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Abstract—Transfer-based adversarial example is one of the
most important classes of black-box attacks. However, there
is a trade-off between transferability and imperceptibility of
the adversarial perturbation. Prior work in this direction of-
ten requires a fixed but large ℓp-norm perturbation budget
to reach a good transfer success rate, leading to perceptible
adversarial perturbations. On the other hand, most of the current
unrestricted adversarial attacks that aim to generate semantic-
preserving perturbations suffer from weaker transferability to
the target model. In this work, we propose a geometry-aware
framework to generate transferable adversarial examples with
minimum changes. Analogous to model selection in statistical
machine learning, we leverage a validation model to select the
best perturbation budget for each image under both the ℓ∞-
norm and unrestricted threat models. We propose a principled
method for the partition of training and validation models
by encouraging intra-group diversity while penalizing extra-
group similarity. Extensive experiments verify the effectiveness of
our framework on balancing imperceptibility and transferability
of the crafted adversarial examples. The methodology is the
foundation of our entry to the CVPR’21 Security AI Challenger:
Unrestricted Adversarial Attacks on ImageNet, in which we ranked
1st place out of 1,559 teams and surpassed the runner-up
submissions by 4.59% and 23.91% in terms of final score and
average image quality level, respectively. Code is available at
https://github.com/Equationliu/GA-Attack.

I. INTRODUCTION

Though deep neural networks have exhibited impressive
performance in various fields [1], [2], they are vulnerable to
adversarial examples [3]–[7], where test inputs that have been
modified slightly strategically cause misclassification. Adver-
sarial examples have posed serious threats to various security-
critical applications, such as autonomous driving [8] and face
recognition [9]. Most positive results on adversarial attacks
have focused on white-box settings [10], [11]. However, the
problem becomes more challenging when it comes to the
black-box setting, where the attacker has no information about
the model architecture, hyper-parameters, and even the outputs
of the black-box model. In this setting, adversarial examples
are typically generated via transfer-based methods [3], [12],
[13], e.g., attacking an ensemble of accessible source models
and hoping that the same adversarial examples are able to fool
the unknown target/test model [14], [15].

Despite a large amount of work on transfer-based attacks,
many fundamental questions remain unresolved. For example,
existing transfer-based attacks [16]–[18] that search for adver-
sarial examples in a fixed-radius ℓ∞-norm ball often require

a high perturbation budget to reach a satisfactory transfer
success rate. However, such perturbations might be perceptible
to humans (see Figs. 1 and 6). On the other hand, unrestricted
attacks that aim to generate minimum human-imperceptible
perturbations [19]–[21] suffer from weaker transferability to
the target model. This is in part due to the difference between
the decision boundaries of the source and target models. Given
the trade-off between transferability and imperceptibility, one
of the long-standing questions is generating transferable ad-
versarial examples by minimum changes of natural examples.

A. Our Methodology and Results

In this work, we propose a novel geometry-aware frame-
work to generate transferable unrestricted adversarial examples
with minimum changes. Our intuition is that the smallest per-
turbation budgets w.r.t. distinct images should be different (see
Fig. 1) and should depend on their geometrical relationship
with the decision boundary of the target model (see Fig. 2).
Unfortunately, finding transferable minimum-budget adversar-
ial perturbations is an intractable optimization problem (see
Eq. (6)) as the target model is unknown. We approximately
solve this problem by discretizing the continuous space of
perturbation radius into a finite set and choosing the minimum
perturbation budget that is able to fool the test model. The
main challenge here is to evaluate whether a given perturbation
can transfer well to the unknown target model [22], [23].

To overcome this challenge, we split all accessible white-
box source models into training and validation sets, where
adversarial perturbations are crafted only on the training set.
We use the validation set to select the smallest perturbation
radius for each input that suffices to fool the validation model
with a certain confidence level through an early-stopping
mechanism. When the training (or validation) set consists of
multiple models, we use their average ensemble [14]. Exper-
imentally, our method yields a significant performance boost
on the trade-off (leading to higher Stotal in Table. II) between
transferability and imperceptibility. As shown in Fig. 4, the
transfer success rate of our method GA-DTMI-FGSM sur-
passes the baseline DTMI-FGSM (see Eq. (1)) by up to 16%
in absolute value under the same average perturbation reward
(see Eq. (5)). Besides, our method GA-DMI-FSA is able
to generate semantic-preserving yet transferable unrestricted
adversarial examples under the unrestricted threat model (see
Eq. (3), Figs. 1, 6, 10 and 11).

https://github.com/Equationliu/GA-Attack
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Fig. 1: Comparison between our method and two baselines under both the ℓ∞-norm (top) and unrestricted (bottom)
threat models using various perturbation radii. In the even columns, we present the top-5 confidence bars of the target
model for the images in the left. The ground-truth label is marked by pink and other labels are marked by blue. In each row,
the misclassified adversarial example with minimum perturbation radius is highlighted by a blue bounding box, indicating that
the perturbation budgets required for distinct images are different. Note that the “human-imperceptible” constraint is violated
when the ℓ∞-norm perturbation radius is too large. However, our GA framework generates transferable unrestricted adversarial
examples (highlighted by red bounding boxes) with lower budgets and smaller changes when compared to the benign images.

