
MADIFF: Offline Multi-agent Learning
with Diffusion Models

Zhengbang Zhu1 Minghuan Liu1 Liyuan Mao1 Bingyi Kang2 Minkai Xu3

Yong Yu1 Stefano Ermon3 Weinan Zhang1†
1 Shanghai Jiao Tong University, 2 ByteDance, 3 Stanford University

{zhengbangzhu, minghuanliu, maoliyuan, yyu, wnzhang}@sjtu.edu.cn,
bingykang@gmail.com, {minkai, ermon}@cs.stanford.edu

Abstract

Offline reinforcement learning (RL) aims to learn policies from pre-existing
datasets without further interactions, making it a challenging task. Q-learning
algorithms struggle with extrapolation errors in offline settings, while supervised
learning methods are constrained by model expressiveness. Recently, diffusion
models (DMs) have shown promise in overcoming these limitations in single-agent
learning, but their application in multi-agent scenarios remains unclear. Generat-
ing trajectories for each agent with independent DMs may impede coordination,
while concatenating all agents’ information can lead to low sample efficiency.
Accordingly, we propose MADIFF, which is realized with an attention-based dif-
fusion model to model the complex coordination among behaviors of multiple
agents. To our knowledge, MADIFF is the first diffusion-based multi-agent learning
framework, functioning as both a decentralized policy and a centralized controller.
During decentralized executions, MADIFF simultaneously performs teammate
modeling, and the centralized controller can also be applied in multi-agent trajec-
tory predictions. Our experiments demonstrate that MADIFF outperforms baseline
algorithms across various multi-agent learning tasks, highlighting its effectiveness
in modeling complex multi-agent interactions.

1 Introduction

Offline reinforcement learning (RL) [Fujimoto et al., 2019, Kumar et al., 2020] learns exclusively
from static datasets without online interactions, enabling the effective use of pre-collected large-scale
data. However, applying temporal difference (TD) learning in offline settings causes extrapolation
errors [Fujimoto et al., 2019], where target value functions are evaluated on out-of-distribution actions.
Sequence modeling algorithms bypass TD-learning by directly fitting the dataset distribution [Chen
et al., 2021, Janner et al., 2021]. Nevertheless, these methods are limited by the model’s expressive-
ness, making it difficult to handle diverse datasets. They also suffer from compounding errors [Xiao
et al., 2019] due to autoregressive generation. Recently, diffusion models (DMs) have achieved
remarkable success in various generative modeling tasks [Song and Ermon, 2019, Ho et al., 2020,
Xu et al., 2022], owing to their exceptional abilities at capturing complex, high-dimensional data
distributions. Their successes have also been introduced into offline RL, offering a superior modeling
choice for sequence modeling algorithms [Janner et al., 2022, Ajay et al., 2023].

Compared to single-agent learning, offline multi-agent learning (MAL) has been less studied and is
more challenging. Since the behaviors of all agents are interrelated, each agent is required to model
interactions and coordination among agents, while making decisions in a decentralized manner to
achieve the goal. Current MAL approaches typically train a centralized value function to update

†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

individual agents’ policies [Rashid et al., 2020] or use an autoregressive transformer to determine
each agent’s actions [Meng et al., 2021, Wen et al., 2022]. However, without online interactions, an
incorrect centralized value can lead to significant extrapolation errors, and the transformer can only
serve as an independent model for each agent.

In this paper, we aim to study the potential of employing DMs to solve the above challenges in offline
MAL problems. Merely adopting existing diffusion RL methods by using independent DMs to model
each agent can result in serious inconsistencies due to a lack of proper credit assignment among agents.
Another possible solution is to concatenate all agents’ information as the input and output of the DM.
However, treating the agents as a single unified agent neglects the important nature of multi-agent
systems. One agent may have strong correlations with only a few other agents, which makes a full
feature interaction redundant. In many multi-agent systems, agents exhibit certain symmetry and can
share model parameters for efficient learning [Arel et al., 2010]. However, concatenating them in a
fixed order breaks this symmetry, forcing the model to treat each agent differently.

To address the aforementioned coordination challenges, we propose the first centralized-training-
decentralized-execution (CTDE) diffusion framework for MA problems, named MADIFF. MADIFF
adopts a novel attention-based DM to learn a return-conditional trajectory generation model on a
reward-labeled multi-agent interaction dataset. In particular, the designed attention is computed in
several latent layers of the model of each agent to fully interchange the information and integrate
the global information of all agents. To model the coordination among agents, MADIFF applies the
attention mechanism on latent embedding for information interaction across agents. The attention
mechanism enables the dynamic modeling of agent interactions through learned weights, while
also enabling the use of a shared backbone to model each agent’s trajectory, significantly reducing
the number of parameters. During training, MADIFF performs centralized training on the joint
trajectory distributions of all agents from offline datasets, including different levels of expected
returns. During inference, MADIFF adopts classifier-free guidance with low-temperature sampling to
generate behaviors given the conditioned high expected returns, allowing for decentralized execution
by predicting the behavior of other agents and generating its own behavior. Therefore, MADIFF can
be regarded as a principled offline MAL solution that not only serves as a decentralized policy for
each agent or a centralized controller for all agents, but also includes teammate modeling without
additional cost. Comprehensive experiments demonstrated superior performances of MADIFF on
various multi-agent learning tasks, including offline MARL and trajectory prediction.

In summary, our contributions are (1) the first diffusion-based multi-agent learning framework that
unifies decentralized policy, centralized controller, teammate modeling, and trajectory prediction; (2)
a novel attention-based DM structure that is designed explicitly for MAL and enables coordination
among agents in each denoising step; (3) achieving superior performances for various offline multi-
agent problems.

2 Preliminaries

2.1 Multi-agent Offline Reinforcement Learning

We consider a partially observable and fully cooperative multi-agent learning (MAL) problem,
where agents with local observations cooperate to finish the task. Formally, it is defined as a Dec-
POMDP [Oliehoek and Amato, 2016]: G = ⟨S,A, P, r,Ω, O,N,U, γ⟩, where S and A denote
state and action space separately, and γ is the discounted factor. The system includes N agents
{1, 2, . . . , N} act in discrete time steps, and starts with an initial global state s0 ∈ S sampled from
the distribution U . At each time step t, every agent i only observes a local observation oi ∈ Ω
produced by the function O(s, a) : S × A → Ω and decides a ∈ A, which forms the joint action
a ∈ A ≡ AN , leading the system transits to the next state s′ according to the dynamics function
P (s′|s,a) : S × A → S. Normally, agents receive a shared reward r(s,a) at each step, and
the optimization objective is to learn a policy πi for each agent that maximizes the discounted
cumulative reward Est,at [

∑
t γ

tr(st,at)]. In offline settings, instead of collecting online data in
environments, we only have access to a static dataset D to learn the policies. The dataset D is
generally composed of trajectories τ , i.e., observation-action sequences [o0,a0,o1,a1, · · · ,oT ,aT]
or observation sequences [o0,o1, · · · ,oT]. We use bold symbols to denote the joint vectors of all
agents.

2

BFBFBF

Conv1D + GroupNorm + Mish

UpsampleDownsample

Attention Layer

MLP

Decoder

Layer 1

Decoder
Layer 2

Decoder

Layer 3

Encoder

Layer 1

Encoder

Layer 2

Encoder

Layer 3

Value

Key

Query

Scaled

Dot

Product

+

Softmax

Dot

Product

......

Returns

......

MADi�

Inverse Dynamics Model

* K steps

sampling by di�usion
and classi�er-free guidance Middle Layers

Agent 1 to N

Figure 1: The architecture of MADIFF, which is an attention-based diffusion network framework
that performs attention across all agents at every decoder layer of each agent.

2.2 Diffusion Probabilistic Models

Diffusion models (DMs) [Sohl-Dickstein et al., 2015, Song and Ermon, 2019, Ho et al., 2020], as a
powerful class of generative models, implement the data generation process as reversing a forward
noising process (denoising process). For each data point x0 ∼ pdata(x) from the datasetD, the noising
process is a discrete Markov chain x0:K such that p(xk|xk−1) = N (xk|

√
αkxk−1, (1 − αk)I),

where N (µ,Σ) denotes a Gaussian distribution with mean µ and variance Σ, and α0:K ∈ R are
hyperparameters which control the variance schedule. The variational reverse Markov chain is
parameterized with qθ(xk−1|xk) = N (xk−1|µθ(xk, k), (1 − αk)I). The data sampling process
begins by sampling an initial noise xK ∼ N (0, I), and follows the reverse process until x0. The
reverse process can be estimated by optimizing a simplified surrogate loss as in Ho et al. [2020]:

L(θ) = Ek∼[1,K],x0∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ (xk, k)∥2

]
. (1)

The estimated Gaussian mean can be written as µθ(xk, k) =
1√
αk

(
xk − 1−αk√

1−ᾱk
ϵθ(xk, k)

)
, where

ᾱk = Πk
s=1αs.

