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Summary
Reinforcement learning from human feedback (RLHF) aims to learn or fine-tune policies

via human preference data when a ground-truth reward function is not known. However, con-
ventional RLHF methods provide no performance guarantees and have an unacceptably high
probability of returning poorly performing policies. We propose Policy Optimization and
Safety Test for Policy Improvement (POSTPI), an algorithm that provides high-confidence
policy performance guarantees without direct knowledge of the ground-truth reward function,
given only a preference dataset. The user of the algorithm may select any initial policy πinit
and confidence level 1− δ, and POSTPI will ensure that the probability it returns a policy with
performance worse than πinit under the unobserved ground-truth reward function is at most δ.
We show theory as well as empirical results in the Safety Gymnasium suite that demonstrate
that POSTPI reliably provides the desired guarantee.

Contribution(s)
1. We formalize the problem of high-confidence policy improvement from human feedback

(HCPI-HF).
Context: Reinforcement learning from human feedback has been popular in recent years.
However, the problem of performing high-confidence policy improvement from human
preference data has not been formalized.

2. To address the HCPI-HF problem, we propose a novel algorithm Policy Optimization and
Safety Test for Policy Improvement (POSTPI), and demonstrate both theoretically and em-
pirically that POSTPI reliably provides the desired high-confidence policy improvement
guarantee.
Context: Prior work in RLHF (Brown et al., 2019b; 2020; Javed et al., 2021; Hejna et al.,
2024) do not address the HCPI-HF problem, and provide no performance guarantees on the
returned policy.

3. We propose a novel policy optimization objective that allows POSTPI to return a policy
with high probability when the initial policy is sub-optimal, and derive the gradient of this
objective.
Context: Unlike PG-BROIL (Javed et al., 2021), which optimizes the conditional value-
at-risk, we optimize the value-at-risk, and explicitly allow the objective to depend on the
user-provided initial policy.

4. We propose a novel method for computing high-confidence policy performance bounds in
the RLHF setting.
Context: Unlike a prior approach (Brown et al., 2020), which only considers the uncer-
tainty in the ground-truth reward function, our approach further considers the uncertainty in
using a finite number of rollouts to estimate the expected value of a policy.
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Abstract

Reinforcement learning from human feedback (RLHF) aims to learn or fine-tune poli-1
cies via human preference data when a ground-truth reward function is not known.2
However, conventional RLHF methods provide no performance guarantees and have3
an unacceptably high probability of returning poorly performing policies. We propose4
Policy Optimization and Safety Test for Policy Improvement (POSTPI), an algorithm5
that provides high-confidence policy performance guarantees without direct knowledge6
of the ground-truth reward function, given only a preference dataset. The user of the7
algorithm may select any initial policy πinit and confidence level 1−δ, and POSTPI will8
ensure that the probability it returns a policy with performance worse than πinit under9
the unobserved ground-truth reward function is at most δ. We show theory as well as10
empirical results in the Safety Gymnasium suite that demonstrate that POSTPI reliably11
provides the desired guarantee.12

1 Introduction13

In recent years, reinforcement learning (RL) has found success in many areas, including video14
games (Mnih et al., 2015; Vinyals et al., 2019), board games (Silver et al., 2016), and healthcare (Yu15
et al., 2023). These successes rely on the specification of an appropriate reward function that allows16
an agent to learn the desirable behavior. However, the translation of desirable behavior to an actual17
reward function can be difficult, especially for complex problems, and misspecified reward functions18
can lead to undesirable behavior such as reward hacking (Skalse et al., 2022; Pan et al., 2022).19

Reinforcement learning from human feedback (RLHF) is one popular technique to address this20
problem. Instead of relying on a pre-specified reward function, RLHF aims to learn or fine-tune a21
policy under a reward function inferred from human preference data. In light of its power to learn22
human-desired behavior from only human preferences, RLHF has found applications in many areas,23
such as improving RL policies (Christiano et al., 2017), fine-tuning large language models (Ouyang24
et al., 2022) and improving text-to-image models (Lee et al., 2023; Wu et al., 2023).25

However, RLHF still suffers from the following problems. First, optimizing with respect to a learned26
reward function for too long can hinder performance under the ground-truth reward function of the27
preference provider, known as over-optimization, since the learned reward function is often an im-28
perfect proxy (Gao et al., 2023). Second, even minor misalignment between human intent and the29
learned reward function can lead to severe performance loss (Zhuang & Hadfield-Menell, 2020).30
Unfortunately, misalignment can easily arise due to human errors, finite data, or biases in data col-31
lection (Casper et al.). In light of these issues, there are in general no guarantees that policies32
learned using RLHF will perform well under the ground-truth reward function. As we will demon-33
strate in experiments, state-of-the-art RLHF methods often return poorly performing policies with34
non-negligible probabilities. Furthermore, without access to the ground-truth reward function, we35
cannot evaluate the performance of the learned policies under it to decide whether to employ these36
policies. In safety-critical applications where a poorly performing policy can be dangerous, simply37
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employing policies learned from conventional RLHF methods can lead to undesirable outcomes.38
Therefore, an algorithm that returns a policy with high-confidence performance guarantees in the39
absence of the ground-truth reward function is especially important.40

To solve this problem, we propose Policy Optimization and Safety Test for Policy Improvement41
(POSTPI). POSTPI consists of two components: 1) candidate proposal, which proposes a candidate42
policy for the algorithm to return, and 2) the safety test, which evaluates whether the proposed policy43
is safe to return. The key idea is that the safety test acts as a gatekeeper that only accepts candidate44
policies that are deemed better than the initial policy under the ground-truth reward function with45
high confidence. When a candidate policy is not deemed better with sufficient confidence, the algo-46
rithm returns No Solution Found (NSF). Assuming a correct model of the preference data, given any47
initial policy and confidence level 1 − δ, POSTPI guarantees that the probability it returns a policy48
worse than the initial policy under the ground-truth reward function is at most δ. Given the form of49
this guarantee, POSTPI can be considered a type of Seldonian algorithm (Thomas et al., 2019).50

In the safety test, we propose a novel method of computing high-confidence performance bounds,51
which explicitly considers both the uncertainty in the ground-truth reward function, and the uncer-52
tainty associated with using rollouts to estimate the expected value of a policy. On the other hand,53
despite the high-confidence guarantee provided by POSTPI, if candidate proposal proposes policies54
that are likely to be rejected by the safety test, POSTPI returns NSF frequently and has little prac-55
tical use. To address this issue, we propose to optimize a novel objective for candidate proposal,56
which allows POSTPI to return a policy with high probability when the user-provided initial policy57
is sub-optimal. We provide a derivation of the gradient of this objective, which can be optimized58
with any policy gradient algorithms.59

We prove that POSTPI ensures policy improvement with high confidence and also compare our al-60
gorithm with several state-of-the-art RLHF algorithms on two domains from the Safety Gymnasium61
suite (Ji et al., 2023). We demonstrate empirically that out of the algorithms we tested, POSTPI is62
the only one that performs policy improvement at a user-specified probability level. Furthermore,63
we find empirically that most policies accepted by the safety test are improvements over the initial64
policy under the ground-truth reward function. To the best of our knowledge, our work is the first to65
ensure high-confidence policy improvement in the RLHF setting.66

2 Related Work67

2.1 Reinforcement Learning from Human Feedback68

Reinforcement learning from human feedback (RLHF) aims to learn or fine-tune a policy using only69
preferences over trajectories and has received much attention recently.70

RLHF typically involves two steps: 1) learning a reward function from preferences, which are usu-71
ally pairwise comparisons of possibly partial and sub-optimal trajectories, and 2) policy optimization72
using the learned reward function. Some work requires active query for human preferences (Chris-73
tiano et al., 2017; Lee et al., 2021a; Ibarz et al., 2018; Palan et al., 2019; Hejna & Sadigh, 2022;74
Shin et al., 2021; Lee et al., 2021b). Some consider learning a reward function from an offline75
dataset of preferences before using an RL algorithm for policy optimization. T-REX (Brown et al.,76
2019a) treats learning the reward function from an offline preference dataset as a supervised learn-77
ing problem, while B-REX infers a Bayesian posterior distribution over reward functions (Brown78
et al., 2020). D-REX and SSRR automatically generate preferences by injecting noise into trajecto-79
ries generated from a learned policy when preferences are not available (Brown et al., 2019b; Chen80
et al., 2020). Sikchi et al. (2023) utilize both an offline preference dataset and automatically gener-81
ated preferences. PG-BROIL builds on B-REX and optimizes a policy while taking the epistemic82
uncertainty in the reward into consideration (Javed et al., 2021). Recently, Hejna et al. (2024) and83
Rafailov et al. (2024) convert RLHF into a supervised learning task, circumventing the need to learn84
a reward function. However, none of these provide probabilistic guarantees on the performance of85
policies learned from only an offline and finite preference dataset. We propose an algorithm that86