B. Summary of Our Contributions

• We propose a Geometry-Aware (GA) framework, where
fixed-budget attacking methods can be integrated, to
generate transferable unrestricted adversarial examples
with approximately minimum changes. To the best of
our knowledge, we are the first to explore transfer-based
black-box attacks with adaptive perturbation budgets.

• Under ℓ∞-norm setting, our GA framework improves the
imperceptibility of the crafted adversarial examples by a
large margin without the decrease of transfer success rate
(see Fig. 4). By applying our method GA-DTMI-FGSM
to the CVPR’21 Security AI Challenger [24], we ranked
1st place out of 1,559 teams and surpassed the runner-up
submissions by 4.59% and 23.91% in terms of final score
and average image quality level, respectively.

• Under unrestricted setting, we propose a transfer-based
unrestricted attack (see Eq. (3)) by combining the white-
box feature space attack [25] with transfer-based ℓ∞-
norm attacks to generate semantic-preserving yet transfer-
able adversarial examples (see Figs. 1 and 10). Moreover,
the crafted adversarial examples transfer well to adversar-
ially robust models (see Table. III, Figs. 6 and 11).

II. RELATED WORK

A. ℓp-norm Adversarial Examples

Existing gradient-based white-box attacks either search for
adversarial examples in a fixed ℓp-norm ball [26], [27], or
optimize the perturbation for each image independently to get

a minimum-norm solution such as DeepFool [28], CW [29],
and fast adaptive boundary attack [30]. However, white-box
assumption usually does not hold in real-world scenarios. In
query-based black-box setting, attackers utilize output log-
its [31], [32] or predicted label [33], [34] of the target model
to generate adversarial examples. But these attacks typically
suffer from high query complexity, making it easy to be
detected [35]. Transfer-based black-box attacks [36]–[39] can
pose serious threats in practice as they need no information
about the defense models. Dong et al. [16] boosted transfer-
ability by integrating momentum into gradient-based methods.
Liu et al. [14] found that attacking a group of substituted
source models simultaneously can improve transferability. Be-
sides, transferability benefits from input transformations such
as input diversity [17] and translation-invariant method [18].

B. Unrestricted Adversarial Examples

The ℓp-norm distance is not an ideal perceptual similarity
metric [40], [41], which oversimplifies the diversity of real-
world perturbations. Unrestricted adversarial examples have
received significant attention in recent years [42]. Most of
the current unrestricted attacks aim to generate impercep-
tible adversarial examples under white-box setting, such as
geometric transformations [19], [43], [44] and distance met-
rics beyond ℓp norm [20], [21]. Color-based attacks [45]–
[50] were also proposed to generate large but imperceptible
perturbations, however, the modified color can sometimes be
unnatural. Instead of optimizing in the input space, generative
approaches [51]–[54] search for adversarial embeddings in



the latent space. Style transfer [50], [55] is inherently an
unrestricted attack as it preserves the semantic of the content
image. However, constructing transferable unrestricted adver-
sarial examples is still less explored. In this work, we will fill
this gap by combining the white-box feature space attack [25]
with transfer-based ℓ∞-norm attacks to generate semantic-
preserving yet transferable unrestricted adversarial examples.

C. Adversarial Defenses

There have been long-standing arms races between de-
fenders and attackers. Adversarial training [4] is one of the
most promising defense methods. Many variants of adversarial
training framework were proposed, e.g., ensemble adversarial
training [14] for transfer-based attacks, PGD-based adversarial
training [26], and TRADES [56] with a new robust loss based
on the trade-off between robustness and accuracy. Geometry-
aware instance-reweighted adversarial training [57], which
is proven falling into gradient masking [58], shares similar
insights with us that the importance of distinct inputs in
adversarial training should be different. Laidlaw et al. [21]
integrate adversarial training with Learned Perceptual Image
Patch Similarity (LPIPS) [59], aiming to improve robustness
against perturbations that were unseen during training. Unlike
empirical defenses, Certified defenses [60]–[63] could provide
robustness guarantee under a certain ℓp-norm budget.

III. PRELIMINARIES

Notation. A deep neural network classifier can be described
as a function f(x;θ) : X → RC , parameterized by weights
θ, which maps a vector x ∈ X to its output logits. Given
an input x of class y ∈ {1, 2, · · · , C}, the predicted label
of f(x;θ) is f̂(x) := argmaxj fj(x;θ), where fj(x;θ)
represents the j-th entry of f(x;θ). We use L (f(x;θ), y) to
represent the cross-entropy loss and denote the ε-neighborhood
of x by B(x, ε) := {x′ ∈ X : D(x,x′) ≤ ε}, where D
is a distance metric that describes the change between the
adversarial example x′ and the nature example x. We denote
the black-box test model by g, and split the set of accessible
source models Φ = {ϕ1, ϕ2, · · · , ϕn} into the set of training
models f and the set of validation models h.

