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Abstract

Catastrophic forgetting in neural networks is a significant problem for continual
learning. A majority of the current methods replay previous data during training,
which violates the constraints of an strict continual learning setup. Additionally,
current approaches that deal with forgetting ignore the problem of catastrophic
remembering, i.e. the worsening ability to discriminate between data from different
tasks. In our work, we introduce Relevance Mapping Networks (RMNs). The
mappings reflect the relevance of the weights for the task at hand by assigning
large weights to essential parameters. We show that RMNs learn an optimized
representational overlap that overcomes the twin problem of catastrophic forgetting
and remembering. Our approach achieves state-of-the-art performance across many
common continual learning benchmarks, even significantly outperforming data
replay methods while not violating the constraints for a strict continual learning
setup. Moreover, RMNs retain the ability to discriminate between old and new
tasks in an unsupervised manner, thus proving their resilience against catastrophic
remembering.

1 Introduction

Continual learning (CL) refers to a learning paradigm where different data and tasks are presented
to the model in a sequential manner, akin to what humans usually encounter. But, unlike humans
or animal learning, which is largely incremental and sequential in nature, artificial neural networks
(ANNs) prefer learning in a more concurrent way and have been shown to forget catastrophically.
The term catastrophic forgetting (CF) in neural networks is usually used to define the inability of
ANNs to retain old information in the presence of new one.

Given the complex nature of the problem, most CL methods understandably relax the constraints
of what we term as a strict CL setup (Section 3.1), i.e. roughly, not using any (saved or generated)
negative exemplars[6, 36] and largely preserving the base neural model. Practically, such a paradigm
may arise in certain edge devices and resource constrained remote systems, and theoretically, such
a setup is important (as we will show) in building a better understanding of the inner workings of
neural continual learning. Therefore, in this work, we primarily focus on studying the strict CL setup.

Catastrophic Forgetting is a direct implication of CL in ANNs and is largely considered a direct
consequence of the overlap of distributed representations in the network. Most prior works deal
with CF by either completely removing the representational overlap [11, 20] or more frequently,
by replaying data from previous tasks. Since Robins [43] showed the promise of memory replay
methods in dealing with CF and the prevalence of cognitive/neuro science inspired theories regarding
memory, it is of no surprise that rehearsal,memory buffer or generative replay, etc. methods dominate
the current state of the art (SOTA) benchmarks [50, 17, 40, 28]. However, they clearly violate the
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conditions of the strict CL paradigm. Crucially, data replay methodology in its effort to deal with CF
often leads to a reduced capability of the network to discriminate between old and new inputs [47].
This is referred to as Catastrophic Remembering (CR) (refer to Section 3.2) and has been shown
to be a significant limitation of replay methods [43, 47].

The goal of this work is to develop a method for continual learning for deep neural networks which
can alleviate the twin problem of Catastrophic Forgetting and Catastrophic Remembering at the same
time, without violating or relaxing the conditions of a strict continual learning framework.

Our proposed approach builds on the following Optimal Overlap Hypothesis: For a strictly con-
tinually trained deep neural network, catastrophic forgetting and remembering can be minimized,
without additional memory or data, by learning optimal representational overlap, such that the
representational overlap is reduced for unrelated tasks and increased for tasks that are similar.

Inspired by this hypothesis, we propose Relevance Mapping for continual learning to alleviate CF
and CR. During the continual learning process, our method learns the neural network parameters and
a task-based relevance mask on the hidden layer representation concurrently. The binary relevance
mask keeps a portion of the neural network weights static and hence is able to maintain the knowledge
acquired from previous tasks, while the rest of the network adapts to the new task. Our experiments
demonstrate that Relevance Mapping Networks outperform related works by a wide margin on
many popular continual learning benchmarks (Imagenet-50, Permuted MNIST, Split MNIST, Split
Omniglot, Split CIFAR-100), hence alleviating catastrophic forgetting without relaxing or violating
the conditions of a strict continual learning framework. Moreover, we demonstrate that Relevance
Mapping Networks are able to detect new sequential tasks in an unsupervised manner with high
accuracy, as well as sustain the task separation without supervision by creating unique overlapping
subnetworks, hence alleviating catastrophic remembering.

In summary, our contributions are:

• We introduce Relevance Mapping Networks which learns binary relevance mappings on the weights
of the neural network concurrently to every task. We demonstrate that our model efficiently deal
with the twin problem of catastrophic forgetting and remembering.

• We explore the concept of Catastrophic Remembering for deep neural networks and show that our
method is capable of dealing with the same (becoming the first methodology to elevate catastrophic
forgetting and remembering concurrently).

• Our method achieves SOTA results on many popular continual learning benchmarks under
strict CL constraints and achieves better results than many other previous SOTA works which are
not be defined under the strict CL setup.

2 Related Work

Continual Learning. Current continual learning mechanisms dealing with CF are broadly classified
into regularization approaches, dynamic architecture, complementary learning systems and replay
architectures [41]. Primarily based on the Stability-Plasticity Dilemma [35] concept, regularization
approaches impose constraints on weight updates to alleviate catastrophic forgetting like Elastic
Weight Consolidation (EWC) [20] and Learning Without Forgetting [32]. These methods do not
ordinarily violate the conditions of a strict CL framework but have been shown to suffer from
brittleness due to representational drift [50, 18] and thus are usually combined with other methods.
Rehearsal/replay buffer methods, like [50] which are the state-of-the-art methods, use a memory store
of past observations to remember previous tasks in order to alleviate the brittleness problem. However,
these are not representative of strict sequential learning insofar that they still require re-learning of
old data to some extent and perform significantly worse the less samples are replayed, and they may
struggle to represent uncertainty about unknown functions.

There are no known modern methods which deal with CR in a CL framework, with our method being
the first of its kind to be able to combat CF and CR in a strict continual learning framework.

Catastrophic Remembering refers to the tendency of artificial neural networks to abruptly lose the
ability to discriminate between old and new data/task during sequential learning. It is an important
problem and inherently attached to the problem of catastrophic forgetting. But, unlike the problem
of catastrophic forgetting, which has a rich literature of research, catastrophic remembering has not
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been explored outside of minor discussions in early works [46, 30, 11]. In this work, we discuss CR
from a probabilistic perspective (Section 3.2) and demonstrate that related work suffers from CR
in our experiments in Section 5.2. Finally, we demonstrate that our proposed Relevance Masking
Networks are much more resilient to catastrophic remembering.

3 Strict Continual Learning and a Catastrophic Memory

3.1 Strict Continual Learning in Neural Networks.

This formulation of continual learning refers to a learning paradigm where ANNs are trained strictly
sequentially on different data and tasks [6, 36]. Given a neural network f with parameters θ and Ti
being the time interval of the training with task data Di where i is the current task and N is the total
number of tasks. The important conditions of the training paradigm are:

1. Sequential Training i.e. T1[fθ(D1)] < T2[fθ(D2)] < ... < TN [fθ(DN )] with the single f .

2. No negative exemplars, examples or feedback i.e. future (or past) data samples cannot be provided
to the network with the current data/task in any way.
(D1 ∩ DT ) ∪ ... ∪ (DT−1 ∩ DT ) ∪ (DT ∩ DT+1) ∪ (DT ∩ DT+2)... ∪ (DT ∩ DT+N ) = ∅

As can be garnered from the above definition, any type of replay or buffer methods relaxes the above
conditions. Many CL methods [45, 28, 13, 51] also change the ANN(fθ) altogether by adding new
convolutional/linear layers for each task (for e.g. using multi heads -different last linear layer for
each task- has become a common practice), using a mixture of ANNs, using additional models (like
generators) which relaxes the above conditions as well since we are not using the same ANN anymore.
RMNs only use the original set of convolutional/linear weights of the base model for all tasks.