2



High-Confidence Policy Improvement from Human Feedback

returns a policy that is not worse than the initial policy under the ground-truth reward function with87
high confidence, using only an offline and finite preference dataset.88

2.2 Safety in Reinforcement Learning89

In this subsection, we review the most closely related work in RL. The Seldonian framework focuses90
on providing safety guarantees with high confidence, where the definition of safety is chosen by91
the user of the algorithm (Thomas et al., 2019). Note that Seldonian algorithms are a class of92
algorithms, and there is no single algorithm that is referred to as the Seldonian algorithm. However,93
Seldonian algorithms typically involve candidate selection and safety test mechanisms. Candidate94
selection proposes a solution to be returned by the algorithm, while the safety test evaluates whether95
the proposed solution is safe to return. Seldonian algorithms allow users to specify the definition96
of safety, and provide high-confidence guarantees that a solution returned will not produce unsafe97
behavior. In this paper, we present an algorithm having a similar structure. However, unlike a typical98
Seldonian algorithm where the user provides the safety definition, we define safety as improvement99
with respect to a user-specified initial policy under the ground-truth reward function.100

Much work has considered computing high-confidence bounds in RL when a reward function is101
available. Thomas et al. (2015a) focus on providing high-confidence guarantees that the learned102
policy is not worse than a user-selected threshold. Other work focuses on high-confidence off-103
policy evaluation (Thomas et al., 2015b; Hanna et al., 2017). Chandak et al. (2021) consider the104
high-confidence off-policy estimation of the variance of returns. In the absence of a reward func-105
tion, Brown & Niekum (2018) provide high-confidence bounds of performance, but require solving106
an MDP in the inner loop. B-REX (Brown et al., 2020) provides a way to compute high-confidence107
performance bounds efficiently from high-dimensional visual trajectories in the RLHF setting. How-108
ever, B-REX has not considered using the computed bounds to guide a policy search. Furthermore,109
such bounds do not take the uncertainty of estimating the performance of a policy from rollouts into110
consideration. As we will demonstrate in experiments, these bounds can in fact be overly optimistic.111

3 Preliminaries112

3.1 Markov Decision Process113

We model the environment as a Markov decision process (MDP) (S,A, R, T, d0, γ), where S is the114
state space, A is the action space, R : S → R is the reward function, T : S × A × S → [0, 1] is115
the transition function, d0 is the initial state distribution, and γ is the discount factor. At every time116
step t, the agent observes the state St and selects an action At. After executing the action At, the117
environment transitions to St+1 and the agent receives a reward R(St). We consider a stochastic118
policy π mapping from states to a probability distribution over actions. We denote the expected119
value of a policy π under the reward function R by J(π,R) = Eπ[

∑∞
t=0 γ

tR(St)].120

3.2 RLHF121

In the RLHF setting, we do not have access to the ground-truth reward function, denoted as R∗,122
and are left with an MDP\R (S,A, T, d0, γ). We assume access to a labeled dataset of preferences123
over pairwise trajectories P = {τi ≺ τj}(i,j), where τj is preferred over τi. In order to provide our124
high-confidence guarantee, we need to reason about the epistemic uncertainty in the ground-truth125
reward function R∗ given the preference data P . To do this, we apply B-REX (Brown et al., 2020).126
B-REX, similar to Christiano et al. (2017), assumes that the preferences follow the Bradley-Terry127
model (Bradley & Terry, 1952), and infers the posterior distribution over reward functions P (R|P)128
given the preferences P . B-REX then uses Markov chain Monte Carlo (MCMC) to generate reward129
samples from the Bayesian posterior distribution P (R|P) in an efficient manner. These reward130
samples are central to the ability of our algorithm to provide our probabilistic guarantee. We denote131
the set of reward samples by R = {ri}, where each ri is a distinct reward sample.132
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3.3 Value-at-Risk133

Risk measures have been used as optimization criteria in RL (García & Fernández, 2015). Given134
a risk-aversion parameter α ∈ [0, 1], the VaRα of a random variable X is the largest value that X135
exceeds with probability at least α. Mathematically, it is the (1− α)-quantile of X:136

VaRα[X] = sup{x : Pr(X ≥ x) ≥ α}. (1)

4 High-Confidence Policy Improvement from Human Feedback137

Before detailing our approach, we first formalize the problem of high-confidence policy improve-138
ment from human feedback. We consider the RLHF setting and model the problem as an MDP\R,139
where the ground-truth reward function R∗ is not available. We assume access to a labeled dataset140
of preferences over pairwise trajectories P = {τi ≺ τj}(i,j), where τ is a possibly partial trajec-141
tory comprised of either states or state-action pairs, and the trajectory τj is preferred over τi. We142
assume access to an initial policy πinit and a confidence level 1 − δ. The High-Confidence Policy143
Improvement from Human Feedback (HCPI-HF) problem is to return a solution πreturn such that144

Pr(J(πreturn, R
∗) ≥ J(πinit, R

∗)) ≥ 1− δ. (2)

Note that we allow an algorithm to indicate that it has not been able to find an improved policy by145
returning No Solution Found (NSF). We define J(NSF, R∗) := J(πinit, R

∗) since NSF is considered146
safe and not worse than the initial policy πinit.147

In Equation 2, πreturn is the only term that is random. πreturn is determined using an algorithm taking148
the set of preferences P , the initial policy πinit, and the confidence level 1− δ as input. We assume149
that we are given a set of trajectories, which are fixed and have no randomness. However, we150
assume that the preferences over the trajectories P are random. For example, in a practical scenario,151
such preferences will be provided by a human, and if a human were to assign preferences multiple152
times, the preferences may slightly vary every time. On the other hand, πinit and the confidence153
level 1 − δ are provided by the user of the algorithm and have no randomness. Apart from the154
randomness in the preferences P , the algorithm also causes randomness in πreturn. Common sources155
of randomness in an algorithm involving policy optimization include the on-policy rollouts collected,156
and the randomly initialized policy and value networks.157

5 Policy Optimization and Safety Test for Policy Improvement158

In this section, we describe our approach Policy Optimization and Safety Test for Policy Improvement159
(POSTPI) for addressing the HCPI-HF problem. Our approach consists of two main components:160
1) candidate proposal, and 2) the safety test. In candidate proposal, we perform policy optimization161
and return a candidate policy πC . The candidate policy πC is then subject to the safety test, where162
we determine whether πC is an improvement over πinit with high confidence.163

5.1 Safety Test164

The safety test is the mechanism by which the high-confidence guarantee of our proposed approach165
is provided. It determines whether the candidate policy πC returned by candidate proposal is an166
improvement over the initial policy πinit under the ground-truth reward function R∗ with high con-167
fidence. If the safety test is sufficiently confident that πC is an improvement, the algorithm returns168
πC . Otherwise, the algorithm returns No Solution Found (NSF).169

To determine whether πC passes the safety test, we are interested in the following inequality:170

J(πC , R
∗)− J(πinit, R

∗) ≥ 0. (3)
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Ideally, we want to return πC as the output of the algorithm if this inequality holds, and return NSF171
otherwise. However, we cannot directly compute J(πC , R

∗) − J(πinit, R
∗), for two reasons. First,172

we do not have access to the ground-truth reward function R∗. Second, the expected value J(π,R)173
usually cannot be computed exactly for arbitrary π and R in practice, for example, due to a lack of174
access to the transition function T . Often, J(π,R) can only be estimated using rollouts.175

Instead of computing J(πC , R
∗)−J(πinit, R

∗) directly, we compute a high-confidence lower bound176
on this quantity. We first define a high-confidence lower bound formally:177

Definition 5.1 HCLB(θ, 1 − δ) denotes the high-confidence lower bound on a parameter θ with178
confidence level 1− δ, i.e., Pr(HCLB(θ, 1− δ) ≤ θ) ≥ 1− δ.179

Then, we are interested in computing the high-confidence lower bound HCLB(J(πC , R
∗) −180

J(πinit, R
∗), 1 − δ). If this lower bound is greater than or equal to 0, we return πC . Otherwise,181

we return NSF. An algorithm following this approach of using this high-confidence lower bound to182
determine whether to return πC or NSF always satisfies Equation 2, and solves the HCPI-HF prob-183
lem. When πC is actually better than πinit, regardless of whether we return πC or NSF, the returned184
solution is not worse than πinit. When πC is worse than πinit, i.e., J(πC , R