A. Transfer-based ℓ∞-norm Attacks

Existing transfer-based attacks typically search for ad-
versarial examples in a fixed-radius ℓp-norm ball, i.e.,
D(x,x′) = ∥x′ − x∥p ≤ ε. Various methods were pro-
posed to boost transferability of the generated adversarial
examples, such as input Diversity Iterative Fast Gradient Sign
Method (DI-FGSM) [17], Momentum-based Iterative (MI-
FGSM) method [16] and Translation-invariant Iterative (TI-
FGSM) method [18]. We formulate a strong ℓ∞-norm baseline
DTMI-FGSM by combining all these techniques, i.e.,

mt+1 = γ ·mt +
W ∗ ∇xt

L (f (T (xt, p);θ) , y)

∥W ∗ ∇xt
L (f (T (xt, p);θ) , y) ∥1

,

xt+1 = ΠB(x,ε) (xt + α · sign(mt+1)) ,

(1)

where m0 = 0, W is a pre-defined kernel with a convolution
operation ∗, α is the step size, Π is the projection operator,

and γ is the decay factor for the momentum term. T (xt, p)
represents the input transformation on xt with probability p.
When γ = 0, DTMI-FGSM attack degenerates to the DTI-
FGSM attack. When p = 0, DTMI-FGSM attack degenerates
to the DMI-FGSM attack.

B. Transfer-based Unrestricted Attack

Inspired by prior work [64] in style transfer, Xu et al. [25]
tries to find stylized adversarial examples by assuming that
the image pairs from the same class share consistent content
and differ mainly in their styles. Here we propose to generate
semantic-preserving yet transferable unrestricted adversarial
examples by combining the Feature Space Attack (FSA) [25]
with transfer-based ℓ∞-norm attacks [16], [17]. Given an
encoder ϕ, we extract the style features of input x as channel-
wise mean µ (ϕ(x)) ∈ RC and channel-wise standard devia-
tion σ (ϕ(x)) ∈ RC , Specifically,

µc =
1

HW

H∑
h=1

W∑
w=1

ϕc(x)hw,

σc =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(ϕc(x)hw − µc)
2
,

(2)

where ϕ(x) ∈ RC×H×W represents the latent embedding. Xu
et al. [25] adds adversarial perturbations on µ and σ before
projecting ϕ(x) back to the input space X with a pre-trained1

decoder ϕ−1, namely,

ϕ̃(x) = eτ
σ

· (ϕ(x)− µ) + eτ
µ

· µ,

x′ = ϕ−1
(
ϕ̃(x)

)
, ∥τµ∥∞ ≤ ln ε, ∥τσ∥∞ ≤ ln ε,

(3)

where ϕ̃(x) enlarges or shrinks the mean µ and the standard
deviation σ of the embedding ϕ(x) by a factor of eτ

µ

and
eτ

σ

, respectively. In this way, the distance metric D(x,x′) =
max

(
e∥τ

µ∥∞ , e∥τ
σ∥∞

)
≤ ε. In order to preserve the semantic

of the unrestricted adversarial example x′, a content loss was
added during the attacking process, i.e.,

min
τµ,τσ

L(x′, y) = λ · Ltop-5 (f(x
′;θ), y) + ∥ϕ(x′)− ϕ̃(x)∥2,

where λ balance the trade-off between adversarial and the
content loss. Following Xu et al. [25], we set λ = 128 and use
the top-5 margin loss for adversarial attack. With all above, the
unrestricted attack (see Eq. (3)) can be solved by conventional
ℓ∞-norm attack on parameters τµ and τσ . Moreover, the same
techniques in Sec. III-A such as input diversity T (x′, p) (only
for the margin loss) and momentum-based method can be
integrated to improve transferability, i.e.,

mt+1 = γ ·mt +
∇τ tL (T (x′, p), y)

∥∇τ t
L (T (x′, p), y) ∥1

,

τ t+1 = ΠB(x,ε) (τ t − α · sign(mt+1)) .

(4)

When γ = 0, the DMI-FSA attack degenerates to the DI-FSA
attack.

1We use the official pre-trained shallowest decoder: https://github.com/
qiulingxu/FeatureSpaceAttack.

https://github.com/qiulingxu/FeatureSpaceAttack
https://github.com/qiulingxu/FeatureSpaceAttack
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the last sub-procedure (the red solid points) and re-run the attack algorithm on the training model f . The procedure stops if
the output probability of the true class on the validation model h is smaller than a certain threshold η.

