
Headed-Span-Based Projective Dependency Parsing

Anonymous ACL submission

Abstract

We propose a new method for projective de-001
pendency parsing based on headed spans. In002
a projective dependency tree, the largest sub-003
tree rooted at each word covers a contiguous004
sequence (i.e., a span) in the surface order.005
We call such a span marked by a root word006
headed span. A projective dependency tree007
can be represented as a collection of headed008
spans. We decompose the score of a depen-009
dency tree into the scores of the headed spans010
and design a novel O(n3) dynamic program-011
ming algorithm to enable global training and012
exact inference. We evaluate our method on013
PTB, CTB, and UD and it achieves state-of-014
the-art or competitive results. We will release015
our code at github.com.016

1 Introduction017

Dependency parsing is an important task in natu-018

ral language processing, which has numerous ap-019

plications in downstream tasks, such as opinion020

mining (Zhang et al., 2020a), relation extraction021

(Jin et al., 2020), named entity recognition (Jie and022

Lu, 2019), machine translation (Bugliarello and023

Okazaki, 2020), among others.024

There are two main paradigms in dependency025

parsing: graph-based and transition-based meth-026

ods. Graph-based methods decompose the score027

of a tree into the scores of parts. In the simplest028

first-order graph-based methods (McDonald et al.,029

2005, inter alia), the parts are single dependency030

arcs. In higher-order graph-based methods (Mc-031

Donald and Pereira, 2006; Carreras, 2007; Koo and032

Collins, 2010; Ma and Zhao, 2012), the parts are033

combinations of multiple arcs. Transition-based034

methods (Nivre and Scholz, 2004; Chen and Man-035

ning, 2014, inter alia) read the sentence sequen-036

tially and conduct a series of local decisions to037

build the final parse. Recently, transition-based038

methods with Pointer Networks (Vinyals et al.,039

2015) have obtained competitive performance to040

is

inventory

An

An inventory

of

of

function

syntactic

syntactic function is

taken

taken

to

to

be

be

primitive

primitive
1 2 3 4 5 6 7 8 90 10

Figure 1: Illustration of a projective dependency parse
tree. Each rectangle represents a headed span.