∗)− J(πinit, R
∗) < 0, the185

high-confidence lower bound computed is less than 0 with probability at least 1−δ, so we return πC186
with probability at most δ. Note that the guarantee that this approach provides is independent of the187
candidate policy πC . For example, we can return random candidate policies in candidate proposal,188
and the safety test will still ensure that the entire algorithm provides the desired guarantee.189

We now describe how to compute HCLB(J(πC , R
∗) − J(πinit, R

∗), 1 − δ). To do so, we need to190
reason probabilistically about the uncertainty associated with J(πC , R

∗) − J(πinit, R
∗), which in-191

cludes 1) the uncertainty in the ground-truth reward function R∗, and 2) the uncertainty in estimating192
J(π, r) using a finite number of rollouts.193

To address the first source of uncertainty, we apply B-REX (Brown et al., 2020), which infers the194
posterior distribution over reward functions P (R|P) given the preferences P . By sampling from195
this posterior distribution, we can utilize the reward samples to reason about the uncertainty in R∗196
probabilistically. Note that this source of uncertainty is not perfectly accounted for, since we do not197
have the analytical form of the posterior distribution, and are only drawing a finite number of samples198
from it. However, since sampling from the posterior distribution using B-REX is computationally199
cheap, we can simply draw a large number of reward samples.200

On the other hand, it is not always possible to generate a large number of rollouts to address the201
uncertainty in using a finite number of rollouts to approximate policy values J(π, r), for example,202
in safety-critical applications where generating rollouts using an unsafe policy can be dangerous, or203
in applications where generating rollouts is very expensive. In scenarios where only a small number204
of rollouts can be generated, not explicitly accounting for this source of uncertainty can lead to unre-205
liable performance bounds. As we demonstrate in Supplementary Materials D.1, when the number206
of rollouts is small, a prior approach (Brown et al., 2020), which only accounts for the uncertainty207
in R∗ and does not consider the uncertainty in using a finite number of rollouts, can compute overly208
optimistic lower bounds on J(πC , R

∗)− J(πinit, R
∗). A safety test using this approach to compute209

high-confidence lower bounds fails to ensure the desired high-confidence guarantee.210

To address this issue, we propose a novel approach to compute an estimate of the desired high-211
confidence lower bound, which explicitly accounts for both sources of uncertainty. First, we sample212
from the posterior distribution P (R|P) to obtain a set of reward samples R. Then, we directly213
compute a single quantity, denoted by L, that, with probability 1 − δ/2, is simultaneously a lower214
bound on J(πC , r)− J(πinit, r) for 1− δ/2 portion of the reward samples in R.215

We now show that L is an estimate of the desired high-confidence lower bound HCLB(J(πC , R
∗)−216

J(πinit, R
∗), 1 − δ). Assuming that we have an infinite number of reward samples, we know the217

following two facts: First, a quantity that lower bounds J(πC , r)− J(πinit, r) for 1− δ/2 portion of218
the reward samples is a lower bound on J(πC , R

∗)− J(πinit, R
∗) with probability 1− δ/2. Second,219

the single quantity L that we compute is such a lower bound with probability 1 − δ/2. Therefore,220
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Algorithm 1 Safety Test

Input: candidate policy πC , initial policy πinit, a set of reward samples R, confidence level
parameter δ
Compute HCLB(J(πC , r)− J(πinit, r), 1− δ/2) using rollouts for all r ∈ R.
Compute L as the (δ/2)-quantile of HCLB(J(πC , R)− J(πinit, R), 1− δ/2).
if L ≥ 0 then

return πC

else
return NSF

end if

by Boole’s inequality, this single quantity L is HCLB(J(πC , R
∗)− J(πinit, R

∗), 1− δ). Note that,221
in practice, we only use a finite number of reward samples, so the L we compute is only an estimate222
of HCLB(J(πC , R

∗)− J(πinit, R
∗), 1− δ). To compute L, we prove the following theorem:223

Theorem 5.2 Consider a set of reward samples R′. minr∈R′ HCLB(J(πC , r)− J(πinit, r), 1− δ)224
is a lower bound on J(πC , r)− J(πinit, r) simultaneously for all r ∈ R′ with probability 1− δ.225

We now present a proof sketch for Theorem 5.2, and defer the full proof to Supplementary Materi-226
als A. Consider the reward sample r′ = argminr∈R′ J(πC , r) − J(πinit, r). The high-confidence227
lower bound HCLB(J(πC , r

′) − J(πinit, r
′), 1 − δ) is at the same time a high-confidence lower228

bound of J(πC , r) − J(πinit, r) for all r ∈ R′. However, we cannot identify r′ as we cannot229
compute J(πC , r) − J(πinit, r) exactly. To address this, we compute minr∈R′ HCLB(J(πC , r −230
J(πinit, r)), 1− δ), which lower bounds HCLB(J(πC , r

′)− J(πinit, r
′), 1− δ).231

Using Theorem 5.2, we can pick any subset of reward samples R′ that contains at least 1 − δ/2232
portion of the reward samples, and compute L as minr∈R′ HCLB(J(πC , r)− J(πinit, r), 1− δ/2).233
One obvious choice of R′ is simply the 1 − δ/2 portion of reward samples that correspond to the234
highest values of HCLB(J(πC , r) − J(πinit, r), 1 − δ/2). If we choose this R′, L is simply the235
(δ/2)-quantile of HCLB(J(πC , R) − J(πinit, R), 1 − δ). We can then use L, which is an estimate236
of HCLB(J(πC , R

∗) − J(πinit, R
∗), 1 − δ), to determine whether to accept or reject the candidate237

policy. The full algorithm of the safety test is shown in Algorithm 1.238

In practice, we compute HCLB(J(πC , r) − J(πinit, r), 1 − δ/2) using Student’s t-test. Note that239
we can replace Student’s t-test with other statistical tests. We use Student’s t-test in all of our240
experiments as it is easy to compute and works well in practice.241

5.2 Candidate Proposal242

In candidate proposal, we perform policy optimization to propose a candidate policy πC . In fact,243
we can employ any algorithm to optimize a policy. This is because the high-confidence guarantee244
provided by our algorithm only relies on the safety test, and is not contingent on candidate proposal.245
However, policy optimization methods not taking the knowledge of the safety test into account will246
likely produce candidate policies πC that do not pass the safety test. This will lead to the algorithm247
outputting NSF frequently, reducing its practical use. In this subsection, we present a candidate248
proposal mechanism specifically designed to return policies that will likely pass the safety test.249

Recall that in the safety test, we accept a candidate policy πC when the (δ/2)-quantile of250
HCLB(J(πC , R)−J(πinit, R), 1−δ/2) is greater than or equal to 0. To increase the probability of a251
candidate policy being accepted, we propose to directly maximize an estimate of this (δ/2)-quantile,252
leading to the following objective:253

VaR-EVD = VaR1−δ/2[J(πC , R)− J(πinit, R)], (4)

where VaR1−δ of a random variable is equivalent to the δ-quantile of the random variable. Note254
that we do not compute the high-confidence lower bounds of J(πC , R)−J(πinit, R) in the objective255
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Algorithm 2 Candidate Proposal

Input: the initial policy πinit, a set of reward samples R, confidence level parameter δ
Initialize policy πθ.
repeat

Estimate J(πθ, r)− J(πinit, r) for all r ∈ R using rollouts.
Estimate ∂

∂θ VaR1−δ/2[J(πθ, R)− J(πinit, R)] using Equation 5.
Perform one step of gradient ascent.

until convergence
return πθ

for efficiency. The VaR-EVD objective (VaR of the Expected Value Difference) allows plugging in256
any initial policy πinit in the form of J(πinit, R). By allowing the specification of an initial policy257
in the objective, maximizing our objective increases the probability of obtaining a policy that is an258
improvement over the initial policy.259

We now present the gradient of the VaR-EVD objective. Consider a policy πθ parameterized260
by θ. Let r ∈ R be the reward sample that satisfies the condition J(πθ, r) − J(πinit, r) =261
VaR1−δ/2[J(πθ, R)− J(πinit, R)]. The gradient is:262

∂

∂θ
VaR1−δ/2[J(πθ, R)− J(πinit, R)] =

∂

∂θ
J(πθ, r). (5)

We now provide a high-level description of the derivation, and defer the full derivation to Sup-263
plementary Materials B. The gradient measures the change in VaR1−δ/2[J(πθ, R) − J(πinit, R)]264
when the policy parameters θ change. When the change in θ is small enough, the changes induced265
in J(πθ, R) − J(πinit, R) do not change which reward sample r satisfies J(πθ, r) − J(πinit, r) =266
VaR1−δ/2[J(πθ, R)− J(πinit, R)]. We can therefore simply compute the policy gradient under r.267