2.3 Diffusing Decision Making

Diffusing over state trajectories and acting with inverse dynamics model. Among existing
works in single-agent learning, Janner et al. [2022] chose to diffuse over state-action sequences, so
that the generated actions for the current step can be directly used for executing. Another choice is
diffusing over state trajectories only [Ajay et al., 2023], which is claimed to be easier to model and
can obtain better performance due to the less smooth nature of action sequences:

τ̂ := [st, ŝt+1, · · · , ŝt+H−1], (2)

where t is the sampled time step and H denotes the trajectory length (horizon) modeled by DMs.
But the generated state sequences can not provide actions to be executed during online evaluation.
Therefore, an inverse dynamics model is trained to predict the action ât that makes the state transit
from st to the generated next state ŝt+1:

ât = Iϕ(st, ŝt+1) . (3)

Therefore, at every environment step t, the agent first plans the state trajectories using an offline-
trained DM, and infers the action with the inverse dynamics model.

Classifier-free guided generation. For targeted behavior synthesis, DMs should be able to generate
future trajectories by conditioning the diffusion process on an observed state st and information y. We
use classifier-free guidance [Ho and Salimans, 2022] which requires taking y(τ) as additional inputs
for the diffusion model. Formally, the sampling procedure starts with Gaussian noise τ̂K ∼ N (0, αI),
and diffuse τ̂k into τ̂k−1 at each diffusion step k. Here α ∈ [0, 1) is the scaling factor used in

3

low-temperature sampling to scale down the variance of initial samples [Ajay et al., 2023]. We use
x̃k,t to denote the denoised state st at k’s diffusion step. τ̂k denotes the denoised trajectory at k’s
diffusion step for a single agent: τ̂k := [st, x̃k,t+1, · · · , x̃k,t+H−1]. Note that for sampling during
evaluations, the first state of the trajectory is always set to the current observed state at all diffusion
steps for conditioning, and every diffusion step proceeds with the perturbed noise:

ϵ̂ := ϵθ(τ̂k, ∅, k) + ω(ϵθ(τ̂k, y(τ), k)− ϵθ(τ̂k, ∅, k)) , (4)

where ω is a scalar for extracting the distinct portions of data with characteristic y(τ). By iterative
diffusing the noisy samples, we can obtain a clean state trajectory: τ̂0(τ) := [st, ŝt+1, · · · , ŝt+H−1] .

3 Methodology

We formulate the problem of MAL as conditional generative modeling:

max
θ

Eτ∼D[log pθ(τ |y(·))] , (5)

where pθ is learned for estimating the conditional data distribution of joint trajectory τ , given
information y(·), such as observations, rewards, and constraints. When all agents are managed by a
centralized controller, i.e., the decisions of all agents are made jointly, we can learn the generative
model by conditioning the global information aggregated from all agents y(τ); otherwise, if we
consider each agent i separately and require each agent to make decisions in a decentralized manner,
we can only utilize the local information yi(τ i) of each agent i, including the private information and
the common information shared by all (e.g., team rewards).

3.1 Multi-Agent Diffusion with Attention

In order to handle MAL problems, agents must learn to coordinate. To solve the challenge of
modeling the complex inter-agent coordination in the dataset, we propose a novel attention-based
diffusion architecture designed to interchange information among agents.

In Figure 1, we illustrate the architecture of MADIFF model. In detail, we adopt U-Net as the base
structure for modeling agents’ individual trajectories, which consists of repeated one-dimensional
convolutional residual blocks. The convolution is performed over the time step dimension, and
the observation feature dimension is treated as the channel dimension. To encourage information
interchange and improve coordination ability, a critical change is made by adopting attention [Vaswani
et al., 2017] layers before all decoder blocks in the U-Nets of all agents. Since embedding vectors
from different agents are aggregated by the attention operation rather than concatenations, MADIFF
is index-free such that the input order of agents can be arbitrary and does not affect the results.

Formally, the input to l-th decoder layer in the U-Net of each agent i is composed of two components:
the skip-connected feature cil from the symmetric l-th encoder layer and the embedding eil from the
previous decoder layer. The computation of attention in MADIFF is conducted on cil rather than eil
since in the U-Net structure the encoder layers are supposed to extract informative features from the
input data. We use c′il to denote the skip-connected feature after attention operations which aggregate
information across agents. We adopt the multi-head attention mechanism to fuse the encoded feature
c′

i
l with other agents’ information, which is important in effective multi-agent coordination.

3.2 Centralized Training Objectives

Given a multi-agent offline dataset D, we train MADIFF which is parameterized through the unified
noise model ϵθ for all agents and the inverse dynamics model Iiϕ of each agent i with the reverse
diffusion loss and the inverse dynamics loss:

L(θ,ϕ) :=
∑
i

E(oi,ai,o′i)∈D[∥ai − Iiϕ(o
i, o′i)∥2]

+ Ek,τ0∈D,β [∥ϵ− ϵθ(τ̂k, (1− β)y(τ0) + β∅, k)∥2] ,
(6)

where β is sampled from a Bernoulli distribution to balance the training effort on unconditioned
and conditioned models. For training the DM, we sample noise ϵ ∼ N (0, I) and a time step

4

k ∼ U{1, · · · ,K}, construct a noise corrupted joint state sequence τk from τ and predict the noise
ϵ̂θ := ϵθ(τ̂k,y(τ0), k). Note that the noisy array τ̂k is applied with the same condition required by
the sampling process, as we will discuss in Section 3.3 in detail. As for the inverse dynamics training,
we sample the observation transitions of each agent to predict the action.

It is worth noting that the choice of whether agents should share their parameters of ϵiθ and Iϕi depends
on the homogeneous nature and requirements of tasks. If agents choose to share their parameters,
only one shared DM and inverse dynamics model are used for generating all agents’ trajectories;
otherwise, each agent i has extra parameters (i.e., the U-Net and inverse dynamic models) to generate
their states and predict their actions. The attention modules are always shared to incorporate global
information into generating each agent’s trajectory.

3.3 Centralized Control or Decentralized Execution

Centralized control. A direct and straightforward way to utilize MADIFF in online decision-making
tasks is to have a centralized controller for all agents. The centralized controller has access to all
agents’ current local observations and generates all agents’ trajectories along with predicting their
actions, which are sent to every single agent for acting in the environment. This is applicable for
multi-agent trajectory prediction problems and when interactive agents are permitted to be centralized
controlled, such as in team games. During the generation process, we sample an initial noise
trajectory τ̂K , condition the current joint states of all agents and the global information to utilize
y(τ0); following the diffusion step described in Equation (4) with ϵθ, we finally sample the joint
observation sequence τ̂0 as below:

[ot, · · · , x̃K,t+H−1]︸ ︷︷ ︸
τ̂K

K steps
====⇒ [ot, · · · , ôt+H−1]︸ ︷︷ ︸

τ̂0

, (7)

where every x̃K,t ∼ N (0, I) is a noise vector sampled from the normal Gaussian. After generation,
each agent obtains the action through its own inverse dynamics model following Equation (3) using
the current observation oit and the predicted next observation ôit+1, and takes a step in the environment.
We highlight that MADIFF provides an efficient way to generate joint actions and the attention module
guarantees sufficient feature interactions and information interchange among agents.