C. Evaluation Metric for Transfer-based Attack

The imperceptibility of adversarial examples is hard to
evaluate due to the lack of precise quantization of human
perception [65]. Sharif et al. [66] found that ℓp-norm distance
is not an ideal perceptual similarity metric and suggest setting
adaptive perturbation budget for every sample to ensure that
the attacks’ output would be imperceptible. Therefore, we
choose transfer success rate and the perturbation budget under
distance metric D as our main evaluation metrics. Consider a
dataset Ŝ = {(xi, yi)}Ni=1 and the corresponding adversarial
examples Ŝadv = {(x′

i, yi)}Ni=1 that are crafted on the training
model f . Let N0 =

∑N
i=1 1{ĝ(x′

i) ̸= yi} be the number of
misclassified adversarial examples on the test model g. We
define the average total score as:

Stotal =
1

N

N∑
i=1

1{ĝ(x′
i) ̸= yi} · Freward (D(xi,x

′
i))

=
N0

N
· 1

N0

N∑
i=1

1{ĝ(x′
i) ̸= yi} · Freward (D(xi,x

′
i))

def
=

N0

N
· SAPR,

(5)
where SAPR is the Average Perturbation Reward of adversarial
examples that are misclassified by test model g and the reward
function Freward is a decreasing function w.r.t. metric D(x,x′).

IV. METHODOLOGY: GEOMETRY-AWARE FRAMEWORK

Eq. (5) factorizes the average total score as the product of
transfer success rate and average perturbation reward, which
motivates us to find the adversarial example with minimum
changes under metric D, i.e.,

min
x′
D(x,x′), s.t. ĝ(x′) ̸= y. (6)

However, direct optimization of problem (6) is intractable,
in part due to the lack of information about test model

Algorithm 1 Geometry-Aware Framework

Require:
Benign input x with label y; training models f ; valida-
tion model h; number of sub-procedures K; maximum
perturbation size ε and threshold η; attack algorithm A;

Ensure:
Transfer-based unrestricted adversarial example x′ with
approximately minimum change;

1: x0 = x;
2: for k = 1, 2, · · · ,K do
3: xk = A(x,xk−1, f,

kε
K ); ▷ fixed budget

4: conf ← exp(hy(xk;θ))∑
j exp(hj(xk;θ))

;
5: if conf < η then
6: Return xk; ▷ early-stopping in Eq. (7)
7: end if
8: end for
9: Return xK ;

g. We approximately solve this problem by discretizing the
continuous space of perturbation radius into a discrete set
and choosing the minimum perturbation budget such that
the attack is able to fool the test model g. However, the
challenge is that it is typically difficult to decide whether a
given perturbation radius can also fool the test model [22],
[23]. This problem is also known as model selection (we
view the source models as training data, then the generated
adversarial perturbation is the so-called selected model or
optimized parameters), and a classic approach to tackle this
problem is to have a validation set. More specifically, we
split all accessible source models into training model set and
validation model set. With validation model h, we are able to
generate transferable adversarial examples with dynamic radii.
To approximately solve problem (6), we first divide the attack
in the ball B(x, ε) into K sub-procedures. In the k-th sub-
procedure, we re-run a fixed-radius attack algorithm A such



TABLE I: An overview of all considered networks for generating adversarial examples. Top-1ImageNet represents the
accuracy on the ILSVRC 2012 validation set while Top-11000 represents the accuracy on the randomly selected 1000 images.

Training Index Model Name Top-1ImageNet Top-11000 Index Model Name Top-1ImageNet Top-11000

Normal

0 ViT-S/16 76.01% 99.8% 1 ViT-B/16 81.08% 99.1%
2 Swin-B/patch4-window7 84.23% 99.4% 3 ResNeXt101-32x8d-swsl 83.62% 99.9%
4 ResNeXt50-32x4d-ssl 78.90% 99.7% 5 ResNet50-swsl 79.97% 99.5%
6 Inception-v3 76.94% 100.0% 7 Inception-ResNet-v2 79.85% 99.9%

Ensemble 8 Ens3-adv-Inception-v3 76.49% 100.0 % 9 Ens-adv-Inception-ResNet-v2 78.98% 99.9%

as DMI-FSA (see Eq. (4)) under the perturbation budget

εk =
k

K
× ε, k = 1, 2, · · · ,K.

Each sub-procedure starts from the solution of last sub-
procedure to accelerate the convergence. To obtain a
minimum-radius solution, we perform an early-stopping mech-
anism at the end of each sub-procedure if the probability of
true class on the validation model h is smaller than a threshold
η, i.e.,

P
(
ĥ(x) = y

)
=

exp (hy(x;θ))∑
j exp (hj(x;θ))

< η. (7)

Our GA framework is summarized in Algorithm 1 and
illustrated in Fig. 2. Note that the output of GA framework is
related to the choice of the training model f and the validation
model h. Thus it is important to figure out which partition of
the source models performs better.