We present a general algorithm for candidate proposal in Algorithm 2. Note that the gradient in268
Equation 5 can be optimized with any policy gradient algorithm. For example, it can be opti-269
mized with PPO by just using the advantage of the reward sample r in the clipped surrogate ob-270
jective (Schulman et al., 2017). In our experiments, we use the version of Algorithm 2 using PPO.271

We now describe some practical considerations. In both the safety test and candidate proposal,272
we use the initial policy πinit for generating rollouts for computing estimates of J(πinit, r) for all273
r ∈ R. In practice, these estimates can be computed in advance to any desired level of accuracy.274
One common misconception is that, when estimating J(π, r) for different r’s, we need to generate275
distinct rollouts for each r. In fact, we only need to use π to generate one set of rollouts, and276
then evaluate the same set of rollouts under different r’s. This is because the choice of the reward277
sample r only changes the rewards received, and has no impact on the trajectories. If the rewards278
can be computed efficiently, increasing the number of reward samples induces little computational279
overhead. Another practical consideration is related to the set of reward samples R. In the case of280
drawing an infinite number of reward samples, using the same set for both candidate proposal and281
the safety test does not introduce any bias. However, when using a finite sample, using the same set282
of reward samples for both policy optimization and the safety test could induce bias in the safety283
test. To reduce bias, we generate two sets of reward samples of the same size, one for candidate284
proposal and one for the safety test.285

6 Experiments286

In this section, we want to answer the following questions: (1) Do empirical studies support our287
theoretical claims that our algorithm achieves policy improvement with high confidence? (2) How288
does the probability of returning a policy vary for different initial policies πinit? To answer these289
questions, we perform experiments in two domains, Circle and Goal, from the Safety Gymnasium290
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suite (Ji et al., 2023). In Circle, the agent has to travel as fast as possible along the circumference of a291
large circle, while avoiding a forbidden region that overlaps with the circle. In Goal, the agent has to292
navigate to goals randomly generated on the map while avoiding dangerous regions called hazards.293
Details of the two domains can be found in Supplementary Materials C. We further justify the design294
of our candidate proposal and safety test by comparisons with state-of-the-art alternatives. We also295
apply POSTPI to high-dimensional image inputs. Details and results of these additional experiments296
can be found in Supplementary Materials D.297

6.1 High-Confidence Policy Improvement298

In this subsection, we aim to find out whether experiments support our claims that our algorithm299
achieves policy improvement with high confidence. Note that the claim that our algorithm performs300
high-confidence policy improvement is supported primarily by theory, and the experiments merely301
serve to provide empirical support for established theory.302

We compare our algorithm to the following state-of-the-art RLHF baselines: T-REX (Brown et al.,303
2019a), B-REX (Brown et al., 2020), PG-BROIL (Javed et al., 2021) and CPL (Hejna et al., 2024).304
For B-REX, we consider optimizing both the mean and MAP rewards. Apart from PG-BROIL, these305
baselines do not explicitly consider the uncertainty in the ground-truth reward function when per-306
forming policy optimization. While PG-BROIL reasons about the ground-truth reward probabilisti-307
cally, it does not provide performance guarantees on the learned policy. Unlike POSTPI, these base-308
lines were not designed to address the HCPI-HF problem, so poor performance at high-confidence309
policy improvement should not be misconstrued as experimental evidence that these baselines are310
not effective for the settings that they were designed for. Nevertheless, these are the most relevant311
baselines to help us understand 1) the consequences of a lack of performance guarantees, and 2)312
the benefits of POSTPI. All of these methods, including POSTPI, require a preference dataset. B-313
REX, PG-BROIL, and POSTPI further involve sampling from the posterior distribution over reward314
functions given preferences P (R|P). Details of preference label and reward sample generation, and315
hyperparameter settings can be found in Supplementary Materials C and E respectively.316

Our algorithm POSTPI requires specifying the confidence level 1− δ and the initial policy πinit. In317
all of our experiments, we use a confidence level of 0.95, i.e., δ = 0.05. To examine the performance318
of our algorithm under different initial policies, we generate a range of initial policies with varying319
performance. We consider a set of initial policies, denoted as πϵ

init, where ϵ ∈ [0, 1] is a parameter320
determining the level of performance of the initial policy. The larger the ϵ, the better the initial321
policy, with π1

init corresponding to a policy trained under the ground-truth reward till convergence,322
and π0

init corresponding to a policy that always receives 0 reward. In our experiments, we consider323
ϵ ∈ {0, 0.25, 0.5, 0.75, 1}. Details on the initial policies can be found in Supplementary Materials C.324

For all algorithms, we evaluate the probability of returning a policy worse than the initial policy325
under the ground-truth reward function R∗ over 20 trials. We approximate the expected value of326
the returned and initial policies under the ground-truth reward function with 200 rollouts. Since our327
algorithm ensures policy improvement with high confidence, we hypothesize that this probability328
for POSTPI is at most δ = 0.05, while the probabilities for baselines may exceed δ. Recall that329
our algorithm requires generating rollouts to compute high-confidence lower bounds of J(πC , r)−330
J(πinit, r) for all r ∈ R in the safety test. We vary the number of rollouts we generate from 2 to 1000331
and report the maximum probability of returning a policy worse than πϵ

init. This is to demonstrate332
that, since our algorithm accounts for the uncertainty in expected value estimates, our algorithm333
provides the desired guarantee regardless of the number of rollouts used for the safety test.334

Table 1 shows the probability of returning a policy worse than πϵ
init for different ϵ for the Circle and335

Goal domains. It can be seen that our algorithm, as predicted by our theoretical work, returns a policy336
worse than πϵ

init with probability not more than the selected δ = 0.05. We also demonstrate that337
there are in general no guarantees on the performance of policies returned by contemporary RLHF338
algorithms. T-REX and B-REX return poorly performing policies with high probability regardless339
of ϵ. PG-BROIL and CPL, on the other hand, are able to more frequently return policies performing340
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better than πϵ
init when ϵ is small. However, they still have non-negligible probabilities of returning341

policies worse than the initial policies. Out of the algorithms tested, only POSTPI returns a policy342
not worse than any chosen initial policy at a user-specified probability.343

Table 1: Probability of returning a policy worse than πϵ
init over 20 trials in Circle and Goal.

DOMAIN CIRCLE GOAL

ϵ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

T-REX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
B-REX (Mean) 1.0 1.0 1.0 1.0 1.0 0.8 0.85 0.9 0.95 1.0
B-REX (MAP) 0.7 0.7 0.7 0.75 0.95 0.8 0.85 0.9 1.0 1.0
PG-BROIL 0.0 0.0 0.0 0.1 0.9 0.1 0.2 0.35 0.7 0.9
CPL 0.6 0.65 0.7 0.9 1.0 0.35 0.45 0.7 0.85 1.0
POSTPI (Ours) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6.2 Probability of Returning a Policy344

Our algorithm returns either a policy or NSF. Although our algorithm provides a high-confidence345
guarantee on policy improvement, if our algorithm returns NSF most of the time, it has little practical346
use. We now present the probability of POSTPI returning a policy, computed over 20 trials.347

Figure 1 shows the probability of POSTPI returning a policy over 20 trials in the Circle (left) and348
Goal (right) domains for different initial policies πϵ

init. For the Circle domain, when ϵ < 1, i.e., when349
the initial policies are sub-optimal and there is room for improvement, POSTPI returns a policy with350
high probabilities (≥ 0.75). For the Goal domain, POSTPI returns a policy with probability 0.55351
when ϵ = 0.75, and returns a policy with high probabilities (≥ 0.9) when ϵ ≤ 0.5. For both domains,352
POSTPI returns a policy with very low probability when ϵ = 1, which is reasonable since improving353
over π1

init, which is trained under the ground-truth reward function till convergence, is difficult. To354
conclude, POSTPI, by optimizing the useful VaR-EVD objective in candidate proposal, is capable355
of proposing policies that are likely to pass the safety test when the initial policy is sub-optimal.356

Our algorithm provides the high-confidence guarantee that the solution returned (either the candidate357
policy πC or NSF) is not worse than the initial policy. In the NSF case, it is trivial that this holds.358
In the other case, it is informative to look at whether the accepted πC is actually an improvement359
over the initial policy with high probability. Note that our algorithm does not provide any guarantees360
on this probability. For example, if an algorithm always returns a policy worse than πinit as πC in361
candidate proposal, this probability will always be 0. We observe that in our experiments, a policy362
accepted by the safety test is always an improvement over the initial policy in both domains. While363
not guaranteed by our algorithm, a returned policy has a very high probability of being an actual364
improvement over the initial policy.365

7 Discussion366

In this work, we formalize the problem of high-confidence policy improvement from human feed-367
back (HCPI-HF). We introduce a novel algorithm POSTPI to address this problem. We propose a368
novel VaR-EVD objective for policy optimization and provide a derivation of its gradient that can369
be optimized with any standard policy gradient algorithms. We propose a safety test that takes both370
the uncertainty in the expected value estimates of the evaluated policies and the uncertainty in the371
ground-truth reward function into consideration. We provide both theoretical and empirical evidence372
that POSTPI provides the high-confidence guarantee that the solution returned is not worse than a373
user-specified initial policy. Furthermore, we find that empirically, policies returned by POSTPI are374
very frequently better than the initial policy.375
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Figure 1: The probability of returning a policy in the Circle (left) and Goal (right) domains over 20
trials for different initial policies πϵ

init. The shaded areas indicate ±1 standard error.