Decentralized execution with teammate modeling. Compared with centralized control, a more
popular and widely-adopted setting is that each agent only makes its own decision without any
communication with other agents, which is what most current works [Lowe et al., 2017, Rashid et al.,
2020, Wang et al., 2023] dealt with. In this case, we can only utilize the current local observation of
each agent i to plan its own trajectory. To this end, the initial noisy trajectory is conditioned on the
current observation of the agent i. Similar to the centralized case, by iterative diffusion steps, we
finally sample the joint state sequence based on the local observation of agent i as:

x̃0
K,t, · · · , x̃0

K,t+H−1

· · · ,
oit, · · · , x̃i

K,t+H−1

· · · ,
x̃N
K,t, · · · , x̃N

K,t+H−1

︸ ︷︷ ︸

τ̂ i
K

K steps
====⇒

ô0t , · · · , ô0t+H−1

· · · ,
oit, · · · , ôit+H−1

· · · ,
ôNt , · · · , ôNt+H−1

︸ ︷︷ ︸

τ̂ i
0

, (8)

and we can also obtain the action through the agent i’s inverse dynamics model as mentioned above.
An important observation is that, the decentralized execution of MADIFF includes teammate modeling
such that the agent i infers all others’ observation sequences based on its own local observation. We
show in experiments that this achieves great performances in various tasks, indicating the effectiveness
of teammate modeling and the great ability in coordination.

History-based generation. We find DMs are good at modeling the long-term joint distributions, and
as a result MADIFF perform better in some cases when we choose to condition on the trajectory of the
past history instead of only the current observation. This implies that we replace the joint observation
ot in Equation (7) as the C-length joint history sequence ht := [ot−C , · · · ,ot−1,ot], and replace
the independent observation oit in Equation (8) as the history sequence hi

t := [oit−C , · · · , oit−1, o
i
t] of

each agent i. Appendix Section D illustrates how agents’ history and future trajectories are modeled
by MADIFF in both centralized control and decentralized execution.

5

4 Related Work

Multi-agent Offline RL. While offline RL has become an active research topic, only a limited
number of works studied offline MARL due to the challenge of offline coordination. Jiang and
Lu [2021] extended BCQ [Fujimoto et al., 2019], a single-agent offline RL algorithm with policy
regularization to multi-agent; Yang et al. [2021] developed an implicit constraint approach for offline
Q learning, which was found to perform particularly well in MAL tasks; Pan et al. [2022] argued
the actor update tends to be trapped in local minima when the number of agents increases, and
correspondingly proposed an actor regularization method named OMAR. All of these Q-learning-
based methods naturally have extrapolation error problem [Fujimoto et al., 2019] in offline settings,
and their solution cannot get rid of it but only mitigate some. As an alternative, MADT [Meng et al.,
2021] formulated offline MARL as return-conditioned supervised learning, and use a similar structure
to a previous transformer-based offline RL work [Chen et al., 2021]. However, offline MADT learns
an independent model for each agent without modeling agent interactions; it relies on the gradient
from centralized critics during online fine-tuning to integrate global information into each agent’s
decentralized policy. MADIFF not only avoids the problem of extrapolation error, but also achieves
the modeling of collaborative information while allowing CTDE in a completely offline training
manner.

Diffusion Models for Decision-Making. There is a recent line of work applying diffusion models
(DMs) to decision-making problems such as RL and imitation learning. Janner et al. [2022] design
a diffusion-based trajectory generation model and train a value function to sample high-rewarded
trajectories. A consequent work [Ajay et al., 2023] takes conditions as inputs to the DM, thus bringing
more flexibility that generates behaviors that satisfy combinations of diverse conditions. Another
line of work [Wang et al., 2022, Hansen-Estruch et al., 2023, Kang et al., 2024] uses the DM as a
form of policy, i.e., generating actions conditioned on states, and the training objective behaves as a
regularization under the framework of TD-based offline RL algorithms. Different from the above,
SynthER [Lu et al., 2024] adopts the DM to upsample the rollout data to facilitate learning of any
RL algorithms. All of these existing methods focus on solving single-agent tasks. The proposed
MADIFF is structurally similar to Ajay et al. [2023], but includes effective modules to model agent
coordination in MAL tasks.

Opponent Modeling in MARL. Our modeling of teammates can be placed under the larger frame-
work of opponent modeling, which refers to the process by which an agent tries to infer the behaviors
or intentions of other agents using its local information. There is a rich literature on utilizing opponent
modeling in online MARL. Rabinowitz et al. [2018] used meta-learning to build three models, and
can adapt to new agents after observing their behavior. SOM [Raileanu et al., 2018] uses the agent’s
own goal-conditioned policy to infer other agents’ goals from a maximum likelihood perspective.
LIAM [Papoudakis et al., 2021] extracts representations of other agents with variational auto-encoders
conditioned on the controlled agent’s local observations. Considering the impact of the ego agent’s
policy on other agents’ policies, LOLA [Foerster et al., 2017] and following works [Willi et al.,
2022, Zhao et al., 2022] instead model the parameter update of the opponents. Different from these
methods, MADIFF can use the same generative model to jointly output plans of its own trajectory
and predictions of other agents’ trajectories and is shown to be effective in offline settings.

5 Experiments

In experiments, we are aiming at excavating the ability of MADIFF in modeling the complex
interactions among cooperative agents, particularly, whether MADIFF is able to (i) generate high-
quality multi-agent trajectories; (ii) appropriately infer teammates’ behavior; (iii) learn effective,
coordinated policies from offline data.

5.1 Task Descriptions

We conduct experiments on multiple commonly used multi-agent testbeds.

• Multi-agent particle environments (MPE) [Lowe et al., 2017]: multiple 2D particles cooperate
to achieve a common goal. Spread, three agents start at some random locations and have to cover
three landmarks without collisions; Tag, three predators try to catch a pre-trained prey opponent

6

Table 1: The average score on offline MARL tasks. Shaded columns represent our methods. The
mean and standard error are computed over 5 different seeds.

Testbed Task Dataset BC MA-ICQ MA-TD3+BC MA-CQL OMAR MADT MADIFF-D MADIFF-C

MPE

Spread

Expert 35.0 ± 2.6 104.0 ± 3.4 108.3 ± 3.3 98.2 ± 5.2 114.9± 2.6 - 95.0 ± 5.3 116.7± 3.0
Md-Replay 10.0 ± 3.8 13.6 ± 5.7 15.4 ± 5.6 20.0 ± 8.4 37.9± 12.3 - 30.3 ± 2.5 42.2± 8.1

Medium 31.6 ± 4.8 29.3 ± 5.5 29.3 ± 4.8 34.1 ± 7.2 47.9 ± 18.9 - 64.9± 7.7 58.2 ± 1.7
Random -0.5 ± 3.2 6.3 ± 3.5 9.8 ± 4.9 24.0 ± 9.8 34.4± 5.3 - 6.9 ± 3.1 4.3 ± 2.6

Tag

Expert 40.0 ± 9.6 113.0 ± 14.4 115.2 ± 12.5 93.9 ± 14.0 116.2 ± 19.8 - 120.9± 14.6 167.6± 18.6
Md-Replay 0.9 ± 1.4 34.5 ± 27.8 28.7 ± 20.9 24.8 ± 17.3 47.1 ± 15.3 - 62.3± 9.2 95.0± 9.7

Medium 22.5 ± 1.8 63.3 ± 20.0 65.1 ± 29.5 61.7 ± 23.1 66.7 ± 23.2 - 77.2± 10.4 132.9± 15.0
Random 1.2 ± 0.8 2.2 ± 2.6 5.7 ± 3.5 5.0 ± 8.2 11.1± 2.8 - 3.2 ± 4.0 10.7 ± 4.0

World

Expert 33.0 ± 9.9 109.5 ± 22.8 110.3 ± 21.3 71.9 ± 28.1 110.4 ± 25.7 - 122.6± 14.4 174.0± 16.8
Md-Replay 2.3 ± 1.5 12.0 ± 9.1 17.4 ± 8.1 29.6 ± 13.8 42.9 ± 19.5 - 57.1± 10.7 83.0± 4.4

Medium 25.3 ± 2.0 71.9 ± 20.0 73.4 ± 9.3 58.6 ± 11.2 74.6 ± 11.5 - 123.5± 4.5 158.2± 6.3
Random -2.4 ± 0.5 1.0 ± 3.2 2.8 ± 5.5 0.6 ± 2.0 5.9± 5.2 - 2.0 ± 3.0 8.1± 3.5

MA
Mujoco

2halfcheetah
Good 6846 ± 574 - 7025 ± 439 - 1434 ± 1903 - 8246± 342 8514± 336

Medium 1627 ± 187 - 2561± 82 - 1892 ± 220 - 2207 ± 23 2203± 65
Poor 465 ± 59 - 736 ± 72 - 384 ± 420 - 759± 18 760± 15