Catastrophic forgetting from a probabilistic view. Intuitively, given a learnt initial set of parame-
ters θi for a neural network f and a task i with data Di, the network’s parameters get overwritten
when it learns a new set of network parameters θi+1 from new data Di+1 for the (i+ 1)th task. To
facilitate the conceptual understanding of CF, we consider continual learning from a probabilistic
perspective, where optimizing the parameters of fθ1:N is tantamount to finding their most probable
values given some total data {D | D ⊃ D1, ..., Dn} [20]. We can compute the conditional probability
of the first task P(θ1|D1) from the prior probability of the parameters P(θ1) and the probability of
the data P(D1|θ1) by using Bayes’ rule. Hence, for the first task,

logP(θ1|D1)= logP(D1|θ1)+ logP(θ1)− logP(D1). (1)

Note that the likelihood term logP(D1|θ1) simply represents the negative of the loss function for the
problem at hand [20]. Additionally, the posterior term is usually intractable and only approximated
for ANNs [50, 37, 20] and we are just considering it here without change for analysis purposes only.
If we were to now train the same network for a second task, the posterior from (1) now becomes
a prior for the new posterior. If no regularization or other method is included to preserve the prior
information, we’d optimize for the second task,

logP(θ1:2|D1:2)= logP(D2|θ2)+ logP(θ1|D1)− logP(D2)

= logP(D2|θ2)+ logP(D1|θ1)+ logP(θ1)− logP(D1)− logP(D2).
(2)

If the likelihood term is not optimised over both θ1 and θ2, as would happen normally in a ordinary
ANN training setup, the prior information can be overwritten, leading to the condition commonly
referred to as catastrophic forgetting.

Overcoming catastrophic forgetting. We can clearly see from Eq. 2, if we had access to the
previous data D1 or if both θ1 and θ2 were independent of one another, we could approximate a well
optimized posterior. However, even in a typical continual learning setup we cannot trivially assume
access to the previous data or make independence assumptions on the sequentially learnt parameters.
This, however, gives us a crucial conceptual insight into how to deal with CF and the mechanisms of
current popular CL methods, which aim to overcome CF by relaxing either of the two restrictions.
In particular, some recent works [34, 45, 16] try to effectively separate the model parameters θi for
different tasks, as initially proposed by [10]. The most successful recent works [40, 50, 5, 13, 17]
involve data replay methods, which relax the previous data availability restriction. Despite some
success in dealing with CF, data replay drastically diminishes the discriminative ability of the ANN, a
phenomenon referred to as Catastrophic Remembering [43]. This usually happens because the ANN
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tries to learns a more general function f(θ1:N ) than necessary since now previous data is available,
generalizing not only to the individual tasks, but to the entire sequential set of tasks {θ | ∀θi ( θ1:N }
which has been referred to as overgeneralization [43]. The network can then experience a sense of
extreme deja vu [47] and is unable to differ the old from new data or discriminate between tasks.
Alongwith real world scenarios, this also underlines the necessity of a strict CL setup - which
encourages study of effects of CL in ANNs by avoiding side-stepping the problem.

3.2 Catastrophic Remembering

For a better understanding of CR and why CF alleviation aggravates it, we calculate the posterior
after the nth task learnt continually using Eq. (2),

logP(θ1:n|D1:n) = logP(Dn|θn) +

n−1∑
i=1

logP(Di|θi) + logP(θ1)− C (3)

where C is a constant representing the sum of the normalization constants
∑n
i=1 logP(Di). As

discussed earlier, the information of from the previous tasks is passed to the next sequential task as a
prior (

∑n−1
i=1 logP(Di|θi)). The problem of loss of discriminative ability arises when for an arbitrary

large n when the prior term far exceeds the currently optimized likelihood. For Eq. (3), that means

logP(Dn|θn) <<

n−1∑
i=1

logP(Di|θi). (4)

In the context of data replay methods this intuitively means that if the number of data from the
previous tasks {D1, . . . , Dn−1} is far bigger than the data in the current task Dn the contribution
of the present likelihood to the posterior is negligible and no new features are learnt by the ANN to
account for the new dataset/task. This, in turn, gives the model a sense of false familiarity with a
new input and the model is no longer able to discriminate between old and new inputs. The above
explanation, though not exhaustive, provides a initial understanding from a Bayesian viewpoint.

A parochial outlook on generalization without general robustness may allow us to argue against
the necessity of the discriminative memory property that CR attacks in ANNs. However properties
like novel input and task detection are crucial in fields like AI, Computer Vision and Robotics. It
can be necessary to detect new inputs to learn more robust features for the current data, e.g. a self
driving network may need to identify whether it is familiar with a current set of input data for varied
reasons. The loss of ability to differentiate amongst the already learnt tasks (also caused by CR)
will cause perpetual source ambiguity in CL neural systems during inference which could be an
undesirable loss of information. Recognition and discrimination memory are important aspects
of human memory and learning - which is the inspiration for the field of CL - concepts which
ANNs have been trying to replicate. However, as we have shown above, many CL methods can not
robustly replicate this property even if they can alleviate CF in CL. This underlines the importance
of study of CR in CL which may lead us to have a better understanding of robust CL systems in general.

4 Relevance Mapping for Continual Learning

We introduce Relevance Mapping, which is a method inspired by the Optimal Overlap Hypothesis,
that aims to learn an optimal representational overlap, such that unrelated tasks use different network
parameters, while allowing similar tasks to have a representational overlap. Note that our method
avoids data replay and instead aims to achieve independence between network weights that are used
for different sequential tasks.

Algorithmic implementation of Relevance Mapping. To illustrate and motivate Relevance Map-
ping Networks (RMNs) using a simple example, we consider a multilayer perceptron (MLP) with
two layers f defined as f(x) , σ(W2σ(W1x)), where x ∈ Rd1 , W1 ∈ Rd2×d1 , and W2 ∈ Rd3×d2 ,
and σ denotes a nonlinear activation function. We denote the set of weights as W , {W1,W2}.
Although it may depend on the dimensionality of the task, overparameterization occurs even in
these simple MLP settings. For a sufficiently simple task, only a subset of the parameters in W
are often required [9]. For example, if the optimization task has ground truth outputs specified as
f∗(x) = σ(W ∗2 σ(W ∗1 x)) for optimized weights {W ∗1 ,W ∗2 }, and ||W ∗1 ||0 + ||W ∗2 ||0 � d3d2 + d2d1
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(i.e. the number of non-zero weights needed for the ground-truth function is much less than the
number of total weight parameters) then only ||W ∗1 ||0 + ||W ∗2 ||0 weight parameters are necessary to
be learned in network f . In theory, if we could learn the importance or relevance of each weight node,
we could apply a zero-mask to the non-essential parameters without pruning or modifying them and
still successfully learn the ground-truth. A set of mappings can be denoted as MP = {MP1,MP2},
where MP1 ∈ {0, 1}d2×d1 and MP2 ∈ {0, 1}d3×d2 , explicitly representing the neuron-to-neuron
connections of the network. The initialized relevance mappings of an ANN can be approximated by a
logit-normal distribution mixture which is rounded during inference.