Limitations. The guarantee provided by our algorithm relies on a few assumptions: 1) The376
Bradley-Terry model (Bradley & Terry, 1952) is an accurate model of human preferences. How-377
ever, as pointed out by Laidlaw & Dragan (2022), this is likely not the case. Nevertheless, we expect378
that our work can be generalized to support other models of human preferences. 2) The set of reward379
samples R accurately represents the posterior distribution over reward functions given preferences380
P (R|P). In the case of the Bradley-Terry model, this requires a matching inverse temperature pa-381
rameter β during preference label generation and Bayesian inference. This is easy to ensure when382
generating preference labels ourselves for experiments, but can be difficult when using preference383
labels annotated by humans. This assumption also requires enough samples from the posterior,384
which can be relatively easier to overcome by simply generating a large number of reward samples385
using B-REX (Brown et al., 2020), though it necessitates a trade-off between the efficiency of the386
algorithm and the soundness of the provided guarantee. 3) The ground-truth reward function lies in387
the space of reward samples. In our experiments, similar to Javed et al. (2021), we hand-craft state388
features that allow the ground-truth reward function to be expressed linearly in the state features.389
In many real-world applications, such construction of state features is often not feasible. While B-390
REX (Brown et al., 2020) uses a neural network to automatically learn the state features, the size391
of the neural network required for the learned state features to be expressive enough can be hard to392
determine in practice. Future work can focus on addressing these issues.393
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513

A Proof of Theorem 5.2514

Consider a set of reward samples R′, we now show that with probability 1 − δ,515
minr∈R′ HCLB(J(πC , r) − J(πinit, r), 1 − δ) is a lower bound on J(πC , r) − J(πinit, r) si-516
multaneously for all r ∈ R′. Note that for the proof, we use a confidence level of 1 − δ,517
while in the main text, the application of this theorem uses a confidence level of 1 − δ/2. Let518
L = minr∈R′ HCLB(J(πC , r)− J(πinit, r), 1− δ). Mathematically, we want to show that519

Pr(∀r ∈ R′ : L ≤ J(πC , r)− J(πinit, r)) ≥ 1− δ. (6)

Let r′ = argminr∈R′ J(πC , r)− J(πinit, r). We have520

∀r ∈ R′ : J(πC , r
′)− J(πinit, r

′) ≤ J(πC , r)− J(πinit, r). (7)

Now consider the high-confidence lower bound on J(πC , r
′)− J(πinit, r

′), we know that521

Pr(HCLB(J(πC , r
′)− J(πinit, r

′), 1− δ) ≤ J(πC , r
′)− J(πinit, r

′)) ≥ 1− δ, (8)

which, using Equation 7, implies that522

Pr(∀r ∈ R′ : HCLB(J(πC , r
′)− J(πinit, r

′), 1− δ) ≤ J(πC , r)− J(πinit, r)) ≥ 1− δ. (9)

In other words, HCLB(J(πC , r
′) − J(πinit, r

′), 1 − δ) is a lower bound on J(πC , r) − J(πinit, r)523
simultaneously for all r ∈ R′ with probability 1 − δ. However, we cannot identify r′, since we524
cannot compute J(πC , r) − J(πinit, r) exactly. Instead of trying to compute HCLB(J(πC , r

′) −525
J(πinit, r

′), 1− δ) directly, we observe the following fact:526

L = min
r∈R′

HCLB(J(πC , r)− J(πinit, r), 1− δ) ≤ HCLB(J(πC , r
′)− J(πinit, r

′), 1− δ), (10)

since r′ ∈ R′.527

Now, we know that528

Pr(∀r ∈ R′ : L ≤ J(πC , r)− J(πinit, r)) ≥ 1− δ. (11)

That is, with probability 1 − δ, minr∈R′ HCLB(J(πC , r) − J(πinit, r), 1 − δ) is a lower bound on529
J(πC , r)− J(πinit, r) simultaneously for all r ∈ R′.530

B Gradient of VaR-EVD531

We present the full derivation of the gradient of the VaR-EVD objective (see Equation 4) under a532
mild assumption. Let R be the set of reward samples drawn from P (R|P), πθ be the policy with533
parameters θ being optimized, and πinit be the initial policy. We first start with the assumption:534

Assumption B.1 ∀ri ̸= rj ∈ R, J(πθ, ri)− J(πinit, ri) ̸= J(πθ, rj)− J(πinit, rj).535

Assumption B.1 states that the expected value difference of the policy being optimized πθ and the536
initial policy πinit under any two distinct reward samples ri and rj are different. When πθ is not537
equal to πinit, this is likely to be true. When πθ = πinit, the assumption does not hold. However,538
recall that the only information required from the initial policy πinit is the (estimates of) expected539
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values under all reward samples, i.e., J(πinit, r) for all r ∈ R, which can be computed in advance to540
any desired level of accuracy. We can simply add a small positive noise to J(πinit, r) for all r ∈ R541
while ensuring that the values of the noise added for different r’s are different. This simple injection542
of noise induces minimal change to the values J(πinit, r), at the same time making the assumption543
hold. In fact, unless we initialize πθ using the parameters of πinit, the case when πθ = πinit is544
extremely rare. Finally, note that even when this assumption does not hold, it does not affect the545
high-confidence guarantee that our algorithm provides, since our guarantee solely depends on the546
safety test, and is unaffected by candidate proposal.547

We now derive the gradient by first deriving each dimension of the gradient. Let ehi denote the vector548
with all zero entries except for the i-th dimension, where the entry takes the value h. Simply put, it549
is the i-th standard basis vector multiplied by h. We have550

∂

∂θi
VaR1−δ/2[J(πθ, R)− J(πinit, R)] (12)

= lim
h→0

1

h
(VaR1−δ/2[J(πθ+eh

i
, R)− J(πinit, R)]−VaR1−δ/2[J(πθ, R)− J(πinit, R)]). (13)

Applying Assumption B.1, we know that the expected value difference is different for different551
reward samples r. This means that we can compute the minimum distance between pairs of expected552
value differences:553

dmin = min
ri,rj∈R,ri ̸=rj

|(J(πθ, ri)− J(πinit, ri))− (J(πθ, rj)− J(πinit, rj))| > 0. (14)

We know that when h is small enough, the change induced to the expected value differences is554
not enough to overcome the minimum distance between any pairs of expected value differences.555
Mathematically, this can be written as:556

∃h : ∀r ∈ R, |(J(πθ+eh
i
, r)− J(πinit, r))− (J(πθ, r)− J(πinit, r))| < dmin/2. (15)

Note that we need dmin/2 instead of dmin here since there is a pair of reward samples involved in557
dmin, and the expected value difference of each of the two reward samples can change. Then, when558
h is small enough, for the two VaR terms in Equation 13, if we sort all reward samples twice, once559
using the expected value differences corresponding to the first VaR term and another time using that560
corresponding to the second VaR term, the two orders of the reward samples obtained from the two561
sorts will be the same. Therefore, the reward samples that correspond to expected value differences562
equal to the two VaR terms are the same. Mathematically, let r1 be the reward sample such that563

J(πθ+eh
i
, r1)− J(πinit, r1) = VaR1−δ/2[J(πθ+eh

i
, R)− J(πinit, R)], (16)

and r2 be the reward sample such that564

J(πθ, r2)− J(πinit, r2) = VaR1−δ/2[J(πθ, R)− J(πinit, R)], (17)

we then know that r1 = r2. Note that r2 does not depend on the dimension of the gradient i.565
Also note that here we assume that only one reward sample satisfies each of Equations 16 and 17,566
since we almost never generate identical reward samples from MCMC and we have assumed (by567
Assumption B.1) that different reward samples correspond to different expected value differences.568

Therefore, Equation 13 can be written as:569

lim
h→0

1

h
(J(πθ+eh

i
, r2)− J(πinit, r2)− J(πθ, r2) + J(πinit, r2)) (18)