2ant
Good 2697 ± 267 - 2922 ± 194 - 464 ± 469 - 2946± 77 3069± 60

Medium 1145 ± 126 - 744 ± 283 - 799 ± 186 - 1211± 69 1243± 37
Poor 954 ± 80 - 1256± 122 - 857 ± 73 - 946 ± 66 1038 ± 26

4ant
Good 2802 ± 133 - 2628 ± 971 - 344 ± 631 - 3080± 38 3068± 44

Medium 1617 ± 153 - 1843± 494 - 929 ± 349 - 1649 ± 100 1871± 52
Poor 1033 ± 122 - 1075 ± 96 - 518 ± 112 - 1295± 57 1353± 44

SMAC

3m
Good 16.0 ± 1.0 18.8 ± 0.6 - 19.6± 0.3 - 19.1 ± 0.5 19.3 ± 0.6 19.9± 0.1

Medium 8.2 ± 0.8 18.1 ± 0.7 - 18.9± 0.7 - 15.8 ± 0.4 17.3 ± 0.5 18.1± 0.6
Poor 4.4 ± 0.1 14.4± 1.2 - 5.8 ± 0.4 - 4.4 ± 0.3 9.6 ± 1.7 9.5 ± 0.5

2s3z
Good 18.2 ± 0.4 19.6± 0.3 - 19.0 ± 0.8 - 19.3 ± 0.2 19.6± 0.3 19.7± 0.3

Medium 12.3 ± 0.7 17.2 ± 0.6 - 14.3 ± 2.0 - 15.0 ± 0.6 17.4± 0.2 17.6± 0.3
Poor 6.7 ± 0.3 12.1± 0.4 - 10.1 ± 0.7 - 7.0 ± 0.3 9.8 ± 0.2 10.4 ± 0.7

5m6m
Good 16.6 ± 0.6 16.3 ± 0.9 - 13.8 ± 3.1 - 16.7 ± 0.1 17.8± 0.8 18.0± 0.8

Medium 12.4 ± 0.9 15.3 ± 0.7 - 17.0 ± 1.2 - 16.6 ± 0.2 17.3± 0.5 18.0± 0.8
Poor 7.5 ± 0.2 9.4 ± 0.4 - 10.4± 1.0 - 7.8 ± 0.4 8.9 ± 0.2 10.3 ± 1.3

8m
Good 16.7 ± 0.4 19.6± 0.3 - 11.3 ± 6.1 - 18.4 ± 0.3 19.2 ± 0.1 19.8± 0.4

Medium 10.7 ± 0.5 18.6 ± 0.5 - 16.8 ± 3.1 - 18.5 ± 0.3 18.9± 0.9 19.4± 0.9
Poor 5.3 ± 0.1 10.8± 0.8 - 4.6 ± 2.4 - 4.7 ± 0.1 5.1 ± 0.1 5.1 ± 0.1

that moves faster and needs cooperative containment; World, also requires three predators to catch
a pre-trained prey, whose goal is to eat the food on the map while not getting caught, and the map
has forests that agents can hide and invisible from the outside.

– Datasets: we use the offline datasets constructed by Pan et al. [2022], including four datasets
collected by policies of different qualities trained by MATD3 [Ackermann et al., 2019],
namely, Expert, Medium-Replay (Md-Replay), Medium and Random.

• Multi-Agent Mujoco (MA Mujoco) [Peng et al., 2021]: independent agents control different
subsets of a robot’s joints to run forward as fast as possible. We use three configurations: 2-agent
halfcheetah (2halfcheetah), 2-agent ant (2ant), and 4-agent ant (4ant).

– Datasets: we use the off-the-grid offline dataset [Formanek et al., 2023], including three
datasets with different qualities for each robot control task, e.g., Good, Medium, and Poor.

• StarCraft Multi-Agent Challenge (SMAC) [Samvelyan et al., 2019]: a team of either homoge-
neous or heterogeneous units collaborates to fight against the enemy team that is controlled by the
hand-coded built-in StarCraft II AI. We cover four maps: 3m, both teams control three Marines;
2s3z, both teams control two Stalkers and 3 Zealots; 5m_vs_6m (5m6m), requires controlling five
Marines and the enemy team has six Marines; 8m, both teams control eight Marines.

– Datasets: we use the off-the-grid offline dataset [Formanek et al., 2023], including three
datasets with different qualities for each map, e.g., Good, Medium, and Poor.

• Multi-Agent Trajectory Prediction (MATP): different from the former offline MARL challenges
which should learn the policy for each agent, the MATP problem only requires predicting the future
behaviors of all agents, and no decentralized model is needed.

– NBA dataset: the dataset consists of various basketball players’ recorded trajectories from
631 games in the 2015-16 season. Following Alcorn and Nguyen [2021], we split 569/30/32
training/validation/test games, with downsampling from 25 Hz to 5Hz. Different from MARL
tasks, other information apart from agents’ historical trajectories is available for making
predictions, including the ball’s historical trajectories, player ids, and a binary variable
indicating the side of each player’s frontcourt. Each term is encoded and concatenated with
diffusion time embeddings as side inputs to each U-Net block.

7

5.2 Compared Baselines and Metrics

For offline MARL experiments, we use the episodic return obtained in online rollout as the perfor-
mance measure. We include MA-ICQ [Yang et al., 2021] and MA-CQL [Kumar et al., 2020] as
baselines on all offline RL tasks. On MPE, we also include OMAR and MA-TD3+BC [Fujimoto and
Gu, 2021] in baseline algorithms and use the results reported by Pan et al. [2022]. On MA Mujoco,
baseline results are adopted from Formanek et al. [2023]. On SMAC, we include MADT [Meng et al.,
2021] as a sequence modeling baseline, while other baseline results are reported by Formanek et al.
[2023]. We implement independent behavior cloning (BC) as a naive supervised learning baseline.

We use distance-based metrics including average displacement error (ADE) 1
L·N

∑L
t=1

∑N
i=1 ∥ôit −

oit∥ and final displacement error (FDE) 1
N

∑N
i=1 ∥ôiL−oiL∥, where L is the prediction length [Li et al.,

2020]. We also report minADE20 and minFDE20 as additional metrics to balance the stochasticity
in sampling, which are the minimum ADE and FDE among 20 predicted trajectories, respectively.
We compare MADIFF with Baller2Vec++ [Alcorn and Nguyen, 2021], an autoregressive MATP
algorithm based on the transformer structure and specifically designed for the NBA dataset.

5.3 Numerical Results

We reported the numerical results both for the CTDE version of MADIFF (denoted as MADIFF-
D) and the centralized version MADIFF (MADIFF-C). For offline MARL, since baselines are
tested in a decentralized style, i.e., all agents independently decide their actions with only local
observations, MADIFF-C is not meant to be a fair comparison but to show if MADIFF-D fills the
gap for coordination without global information. For MATP, due to its centralized prediction nature,
MADIFF-C is the only variant involved.

Offline MARL. As listed in Table 1, MADIFF-D achieves the best result on most of the datasets.
Similar to the single-agent case, direct supervised learning (BC) on the dataset behaves poorly when
datasets are mixed quality. Offline RL algorithms such as MA-CQL that compute conservative values
have a relatively large drop in performance when the dataset quality is low. Part of the reason may
come from the fact that those algorithms are more likely to fall into local optima in multi-agent
scenarios [Pan et al., 2022]. Thanks to the distributional modeling ability of the DM, MADIFF-D
generally obtains better or competitive performance compared with OMAR [Pan et al., 2022] without
any design for avoiding bad local optima similar to Pan et al. [2022]. On SMAC tasks, MADIFF-D
achieves comparable performances, although it is slightly degraded compared with MADIFF-C.

MATP on the NBA dataset. In Table 2, when comparing ADE and FDE, MADIFF-C significantly
outperforms the baseline; however, our algorithm only slightly beats baseline for minADE20, and
has higher minFDE20. We suspect the reason is that Baller2Vec++ has a large prediction variance.
When Baller2Vec++ only predicts one trajectory, a few players’ trajectories deviate from the truth so
far that deteriorate the overall ADE and FDE. When allowing to sample 20 times and calculating
the minimum ADE/FDE according to the ground truth, Baller2Vec++ can choose the best trajectory
for every single agent, which makes minADE20 and minFDE20 significantly smaller than one-shot
metrics. However, considering it may be not practical to select the best trajectories without access
to the ground truth, MADIFF-C is much more stable than Baller2Vec++. Predicted trajectories of
MADIFF-C and Baller2Vec++ are provided in the Appendix Section H.4.

