuracy via Causal Discovery Metrics

A core claim of G-Sim is its ability to generate simulators with causally sound structures. To quantify this, we evaluated the
structural accuracy of the simulators generated by G-Sim against the known ground-truth causal graphs for each environment.
We used two standard metrics from causal discovery:

• Structural Hamming Distance (SHD): Measures the number of edge insertions, deletions, or reversals needed to
transform the predicted graph into the true graph. Lower values are better.

• F1 Score: The harmonic mean of precision and recall for edge prediction, providing a balanced measure of edge
discovery accuracy. Higher values (up to 100%) are better.

Table 4 presents these metrics for G-Sim across the three benchmark environments. The results demonstrate that G-Sim
achieves high structural accuracy:

• For the Hospital Bed Scheduling environment, G-Sim achieves a perfect F1 score (100%) and zero SHD, indicating
an exact match with the ground-truth causal structure.

• For COVID-19 and Supply Chain, G-Sim achieves F1 scores above 90% and very low SHD values. This indicates
that G-Sim reliably captures the essential causal relationships, even in environments with stochasticity and partial
observability.

These quantitative results support our claim that G-Sim, by combining LLM-driven structural reasoning with empirical
calibration, can reliably estimate the underlying causal model, a key factor in its strong OOD generalization and its suitability
for policy intervention studies.

I.3. Parameter Calibration: GFO vs. Simulation-Based Inference (SBI)

We integrated Simulation-Based Inference (SBI) into G-Sim as an alternative to GFO for parameter calibration. SBI methods,
like Neural Posterior Estimation (NPE), aim to learn a full posterior distribution over simulator parameters, p(ω|D), rather
than just a point estimate. This offers principled uncertainty quantification, which is crucial given that the LLM might
propose imperfect structures.

We compared G-Sim – ES with G-Sim – SBI on the COVID-19 SIR task, using the same LLM-generated model structure
for both. Table 5 summarizes the results.

Table 5. Comparison of G-Sim – ES and G-Sim – SBI on the COVID-19 SIR environment. We report computation time and test set
performance (MSE, MMD, Wass. distance). Lower values are better. Results are averaged over five seeds ± 95% CI.

Metric G-Sim – ES G-Sim – SBI

Computation Time (s) ↓ 55.7 ± 0.399 63.9 ± 2.49
Test MSE ↓ 3.11 ± 0.0558 1.11e+03 ± 491
Test MMD ↓ 0.0583 ± 0.0197 0.07 ± 0.0245
Test WASS ↓ 0.814 ± 0.0346 1.29 ± 0.101

Key observations include:

47

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

Table 6. Training time (seconds) and number of trainable parameters for all benchmark methods.

Method Train Time (s) # Parameters

DyNODE 328 34,951
SINDy 3 175
RNN 33 572,507
Transformer 95 2,560,353
GeneticProgram 134 26
G-Sim-ES Abl. ZeroShot 366 4
G-Sim-ES Abl. ZeroShotOptim 426 4

G-Sim – ES 2,314 16

• Computational Cost: SBI has a slightly higher computational time, but both methods are comparable, operating
within similar simulation budgets.

• Predictive Accuracy: In these initial runs, G-Sim – ES achieved lower (better) MSE and Wasserstein distances. This
may reflect the direct optimization objective of ES versus the inference objective of SBI, or potential sensitivities in the
SBI implementation to model misspecification.

• Uncertainty Quantification: The primary advantage of SBI is its ability to provide posterior distributions, a crucial
feature that GFO lacks. However, as discussed in Appendix B.4, interpreting these posteriors requires care when the
model structure is not guaranteed to be correct.

While G-Sim – ES shows an edge in point-estimate accuracy in this setup, the integration of SBI significantly strengthens
G-Sim by enabling uncertainty quantification, albeit with important caveats.

I.4. Computational Performance: Training Times and Parameters

To provide context on the computational demands of G-Sim compared to standard baselines, we measured training times
and the number of trainable parameters for each method (Table 6).

G-Sim has the longest training time. This is expected as it involves multiple iterations of LLM calls, code generation,
simulation runs, and calibration, rather than a single pass of gradient descent. However, G-Sim often results in simulators
with significantly fewer intrinsic parameters (e.g., 16 in the final model) compared to large neural network models like
RNNs or Transformers. This reflects G-Sim’s focus on discovering interpretable, parsimonious structures, where complexity
lies in the generative search process rather than in a massive parameter count. SINDy and Genetic Programs are fast and
have few parameters, but showed weaker predictive performance in our main results.