= lim
h→0

1

h
(J(πθ+eh

i
, r2)− J(πθ, r2)) (19)

=
∂

∂θi
J(πθ, r2). (20)
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Combining all dimensions of the gradient, we have570

∂

∂θ
VaR1−δ/2[J(πθ, R)− J(πinit, R)] (21)

=
∂

∂θ
J(πθ, r), (22)

where r is the reward sample that satisfies J(πθ, r)−J(πinit, r) = VaR1−δ/2[J(πθ, R)−J(πinit, R)].571

Based on our derivation above, it may seem that optimizing a policy using this gradient will never572
allow the ordering of the reward samples according to the expected value differences to change.573
An immediate result of this is that the reward sample r that satisfies J(πθ, r) − J(πinit, r) =574
VaR1−δ/2[J(πθ, R) − J(πinit, R)] will always be the same, meaning that we will always optimize575
with respect to the same reward sample. This would mean that our algorithm would be no different576
from those that optimize a point estimate of the ground-truth reward function. However, note that577
the argument that the changes induced to the expected value differences are not enough to over-578
come dmin only serves to prove the existence of the gradient, and only holds for small enough h. In579
practice, with the use of an optimizer, we often use a step size that is much larger than the small580
h we used above in our arguments, inducing changes to θ substantial enough that the ordering of581
the reward samples changes. In fact, we empirically observe that the reward sample r that satisfies582
J(πθ, r)− J(πinit, r) = VaR1−δ/2[J(πθ, R)− J(πinit, R)] changes throughout optimization.583

C Full Experiment Details584

In this section, we provide full experiment details. Section C.1 presents details on the domains used585
for our experiments. Section C.2 presents details on constructing the preference dataset. Section C.3586
presents details on generating reward samples from the posterior distribution P (R|P). Section C.4587
presents details on the initial policies used for our experiments. Section C.5 presents details on588
computing the standard error for our experimental results.589

C.1 Domains590

We consider two domains from Safety Gymnasium (Version 1.2.0, Apache-2.0 license) (Ji et al.,591
2023), a suite of environments with safety constraints for safe RL built on top of Safety Gym (Ray592
et al., 2019). We choose to perform experiments in this suite since unsafe behavior is well-defined.593
The suite consists of a wide range of tasks. For each task, the suite provides several built-in difficulty594
levels. The suite also allows the design of custom levels. Our experiments focus on safety navigation595
tasks. We carry out experiments in two specific tasks: Goal and Circle. At every time step, apart596
from the reward, a domain in the Safety Gymnasium suite also indicates whether a safety constraint597
is violated. We simply subtract the cost of violating a safety constraint, which is by default 1, from598
the reward at every time step, and treat this quantity as the reward. The Safety Gymnasium provides599
a set of agents to choose from and we use the Point agent for all experiments.600

Circle. As shown in Figure 2 (left), in Circle, the agent has to travel as fast as possible along the601
circumference of a large circle placed at the center of the environment. The faster the agent and the602
closer the agent is to the circumference, the higher the reward. The exact reward function can be603
found in the Safety Gymnasium paper (Ji et al., 2023). Apart from the circle, there are forbidden604
regions slightly overlapping with the circle, giving the agent −1 reward for every time step the agent605
is in a forbidden region. Therefore, the agent cannot simply travel in circular motion, and has to606
learn to avoid these regions. We use the provided level 1 Circle environment.607

Goal. As shown in Figure 2 (right), Goal is one of the navigation tasks in the suite, where the agent608
has to navigate towards a goal. When the goal is reached, the agent receives a reward of +1, and a609
new goal with a random position is generated. The agent has to learn to navigate to successive goals610
while avoiding dangerous zones called hazards in the environment. Hazards are simple circular611
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zones in the environment that give a reward of −1 for every time step an agent is in a hazard. We612
noticed that the random placements of goals and hazards of the built-in levels allow some policies613
to achieve good performance even without learning to avoid a hazard, so we designed our custom614
Goal environment, where four hazards are placed at the center of the environment, and goals are615
generated around this grid of hazards.616

Figure 2: The level 1 Circle domain (left) and the custom Goal domain (right). For the Circle
domain, the green circle indicates the circle that the agent should circle around, while the regions
beyond the yellow lines are forbidden. For the Goal domain, each blue circle is a hazard that the
agent should avoid, while the green cylinder represents the goal.

C.2 Preference Label Generation617

In the RLHF setting, we assume access to a preference dataset. Similar to prior work (Brown et al.,618
2020; Javed et al., 2021), we generate preference data for the purpose of experiments. To generate619
preferences, we first need a set of trajectories. To generate trajectories, we first use PPO (Schulman620
et al., 2017) to train a policy under the ground-truth reward function R∗ till convergence. We denote621
the obtained policy as the demonstration policy πdemo. Details of training the demonstration policy622
can be found in Section C.4.623

After training the demonstration policy, we use it to generate a set of trajectories. We treat a full624
episode as a trajectory. It is good to ensure that RLHF learns to avoid unsafe behavior, even when625
it has not been directly observed and dispreferred. To test whether our algorithm POSTPI can626
achieve this, we generate preferences over trajectories with minimal unsafe behavior. Note that this627
makes the experimental settings more challenging, instead of the opposite. To do so, we generate628
trajectories using the trained πdemo, but filter out trajectories with unsafe behavior. For the two629
domains we consider, we find the empirical return of an episode to be a good indicator of whether630
unsafe behavior has occurred, and filter trajectories using their returns. For the Circle domain, we631
generate 30 trajectories with returns above 30. For the Goal domain, we generate 30 trajectories632
with returns above 15.633

After generating trajectories, we compute preference labels following the Bradley-Terry634
model (Bradley & Terry, 1952). We randomly sample two distinct trajectories τi, τj from the set635
of generated trajectories, and assign preference labels according to the following probability:636

Pr(τi ≺ τj) =
eβR(τj)

eβR(τi) + eβR(τj)
, (23)
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where τi ≺ τj indicates that τj is preferred over τi, β is the inverse temperature parameter, and637
R(τ) =

∑
s∈τ R(s) is the return of trajectory τ . We choose β = 5 in all of our experiments. We638

generate a total of 50 preferences for both domains.639

Unlike other work which assumes that the preferences follow the Bradley-Terry model (Bradley &640
Terry, 1952), CPL (Hejna et al., 2024) assumes that preferences follow the regret preference model.641
To obtain preferences based on regret, while maintaining a fair comparison with POSTPI, we reuse642
the pairs of trajectories generated for POSTPI, but regenerate the preference labels according to the643
regret model. In particular, we compute the advantage of a state-action pair using the value network644
trained while training the demonstration policy πdemo.645

C.3 Reward Sample Generation646

Using the set of preferences, we can sample from the posterior distribution over reward functions647
given preferences P (R|P) using B-REX (Brown et al., 2020). B-REX involves pre-training a reward648
model to automatically learn state features. B-REX represents each reward sample as a vector of the649
same dimensions as the state features, and computes rewards as the dot product between the learned650
state features and the vector representation of the reward sample. However, it is not guaranteed that651
following this method, the learned state features are expressive enough to represent the ground-truth652
reward function linearly. Our algorithm cannot provide the desired guarantee when the ground-653
truth reward function does not lie in the space of reward samples. In our experiments, we intend to654
focus on studying our high-confidence guarantee in ideal conditions. Therefore, similar to a prior655
work (Javed et al., 2021), we hand-craft state features to allow the ground-truth reward function R∗656
to be expressed linearly in the state features. This ensures that the ground-truth reward function lies657
within the space of reward samples, which is necessary to provide our high-confidence guarantee.658

For the Goal domain, the reward function has the following form:659

rt = (Dt−1 −Dt) + 1{ agent in goal} −
4∑

i=1

1{ agent in hazard i}, (24)

where Dt is the distance between the agent and the goal at time t, 1{ condition} is the indicator function660
that evaluates to 1 when the condition is true and 0 otherwise. Simply put, the agent receives a small661
dense reward Dt−1 −Dt that guides the agent towards the goal. The agent also receives a reward of662
+1 for reaching the goal and a penalty of −1 for reaching any of the four hazards.663

We simply construct the state features as a 6-dimension vector as follows:664

ϕ(st) = [Dt−1 −Dt,1{ agent in goal},1{ agent in hazard 1}, . . . ,1{ agent in hazard 4}]. (25)

Then, the ground-truth reward function R∗ can be represented as the vector wR∗ =665
[1, 1,−1,−1,−1,−1]. The ground-truth reward at every time step t can be computed as R∗(st) =666
wT