Table 2: Multi-agent trajectory prediction re-
sults on NBA dataset across 3 seeds, given
the first step of all agents’ positions.

Traj. Len. Metric Baller2Vec++ MADIFF-C

20

ADE 15.15 ± 0.38 7.92 ± 0.86
FDE 24.91 ± 0.68 14.06 ± 1.16

minADE20 5.62 ± 0.05 5.20 ± 0.04
minFDE20 5.60 ± 0.12 7.61 ± 0.19

64

ADE 32.07 ± 1.93 17.24 ± 0.80
FDE 44.93 ± 3.02 26.69 ± 0.13

minADE20 14.72 ± 0.53 11.40 ± 0.06
minFDE20 10.41 ± 0.36 11.26 ± 0.26

: Landmarks : Planning agent : Other agents

Inconsistent

Consistent

Env Step

C
on

si
st

en
t

R
at

io

Figure 2: Visualization of an episode in the Spread
task. Solid lines are real rollouts, and dashed lines
are DM-planned trajectories.

8

5.4 Qualitative Analysis on Teammate modeling

We discuss the quality of teammate modeling as mentioned in Section 3.3 and how it is related to the
decentralized execution scenario. In Figure 2 left, we visualize an episode generated by MADIFF-D
trained on the Expert dataset of Spread task. The top and bottom rows are snapshots of entities’
positions on the initial and intermediate time steps. The three rows from left to right in each column
represent the perspectives of the three agents, red, purple, and green, respectively. Dashed lines are
the planned trajectories for the controlled agent and other agents output by DMs, and solid lines are
the real rollout trajectories. We observe that at the start, the red agent and the purple agent generate
inconsistent plans, where both agents decide to move towards the middle landmark and assume the
other agent is going to the upper landmark. At the intermediate time step, when the red agent is
close to the middle landmark while far from the uppermost ones, the purple agent altered the planned
trajectories of both itself and the red teammate, which makes all agents’ plans consistent with each
other. This particular case indicates that MADIFF is able to correct the prediction of teammates’
behaviors during rollout and modify each agent’s own desired goal correspondingly.

In Figure 2 right, we demonstrate that such corrections of teammate modeling are common and can
help agents make globally coherent behaviors. We sample 100 episodes with different initial states
and define Consistent Ratio at some time step t as the proportion of episodes in which the three agents
make consistent planned trajectories. We plot the curve up to step t = 9, which is approximately
halfway through the episode length limit in MPE. The horizontal red line represents how many
portions of the real rollout trajectories are consistent at step t = 9. The interesting part is that the
increasing curve reaches the red line before t = 9, and ends up even higher. This indicates that the
planned teammates’ trajectories are guiding the multi-agent interactions beforehand, which is a strong
exemplar of the benefits of MADIFF’s teammate modeling abilities. We also include visualizations
of imagined teammate observation sequences in SMAC 3m task in the Appendix Section H.3.

5.5 Ablation Study

Our key argument is that the great coordination ability of MADIFF is brought by the attention
modules among individual agents’ diffusion networks. We validate this insight through a set of
ablation experiments on MPE. We compare MADIFF-D with independent DMs, i.e., each agent
learns from corresponding offline data using independent U-Nets without attention. We denote this
variant as MADIFF-D-Ind. In addition, we also ablate the choice of whether each agent should share
parameters of their basic U-Net, noted as Share or NoShare. Without causing ambiguity, we omit the
name of MADIFF, and notate the different variants as D-Share, D-NoShare, Ind-Share, Ind-NoShare.

Expert Md-Replay Medium Random0

20

40

60

80

100

Av
er

ag
e

No
rm

al
ize

d
Sc

or
e

Spread

Expert Md-Replay Medium Random0

20

40

60

80

100

120

140

Av
er

ag
e

No
rm

al
ize

d
Sc

or
e

Tag
D-Share (Default)
D-NoShare

Ind-Share
Ind-NoShare

Expert Md-Replay Medium Random0

20

40

60

80

100

120

140

Av
er

ag
e

No
rm

al
ize

d
Sc

or
e

World

Figure 3: The average normalized score of MADIFF ablation variants in MPE tasks. The mean and
standard error are computed over 5 different seeds.

As is obviously observed in Figure 3, with attention modules, MADIFF-D significantly exceeds that
of the independent version on most tasks, justifying the importance of inter-agent attentions. The
advantage of MADIFF-D is more evident when the task becomes more challenging and the data
becomes more confounded, e.g., results on World, where the gap between centralized and independent
models is larger, indicating the difficulty of solving offline coordination with independently trained
models. As for the parameter sharing choice, the performance of MADIFF-D-Share and MADIFF-
D-NoShare is similar overall. Since MADIFF-D-Share has fewer parameters, we prefer MADIFF-
D-Share, and use it as the default variant to be reported in Table 1. Another advantage of sharing
U-Net parameters is that the trajectories of various agents can be batched together and fed through
the network. This not only decreases sampling time but also renders it insensitive to an increasing
number of agents. We provide a specific example in Appendix Section G.4.

9

5.6 Limitations

Scalability to many agents. MADIFF-D requires each agent to infer all teammates’ future trajectories,
which is difficult and unnecessary in environments with a large number of agents. Although we
have done experiments on a maximum number of 8 agents (SMAC 8m), MADIFF-D is in general
not suitable for scenarios with tens or hundreds of agents. A potential solution is to infer a latent
representation of teammates’ trajectories.

Applicability in highly stochastic environments. Several theoretical and empirical studies [Paster
et al., 2022, Brandfonbrener et al., 2022, Chen et al., 2021] have demonstrated that in offline RL,
sequence modeling algorithms tend to underperform Q-learning-based algorithms in environments
with high stochasticity. This is primarily because sequence modeling algorithms are more susceptible
to high-reward offline trajectories that are achieved by chance. Since MADIFF is a sequence modeling
algorithm, it shares this weakness. To assess how much MADIFF is affected by environmental
stochasticity, we conducted experiments on the terran_5_vs_5 map in SMACv2 [Ellis et al., 2022].
The design principle of SMACv2 is to add stochasticity to the original SMAC environment, including
randomized initial positions and unit types. We conducted experiments under four settings: the
original version, without position randomness, without unit type randomness, and without both kinds
of randomness. MADIFF performs worse than the Q-learning-based method only when both kinds
of stochasticity are present. In all settings, MADIFF outperforms the sequence modeling baseline.
Detailed experimental settings and results can be found in Appendix Section H.1.

6 Conclusion

In this paper, we propose MADIFF, a novel generative multi-agent learning framework, which is
realized with an attention-based diffusion model designed to model the complex coordination among
multiple agents. To our knowledge, MADIFF is the first diffusion-based offline multi-agent learning
algorithm, which behaves as both a decentralized policy and a centralized controller including
teammate modeling, and can be used for multi-agent trajectory prediction. Our experiments indicate
strong performance compared with a set of recent offline MARL baselines on a variety of tasks.

Acknowledgements

The SJTU team is partially supported by National Key R&D Program of China (2022ZD0114804),
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102) and National
Natural Science Foundation of China (62322603, 62076161).

References
Johannes Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reducing overestimation

bias in multi-agent domains using double centralized critics. arXiv preprint arXiv:1910.01465,
2019.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision-making? International Conference on
Learning Representations, 2023.

Michael A Alcorn and Anh Nguyen. baller2vec++: A look-ahead multi-entity transformer for
modeling coordinated agents. arXiv preprint arXiv:2104.11980, 2021.

Itamar Arel, Cong Liu, Tom Urbanik, and Airton G Kohls. Reinforcement learning-based multi-agent
system for network traffic signal control. IET Intelligent Transport Systems, 4(2):128–135, 2010.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When does
return-conditioned supervised learning work for offline reinforcement learning? arXiv preprint
arXiv:2206.01079, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

10

Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N Fo-
erster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2212.07489, 2022.

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326, 2017.

Claude Formanek, Asad Jeewa, Jonathan Shock, and Arnu Pretorius. Off-the-grid marl: a framework
for dataset generation with baselines for cooperative offline multi-agent reinforcement learning.
arXiv preprint arXiv:2302.00521, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pages 9902–9915.
PMLR, 2022.