MPi ≈
∏
i

LR(N (µi, σ
2
i )) and LR(xi;β) =

1

1 + exp(−(β(xi − 0.5)))
(5)

where µ, σ are the initializing distribution parameters and LR sigmoidal pseudo-round function. This
is done in order to make the mappings differentiable and the individual mixture components are jointly
optimized for the task with the network parameters. In theory, any network f with weight tensors W
can have such corresponding sets of neuron connection representations MP1:T for T tasks/mappings,
where each set MPi activates a subnetwork mapping in f that could be used for various purposes for
a task i. This simple example illustrates the trivial result that the over-parameterization property of
modern networks[9].

Note that limβ→∞(LR(x, β)) for x ∈ [0, 1] is equivalent to the rounding function. Here, β is a
learnable, layer-wise parameter (i.e., in our implementation, there is one specific β for every layer of
a given network) that controls the “tightness” of LR. To achieve an approximate neuron-connection
representation, we define MP = LR(x;β) where x is initialized from some distribution with support
(0, 1] (in experiments, we initialize x with a clipped, skewed normal distribution). During inference,
we binarize the MP. In our presented work, we can think of the RMNs as replacing the weights of a
network with the product of the weights and a binary relevance mixture.

In this work, we introduce two algorithms, Algorithm 1 and 2 (Supplementary Section B) which
make use of Relevance Mapping. The former is used for traditional Supervised CL experiments which
used to evaluate CF alleviation. The latter is used for the Unsupervised scenario (new task detection
and unsupervised task inference) concerning evaluation of CR alleviation. Importantly, neither of the
algorithms relax the conditions of a strict CL framework (Section 3.1).1

Probabilistic interpretation of Relevance Mapping. French [10] introduced the method of context-
biasing in which produces internal representations which are both well distributed and well separated
to deal with CF. RMN preserves a similar idea of distribution and separability without constraining
for an explicit representation separation amongst posteriors learnt for the sequential tasks. The
separation, in turn, is provided by the relevance mappings

P(θ1,MP1|D1) ∝ P(D1|θMP1)P(θMP1). (6)

The 1st task of the CL problem presented in Eq. (6) is similar to Eq. (1) with relevance mappings
introduced under the conditions of the algorithm presented. θMPi represents only a subset of θ for
which MPi = 1. For learning the second task we optimize

P(θ1:2,MP2|D1:2) ∝ P(D2|θMP2)P(θ1,MP1|D1). (7)

In Eq.(7), the second term on the right doesn’t contribute anything to the optimization over the second
task due to the presence of independent relevance mappings which effectively disengages θMP1 from
further tampering and the next task receives a slightly constrained prior distribution that we can refer
to as θ

′′

2 . The θMP1 parameter set is however still available to the second task. For just the 2nd task,
Eq.(7) now becomes

P(θ1:2,MP2|D2) ∝ P(D2|θMP2)P(θ
′′

2 ) (8)

which is effectively now a problem of just optimizing an ANN’s parameters (θ,MP) without any
dependence on the previous task’s posterior. We have effectively decomposed the sequential task
parameters. There are three scenarios that may occur w.r.t the optimised parameters i.e. (k represents
the individual elements) (i) MP

k
2 = MP

k
1 ⇒ θkMP1

= θkMP2
(ii) MP

k
2 = 0 & MP

k
1 = 1 (iii) MP

k
2 = 1

& MP
k
1 = 0⇒ {θkMP1

∩ θkMP2
= ∅} All of these scenarios can be handled by RMNs thanks to the

1Refer to Supplementary for further method details
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Table 1: Mean test accuracy results for supervised CL(Imagenet-50, Split-MNIST, Permuted-MNIST,
Sequential Omniglot, Cifar-100 (20 tasks)(RES-CIFAR) & Split Cifar-100(10 tasks))

ALGORITHM IMAGENET-50 P-MNIST S-MNIST S-OMNIGLOT RES-CIFAR S-CIFAR100

VCL[37]R,H − 90 97 53.9±2.3 − −
(200 p/t) (40 p/t) (3 p/c)

HAT[45]†
H − 91.6 99 5.5±11.1 23.6±8.8 59.2±0.7

RWALK[5]R,H − − 82.5 71.0±5.6 70.1 58.1±1.7

AGS-CL[16]†
H − − − 82.8±1.8 27.6±3.6 64.1±1.7

FRCL[50]R − 94.3±0.2 97.8±0.7 81.5±1.6 − −
(200 p/t) (40 p/t) (3 p/c)

MEGA-II[13]R,** − 91.21 − − 66.1±1.9
M −

(256 p/t) (1300 p/t)
DGM-W[38] 17.8 − − − − −
CGN[1] 35.3 − − − − −
SNOW([51])†

A − − − 82.8±1.8 − −
FROMP([40])R 94.9±0.1 99.0±0.1 − − −

(40 p/t) (40 p/t)

DLP([48]) − 82 61.2 − − −
EWC([20]) − 84 63.1 67.43±4.7

H 42.67±4.24
H 60.2±1.1

H

SI([52]) − − 57.6 54.9±16.2 45.49±0.2
H 60.3±1.3

H

MAS[3]†
H − − − 81.4±1.8 42±1.9 61.5±0.9

RMN (OURS) 67.1±2.1 97.8±0.1 99.5±0.2 85.3±1.7 80.1±0.9 70.1±2.5

†
SIMILAR METHODS(SECTION 2)

√
USES PRETRAINED NETWORK R USES DATA REPLAY BUFFER A ADDITIONAL MODEL IS USED

H MULTIHEADED LAYER IMPLEMENTATION ** NOT TRAINED OVER ALL TASKS P/T,C POINTS/TASKS, CHARACTER

Optimal Overlap(O2) hypothesis. For optimizing over n sequential tasks, (8) becomes,

P(θ1:n,MP|D1:n) ∝
n∏
i=1

P(Di|θMPi)P(θ
′′

i ) (9)

Looking at (9) which is a basic Bayesian expression for a normal ANN, we can now understand that
O2 hypothesis inspired RMN algorithm is capable of learning well separated and well distributed
internal representations thanks to the posterior decomposition induced by our method. This takes
care of the problem of CF and since the parameters of the model are jointly optimized over both the
RMN parameters θ and the relevance mappings MP, the network cannot overgeneralize to a specific
task given only θ which, in turn takes care of CR.

The focus in RMNs is not to force a zero representational overlap or just generalize to all the sequential
tasks altogether but rather to utilize the over-parameterization property of ANNs [9] and learn an
optimal representational overlap for all tasks in the weight space - corroborating the Optimal Overlap
Hypothesis. Therefore, there’s no constraint on the maps MP to minimize the overlap with each other
or a global loss function which takes in account of the loss of individual tasks.The map MP for each
task helps define a subset of the final weight mapping of the ANNs. This subset may be disjoint
or overlapping with other MP defined weight subsets. Since, all the sequential tasks’ parameter
mappings are subsets of the final weight mapping (with MP defining the set relationship), we are able
to alleviate both CF (the final mappings generalizes well for all the tasks) and CR (the MP preserve
the relationship between the global and individual parametric mappings).