graph-based methods (Ma et al., 2018; Liu et al., 041

2019; Fernández-González and Gómez-Rodríguez, 042

2019; Fernández-González and Gómez-Rodríguez, 043

2021). 044

A main limitation of first-order graph-based 045

methods is that they independently score each arc 046

based solely on the two words connected by the 047

arc. Ideally, the appropriateness of an arc should 048

depend on the whole parse tree, particularly the sub- 049

trees rooted at the two words connected by the arc. 050

Although subtree information could be implicitly 051

encoded (Falenska and Kuhn, 2019) in powerful 052

neural encoders such as LSTMs (Hochreiter and 053

Schmidhuber, 1997) and Transformers (Vaswani 054

et al., 2017), there is evidence that their encoding 055

of such information is inadequate. For example, 056

higher-order graph-based methods, which capture 057

more subtree information by simultaneously con- 058

sidering multiple arcs, have been found to outper- 059

form first-order methods despite using powerful 060

encoders (Fonseca and Martins, 2020; Zhang et al., 061

2020b). In contrast to the line of work on higher- 062

order parsing, we propose a different way to in- 063

corporate more subtree information as discussed 064

later. 065

Transition-based methods, on the other hand, can 066

easily utilize information from partially built sub- 067

trees, but they have their own shortcomings. For 068

instance, most of them cannot perform global opti- 069

github.com

mization during decoding 1 and rely on greedy or070

beam search to find a locally optimal parse, and071

their sequential decoding may cause error propaga-072

tion as past decision mistakes will negatively affect073

the decisions in the future.074

To overcome the aforementioned limitations of075

first-order graph-based and transition-based meth-076

ods, we propose a new method for projective de-077

pendency parsing based on so-called headed spans.078

A projective dependency tree has a nice structural079

property that the largest subtree rooted at each080

word covers a contiguous sequence (i.e., a span)081

in the surface order. We call such a span marked082

with its root word a headed span. A projective083

dependency tree can be treated as a collection of084

headed spans such that each word corresponds to085

exactly one headed span, as illustrated in Figure086

1. For example, (0, 5, inventory) is a headed span,087

in which span (0, 5) has a head word inventory. In088

this view, projective dependency parsing is similar089

to constituency parsing as a constituency tree can090

be treated as a collection of constituent spans. The091

main difference is that in a binary constituency tree,092

a constituent span (i, k) is made up by two adjacent093

spans (i, j) and (j, k), while in a projective depen-094

dency tree, a headed span (i, k, xh) is made up by095

one or more smaller headed spans and a single word096

span (h − 1, h). For instance, (0, 5, inventory) is097

made up by (0, 1,An), (1, 2) and (2, 5, of). There098

are a few constraints between headed spans to force099

projectivity (section 3). These structural constraints100

are the key to designing an efficient dynamic pro-101

gramming algorithm for exact inference.102

Because of the similarity between constituency103

parsing and our head-span-based view of projec-104

tive dependency parsing, we can draw inspirations105

from the constituency parsing literature to design106

our dependency parsing method. Specifically, span-107

based constituency parsers (Stern et al., 2017; Ki-108

taev and Klein, 2018; Zhang et al., 2020c; Xin109

et al., 2021) decompose the score of a constituency110

tree into the scores of its constituent spans and111

use the CYK algorithm (Cocke, 1969; Younger,112

1967; Kasami, 1965) for global training and infer-113

ence. Built upon powerful neural encoders, they114

have obtained state-of-the-art performance in con-115

stituency parsing. Inspired by them, we propose116

to decompose the score of a projective dependency117

1We are aware of few transition-based parsers performing
global optimization via dynamic programming algorithms, cf.
Kuhlmann et al. (2011); Shi et al. (2017); Gómez-Rodríguez
et al. (2018).

tree into the scores of headed spans and design 118

a novel O(n3) dynamic programming algorithm 119

for global training and exact inference, which is 120

on par with the Eisner algorithm (Eisner, 1996) in 121

time complexity for projective dependency parsing. 122

We make a departure from existing graph-based 123

methods since we do not model dependency arcs 124

directly. Instead, the dependency arcs are induced 125

from the collection of headed spans (section 3). 126

Compared with first-order graph-based methods, 127

our method can utilize more subtree information 128

since a headed span contains all children (if any) of 129

the corresponding headword (and all words within 130

the subtree). Compared with most of transition- 131

based methods, our method allows global training 132

and exact inference and does not suffer from error 133

propagation or exposure bias. 134

Our contributions can be summarized as follows: 135

• We treat a projective dependency tree as a 136

collection of headed spans, providing a new 137

perspective of projective dependency parsing. 138

• We design a novel O(n3) dynamic program- 139

ming algorithm to enable global training and 140

exact inference for our proposed model. 141

• We have obtained the state-of-the-art or com- 142

petitive results on PTB, CTB, and UD v2.2, 143

showing the effectiveness of our proposed 144

method. 145

2 Parsing 146

We adopt the two-stage parsing strategy, i.e., we 147

first predict an unlabeled tree and then predict the 148

dependency labels. Given a sentence x1, ..., xn, 149

its unlabeled projective dependency parse tree y 150

can be regarded as a collection of headed spans 151

(li, ri, xi) where 1 ≤ i ≤ n. For each word xi, we 152

can find exactly one headed span (li, ri, i) (where li 153

and ri are the left and right span boundaries) given 154

parse tree y, so there are totally n headed spans in 155

y as we can see in Figure 1. We can use a simple 156

post-order traversal algorithm to obtain all headed 157

spans in O(n) time. We then define the score of y 158

as: 159

s(y) =
∑

i=1,...,n

s
span
li,ri,i

160

and we show how to compute them using neural 161

networks in the next section. 162

Our parsing algorithm is based on the following 163

key observations: 164

• For a given parent word xk, if it has any chil- 165

dren to the left (right), then all headed spans of 166

2

Axioms:
β-INIT:

i i+ 1 i+ 1

sspan
i,i+1,i+1

α-INIT:

i i

0

Deduction Rules:

S-CONC
i k

s1

k j

s2

i j

s1 + s2
C-CONC

i k − 1

s1

k j

s2

i k j

s1 + s2 + sspan
i,j,k

HEADLESS
i k j

s1

i j

s1

Figure 2: Deduction rules for our proposed parsing algorithm. All deduction items are annotated with their scores.

 xj

i a kb j-1 j c

Figure 3: An example subtree.