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. arXiv
preprint arXiv:2108.01832, 2021.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho Choi. Evolvegraph: Multi-agent trajectory
prediction with dynamic relational reasoning. Advances in neural information processing systems,
33:19783–19794, 2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Advances
in Neural Information Processing Systems, 36, 2024.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One
big sequence model tackles all smac tasks. arXiv e-prints, pages arXiv–2112, 2021.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

11

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline multi-
agent reinforcement learning with actor rectification. In International Conference on Machine
Learning, pages 17221–17237. PMLR, 2022.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial
observability for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:19210–19222, 2021.

Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why decision transformers
and rvs fail in stochastic environments. Advances in neural information processing systems, 35:
38966–38979, 2022.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew Botvinick.
Machine theory of mind. In International conference on machine learning, pages 4218–4227.
PMLR, 2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself
in multi-agent reinforcement learning. In International conference on machine learning, pages
4257–4266. PMLR, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pages 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xihuai Wang, Zheng Tian, Ziyu Wan, Ying Wen, Jun Wang, and Weinan Zhang. Order matters:
Agent-by-agent policy optimization. In The Eleventh International Conference on Learning
Representations, 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
agent reinforcement learning is a sequence modeling problem. Advances in Neural Information
Processing Systems, 35:16509–16521, 2022.

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent learning
with opponent-learning awareness. In International Conference on Machine Learning, pages
23804–23831. PMLR, 2022.

Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Müller. Learning to combat
compounding-error in model-based reinforcement learning. arXiv preprint arXiv:1912.11206,
2019.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

12

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

Stephen Zhao, Chris Lu, Roger B Grosse, and Jakob Foerster. Proximal learning with opponent-
learning awareness. Advances in Neural Information Processing Systems, 35:26324–26336, 2022.

13

A Outline

In this appendix, we provide a table to explain the main notations we used in Section B. In Section C,
we give the pseudocode of multi-agent planning and multi-agent trajectory prediction with MADIFF
model. In Section D, we demonstrate how multiple agents’ trajectories are modeled by MADIFF
during centralized control and decentralized execution in an example three-agent environment. In
Section E, we give additional information on offline datasets, including how they are collected,
violin plots of return distributions, and a minor issue of MPE dataset. In Section F, we briefly
describe the implementation of baseline algorithms and links to related resources. In Section G, we
provide details of the experiments, including the normalization used to compute the average score,
the detailed network illustration unrolling each agent’s U-Net, crucial hyperparameters, and examples
of wall-clock time and resources required for training and sampling from MADIFF. In Section H, we
demonstrate and analyze additional experimental results. Specifically, we provide experiment results
on SMACv2 to demonstrate how much MADIFF is affected by environmental stochasticity. We also
provide ablation results to support the effectiveness of teammate modeling in MADIFF-D, show the
quality of teammate modeling by MADIFF-D on SMAC tasks, and visualize predicted multi-player
trajectories by MADIFF and the baseline algorithm on the NBA dataset.

B Notations

Table 3: List of main notations used in the paper.

Notation Description
S,A,Ω state, action, and local observation spaces

γ the discounted factor
N number of controlled agents
st state at step t

ait, o
i
t action and local observation of agent i at environment step t

at,ot joint action and observation of all agents at environment step t
r(s,a) shared reward function

τ joint trajectory of all agents
y(τ) additional conditioning information
ϕ parameters of the inverse dynamics model
θ parameters of the diffusion model

x̃i
k,t noised observation of agent i at diffusion step k and environment step t

x̃k,t noised joint observation at diffusion step k and environment step t
ôit predicted observation of agent i at environment step t
τ̂k noised joint trajectory of all agents at diffusion step k
hi
t historical trajectory of agent i up to environment step t

ht historical joint trajectory of all agents up to environment step t

C Algorithm

D Illustration of Multi-agent Trajectory Modeling

To provide a better understanding of how multiple agents’ observations are modeled by MADIFF
in centralized control and decentralized execution scenarios, we show illustrative examples in a
typical three-agent environment in Figure 4. If the environment allows for centralized control, we
can condition MADIFF on all agents’ historical and current observations, and let the model sample
all agents’ future trajectories as a single sample, as shown in Figure 4a. Then the current and next
observations are sent to the inverse dynamics model for action prediction. If only decentralized
execution is permitted, as shown in Figure 4b, agent 1 can only condition the model on its own
information. The historical and current observations of other agents are masked when performing
conditioning. MADIFF now not only generates agent 1’s own future trajectories but also predicts the

14

Algorithm 1 Multi-Agent Planning with MADIFF

1: Input: Noise model ϵθ, inverse dynamics Iϕ, guidance scale ω, history length C, condition y
2: Initialize h← Queue(length = C); t← 0 // Maintain a history of length C
3: while not done do
4: Observe joint observation o; h.insert(o); Initialize τK ∼ N (0, αI)
5: for k = K . . . 1 do
6: τk[: length(h)]← h // Constrain plan to be consistent with history
7: if Centralized control then
8: ϵ̂← ϵθ(τk, k) + ω(ϵθ(τk,y, k)− ϵθ(τk, k)) // Classifier-free guidance
9: (µk−1,Σk−1)← Denoise(τk, ϵ̂)

10: else if Decentralized execution then
11: for agent i ∈ {1, 2, . . . , N} do
12: ϵ̂i ← ϵiθ(τ

i
k, k) + ω(ϵiθ(τ

i
k, y

i, k)− ϵiθ(τ
i
k, k)) // Classifier-free guidance

13: (µi
k−1,Σ

i
k−1)← Denoise(τ i

k, ϵ̂
i)

14: end for
15: end if
16: τk−1 ∼ N (µk−1, αΣk−1)
17: end for
18: Extract (ot,ot+1) from τ0
19: for agent i ∈ {1, 2, . . . , N} do
20: ai

t ← fϕi(oit, o
i
t+1)

21: end for
22: Execute at in the environment; t← t+ 1
23: end while

Algorithm 2 Multi-Agent Trajectory Prediction with MADIFF

1: Input: Noise model ϵθ, guidance scale ω, condition y, historical joint observations h with length
C, predict horizon H

2: Initialize τK ∼ N (0, αI)
3: for k = K . . . 1 do
4: τk[: C]← h // Constrain prediction to be consistent with history
5: ϵ̂← ϵθ(τk, k) + ω(ϵθ(τk,y, k)− ϵθ(τk, k)) // Classifier-free guidance
6: (µk−1,Σk−1)← Denoise(τk, ϵ̂)
7: τk−1 ∼ N (µk−1, αΣk−1)
8: end for
9: Extract prediction (oC ,oC+1, . . . ,oC+H−1) from τ0

current and future observations of the other two agents. Due to the joint modeling of all agents during
training, such predictions are also reasonable and can be considered as a form of teammate modeling
from agent 1’s perspective. Although teammate modeling is not directly used in generating agent 1’s
ego actions, it can help agent 1 refine its planned trajectories to be consistent with the predictions of
others.

E Additional Information on offline datasets

E.1 MPE Datasets

For MPE experiments, we use datasets and a fork of environment2 provided by OMAR [Pan et al.,
2022]. They seem to be using an earlier version of MPE where agents can receive different rewards.
For example, in the Spread task, team reward is defined using the distance of each landmark to its
closest agent, which is the same for all agents. But when an agent collides with others, it will receive
the team reward minus a penalty term. The collision reward has been brought into the team reward
in the official repository since this commit3. However, the fork provided by OMAR still uses a

2https://github.com/ling-pan/OMAR
3https://github.com/openai/multiagent-particle-envs/commit/

6ed7cac026f0eb345d4c20232bafa1dc951c68e7

15

https://github.com/ling-pan/OMAR
https://github.com/openai/multiagent-particle-envs/commit/6ed7cac026f0eb345d4c20232bafa1dc951c68e7
https://github.com/openai/multiagent-particle-envs/commit/6ed7cac026f0eb345d4c20232bafa1dc951c68e7

Time steps

History
Horizon Horizon

Current
Time step

Agent 0

Agent 1

Agent 2

(a) MADIFF in centralized control.

Time steps

History
Horizon Horizon

Current
Time step

Agent 0

Agent 1

Agent 2

: Masked Observations

: Generated Observations

: Conditioned Observations

(b) MADIFF in decentralized execution.