5 Experiments

5.1 Catastrophic Forgetting (Supervised Continual Learning)

2 For CF alleviation evaluation, we use the most common CL experimental setup - supervised
classification of sequentially available tasks. Even though RMNs faithfully follow the strict CL setup,
we compare it with many current SOTA methods which relax the strict constraints.

Setup. We use a wide range of baseline neural architectures (MLPs, CNNs[27], Siamese
Networks[22], Residual Networks[14], etc.) to show RMNs versatility. As is common in related work

2For detailed discussion about hyperparameters, architecture, complexity, etc. please refer to Supplementary
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Table 2: CL without Task Labels (Mean Test Accuracy)

ALGORITHM P-MNIST S-MNIST S-OMNIGLOT FUZZY S-MNIST FUZZY P-MNIST

FRCLR∇ 94.3±.2 97.8±.7 81.5±1.6 CND CND
FROMPR∇ 94.9±.1 99±.1 − CND CND
CN-DPM[28]RA∇ − 97.53±.3 − 93.22±.1 -
RMN (OURS) 97.7±.1 99.5±.2 85.3±1.7 99.1±.5 96.9±1.7

CND
CAN NOT DO R USES DATA REPLAY BUFFER A MULTIPLE NETWORKS USED ∇ CR NOT ALLEVIATED

[50, 20, 37, 40, 16], we evaluate RMNs on six benchmarks: Imagenet-50, Permuted-MNIST[20],
Split-MNIST, Sequential Omniglot [44], 10 task Split-Cifar100 [52] and 20 task Split-Cifar100
(Res-Cifar). The Res-Cifar and Imagenet-50 experiments use a Resnet18. For 10 task S-Cifar100, we
used 6 convolution layers followed by 2 fully connected layers. MNIST and S-Omniglot architectures
are same as in [50]. Refer to Algorithm 1 (Supplementary Section B) for RMNs.

For RMNs, the classification output f(x;W,MP1, . . .MPT ) , argmaxi∈{1...T}({f(x;W,MPi)} so
that no task-specific information is utilized at inference time (showing the inherent task discrimination
capability). We also augment the loss function with L1-norm penalty on MP masks and sum of
overlap of MP1:T to reward sparsity and optimal separation of weight spaces, respectively.

Results and Discussion As seen in Table 1, RMNs set the state of the art across presented CL
benchmarks in a strict setup. They also perform robustly against many current SOTA methods
which do not follow strict CL setup with improvements of 2.8% (P-mnist), 0.5% (S-mnist), 3.9%
(S-Omnliglot), 8.7% (S-Cifar100), 13.9% (Res-Cifar) and 7% (Imagenet-50) over the best results.
To the best of our knowledge, it appears that our work is also SOTA when compared to non-strict CL
methods in many of the presented benchmarks. Table 1 is divided into two parts with the above part
quoting the methods which do not obey the conditions of a strict CL framework. Some compared
methods[37, 50, 5, 13, 40] employ data replay buffers while others cannot work efficiently without
one or more multi-headed layers [37, 5, 16] or a version of it - for e.g. [45] use manual hard coding of
layers per task. The lower part of Table 1 consists of methods which are (or can be) implemented in a
strict sequential learning setup. Unlike most of the compared methods, RMNs do not require any
replay buffers, ensemble networks, meta networks, multi-headed layers or pretrained models
and yet are able to outperform many methods which do. We also compare RMNs with similar
methods as mentioned in Section D and see that RMNs substantially outperforms every one of them
as seen in Table 1.

5.2 Catastrophic Remembering Experiments

How to evaluate CR alleviation? Though more research needs to be done to come up with more
robust evaluation metrics, we trivially propose two experiments to evaluate how well a method deals
with CR. Inspired by the fact that CR affects an ANN’s capability to discriminate between old and
new task data and to retain the distinction between all the different tasks that it has trained on, we
setup experiments to evaluate the same.

1. Unsupervised New Task Detection

2. Unsupervised Task Inference - Under this novel setup, the model has to identify which task a data
input belongs to amongst all the tasks at inference time. From a practical point of view, knowing
which task in the sequential task list does the current inference data element belongs to, without
human intervention opens up huge opportunities for automation and analysis.

Setup
(i) For new task detection, the model is given no task information during training (and inference)
time. The model has to detect a new task in an unsupervised way. The results are then compared with
the full supervised version (Table 1) and any performance degradation from the supervised results
allow us to evaluate how well the model can alleviate CR. Here, we assume that no information of
task labels is given, including the number of disparate tasks.

(ii) After the ANN has been trained, the test data is randomized and provided to the model for
inference without its task identity (something which would happen in real world CL scenario). The
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model identifies the task to which the data belongs to and then the test accuracy is calculated from
the correctly identified task over the entire task set.
For clarification, since there are no individual heads for each class per task and the training is
unsupervised, methods like the ones working under Class Incremental setup[42] do not trivially work.

RMN Methodology (refer to Algorithm 2 (Supplementary Section B))
(i) We initialize fθ with only a single MP, i.e. only a single forward inference path can be learned
at initialization, as seen in Line 2 of Algorithm 2 (Supplementary Section B). We set the current
task indicator(estj) to 0. Then, for each minibatch x encountered, we run a task-switch-detection
(TSD(x)). If TSD(x) returns True, then estj is incremented and another set of MP is added to
f . We use a Relevance modified Welsh’s t-test on the KL divergence between prior and posterior
distributions of the model to determine a task switch [50, 15, 29].

(ii) For RMNs, as task j is not given at inference time, thus maxkf(x, k;W ) is returned, as seen
in Algorithm 2 (Suppl. Sec. 2). Our experimental results show that for any ground-truth task label
j, indeed the desired result is f(x, j;W ) ≈ maxkf(x, k;W ), which allows for unsupervised CL
inference, as the pathways of different tasks don’t overlap unless the tasks are the same.

Results and Discussion
(i) Few methods [50, 28, 40] have tried to deal with the harder problem of learning continually
without task labels and none of these follow a strict CL framework. [50] and [40] both employ a
data replay buffer whereas [28] uses generative replay and a mixture of expert models (which leads
to a large increase in computational and memory requirements). Most methods try to sidestep the
problem of CR in this case by either focusing on the data (instead of model) for task detection or
save exemplars to compare incoming data with. Neither actually works on the CR problem in the
ANN - underlining the importance of the strict CL setup. However, for comparative purposes, we still
display the results of non-strict CL methods as well in Table 2. Further, these methods, being heavily
dependent on data, fail when the task data is noisy and doesn’t come in clean batches. RMNs, unlike
other methods in Table 2, can easily deal with this since only if RMNs have seen the data do they
have high and confident activations before calculating the KL divergence test between the prior and
posterior to detect the presence of a new set of data. We refer it to as Fuzzy Unsupervised Learning
setting (with results for S-MNIST also in Table 2. Additionally, for comparative purposes only since
its the only method (to the best of our knowledge) which can deal with a fuzzy setup, Table 2 includes
results from[28].But this method is a data-replay, multi ANN model and does not alleviate model CR.