We split n pre-trained models Φ = {ϕ1, ϕ2, · · · , ϕn} into
k training models and n − k validation models. Instead of
traversing all possible partitions to select the optimal split
by querying the test model g by Ck

n times, we propose
a query-free approach that only utilizes the information of
transferability between the pre-trained models (see Fig.3). Let
wij (wij ̸= wji) be the transfer success rate (N0

N in Eq. (5))
from the source model ϕi to the target model ϕj under a fixed-
radius attack (e.g., DTMI-FGSM). Denote the binary partition
function as G. The training set and the validation set can be
formulated as T = {i | G(ϕi) = 0} and V = {j | G(ϕj) = 1},
respectively. We define the partition loss ℓG as:

ℓG =
1

k

∑
i∈T

ℓG(ϕi) +
1

n− k

∑
j∈V

ℓG(ϕj),

ℓG(ϕi) =
1

k − 1

∑
t ̸=i,t∈T

wit +
1

n− k

∑
t∈V

wit,

ℓG(ϕj) =
1

n− k − 1

∑
t̸=j,t∈V

wjt +
1

k

∑
t∈T

wtj .

(8)

For both the training set loss ℓG(ϕi) and the validation set
loss ℓG(ϕj): 1) Minimizing the first formula on the right of
Eq. (8) encourages intra-group diversity. To make the decision
boundary of the ensemble model (f or h) more general and
effective, we minimize the transfer success rate between any
two pre-trained models inside the group. 2) Minimizing the
second formula on the right of Eq. (8) is penalizing extra-
group similarity. If f = h, the early-stopping mechanism in
Eq. (7) will be triggered too early, leading to small adversarial
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Fig. 3: Transferability between networks under DTMI-
FGSM attack. The rows stand for source models and the
columns stand for target models. Adversarial examples transfer
well between models with similar architectures.

perturbations for all inputs. Reducing the transferability from
the training model f to the validation model h might improve
generalization of the adversarial examples to unknown mod-
els. Empirically, we find that the proposed partition loss ℓG
negatively correlates with the average total score Stotal.

V. EXPERIMENTS

A. Experimental Setup

Datasets & Networks. Similar to Xie et al. [17], we randomly
select 1,000 images from ILSVRC 2012 validation set [67],
which are almost correctly classified by all the attacking
models. All these images are resized to 229 × 229 × 3 be-
forehand. We consider eight normally trained models and two
ensemble adversarially trained models [15]. The weights of all
these models are publicly available [68]. More details about
the networks are summarised in Table. I. The transferability
between these models under ℓ∞-norm setting is summarised in
Fig. 3. It is much easier for the generated adversarial examples
to transfer from vision transformers to convolutional neural
networks (CNNs), which is consistent with the empirical
observation in Shao et al. [5]. Surprisingly, the robustness of
naturally trained vision transformers under transfer attack is
even on par with two ensemble adversarially trained CNNs.



Implementation Details. Given the maximum perturbation
size ε and number of sub-procedures K (5 as default) in our
geometry-aware framework, we set the step size α = 1.25×εk

T
in the k-th sub-procedure, where the number of iterations T is
set to 10 in the ℓ∞ setting and 50 in the unrestricted setting. ε
is set to 20 in the ℓ∞-norm setting and 3.5 in the unrestricted
setting. When running a fixed-radius baseline at perturbation
budget εk, we set the number of iteration as T

2

(
1 + Kεk

ε

)
with step size α to keep the same total perturbation budget
(the sum of step size across all iterations) as our geometry-
aware framework for fair comparison. The reward function
Freward(ε0) is set to 1/ε0 as smaller perturbation radius exhibits
significantly higher image quality. For the momentum term,
we set the decay factor µ = 1 as in Dong et al. [16].
For DI-FGSM [17], we set the transformation probability to
p = 0.7. The input is first randomly resized to be an r× r×3
image with r ∈ [(1− γ)s, (1 + γ)s], and then padded to size
(1+γ)s×(1+γ)s×3. The transformed input is then resized to
s×s×3 for different input size s of various models, i.e., 224,
299 and 384. We set γ = 0.1 as default. For TI-FGSM [18],
we use Gaussian kernel with kernel size 5× 5.