I.5. Iterative Refinement by G-Sim: An Example

The core of G-Sim’s innovation lies in its iterative refinement loop, where diagnostic feedback guides the LLM to improve
the simulator’s structure. To illustrate this, we provide a segment of the G-Sim logs from the COVID-19 task. These logs
show the LLM’s reflections and the code changes made across iterations based on performance metrics and feedback. We
observe how the LLM proposes modifications, such as adding overdispersion or adjusting functional forms, to better match
the observed data.
. . .
Val W a s s e r s t e i n Loss : 0 .793 (Where t h e v a l MSE l o s s p e r d imens ion i s s u s c e p t i b l e v a l MSE l o s s : 2 . 8 5 , i n f e c t e d v a l MSE l o s s : 4 . 7 , r e c o v e r e d v a l MSE l o s s : 2 . 0 4)

I t e r a t i o n : 1
###
‘ ‘ ‘
i m p o r t numpy as np

c l a s s S i m u l a t o r S t e p () :
d e f i n i t (s e l f) :

a l p h a : o f f s e t , b e t a : s l o p e , gamma : r e c o v e r y , k d i s p : o v e r d i s p e r s i o n
s e l f . a lpha , s e l f . be t a , s e l f . gamma , s e l f . k d i s p = 0 . 0 , 0 . 0 1 , 0 . 1 , 1 . 0

. . .
‘ ‘ ‘
o p t i m i z e d p a r a m e t e r s = [− 3 . 5 4 , 4 . 4 7 , 0 . 0 7 3 , 2 4 . 4 5]
###
. . .
Val W a s s e r s t e i n Loss : 0 .404 (Where t h e v a l MSE l o s s p e r d imens ion i s s u s c e p t i b l e v a l MSE l o s s : 1 . 8 9 , i n f e c t e d v a l MSE l o s s : 3 . 9 5 , r e c o v e r e d v a l MSE l o s s : 2 . 0 3)

I t e r a t i o n : 0

48

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration

###
‘ ‘ ‘
i m p o r t numpy as np

c l a s s S i m u l a t o r S t e p () :
d e f i n i t (s e l f) :

s e l f . be t a , s e l f . gamma = 0 . 0 1 , 0 . 1
. . .
‘ ‘ ‘
o p t i m i z e d p a r a m e t e r s = [0 . 4 5 7 , 0 . 0 7 9]
###

P l e a s e r e f l e c t on how you can improve t h e code . . .
[A s s i s t a n t] 1) I n t r o d u c e an o v e r d i s p e r s i o n (n e g a t i v e b i n o m i a l o r s i m i l a r) f o r bo th i n f e c t i o n s and r e c o v e r i e s , n o t j u s t f o r i n f e c t i o n s . Th i s h e l p s c a p t u r e

v a r i a b i l i t y i n how i n d i v i d u a l s r e c o v e r and can r e d u c e e r r o r i n t h e i n f e c t e d and r e c o v e r e d compar tmen t s .
2) Add an o f f s e t p l u s s l o p e f o r t h e r e c o v e r y p r o c e s s (f o r example , a l o g i s t i c f u n c t i o n o r a p i e c e w i s e l i n e a r f u n c t i o n i n I /N) r a t h e r t h a n u s i n g a f i x e d gamma .
. . .

This iterative process, documented in the logs, allows G-Sim to move beyond an initial, potentially flawed, structural
proposal towards a simulator that is both structurally plausible and empirically aligned.

49

	Introduction
	Problem Setting
	System State and Update Mechanisms
	Queries Enabled by the Simulator
	Data and Domain Knowledge
	Failure Modes of Naive Approaches
	Need for a Hybrid Framework

	G-Sim: Hybrid Simulator Construction
	LLM-Driven Structural Design
	Empirical Grounding via Likelihood-Free Calibration
	A Key Caveat when using SBI

	Diagnostics-Driven Iterative Refinement
	Practical Considerations: Automation, Expertise, and Prompts

	Related Work
	Experiments and Evaluation
	Main Results
	Insight Experiments and Policy Interventions

	Discussion and Conclusion
	Appendix
	 Appendix
	Extended Related Work
	Data-Driven World Models
	Foundation Models as World Models
	LLM-Coded Simulations
	Hybrid Digital Twins and Mechanistic Models
	Procedural Content Generation & Environment Simulation
	Active Learning and Iterative Refinement
	Comparison with Prior Work

	Additional Theoretical Considerations and Implementation Details
	LLM Coverage Assumption
	Structural Identifiability
	Prompt-Engineering for Broader LLM Coverage
	Limitations of Simulation-Based Inference in G-Sim

	Benchmark Dataset Environment Details
	COVID-19 SIR Environment
	Supply Chain Environment
	Hospital Bed Scheduling Environment
	Performing Intervention Insight Experiments

	Implementation Details for Baseline Methods
	G-Sim Implementation Details
	Overall G-Sim Framework
	Pseudocode
	Training and Calibration Details
	Gradient-Free Optimization (GFO) using Evolutionary Strategies (ES)
	Simulation-Based Inference (SBI)

	Prompt Templates and Structural Generation
	Diagnostics Computation and Refinement
	Implementation Notes
	Full G-Sim Workflow Summary
	Implementation of the Diagnostic Function Diag
	Observed Speed-Ups via Parallelization
	Handling Stochastic Simulators
	Summary of Key Implementation Steps

	Illustrative G-Sim Prompt Example
	Env Prompts

	Future work and broader impact
	Expanding the Scope of Simulation
	Potential Uses Beyond Intervention Testing
	Limitations and Future Directions
	Ethical Considerations and Mitigation Strategies

	Evaluation Metrics
	Additional Experiments
	Out-of-Distribution Generalization: Supply Chain Backlog
	Structural Accuracy via Causal Discovery Metrics
	Parameter Calibration: GFO vs. Simulation-Based Inference (SBI)
	Computational Performance: Training Times and Parameters
	Iterative Refinement by G-Sim: An Example