(ii) Unfortunately, we couldn’t find any SOTA CL method which is capable of unsupervised task
inference in a strict CL setup. In Figure 2a, we show how our algorithm is able to detect the right task
- we see that the relevance-weight combination achieves the correct maximum activation in the final
layer only when the correct relevance is used. We also display the percentage of correct activations
for other relevance values even if they are not maximum activations. Due to lack of comparative
methods and space, rest of results for Unsupervised Fuzzy Learning and Unsupervised Task Inference
are provided in the Supplementary. According to our knowledge, our method is the only known
continual learning method under strict CL setup constraints capable of successfully accomplishing
unsupervised task inference.

6 Conclusion

In this work, we study the twin problem of catastrophic forgetting and remembering in continual
learning. To resolve them, we introduce Relevance Mapping for continual learning, which applies a
relevance map on the parameters of a neural network that is learned concurrently to every task. In
particular, Relevance Mapping learns an optimal overlap of network parameters between sequentially
learned tasks, reducing the representational overlap for dissimilar tasks, while allowing for overlap
in the network parameters for related tasks. We demonstrate that our model efficiently deals with
catastrophic forgetting and remembering, and achieves SOTA performance across a wide range
of popular benchmarks without relaxing the conditions of a strict continual learning framework.
We do not see any direct potential negative societal impacts of our work. Future work would include
making the mapping distribution initialization parameters to be trainable which can be used to
calculate the relevance mappings on the fly.
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Supplementary

A Concepts

Figure 1: RMN example for a single weight matrix - chromatic colors represent different tasks,
grayscale values represent weight node magnitudes and solid black nodes (in (b) - (g)) represent off
nodes (a) a single weight matrix in an ANN; (b) binary relevance mapping for two tasks - here white
refers to the node belonging to both tasks and black refers to unused nodes; (c) & (d) show what an
individual relevance mapping from (b) would look like for each task; (e) result of relevance mapping
application on weight matrix (a); (f) & (g) show what a weight matrix would look like for each task
during a forward pass.

A.1 Strict Continual Learning

In Section 3 of the main paper, the concept of Strict Continual Learning is defined and it is noted
that most of the current state of the art Continual Learning methods relax the constraints of a strict
continually learning framework. In Table 3, we quote some of the major violations of a strict continual
learning framework with reference to the state of the art methods compared in the main paper.

Data Replay refers to the usage of old or future task data in any way to train the neural network.
Methods like [13, 17, 37, 50, 40, 5], etc. all employ this tactic in unique ways to learn continually. It
often involves saving old task data in memory modules and been originally inspired from [43] who
was among the first researchers to show that data replay helps in alleviating catastrophic forgetting in
artificial neural networks, albeit at an expense of relaxing the constraints of a strict continual learning
setup.

Multihead usually refers to the usage of different last (usually linear) layer for each task. This has
become particularly common in continual learning benchmarks with many methods [5] dissuading
the usage of single heads for a continually learning neural network. There are a few methods which
also employ similar but unique methodology. For e.g. [45] uses a binary hard coded final layer per
task.

Pretrained refers to using a pretrained model (usually trained on a more complex dataset like Ima-
geNet [7]) for training on a simpler problem or dataset (e.g. CIFAR [23]). Having used data outside
of the continual learning problem setup and since the model has now probably over-generalized
to entire sequel data/task set, using a pretrained model relaxes the constraints of a strict continual
learning.

Generative Replay ordinarily refers to the usage of generative modelling for the dataset or task at hand
and using these generated samples for some form of data replay. The usage of additional generative
model (even for simple classification models and tasks), saving old data points, etc. all violate the
conditions of a strict continual setup.

Multi-Models refers to the usage of a neural model other than the original model to help with the
continual learning problem. This can reflect in using meta networks, or in strategies similar to the one
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Figure 2: (a) P-MNIST Task Inference (b) Average accuracy results on CIFAR-100 (10 tasks)

presented in [51] where separate delta models are used per task to help the original neural network
learn continually.

The aforementioned concepts are not mutually exclusive and clearly do not present an exhaustive list
of methods employed to relax a strict continual learning framework, however they do provide us a
reference among-st the compared SOTA methods to ascertain which method displays the best results
with least amount of constraint relaxation.

Table 3 show that our method, RMNs, do not need to use any of the aforementioned methods to
violate strict continual learning constraints and still produces the state of the art results in common
Continual Learning benchmarks.

Table 3: Common Methods used in Continual Learning which relax a strict CL framework

ALGORITHM DATA MULTIHEAD PRETRAINED GENERATIVE MULTI-MODELS
REPLAY REPLAY

VCL 3 3 7 7 7
HAT 7 3 7 7 7
RWALK 3 3∗ 7 7 7
AGS-CL 7 3 7∗ 7 7
FRCL 3 3 7 7 7
MEGA-II 3 3∗ 7 7 7
SNOW 7 3 3 7 3
FROMP 3 3∗ 7 7 7
CGN 3 3 3 3 3
DGM-W 3 3 7 3 3

DLP 7 7 7 7 7
EWC 7 3∗ 7 7 7
SI 7 3∗ 7 7 7
MAS 7 3 7∗ 7 7
RMN (OURS) 7 7 7 7 7

* EXCEPTIONS EXIST

Why strict CL? A strict setup is valuable in developing methods for practical cases which involve
highly resource constrained CL systems e.g. edge devices, remote systems, etc. where changes to
the already defined system and saving old task data would be undesirable, economically prohibitive
or even impossible. Conceptually, it forces neural systems to deal with CF and CR on its own with
minimal rsources and without reliance on data assumptions or other systems/models. This, in turn,
drives research towards earning a better understanding of the properties of neural CL.

Balancing Forgetting and Remembering Having gained a basic understanding about CF and CR,
an astute reader would realize the crux of our problem. Alleviating CF appears to aggravate CR.
While current literature focuses on alleviating CF, the problem of CR does not receive much attention.
One aim of this work is to shed light on the twin problem of catastrophic forgetting and remembering
and to introduce a method which can balance alleviating both problems concurrently.
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A.2 Catastrophic Remembering

A common solution for the problem of Catastrophic Forgetting is to overgeneralize to the entire set of
sequential data/tasks. For example, methods which employ data replay, pre-training and knowledge
distillation directly employ over-generalization for CF alleviation.

Over-generalization The concept of over-generalization (in the case of back propagated artificial
neural networks) refers to the learning of parameter set by the neural network tries to or has already
learned a much more general function than what is required.

A simple example to understand Catastrophic Remembering was provided in the work by French
[12] where a network has a task of reproducing an input as output. A new input is detected if
output diverges by a large margin. If the network learns too well and learns the identity function,
then it has overgeneralized and hence loses the ability to detect new input. This trivial example
presents one aspect of Catastrophic Remembering. However, there is no guarantee that the loss of
discrimination always leads to correct generalization - the network just becomes too familiar with the
input irrespective of whether the output is correct.