Figure 4: Illustration of how agents’ observations are modelled by MADIFF in a three-agent environ-
ment. Note that figure (b) shows the situation when Agent 1 is taking action during decentralized
execution.

legacy version. For fair and proper comparisons, we use OMAR’s dataset and environment where all
baseline models are trained and evaluated.

We have to note that different rewards for agents only happen at very few steps, which might not
contradict the fully cooperative setting much. For example, OMAR’s expert split of the Spread
dataset consists of 1M steps, and different rewards are recorded only at less than 1.5% (14929) steps.

E.2 MA Mujoco Datasets

For MA Mujoco experiments, we adopt the off-the-grid dataset Formanek et al. [2023] and use Good,
Medium and Poor datasets for each task. Each dataset is collected by three independently trained
MA-TD3 policies, and a small amount of exploration noise is added to the policies for enhanced
behavioral diversity.

For visualizations of the distribution of episode returns in each dataset, we provide violin plots of all
datasets we used in Figure 5.

E.3 SMAC Datasets

For SMAC experiments, we adopt the off-the-grid dataset [Formanek et al., 2023] and use Good,
Medium and Poor datasets for each map. Each dataset is collected by three independently trained
QMIX policies, and a small amount of exploration noise is added to the policies for enhanced
behavioral diversity.

For visualizations of the distribution of episode returns in each dataset, we provide violin plots of all
datasets we used in Figure 6.

F Baseline Implementations

Here we briefly describe how the baseline algorithms are implemented. For MATP experiments,
we use the implementation from the official repository of Baller2Vec++4. Baseline results on MPE
datasets are borrowed from Pan et al. [2022]. According to their paper, they build all algorithms upon
a modified version of MADDPG5, which uses decentralized critics for all methods. Baselines on
SMAC datasets are implemented by Formanek et al. [2023], and the performances are adopted from
their reported benchmark results. The open-sourced implementation and hyperparameter settings can
be found in the official repository6.

4https://github.com/airalcorn2/baller2vecplusplus
5https://github.com/shariqiqbal2810/maddpg-pytorch
6https://github.com/instadeepai/og-marl

16

https://github.com/airalcorn2/baller2vecplusplus
https://github.com/shariqiqbal2810/maddpg-pytorch
https://github.com/instadeepai/og-marl

Poor Medium Good

0

2000

4000

6000

8000

Ep
iso

de
 R

et
ur

ns

(a) MA Mujoco 2halfcheetah.

Poor Medium Good

0

1000

2000

3000

Ep
iso

de
 R

et
ur

ns

(b) MA Mujoco 2ant.

Poor Medium Good
500

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

et
ur

ns

(c) MA Mujoco 4ant.

Figure 5: Violin plots of returns in MA Mujoco datasets.

G Implementation Details

G.1 Score Normalization

The average scores of MPE tasks in Table 1 are normalized by the expert and random scores on each
task. Denote the original episodic return as S, then the normalized score Snorm is computed as

Snorm = 100× (S − Srandom)/(Sexpert − Srandom) ,

which follows Pan et al. [2022] and Fu et al. [2020]. The expert and random scores on Spread, Tag,
and World are {516.8, 159.8}, {185.6, -4.1}, and {79.5, -6.8}, respectively.

G.2 Detailed Network Architecture

In Figure 7, we unroll the U-Net structure of different agents.

We describe the computation steps of attention among agents in formal. Each agent’s local embedding
ci is passed through the key, value, and query network to form qi, ki, and vi, respectively. Then
the dot product with scaling is performed between all agents’ qi and ki, which is followed by a
Softmax operation to obtain the attention weight αij . Each αij can be viewed as the importance of
j-th agent to the i-th agent at the current time step. The second dot product is carried out between the
weight matrix and the value embedding vi to get ĉi after multi-agent feature interactions. Then ĉi is
skip-connected to the corresponding decoder block. The step-by-step computation of multi-agent

17

Poor Medium Good

0

5

10

15

20

Ep
iso

de
 R

et
ur

ns

(a) SMAC 3m.

Poor Medium Good

0

5

10

15

20

Ep
iso

de
 R

et
ur

ns

(b) SMAC 5m_vs_6m.

Poor Medium Good

0

5

10

15

20

Ep
iso

de
 R

et
ur

ns

(c) SMAC 2s3z.

Poor Medium Good

0

5

10

15

20

Ep
iso

de
 R

et
ur

ns

(d) SMAC 8m.

Figure 6: Violin plots of returns in SMAC datasets.

attention in MADIFF can be written as

qi = fquery(c
i), ki = fkey(c

i), vi = fvalue(c
i) ;

αij =
exp(qikj/

√
dk)∑N

p=1 exp(q
ikp/
√
dk)

;

ĉi =

N∑
j=1

αijvj ,

where dk is the dimension of ki.

G.3 Hyperparameters

We list the key hyperparameters of MADIFF we used in Table 4, Table 5, and Table 6. In all of
our experiments, we use a scaling factor of 0.5 and β of 0.25. Return scale is the normalization
factor used to divide the conditioned return before input to the diffusion model. The rough range
of the return scale can be determined by the return distributions of the training dataset. We only
tune the guidance weight ω, return scale, planning horizon H , and history horizon. We tried the
guidance weight of {1.0, 1.2, 1.4, 1.6}, and found that different choices do not significantly affect
final performances, we chose 1.2 for all experiments. For MPE tasks, we find it unnecessary to
condition on history observation sequence; thus, we set all history horizons to zero.

G.4 Computing Resources and Wall Time

The training of MADIFF does not involve an iterative process, and thus, the training time is not
related to the total number of diffusion steps. Thanks to the property that the sum of two independent

18

xx

...

... ...

...

Attention

Attention

Key Network

Scaled Dot Product + Softmax

...

...

...

...

...... ...

Dot Product

Attention

......

...

...
Query Network Value Network

Figure 7: The detailed architecture of MADIFF. Each agent’s U-Net is unrolled and lined up in the
horizontal direction.

Table 4: Hyperparameters of MADIFF on MPE datasets.

TestBed Spread Tag World
Dataset Expert Md-Replay Medium Random Expert Md-Replay Medium Random Expert Md-Replay Medium Random
Return scale 350 200 50 350 200 50 200 100 10
Learning rate 2e-4
Guidance scale ω 1.2
Planning horizon H 24
History horizon 0
Batch size 32
Diffusion steps K 200
Reward discount γ 0.99
Optimizer Adam Optimizer

Table 5: Hyperparameters of MADIFF on MA Mujoco datasets.
TestBed 2halfcheetah 4ant 2ant
Dataset Good Medium Poor Good Medium Poor Good Medium Poor
Return scale 1000 300 100 380 320 150 380 320 150
Learning rate 2e-4
Guidance scale ω 1.2
Planning horizon H 10
History horizon 18
Batch size 32
Diffusion steps K 200
Reward discount γ 0.99
Optimizer Adam Optimizer

Gaussian random variables remains a Gaussian, the multistep forward process can be written in a
closed form [Ho et al., 2020]:

q(τ̂k|τ0) = N (τ̂k;
√
ᾱtτ0, (1− ᾱt)I) . (9)

19

Table 6: Hyperparameters of MADIFF on SMAC datasets.
TestBed 3m 2s3z 5m6m 8m
Dataset Good Medium Poor Good Medium Poor Good Medium Poor Good Medium Poor
Return scale 20 8 20 12 20 10 20 8
Learning rate 2e-4
Guidance scale ω 1.2
Planning horizon H 4
History horizon 20
Batch size 32
Diffusion steps K 200
Reward discount γ 1.0
Optimizer Adam Optimizer

Therefore, the k-th step noisy trajectory in Equation (6) can be easily sampled from the Gaussian
distribution above without an iterative process. We provide a concrete example to illustrate the time
and resources required for training MADIFF. On a server equipped with an AMD Ryzen 9 5900X
(12 cores) CPU and an RTX 3090 GPU, we trained the MADIFF-C model on the Expert dataset
from the MPE Spread task, achieving convergence in approximately one hour. The curve depicting
Wall-clock time spent on training and the corresponding model performance is shown in Figure 8.

0 25 50 75 100 125 150
Wall-clock Time (min)

200

300

400

500

600

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

Figure 8: Wall-clock time and corresponding average episode return (average over 10 episodes)
during training MADIFF-C for MPE Spread task.