B. Balancing Transfer Success Rate and Perturbation Reward

Implementation Details. Benefiting from the adaptive choice
of perturbation budgets, our geometry-aware framework can
generate transferable unrestricted adversarial examples with
smaller changes. In this experiment, the training model f and
validation model h are an ensemble of models {2, 3, 5} and
{1, 4, 6} in Table. I, respectively. The test model is Inception-
ResNet-v2. The optimal threshold η (see Eq (7)) is searched
from a finite set ranging from 0.001 to 0.9 by querying2 the
test model g to achieve the best average total score Stotal.
For each η, we execute our method and compute the average
perturbation reward SAPR (the x-axis of each red point in
Fig. 4). Then the corresponding fixed-radius baseline is run
at the same x-axis. We conduct experiments on two threat
models. For the ℓ∞-norm setting, we combine our Geometry-
Aware (GA) framework with DI-FGSM, DTI-FGSM, DTMI-
FGSM, and Admix-DTI-FGSM [38] (limited by the memory
of a single NVIDIA RTX 3090, we set the number of admixed
images m1 = 3 and the number of randomly sampled images
from other categories m2 = 2), named GA-DI-FGSM, GA-
DTI-FGSM, GA-DTMI-FGSM, and GA-Admix-DTI-FGSM,
respectively; For the unrestricted setting, we combine our GA
framework with DMI-FSA and DI-FSA, named GA-DMI-FSA
and GA-DI-FSA, respectively.

Experimental Results. We present the contour plot of average
total score in Fig. 4, where the improvement of our method
upon baselines depends on the choice of hyper-parameter
η (leading to different SAPR). Fixing SAPR as 0.115, our

2In contrast to conventional query-based attacks that need the logits or
predicted label on the target model, we query whether an adversarial example
transfers to the target model successfully. Besides, we have prior information
on η which depends on the similarity between f, h and g, making the query
complexity rather limited.
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Fig. 4: Contour of average total score Stotal (higher is
better). Fixing transfer success rate as 80%, our approach
GA-DTMI-FGSM surpasses the baseline DTMI-FGSM (see
Eq. (1)) by up to 43.35% in terms of average perturbation
reward.

approach GA-DTMI-FGSM surpasses the baseline DTMI-
FGSM by up to 16.1% in terms of transfer success rate.
As shown in Table. II, our approach yields a significant
performance boost on the average total score Stotal across
various threat models, especially in the ℓ∞-norm setting where
both the transfer success rate and SAPR are improved.

TABLE II: Comparison of our method with baselines.
We report the results when both our approach and baselines
achieve highest average total score Stotal. TSR: Transfer
Success Rate.

Method TSR (↑) SAPR (↑) Stotal (↑)
DI-FGSM [17] 61.1% 0.0759 4.64%
GA-DI-FGSM 69.4% 0.0819 5.68%

DTI-FGSM [18] 57.3% 0.1101 5.68%
GA-DTI-FGSM 67.9% 0.1176 7.98%
DTMI-FGSM 63.9% 0.1147 7.33%

GA-DTMI-FGSM 69.4% 0.1358 9.42%
Admix-DTI-FGSM [38] 68.1% 0.1248 8.50%
GA-Admix-DTI-FGSM 82.5% 0.1299 10.72%

DI-FSA 48.3% 0.5328 25.73%
GA-DI-FSA 50.4% 0.5541 27.93%
DMI-FSA 51.3% 0.5616 28.81%

GA-DMI-FSA 58.3% 0.5355 31.32%

C. Case Study: CVPR’21 Security AI Challenger

In the CVPR’21 Security AI Challenger: Unrestricted Ad-
versarial Attacks on ImageNet [24], contestants were asked
to submit adversarial examples without any access to the
defense models. The dataset is a subset of ILSVRC 2012
validation set [67], which consists of 5,000 images with 5
images per class. The final score of each submission was
manually scored from two aspects: 1) image semantic and
2) quality. If the semantic of the submitted image changes
(judged by human referees), then Ss = 0, otherwise Ss = 1.
The image quality Sq (equivalent to our reward function
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Fig. 5: Top-6 results in the CVPR’21 Security AI Chal-
lenger: Unrestricted Adversarial Attacks on ImageNet. The
final scores were manually scored by multiple human referees.

Freward) was quantified with five levels Sq ∈ {1, 2, 3, 4, 5}
by multiple human referees. The final score is given by∑

i 1{ĝ(x′
i) ̸= yi} × Ss(x

′
i)×

Sq(∥x′
i−xi∥)
5 .

We apply our method GA-DTMI-FGSM (η = 0.01) to
the competition, where our entry ranked 1st place out of
1,559 teams. In the adversarial competition, our training
and validation models are both an ensemble of eight high-
performance models. We report the final score and average
image quality level (equivalent to our average perturbation
reward) in Fig. 5. It shows that our method outperforms other
approaches by a large margin. In particular, we surpass the
runner-up submissions by 4.59% and 23.91% in terms of final
score and average image quality level, respectively.

D. Transferable Unrestricted Adversarial Examples

Most of current defenses can be easily broken by unseen
attacks in a white-box manner. Adversarial training against
multiple ℓp-norm attacks [76] solved this issue partially,
however, at the cost of robustness against single ℓp-norm
attack. Laidlaw et al. [21] integrated adversarial training
with Learned Perceptual Image Patch Similarity (LPIPS) [59],
aiming to improve robustness against perturbations that were
unseen during training. However, the proposed attack [21],
similar to other unrestricted attacks [44], [46], suffers from
weaker transferability to the target model. In practice, attackers

typically have no information about the defense models and
the defenders do not have the ground truth to make pixel-level
comparison (perturbation can be large as long as the generated
adversarial examples are semantic-preserving). Therefore, we
propose to benchmark classification models on ImageNet
under transfer-based unrestricted attacks.