A.3 Optimal Overlap Hypothesis

Optimal Overlap Hypothesis: For a strictly continually trained deep neural network, catastrophic
forgetting and remembering can be minimized, without additional memory or data, by learning
optimal representational overlap, such that the representational overlap is reduced for unrelated
tasks and increased for tasks that are similar.

More formally, for an ANN fΘ(D) with parameter Θ and sequentially available data Di over number
of tasks/data i ∈ [1,T] instead of trying to enforce over-generalization which is to learn a superset
parameter space which encompasses the sequential tasks {θi | ∪θ1...T = Θ ∧ ∩θ1...T = ∅} or
complete separation of weight space {θi | ∪θi ( Θ} , we try and learn optimal overlaps amongst
the sequentially learned parameter sets. That means {∀i, j ∈ T 3 i 6= j | θi ∩ θj = A ∧ ∪θi = Θ}
where A ∈ [∅, θi/j ].
This hypothesis contrasts from the general concepts of generalization or complete removal of repre-
sentational overlap. As mentioned earlier, the twin problems CR and CF can’t usually be alleviated at
the same time given that generalizing well to all sequential tasks/data leads to aggravating the CR in
the ANN.

B Relevance Mapping Method

Figure 1 shows a simple example of a relevance mapping in effect over a single weight matrix of a
artificial neural network.

B.1 Algorithms

Two algorithms using RMNs has been cited in the main draft with the first one used primarily in
traditional supervised CL for classification tasks while the second one is used for the new unsupervised
CL experiments which are used for CR alleviation.

A point to note that adding regularization to induce sparsity in RMNs is optional and is not required
to obtain an optimally trained model (as shown in Section B.3). Additionally, model weights are
never pruned in RMN methodology. The pruning mentioned in Algorithm 1 and 2 refers to zeroing
out of relevance mappings which have not tightened towards value of 1. The prune parameter µ may
also refer to the combination of weight and MP .

B.1.1 Catastrophic Forgetting (Supervised)

In the supervised continual learning setup, task labels are available both during training and inference
(though RMNs do not requires task labels as such). This kind of experimental setup is currently the
most common form of evaluation used for Continual Learning methods. (Algorithm 1)
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Algorithm 1 RMN Supervised Continual Learning

1: Input: data x, ground truth y for n tasks, prune parameter µ, corresponding task labels i paired
with all x

2: Given: parameters W & initilaized relevance mappings MP
3: for each task i do
4: f(xi;W,MPi

)⇒ ŷi = σ((W �MPi
)� xi)

5: Compute Loss : L(ŷi, yi)
6: Optional: Add Sparsity Loss : L(ŷi, yi) + (MPi

)l0
7: Backpropagate and optimize
8: Prune MP ≤ µ only.
9: Stabilize (fix) parameters in f where MP = 1

10: end for
11: Inference: For data x and ground-truth task label i:
12: Output: f(x, i;W )

B.1.2 Catastrophic Remembering Experiments

For Unsupervised learning setup (which is used as a measure of Catastrophic Remembering in
our work), we introduce two sub tests - new task/data detection and unsupervised/randomized task
inference. (Algorithm 2)

In New Task/Data Detection, task label information is unavailable during both training and inference
time and the model has to detect the new task in a unsupervised manner.

Algorithm 2 RMN Unsupervised Continual Learning

1: Input: data x, ground truth y, prune parameter µ
2: Given: parameters W, MPest_j with est_j = 0, Task Switch Detection Method TSD
3: for each task j do
4: Filter input x on f(x;W,MP0...j−1)
5: f(x;W,MPest_j)⇒ ŷ
6: Compute Loss : L(ŷ, y)
7: if TSD(x) is True then
8: est_j + +
9: Add MPest_j to learn-able parameter list

10: f(x;W,MPest_j)⇒ ŷ
11: Re-Compute Loss : L(ŷ, y)
12: end if
13: Backpropagate and optimize
14: Sample xg from standard Gaussian distribution with same shape as x
15: f(xg;W,MPest_j)⇒ ŷ

16: Compute Loss : ||ŷ − 0||22
17: Backpropagate and optimize
18: Prune MP ≤ µ only.
19: Stabilize (fix) parameters in f where MP ≈ 1
20: end for
21: Inference: For data x:
22: Output: maxkf(x, k;W )

The usual methodology that is followed in an Unsupervised CL learning setup involves boundary
detection between current and new tasks. RMNs achieve the state of the art for Unsupervised CL
Learning without the usage of data replay buffer, mixture of expert models or any kind of generative
replay, unlike [50, 40, 28]. Ordinarily, these task detection methods employ statistical tests like
Welch’s T-test over clean batches of data (the entire batch data belongs to either the current or the
next task). This methodology fails when the incoming previous and the incoming batch are noisy
with the incoming batch consisting of the new task data as well as old data. RMNs however can
easily deal with this by filtering the incoming batch via final layer activations - only if RMNs have
seen the data do they have high and confident activations before calculating the KL divergence test
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between the prior and posterior to detect the presence of a new set of data. However, none of the
methods [50, 28] mentioned in the main draft are capable of deploying over such a noisy data setup
and are unable to learn continually. [28] does employ a Fuzzy Testing scenario for Split-MNIST in
which there are transition phases between tasks where the amount of new data increases linearly in
each batch. The Fuzzy Unsupervised Learning experiment done on Sequential-MNIST follows the
procedure laid out in [28].

The (Randomized) Unsupervised Task Inference experiment also capitalizes on the aforementioned
weakness of the former test. Under this, a continually trained model has to identify the task ID during
inference under circumstances where the inference input is task randomized. However, since RMNs
form unique subnetworks in the original neural network, they are capable of trivially identifying
the task ID as well as filtering out the noisy training data for new tasks. Under this novel setup, the
algorithm has to identify at inference time which task a data input belongs to amongst all the tasks it
has learned. From a practical point of view, knowing which task in the sequential task list does the
current inference data element belongs to, without human intervention opens up huge opportunities
for automation and analysis. The average mean test accuracy for Unsupervised Task Inference are:
average accuracy: S-Mnist: 99.5 ± 0.2, S-Cifar100: 70 ± 3.1, Res-Cifar: 80 ± 1.2, Imagenet-50:
83.1± .5

B.2 β parameter

As presented in the main text, we used a sigmoidal pseudo-round function during training which is
completely rounded during inference:

LR(xk;β) =
1

1 + exp(−(β(xk − 0.5)))
(10)

We also noted that limβ−→∞(LR(x, β)) for x ∈ [0, 1] is equivalent to the rounding function. Here,
β is a learnable, layer-wise parameter (i.e., in our implementation, there is one specific β for every
layer of a given network) that controls the “tightness” of LR. We experimented with different values
of β and noted that for an arbitrary high value of β (≥ 80), there’s not any visible difference in results
and that the β value doesn’t require any tuning. If we tried and learn the β parameter instead of fixing
its value, we noted that the β value tightened over time.

B.3 Sparsity Analysis

Sparsity(S) in a RMN f(W,MP ) is calculated according to the following formula

S =

∏n
i=1 ∩MP = 0

num(W)
(11)

Figure 3 shows the model sparsity and usage for Resnet-18 model trained on Cifar-100 [23] dataset
over 20 tasks. For this experiment, there are no loss functions, regularization or any method employed
to constrain the model parameters or MP for sparsity. If we do however constrain for sparsity using
L1 or L0 regularization, we can observe much higher sparsity levels. We can observe that the model
capacity usage evens out over time which can be explained due to subsequent tasks finding overlap
amongst old task parameters.