R∗ϕ(st). We apply a similar approach to the Circle domain.667

With the state features available, we now draw reward samples from the posterior distribution668
P (R|P) as vectors of unit L2 norm with the same dimension as the state features. Constraining669
the reward samples to have unit L2 norm is a standard approach. Note that the ground-truth reward670
function can still be expressed as a vector lying on the L2 unit norm ball, since scaling the reward671
function by a positive constant does not affect the set of corresponding optimal policies.672

We run MCMC to generate reward samples. We use a uniform prior assigning the same probability673
density to all reward samples. We follow the likelihood function in B-REX (Brown et al., 2020),674
using β = 5 that matches the β used when generating preference labels. We propose reward samples675
by adding independent Gaussian noise to each dimension of the current reward sample. The standard676
deviation of the Gaussian noise is chosen so that the probability of accepting a proposed reward677
sample lies between 0.2 and 0.8. The standard deviation of the Gaussian noise is 1 for the Circle678
domain and 0.1 for the Goal domain. We run a total of 20K MCMC steps with a burn-in of 4K679
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steps. We sample from the chain every 20 steps to reduce auto-correlation. For the sampled reward680
functions, we split them into two sets by taking the ones with odd indices into one set, and taking681
the remaining ones into another set. We use one set for candidate proposal and the other set for the682
safety test to reduce bias in the safety test. Each set contains a total of 400 reward samples, which683
we find to be sufficient empirically.684

C.4 Initial Policies685

In this subsection, we describe our approach to generate the set of initial policies πϵ
init used in the686

experiments in Section 6. We are interested in a set of initial policies with varying performance687
under the ground-truth reward function.688

First, we would like to train a policy with good performance under the ground-truth reward function.689
To do this, we train a policy using PPO (Schulman et al., 2017) under the ground-truth reward690
function till convergence. We use the implementation of PPO by Stable-Baselines3 (Version 2.2.0a6,691
MIT license) (Raffin et al., 2021), and default hyperparameters apart from the ones listed in Table 5.692
We use the same set of hyperparameters for both the Circle and Goal domains, apart from the total693
number of time steps to run, which is 3M and 5M for the Circle and Goal domains respectively. For694
each domain, we trained 5 policies with different random seeds for each of the three learning rates:695
3e−5, 1e−4, and 3e−4. We pick the policy with the highest expected return out of the 15 policies.696
This policy, referred to as the demonstration policy πdemo, has good performance under the ground-697
truth reward function. Note that this policy is the same as the one used to generate trajectories during698
preference label generation (see Section C.2). We use πdemo as one of the initial policies, simulating699
the case of improving with respect to a policy already performing well under the ground-truth reward700
function. This policy πdemo corresponds to the case when ϵ = 1, i.e., πdemo = π1

init.701

We now describe our approach to obtain policies performing worse than πdemo to different extents.702
Recall that the only information of the initial policy πinit required by our algorithm is the expected703
value J(πinit, r) for all reward samples r ∈ R, and these expected values can be computed in704
advance to any desired level of accuracy (see the final paragraph of Section 5.2). Therefore, instead705
of training different policies with varying performance, we simply multiply J(πdemo, r) for all r706
by a constant ϵ to simulate varying levels of sub-optimal policies. Mathematically, we provide707
ϵJ(πdemo, r) for all r ∈ R to our algorithm, where ϵ ∈ [0, 1] and J(πdemo, r) is estimated using 200708
rollouts. We refer to these policies as πϵ

init. Note that πϵ
init corresponds to a policy that always obtains709

ϵ fraction of the rewards obtained by πdemo, for all reward samples. For example, for a particular710
trajectory, if πdemo obtains a reward of 1 at time step t under the reward sample r, πϵ

init will obtain a711
reward of ϵ at time step t under the reward sample r. Furthermore, since πdemo is trained under the712
ground-truth reward function till convergence, for the two domains we consider, it obtains positive713
rewards most of the time. Therefore, ϵ < 1 corresponds to policies worse than πdemo, with lower ϵ714
corresponding to worse policies.715

In our experiments, we consider ϵ ∈ {0, 0.25, 0.5, 0.75, 1}. While it is possible to consider ϵ > 1,716
since πdemo is obtained by training a policy under the ground-truth reward function till convergence,717
we expect that it would be difficult to improve with respect to π1

init, let alone an initial policy πϵ
init718

with ϵ > 1. Therefore, we focus on ϵ ∈ [0, 1] in our experiments.719

For evaluation purposes, we also need to compute the expected value of the initial policies under the720
ground-truth reward function R∗. When ϵ = 1, i.e., the initial policy is πdemo, we simply estimate721
J(πdemo, R

∗) using 200 rollouts. For ϵ < 1, since we already have the estimate of J(πdemo, R
∗), we722

simply estimate J(πϵ
init, R

∗) by multiplying the estimate of J(πdemo, R
∗) by ϵ.723

C.5 Statistical Significance724

In Figure 1, which presents the probability of our algorithm returning a policy, the shaded area725
indicates ±1 standard error of this probability. Factors of variability include the randomness in726
generating preference labels, random initialization of the policy and value networks, and the rollouts727
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generated during training and evaluating the policy. The standard error is computed as σ̂√
Ntrial

, where728
σ̂ is the sample standard deviation, and Ntrial = 20 is the number of trials.729

D Additional Experiments730

In this section, we present additional experiments not covered in the main text. Section D.1 com-731
pares our safety test with one that uses a previous approach (Brown et al., 2020) to compute high-732
confidence bounds. Section D.2 compares our candidate proposal with state-of-the-art alternatives.733
Section D.3 presents experiments generalizing our algorithm to high-dimensional image inputs.734

D.1 Comparison to B-REX’s Bound735

In this subsection, we empirically demonstrate that our safety test is more reliable than a counterpart736
that does not account for the uncertainty in using a finite number of rollouts to estimate the expected737
values of policies. In B-REX, Brown et al. (2020) proposed a method to compute high-confidence738
lower bounds that reasons only about the uncertainty in the ground-truth reward function R∗, but739
does not take the number of rollouts used to estimate J(πC , r) − (πinit, r) into consideration. This740
approach can compute overly optimistic bounds, especially when the number of samples is small.741
We empirically demonstrate that a safety test using this approach of computing high-confidence742
bounds, which we refer to as B-REX style, fails to provide the high-confidence guarantee as claimed.743

Table 2 shows the comparison of using the B-REX style safety test and using our safety test in the744
Goal domain when using a small number of rollouts (20) for the safety test. It can be seen that our745
safety test returns policies worse than the initial policy with probability not larger than δ = 0.05, but746
the B-REX style safety test returns policies worse than the initial policy with probabilities greater747
than δ = 0.05 for ϵ = 0.75 and 1. This is because when the number of rollouts used is small, the B-748
REX style safety test is prone to computing overly optimistic bounds. As a result, the B-REX style749
safety test more frequently accepts policies that are in fact not better than the initial policy, causing750
it to not provide the high-confidence guarantee. On the other hand, our algorithm duly accounts751
for the uncertainty in the expected value estimates and provides the high-confidence guarantee as752
expected regardless of the number of rollouts used in the safety test. In light of this, our safety test753
is safer to employ in practice.754

Table 2: Probability of POSTPI returning a policy worse than πϵ
init for different ϵ over 20 trials in the

Goal domain when using a B-REX style safety test and our safety test, and using a small number of
rollouts (20) for the safety test.

ϵ 0 0.25 0.5 0.75 1

B-REX Style Safety Test 0.05 0.0 0.05 0.15 0.1
Our Safety Test 0.05 0.0 0.0 0.0 0.0

D.2 Choice of candidate proposal755

We now empirically justify the choice of optimizing the VaR-EVD objective in candidate proposal.756
In candidate proposal, the goal is to return a policy that is likely to pass the safety test. In fact,757
any policy optimization algorithm can be used in candidate proposal. However, we hypothesize that758
our candidate proposal that optimizes the novel VaR-EVD objective, which allows the specification759
of an initial policy and takes into account knowledge of the safety test, should produce candidate760
policies that are more likely to be accepted in the safety test than other policy optimization methods.761

As seen in Section 6.1, T-REX (Brown et al., 2019a) and B-REX (Brown et al., 2020) frequently762
return policies that are worse than π0

init with high probabilities. Therefore, we mainly compare our763
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candidate proposal with PG-BROIL (Javed et al., 2021) and CPL (Hejna et al., 2024), two state-of-764
the-art RLHF methods.765

We compare the probability of returning a policy for our candidate proposal and using PG-BROIL766
and CPL as candidate proposal for different initial policies πϵ

init. We use 1000 rollouts for computing767
high-confidence bounds in the safety test to ensure that the difference in results is not caused by768
insufficient data in the safety test.769

Table 3 shows the probability of returning a policy when using our candidate proposal, PG-BROIL770
as candidate proposal, and CPL as candidate proposal for the Circle and Goal domains. It can771
be seen that CPL returns policies that are rejected by the safety test with high probabilities. PG-772
BROIL and our candidate proposal return policies that are accepted with similar probabilities in773
the Circle domain, but our candidate proposal largely outperforms PG-BROIL in the Goal domain.774
By allowing the specification of an initial policy, and taking the knowledge of the safety test into775
account, maximizing the VaR-EVD objective in candidate proposal returns policies that are accepted776
by the safety test more often than state-of-the-art alternatives.777

Table 3: Probability of returning a policy for the Circle and Goal domains using our candidate
proposal and using PG-BROIL and CPL as candidate proposal.