Implementation Details. For the ReColor attack [46], we set
ε = 1.0 and iterations T = 100 which achieves 89.7% attack
success rate on training model f (the same as Sec. V-B) and
9.1% transfer success rate on the test model Inception-ResNet-
v2. For FSA attack [25], we set ε = 3.0 and T = 500 which
achieves 54.2% attack success rate and 12.4% transfer success
rate on the same training and test models (Note that our
method GA-DMI-FSA achieves 95.5% attack success rate and
58.3% transfer success rate, indicating that the input diversity
and momentum techniques in Eq. (4) boost both the attacking
ability and transferability.). Besides six adversarially trained
and two high-performance classification models, we select two
state-of-the-art models on the ImageNet-R dataset [73].

Experimental Results. From Table. III, we can conclude the
following observations: a) GAAdmix-DTI transfers better than
GADTMI-FGSM. b) ℓ∞-norm transfer attack can hardly break
ℓ∞-norm adversarially trained models while the unrestricted
attack (GA-DMI-FSA) reduces the accuracy of these mod-
els by a large margin (see also in Fig. 6). c) DeepAug-
ment [73], which utilizes semantic-preserving augmentations
during training, exhibits non-trivial robustness against GA-
DMI-FSA attack. d) Efficientnet-l2-ns [74] performs well
under all the transfer-based attacks and enjoys 86% accuracy
against GA-DMI-FSA attack, showing that the distribution
of our generated adversarial examples is close to the natu-
ral examples’. Note that Efficientnet-l2-ns is also the best-
performing model on the ImageNet-V2 dataset [77], [78]. We
visualize part of the transfer attack results on adversarially
trained Resnext101-DenoiseAll [71] in Figs. 6, where our
method GA-DMI-FSA is able to generate semantic-preserving
yet transferable unrestricted adversarial examples. For more
visualization results, please see Fig. 11 in Sec. VII-A.

TABLE III: Benchmarking classification on Imagenet under transfer-based unrestricted attacks. PGD∗
40 indicates the PGD

attack with 40 steps (ε = 4
255 ). We denote the adversarial examples crafted by GA-DTMI-FGSM, GA-Admix-DTI-FGSM, and

GA-DMI-FSA in Table. II as GADTMI-FGSM, GAAdmix-DTI, and GADMI-FSA, respectively. Bold and underline indicate the lowest
and second lowest in each row.

Defenses Clean PGD∗
40 ReColor FSA GADTMI-FGSM GAAdmix-DTI GADMI-FSA

Inception-ResNet-v2Ens-adv [15] 99.9% 10.0% 93.2% 90.0% 87.1% 78.1% 43.5%
FastAT [69] 66.9% 35.7% 62.8% 59.3% 64.7% 64.1% 28.5%
FreeAT [70] 77.3% 40.6% 71.6% 68.4% 74.0% 73.0% 35.1%
Resnet152-Base [71] 67.6% 39.0% 64.1% 61.2% 65.1% 65.7% 37.4%
Resnext101-DenoiseAll [71] 80.3% 52.2% 77.0% 73.8% 78.7% 78.1% 47.8%
Resnet152-Denoise [71] 72.2% 41.8% 68.2% 65.2% 70.7% 69.9% 40.3%
RVT-Tiny [72] 96.7% 0.0% 78.9% 81.3% 44.5% 26.3% 33.6%
DeepAugment+AugMix [73] 96.1% 0.0% 82.8% 89.3% 58.9% 41.4% 63.2%
Efficientnet-l2-ns [74] 99.5% 0.0% 95.7% 97.0% 81.3% 78.6% 86.0%
Swin-L/patch4-window-12 [75] 99.1% 0.0% 88.4% 90.7% 66.6% 58.7% 61.8%
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Fig. 6: Visualization of transfer attack results on Resnext101-DenoiseAll [71]. For each image, we print its predicted
label on model Resnext101-DenoiseAll in the upper left corner. For each transfer-based adversarial example, we present the
perturbation on its right. For each perturbation crafted via our geometry-aware framework, we print its perturbation budget in
the upper left corner. Although the transfer-based ℓ∞-norm attack GA-DTMI-FGSM is able to fool the defense test model to
a certain extent, the generated perturbations can be “human-perceptible” (the first and third rows of GADTMI-FGSM). Besides,
the other two unrestricted attacks suffer from weaker transferability when compared to our method GADMI-FSA, which adjusts
the images’ color and texture that ImageNet-trained CNNs might be biased to [79].