B.4 Model Computational Complexity w.r.t number of Tasks

RMNs require only the learned weights of the continually learning network, though this is achieved
through creating distinct sub-network mappings in each network. This does increase the number of
parameters, but ultimately reduces the effective model size because all additional parameters can be
converted to binary tensors. Thus, the memory complexity can be written as O(tk) where t is an
integer and equal to the number of tasks and k is a constant. Thus, for a finite and constrained value
of t, the memory complexity of RMNs is O(1) i.e. constant. The value of k depends on the amount of
overlap in our model as well as the method used to save binary parameters. For e.g. For the model in
Table 5, the theoretical worst case scenario (a model with no overlap amongst the relevance mappings)
results in 12kb of memory. Practically, as noticed in the RMN sparsity discussion, the model has not
been observed to fully utilize its weights over the period of sequential tasks and unused parameters
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Figure 3: Model Sparsity for AMN-Resnet-18 trained on CIFAR-100 (20 tasks)

Table 4: Additional Mean Accuracy Results for Supervised Experiment

ALGORITHM IMAGENET-50 CIFAR100(10 TASK) SPARSITY SIZE (Mb)

CGN[1] 35.24% - - > 100
L2G[31] - 79.59% (resnet26) 0% > 60
NNA[33] - 83.17% (resnet18 + 50) 0% -
RMN (OURS) 67.1±2.1 % 84±.9 (resnet18) 52%, 19% 35.3; 45

can be effectively removed post training. Additionally, we do not implement bias parameters in our
RMN. Thus, effectively, the final model memory footprint is actually negative as compared with even
the baseline model for all the experiments.

B.5 The Lottery Ticket Hypothesis and Relevance Mapping

A question arises as to whether the slight constraints introduced in the weight space by our algorithm
worsen the performance of the sequential tasks. The Lottery ticket Hypothesis introduced in a
seminal work [9] states that - A randomly-initialized, dense neural network contains a subnetwork
that is initialized such that—when trained in isolation—it can match the test accuracy of the original
network after training for at most the same number of iterations. Additionally, our method doesn’t
remove the previous tasks parameters and subsequent methods can choose to use their predecessors
parameters optimally. Therefore, no performance drop is expected in our method and results from
our experiments prove the same.

C Experimental Details

The experimental implementation for most comparative methods mentioned in Table 3 have been
taken from official implementations of [45], [50], [16] and [40].

C.1 Architectural Details

In this section, we provide detailed descriptions of the architectures used for our experiments. We
denote 2D convolutional layers as Conv2D, linear layers as Linear, Rectified Linear Unit as ReLU,
and Batch Normalization as BN. For RMN versions of each layer with included Relevance Mapping
MP, we add an “M-” prefix, e.g. M-Conv is the RMN version of Conv.

For fair comparison purposes, for all architectures, we attempt to keep architectural representational
capacity and module sequences as similar as possible to referenced methods.

Tablea 5 and 6 provide the main architecture details of the continual learning experiments dealing
with Sequential MNIST, Permuted MNIST and Sequential Omniglot benchmarks.
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Table 5: Details of the Multi-layer Perceptron network used for the Permuted-MNIST and Split-
MNIST tasks. This architecture is of equivalent representational capacity to the network used in
[50].

INPUT: x ∈ R784

M-LINEAR (784) −→ 100

M-BN (100)

RELU

M-LINEAR (100) −→ 100

M-BN (100)

RELU

M-LINEAR (100) −→ 100

M-BN (100)

RELU

M-LINEAR (100) −→ 10

SOFTMAX

For the sequential Cifar-100 (10 tasks) [23] benchmark, we follow the experimental and architectural
details from [16]. For the RMN, however, we do not use bias parameters and dropout layers. Table 7
shows the architecture details for the RMN used in the experiment.

For the RES-CIFAR experiment which uses a Resnet-18[14]3 trained over Sequential Cifar-100
(20 tasks), we use the original Resnet-18 architecture for all experiments with modifications as
required by a specific method. For Imagenet-50 experiment, we used a Resnet-18 as well. For the
RMN-Resnet-18, we do not make use of bias parameters and dropout layers.

C.2 Hyperparameter Details

In this section, we provide detailed descriptions of training, optimization, and hyperparameter
details(Table 8).

In [50] and [16], they select experiment with a range of hyperparameters, choose the values that
return the highest validation accuracy and then retrain on the union of the train and validation set.
When applicable, we select hyperparameter values similar or equivalent to those arrived at in [50] for
MNIST and Omnliglot experiments and [16] for Cifar-100 experiments. For all continual learning
tasks, we make use of the Adam optimizer and have separate learning rates for weights and MP
parameters. Subsets of weights are frozen via gradient masking as tasks increase, where

∏T
t MP≈ = 1

is the mask applied to the weights at task T + 1.

For the Permuted-MNIST and Split-MNIST tasks, we use a 90-10 train-test split, 0.002 learning rate
for all parameters, and batch size of 128. For all tasks, the network is trained for 250 epochs.

For the Sequential Omniglot task, we use an 80-20 train-test split, 0.0002 learning rate for all
parameters, except MP parameters, a learning rate of 0.0001 for MP parameters, a batch size of 16.
For the first task, the network is trained for 150 epochs, for subsequent tasks the network trained for
200 epochs.

In S-CIFAR-100 and RES-CIFAR, we train all comparative methods with mini-batch size of 256 for
100 epochs using Adam optimizer[19] with initial learning rate 0.001 and decaying it by a factor of 3
if there is no improvement in the validation loss for 5 consecutive epochs, similarly as in [16, 45].

For Imagenet-50 experiment, we use use a Resnet-18 for our method and use a Resnet-18 or bigger
model for other reported methods. For [1] and [38], we report their Imagenet-50 experiments as is
reported in their works. Please, refer to their works for further details.

3There is no official implementation for Residual Networks for HAT [45]
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Table 6: Details of the convolutional network used for the Sequential Omniglot task. This architecture
is of similar or equivalent representational capacity to the network used in [50], cited as “Baseline”
in their results sections.

INPUT: x ∈ R1×105×105

RESIZE −→ x ∈ R1×28×28

M-CONV2D 1ch −→ 250ch

M-BN (250)

RELU

MAXPOOLING (2 X 2), stride = 2

M-CONV2D 250ch −→ 250ch

M-BN (250)

RELU

MAXPOOLING (2 X 2), stride = 2

M-CONV2D 250ch −→ 250ch

M-BN (250)

RELU

MAXPOOLING (2 X 2), stride = 2

M-CONV2D 250ch −→ 250ch

M-BN (250)

RELU

MAXPOOLING (2 X 2), stride = 2

M-LINEAR −→ 60

SOFTMAX

For our method (RMNs), we keep the same mini batch size, training epochs and optimizer as
mentioned in [16]. For Split Cifar-100 (10 tasks) and RES-CIFAR (Split Cifar100-20 tasks with
Resnet-18), the model weight parameters initial learning rate is .001 and for MP the learning rate
is .01. The prune parameter value is .05 and .01 respectively which is used to prune the relevance
mappings. The pruning is done whenever the model’s task loss converges which varies from epoch
20− 80 for different tasks.