Table 7: The wall-clock time spent when generating multi-agent trajectories. We fix the dimension of
observation space to 88 and use DDIM of 15 steps during sampling. The history horizon is set to 20,
and the planning horizon is 8. The results are obtained on a server with an AMD Ryzen 9 5900X (12
cores) CPU and an RTX 3090 GPU, and are averaged over 1000 trials. The computation time does
not increase much with the number of agents thanks to GPU-accelerated computing.

Num. Agents (Incl. Ego) 8 16 32 64

Wall clock Time 124.25 ms 126.90 ms 127.65 ms 127.35 ms

In Table 7, we showcase the time required for sampling multi-agent trajectories with MADIFF as the
number of agents increases. We can see that the sampling time does not differ much when generating
different number of trajectories. Since we use shared U-Net models for all agents in our experiments,
different agents’ trajectories can be batched together and passed through the network. Therefore,
using GPU-accelerated computing, the second part does not cost much more time than predicting
each agent’s trajectory during inference.

H Additional Experimental Results

H.1 SMACv2 Experiments

To understand how much MADIFF is affected by environmental stochasticity, we conducted experi-
ments on the terran_5_vs_5 map in SMACv2 [Ellis et al., 2022]. SMACv2 is built upon SMAC with

20

a focus on higher stochasticity. Specifically, in SMACv2, the unit types and agent start positions are
randomized at the beginning of each episode. As each agent can only observe a nearby area, such
randomness results in increased stochasticity in environment transitions. There are two different
types of starting positions, reflect and surround. In reflect settings, the map is splitted into two sides.
Allied units and enemy units are randomly and uniformly spawned on different sides. In surround
settings, allied units are spawned at the center of the map, and enemy units are randomly stationed
along the four diagonals. In terran_5_vs_5, there are three different unit types: marine, marauder,
and medivac. The default sampling probabilities of these three types are 0.45, 0.45 and 0.1.

We design four settings with different degree of stochasicity: the original version, without position
randomness (w/o PR), without unit type randomness (w/o TR), and without both kinds of randomness
(w/o PR&TR). To reduce position randomness, we only use surrounding settings. Note that this does
not mean the staring positions of all units are fixed, since enemy units are still randomized along the
four diagonals. To remove unit type randomness, we set all units to be marines. The dataset for the
original version is the terran_5_vs_5 Replay dataset from Formanek et al. [2023]. Datasets for other
three stochasicity settings were collected by ourselves. We partially trained three MAPPO7 models in
each setting. Each model was then used to collect 500 episodes, resulting in a dataset comprising
1500 episodes for each setting.

Three algorithms are benchmarked under these four settings: MAICQ, which represents the state-
of-the-art in Q-learning-based algorithms; MADT, a representative multi-agent sequence modeling
baseline; and MADIFF-D. Results are presented in Table 8. We can see that MADIFF-D performs
worse than MAICQ only when both kinds of stochasticity are present. As the environmental
randomness diminishes, MADIFF-D’s performance gradually catches up with and surpasses MAICQ.
In all settings, MADIFF-D outperforms MADT.

Table 8: The average score on different settings of SMACv2 terran_5_vs_5. Shaded columns
represent our method. The mean and standard error are computed over 3 different seeds.

Setting MAICQ MADT MADIFF-D
Original 13.7± 1.7 8.2 ± 0.2 10.1 ± 0.8
w/o PR 16.0± 1.6 14.3 ± 0.8 16.1± 0.3
w/o TR 18.4± 0.5 14.6 ± 0.3 18.6± 0.2

w/o PR&TR 17.3 ± 0.3 16.8 ± 0.3 18.5± 0.2

H.2 Effectiveness of Teammate Modeling

To investigate whether teammate modeling can lead to performance improvements during decentral-
ized execution, we conduct ablation experiments on MPE Spread datasets. We compare MADIFF-D
with its variant that adopts the same network architecture but masks the diffusion loss on other agents’
trajectories during training. We denote the variant as MADIFF-D w/o TM. The results are presented
in Table 9, which show that teammate modeling results in notable performance improvements on all
four levels of datasets.

Table 9: Ablation results of teammate modeling on MPE Spread datasets across 3 seeds.

Dataset MADIFF-D w/o TM MADIFF-D
Expert 93.4 ± 3.6 98.4 ± 12.7

Medium 35.4 ± 6.6 53.2 ± 2.3
Md-Replay 17.7 ± 4.3 42.9 ± 11.6

Random 5.7 ± 3.1 19.4 ± 2.9

7https://github.com/marlbenchmark/on-policy

21

https://github.com/marlbenchmark/on-policy

H.3 Teammate Modeling on SMAC Tasks

We show and analyze the quality of teammate modeling by MADIFF-D on SMAC. Specifically, we
choose two time steps from an episode on 3m map to analyze predictions on allies’ attack targets and
health points (HP), respectively.

On top of Figure 9a is attacked enemy agent ID (0, 1, 2 stands for E0, E1, E2) of ally agents A0, A1,
and A2. The first row is the ground-truth ID, and the second and the third rows are the predictions
made by MADIFF-D from the other two allies’ views. We can see that the predictions are in general
consistent with the ground-truth ID. As can be seen from the true values of the attack enemy ID,
agents tend to focus their firepower on the same enemies at the same time. And the accurate prediction
of allies’ attack enemy IDs intuitively can help to execute such a strategy.

In Figure 9b, we visualize the HP change curve of ally agents starting from another time step. From
the environment state visualization below, agent A2 is the closest to enemies, so its HP drops the
fastest. Such a pattern is successfully predicted by the other two agents.

Attack Enemy ID

A0 A1 A2

(a) Ground-truth and predicted enemy’s ID to attack
by each ally agent.

Ally HP
A0 A1 A2

(b) Ground-truth and predicted health points (HP)
of each ally agent.

Figure 9: The ground-truth and predicted information of different MADIFF agents at two-time step.
On the top of each figure, each column describes a different agent. The first row shows the change
curve of the real value, and the last two rows below are the information predicted by other agents.

H.4 Predicted Trajectory Visualization on NBA Dataset

We visualize the players’ moving trajectories predicted by MADIFF-C and Baller2Vec++ on the
NBA dataset in Figure 10. In each image, the solid lines are real trajectories and the dashed lines are
trajectories predicted by the model. The trajectories predicted by MADiff-C are closer to the real
trajectories and are overall smoother compared to the Baller2Vec++ predictions.

22

MADiff-C

Baller2Vec++

Figure 10: Real and Predicted multi-player trajectories by MADIFF-C and Baller2Vec++.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect our contri-
butions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We point out the limitations of our method in Section 5.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

24

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We illustrate our model architecture in Figure 1 and list important hyper-
parameters in Appendix Section G.3. We also provide the source code in supplementary
materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code, anonymous data download link, and necessary instructions
in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental details in Section 5.1, Section 5.2, and Appendix
Section E, Section F, Section G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars in Table 1, Table 2, and Figure 3. Reported error bar is
standard deviation calculated over trials with different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide concrete instances of both training and sampling wall time and
resources of our algorithm in Appendix Section G.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed algorithm is a general solution for a wide range of offline multi-
agent learning problems. In our opinion, there is no specific societal impact that should be
stated explicitly.

Guidelines:

27

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited and mentioned open-sourced implementation we used in Appendix
Section F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not publicly release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Preliminaries
	Multi-agent Offline Reinforcement Learning
	Diffusion Probabilistic Models
	Diffusing Decision Making

	Methodology
	Multi-Agent Diffusion with Attention
	Centralized Training Objectives
	Centralized Control or Decentralized Execution

	Related Work
	Experiments
	Task Descriptions
	Compared Baselines and Metrics
	Numerical Results
	Qualitative Analysis on Teammate modeling
	Ablation Study
	Limitations

	Conclusion
	Outline
	Notations
	Algorithm
	Illustration of Multi-agent Trajectory Modeling
	Additional Information on offline datasets
	MPE Datasets
	MA Mujoco Datasets
	SMAC Datasets

	Baseline Implementations
	Implementation Details
	Score Normalization
	Detailed Network Architecture
	Hyperparameters
	Computing Resources and Wall Time

	Additional Experimental Results
	SMACv2 Experiments
	Effectiveness of Teammate Modeling
	Teammate Modeling on SMAC Tasks
	Predicted Trajectory Visualization on NBA Dataset