E. Ablation Studies and Discussions

The optimal η depends on the train-valid splitting. As de-
clared in the implementation details in Sec. V-B, the threshold
η is searched from a finite set ranging from 0.001 to 0.9.
We now investigate how the hyper-parameter η will affect the
average total score Stotal. From Fig. 7, we observe that the
optimal η∗ varies across different splittings and can be larger
if the transferability from the training model f to the test
model g is higher enough. However, as shown in Table IV, the
improvement of our GA framework upon fixed-radius baseline
(DTMI-FGSM) is stable and independent of the splitting.

TABLE IV: Comparison of the improvement upon fixed-
radius baseline under different train-valid splittings. The
test model g is model 7 in Table I and we select three (two
of them are highlighted in Fig. 8a) representative splittings
according to the partition loss ℓG . For each setting, we repeat
the experiment three times and report the mean and the
standard deviation (in the parenthesis).

f h ℓG Method SAPR (↑) Stotal (↑)

{4, 5, 6} {1, 2, 3} 2.22 DTMI 0.1080 (0.001) 8.66% (0.16%)
GA-DTMI 0.1456 (6e-5) 11.6% (0.21%)

{2, 3, 5} {1, 4, 6} 2.56 DTMI 0.1150 (0.006) 7.32% (0.07%)
GA-DTMI 0.1417 (0.001) 9.48% (0.03%)

{1, 2, 3} {4, 5, 6} 2.70 DTMI 0.1273 (0.007) 6.41% (0.07%)
GA-DTMI 0.1291 (0.006) 8.23% (0.05%)
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Fig. 7: Comparison between various train-valid splittings.
The index in the legend corresponds to the model index in
Table. I. As the threshold η increases, the generated adversarial
examples have higher confidence (probability of the true class)
on the validation model h, leading to a lower transfer success
rate (left). Besides, the optimal η∗ that yields the maximum
Stotal is dependent on the partition (right).

The effectiveness of ℓG under different numbers of pre-
trained models and different kinds of pre-trained models.
To investigate the robustness of the proposed partition loss
ℓG under different settings, we carefully design controlled
experiments in Figs. 8 and 9. There are total Ck

n kinds of
partitions when selecting k training models from n pre-trained
models. Given n and k, we run our method GA-DTMI-FGSM
for all the train-valid splittings and obtain a scatter plot with
Ck

n points. We observe a strong negative correlation between
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(b) f ∪ h = {0, · · · , 6}, (n, k) = (7, 4).
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Fig. 8: The effectiveness of the partition loss ℓG under different numbers of pre-trained models. The test model g is
model 7 in Table I. We conduct bayesian ridge regression and plot the mean of the predictive distribution as dashed lines. The
Bayesian Credible Intervals range from mean - standard deviation (of the predictive distribution) to mean + standard deviation.
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(a) f ∪ h = {0, 1, · · · , 6} \ {1}.
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(b) f ∪ h = {0, 1, · · · , 6} \ {3}.
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Fig. 9: The effectiveness of the partition loss ℓG under different kinds of pre-trained models. The test model g is model 7 in
Table I. We simulate different kinds of pre-trained models by removing one model from the fixed set such that (n, k) = (6, 3).

the partition loss ℓG and the average total score Stotal. For
example, the average Pearson correlation coefficient over the
six scatterplots in Figs. 8 and 9 is around -0.82. Moreover,
the negative correlation is significant and consistent across
different numbers of pre-trained models (see Fig. 8) and
different kinds of pre-trained models (see Fig. 9).

VI. CONCLUSION

In this work, we propose a geometry-aware framework,
where fixed-radius methods can be integrated to generate
transferable unrestricted adversarial examples with minimum
changes. Under ℓ∞-norm setting, our framework could im-
prove the imperceptibility of the crafted adversarial examples
by a large margin without the decrease of transfer success rate.
Besides, we propose a transfer-based unrestricted attack by
combining the white-box feature space attack with transfer-
based ℓ∞-norm attacks to generate semantic-preserving yet
transferable unrestricted adversarial examples.
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VII. APPENDIX

A. More Visualization Results

x

x′

x′ − x

Fig. 10: Adversarial examples of GA-DMI-FSA, which are misclassified by all the models in Table. III. Top: benign examples
x. Middle: unrestricted adversarial examples x′. Bottom: normalized adversarial perturbations x′ − x.

Benign GADTMI-FGSM ReColor FSA GADMI-FSA
39 39 ε = 8 39 39 191 ε = 2.12

153 153 ε = 4 153 153 368 ε = 1.65

675 675 ε = 12 675 675 407 ε = 2.12

227 227 ε = 4 227 227 223 ε = 2.12

163 163 ε = 4 163 163 161 ε = 1.28

6 6 ε = 4 6 6 13 ε = 1.28

Fig. 11: Visualization of transfer attack on Resnext101-DenoiseAll [71].
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