For compared methods, We ran experiments for mnist and cifar100 experiments with hyperparameters
and details as reported in [50] and [16] respectively.

D Similar Methods

The idea of using soft-masking in networks (usually on non-linear activations) has been utilized
before in novel ways for solving different problems. However, few of them, if any, ground these
methods in some underlying concept (Optimal Overlap in our case) and often these methods include
masks which are mutually exclusive, for e.g., in sparsity learning [53], joint learning where Mallya et
al. [34] piggyback a pretrained network by using a non-differentiable mask thresholding function and
value, etc. In contrast, we don’t require our models to be pretrained. In CL, the following methods
appear to be closest to our Relevance Mapping Networks (RMNs):

HAT[45] proposes a task based hard attention mechanism which may be considered the most similar
to our RMN. It differs from RMN due to following reasons- (i) HAT utilizes task embeddings and a
positive scaling parameter - and a gated product of these two is used to produce a non-binary mask -
unlike our RMNs which don’t use either a task embedding or a scaling parameter and is necessarily
binary. (ii) Unlike RMNs, the attention on the last layer in HAT is manually hard-coded for every
task. (iii) A recursive cumulative attention mechanism is employed to deal with multiple non binary
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Table 7: Details of the convolutional network used for the Sequential Cifar 100 (10 tasks) task. This
architecture is of similar or equivalent representational capacity to the network used in [16]

INPUT: x ∈ R3×32×32

M-CONV2D 3ch −→ 32ch

RELU

M-CONV2D 32ch −→ 32ch

RELU

MAXPOOLING (2 X 2), stride = 2

M-CONV2D 32ch −→ 64ch

RELU

M-CONV2D 64ch −→ 64ch

RELU

MAXPOOLING (2 X 2), stride = 2

M-CONV2D 64ch −→ 128ch

RELU

M-CONV2D 128ch −→ 128ch

RELU

MAXPOOLING (2 X 2), stride = 2

M-LINEAR −→ 256

M-LINEAR −→ 10

Table 8: Hyperparameters for RMNs

IMAGENET-50 S-CIFAR100 RES-CIFAR P-MNIST

BATCH SIZE 256 256 256 128
LEARNING RATE .001 .001 .001 .001
MAPPING LR (µ) .01 .01 .01 .01
OPTIMIZER ADAM ADAM ADAM ADAM
TASKS 5 10 20 10
EPOCHS PER TASK 130(1st), 100 120(1st), 80 130(1st), 80 60
WEIGHT DECAY 0 0 0 0
WEIGHT PRUNE PARAMETER(ωw) .05, .01 .01 .01 .22, .2, .1, .01
MAPPING PRUNE PARAMETER (ωm) .999999 .999999 .999999 .999999
ARCHITECTURE RESNET-18 MLP RESNET-18 MLP

mask values over tasks in HAT. RMNs however have no need for such a mechanism. (iv) HAT cannot
be used in a unsupervised CL setup or to deal with CR and has not been implemented with more
complex network architectures like Residual Networks.

PGD[16] or proximal gradient descent algorithm progressively freeze nodes in an ANN. (i) Unlike
RMNs, this method employs selective regularization to signify node importance (which is calculated
by lasso regularization). (ii) This method progressively uses up the parameter set of the ANN and it is
unclear whether it can be used for an arbitrary large number of sequential tasks. (iii) This method
is also unable to deal with unsupervised learning scenario or CR. (iv) This method uses a different
classification layer for each task - relaxing the core constraints of the problem altogether.

MAS[3] (i) calculates the parameter importance by calculating sensitivity via the squared l2 norm of
the function output to their changes and then uses regularization (similar to [20]) to enforce it, unlike
RMNs. (ii) MAS enforces fixed synaptic importance between tasks irrespective of their similarity and
unlike RMNs, can’t trivially work under unsupervised learning scenarios.
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SNOW[51] (i) uses a unique channel pooling scheme to evaluate the channel relevance for each
specific task which differs from RMN’s individual node relevance mapping strategy. (ii) Importantly,
SNOW, unlike RMNs, employs a pre-trained source model which is frozen and already overgeneralizes
to the CL problem at hand and thus makes this method inapplicable for dealing with CR. (iii) It also
doesn’t seem to be capable of handling unsupervised learning/testing scenarios.

D.1 Differences with Relevance Mapping Method

Serr et al.[45] propose hard attention (HAT), a task based attention mechanism which can be
considered the most similar to our RMN.

It differs from RMN due to following reasons-

1. They utilize task embeddings and a positive scaling parameter - and a gated product of these
two is used to produce a non-binary mask - unlike our RMNs which don’t use either a task
embedding or a scaling parameter and is necessarily binary.

2. Unlike RMNs, the attention on the last layer in HAT is manually hard-coded for every task.
3. A recursive cumulative attention mechanism is employed to deal with multiple non binary

mask values over tasks in HAT. RMNs however have no need for such a mechanism.
4. HAT cannot be used in a unsupervised CL setup or to deal with CR and has not been

implemented with more complex network architectures like Residual Networks.

Jung et al.[16] uses proximal gradient descent algorithm to progressively freeze nodes in an ANN.

1. Unlike RMNs, this method employs selective regularization to signify node importance
(which is calculated by lasso regularization).

2. This method progressively uses up the parameter set of the ANN and it is unclear whether it
can be used for an arbitrary large number of sequential tasks.

3. This method employs two group sparsity-based penalties in order to regularize important
nodes, however AMN do not require usage such kind of sparse based penalty.

4. This method is also unable to deal with unsupervised learning scenario or CR. (iv) This
method uses a different classification layer for each task - relaxing the core constraints of
the problem altogether.

Aljundi et al.[3] introduce Memory Aware Synapses (MAS) method

1. MAS calculates the parameter importance by calculating sensitivity of the squared l2 norm
of the function output to their changes and then uses regularization (similar to Kirkpatrick et
al.[20] to enforce in sequential learning, unlike RMNs.

2. The method enforces fixed synaptic importance between tasks irrespective to their similarity
and unlike our work, doesn’t seem to be capable of working under Unsupervised Learning
scenarios.

Yoo et al.[51] propose SNOW and

1. Uses a unique channel pooling scheme to evaluate the channel relevance for each specific
task which differs from RMN’s individual node relevance mapping strategy.

2. Importantly, this work, unlike RMNs, employs a pre-trained model which is frozen source
model which already overgeneralizes to the CL problem at hand and thus makes this method
inapplicable for dealing with CR.

3. It also doesn’t seem to be capable of handling unsupervised learning/testing scenarios.

E Drawbacks and Future Work

At present, the relevance mappings are initialized randomly using a clipped Normal probability density
function. This allows most values which are near the mean (0.5) of the initializing normal distribution
to learn to tighten towards 0 and 1 accordingly, however values which have been initialized near
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0 and 1 require large gradients to allow them to shift to the other end of the spectrum. A more
informative initialization methodology would allow for more optimal overlap amongst the task
parameters. Additionally, RMNs only satisfy the strict CL constraints if the number of total tasks is
finite.
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