DOMAIN CIRCLE GOAL

ϵ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

PG-BROIL 1.0 0.95 0.9 0.8 0.0 0.9 0.8 0.65 0.25 0.05
CPL 0.3 0.25 0.2 0.0 0.0 0.6 0.3 0.2 0.05 0.0
POSTPI (Ours) 0.95 1.0 0.9 0.75 0.0 0.95 0.95 0.95 0.6 0.15

D.3 High-Dimensional Image Input778

In this subsection, we demonstrate that our algorithm POSTPI scales to high-dimensional image779
inputs. We use the same two domains as before and adopt the same procedures of generating pref-780
erence labels and reward samples (see Section C for more details). The only change we make here781
is the observations used when performing policy optimization in candidate proposal. We replace the782
original vector observations with pixels captured by a camera placed in front of the agent. We note783
that the original observations come from lidar sensors detecting all directions of the agent, while the784
camera only captures information in front of the agent. This reduction in the information contained785
in observations, coupled with the increased difficulty of learning from pixels, causes a drop in the786
performance of the candidate policies. As a result, the probability of returning a policy drops, espe-787
cially for the more difficult Goal domain. We focus on the probability of returning a policy worse788
than the initial policy in this subsection.789

Table 4 shows the probability of returning a policy worse than different initial policies in both do-790
mains. It can be seen that even in a setting where learning a well-performing policy is difficult, our791
algorithm still provides the desired guarantee. As discussed in Section 6.2, we are also interested in792
seeing whether the accepted πC is actually an improvement over the initial policy with high proba-793
bility. Note, again, that our algorithm provides no guarantees on this probability. Nevertheless, we794
find that a policy accepted by the safety test has a high probability (> 0.85) of being an improvement795
over the initial policy in both domains.796

One thing to note is that for the results presented in Table 4, the candidate policies were trained for797
the same number of steps as in the case of the original observations (3M and 5M for the Circle and798
Goal domains respectively). Due to the increased training time for image inputs, we initially trained799
the policies for only 2M steps for both domains, and we observed that the probability of returning a800
policy worse than the initial policy was sometimes 0.1, which is slightly higher than δ. This is likely801
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Table 4: Probability of POSTPI returning a policy worse than πϵ
init for different ϵ over 20 trials in the

Circle and Goal domains with image observations.

ϵ 0 0.25 0.5 0.75 1

Circle 0.0 0.05 0.0 0.0 0.0
Goal 0.0 0.0 0.05 0.0 0.0

caused by a failure to fulfill the assumptions made by Student’s t-test. In POSTPI’s safety test, we802
use Student’s t-test to compute HCLB(J(πC , r) − J(πinit, r), 1 − δ/2). Student’s t-test makes the803
normality assumption, but we observed that empirically the data distribution was not normal. We804
experimented with other statistical tests, and some more conservative tests were able to ensure the805
desired guarantee, at the expense of the probability of returning a policy. We suggest using Student’s806
t-test for users who do not strictly require the high-confidence policy improvement guarantee, and807
are merely interested in an algorithm that is safer than algorithms without any guarantees. For808
users who are interested in an algorithm that strictly provides the guarantee, we suggest replacing809
Student’s t-test with more conservative statistical tests or tests with weaker assumptions.810

E Hyperparameters811

For POSTPI, B-REX (Mean), B-REX (MAP), PG-BROIL, and T-REX, the major difference during812
policy optimization is the reward functions used. B-REX (Mean) is trained under the mean reward of813
the posterior distribution P (R|P). B-REX (MAP) is trained under the MAP reward of the posterior814
distribution. T-REX is trained under a reward function learned in the T-REX manner (Brown et al.,815
2019a). Our algorithm chooses the reward sample at every iteration using the VaR, while PG-BROIL816
chooses reward samples using their BROIL objective (Javed et al., 2021).817

As the reward functions used by these algorithms have the same magnitude of unit L2 norm, we818
share most hyperparameters for these algorithms. We adapt the implementation of PPO in Stable-819
Baselines3 (Version 2.2.0a6, MIT license) (Raffin et al., 2021) to optimize the policy for these820
algorithms, and use default hyperparameters apart from the ones presented in Table 5. The learning821
rate is picked by grid search from the following values [1e−5, 3e−5, 1e−4, 3e−4, 1e−3] by training822
five policies with different random seeds under each learning rate. We find the learning rate 1e−4823
to perform best for both domains, and use this value for all of these algorithms. These algorithms824
are trained for 3M and 5M steps in the Circle and Goal domains respectively. We use the Adam825
optimizer (Kingma & Ba, 2015) for all experiments. We present details and hyperparameters specific826
to each algorithm below.827

Table 5: Hyperparameters of algorithms built on PPO.

HYPERPARAMETER VALUE

Number of hidden layers 2
Number of hidden units 128
Activation Function ReLU
Number of environment steps per update 4000

PG-BROIL. As mentioned in the main text, we choose a confidence level of 0.95, i.e., δ = 0.05,828
for POSTPI. For PG-BROIL, for a fair comparison with our algorithm POSTPI, we choose α =829
0.95. We choose λ = 0 as we observe it to perform best empirically.830
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B-REX. We compute the mean reward and select the MAP reward using the set of reward samples831
reserved specifically for candidate proposal (see the final paragraph of Section 5.2). These rewards832
are then maximized using PPO, leading to the results of B-REX (Mean) and B-REX (MAP) in the833
main text respectively.834

T-REX. We follow the approach detailed in Section 4 of the T-REX paper (Brown et al., 2019a) to835
learn the reward function. For a fair comparison with POSTPI, we use the same set of preferences836
used by POSTPI to train the T-REX reward function. We pick the learning rate by grid search from837
the following values [3e−3, 1e−2, 3e−2, 1e−1, 3e−1, 1]. We find the best learning rate to be 1e−1838
for both domains, and observe 200 epochs to be sufficient for convergence. We normalize the trained839
T-REX reward function to have unit L2 norm.840

CPL. Different from POSTPI and other baselines, CPL assumes that the preferences follow the841
regret preference model (Hejna et al., 2024). For a fair comparison with POSTPI, we use the same842
set of pairs of trajectories used by POSTPI, but re-generate the preferences according to the regret843
preference model. When generating preferences according to the regret model, we follow the CPL844
paper and use γ = 1. After obtaining the CPL preferences, we train a policy using the CPL variant845
with regularization presented in Section 3 of the CPL paper (Hejna et al., 2024). We keep the policy846
architecture the same as POSTPI and other baselines. We pick the learning rate by grid search from847
the following values [3e−4, 1e−3, 3e−3, 1e−2]. We find the best learning rate to be 1e−3, and848
find 1000 epochs to be sufficient for convergence. For other hyperparameters, we follow the CPL849
paper (Hejna et al., 2024), and use α = 0.1, λ = 0.5, and β = 0.0.850

F Compute Resources851

The experiments are performed on a compute server, mainly using NVIDIA GeForce GTX TITAN852
X (12GB) GPUs. POSTPI, PG-BROIL, B-REX, and T-REX have similar runtimes. Each trial of853
these algorithms takes 5 hours and 7 hours in the Circle and Goal domains respectively. For the854
experiments in Section D.3 that involve image inputs, each trial takes 26 hours and 48 hours for855
the Circle and Goal domains respectively. On the other hand, due to the small number of prefer-856
ences, each trial of CPL can be trained in under 10 minutes. For evaluating the trained policies, all857
algorithms share similar runtimes. Evaluating the expected value of the policies using 200 rollouts858
takes 1 hour and 1.5 hours for the Circle and Goal domains respectively. Evaluating the policies for859
experiments in Section D.3 takes 5 hours and 7 hours for the Circle and Goal domains respectively.860
Note that the number of hours presented above is approximate. The experiments presented in this861
paper were run in a highly parallel manner using 60 to 100 GPUs simultaneously, and finished in862
approximately one week. Running the experiments in a sequential manner is expected to take a863
much longer time.864
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