its children in this direction should be consec-167

utive and form a larger span, which we refer168

to as the left (right) child span. The left (right)169

boundary of the headed span of xk is the left170

(right) boundary of the leftmost (rightmost)171

child span, or k − 1 (k) if xk has no child to172

the left (right).173

• If a parent word xk has children in both di-174

rections, then its left span and right span are175

separated by the single word span (k − 1, k).176

Figure 3 shows an example subtree. The left177

child span is (i, j − 1) and the right child span is178

(j, k). They are separated by the single word span179

(j − 1, j). The headed span (i, k, j) can be gen-180

erated by concatenating the left child span, right181

child span, and the single word span. Note that182

the left (right) child span can contain one or more183

headed spans. Based on these observations, we184

design the following parsing items: (1) αi,j : the185

accumulated score of span (i, j) serving as a left or186

right child span. (2) βi,j,k: the accumulated score187

of the headed span (i, j, k). We use the parsing-as-188

deduction framework (Pereira and Warren, 1983)189

to describe our algorithm in Fig. 2. We draw αi,j as190

rectangles and βi,j,k as triangles. The rule S-CONC191

is used to concatenate two consecutive child spans192

into a single child span; C-CONC is used to concate-193

nate left and right child span (i, k − 1) and (k, j)194

along with the root word-span (k − 1, k) to form a195

headed span (i, j, k); HEADLESS is used to obtain 196

a headless child span from a headed span. Fig. 2 197

corresponds to the following recursive formulas: 198

βi,i+1,i+1 = s
span
i,i+1,i+1 (1) 199

αi,i = 0 (2) 200

βi,j,k = αi,k−1 + αk,j + s
span
i,j,k (3) 201

αi,j = max(max
i<k<j

(αi,k + αk,j), 202

max
i<h≤j

(βi,j,h)) (4) 203

We set αi,i = 0 for the convenience of calculating 204

βi,j,k when xk does not have children on either side. 205

In Eq. 4, we can see that the child span comes from 206

either multiple smaller consecutive child spans (i.e., 207

max
i<k<j

(α(i, k) + α(k, j))) or a single headed span 208

(i.e., max
i<h≤j

(β(i, j, h)))). We also maintain back- 209

pointers based on these equations (i.e., maintain all 210

arg max) for parsing. 211

A key point of our parsing algorithm is that, dur- 212

ing backtracking, we add arcs emanated from the 213

headword of a large headed span to every head- 214

word of (zero or more) smaller headed spans within 215

the left/right child span, so that we can induce a 216

dependency tree. Finding all smaller headed spans 217

within left and right child spans requires finding 218

the best segmentation, which is similar to the in- 219

ference procedure of the semi-Markov CRF model 220

(Sarawagi and Cohen, 2004). We provide the pseu- 221

docode of our parsing algorithm in Appd. A. 222

Parsing complexity. From Eq. 1 to 4, we can see 223

that at most three variables (i.e., i, j, k) are required 224

to iterate over and therefore the total parsing time 225

complexity is O(n3). 226

Spurious ambiguity. Note that different order 227

of concatenation of child spans can result in the 228

3

C-L-CONC:
i c k

s1

k h j

s2

i h j

s1 + s2 + sarc
h,c

C-R-CONC:
i h k

s1

k c j

s2

i h j

s1 + s2 + sarc
h,c

ES-R-CONC:
i h k

s1

k + 1 jh

s2

i h j

s1 + s2
ES-R-LINK:

i c j

s1

i jh

s1 + sarc
h,c

ES-L-CONC:
i k − 1 h

s1

k h j

s2

i h j

s1 + s2
ES-L-LINK:

i c j

s1

i j h

s1 + sarc
h,c

E-L-CONC:
j k

s1

k i

s2

j i

s1 + s2
E-L-LINK:

j k − 1

s1

k i

s2

j i

s1 + s2 + sarc
i,j

E-R-CONC:
i k

s1

k j

s2

i j

s1 + s2
E-R-LINK:

i k

s1

k + 1 j

s2

i j

s1 + s2 + sarc
i,j

R-CONC:
i kh

s1

k jh

s2

i jh

s1 + s2
L-CONC:

i k h

s1

k j h

s2

i j h

s1 + s2
CONC:

i h h

s1

h+ 1 jh

s2

i h j

s1 + s2

Figure 4: Deductive rules of the parsing algorithms of Collins (1996) (the first line), Eisner and Satta (1999)
(the second line), Eisner (1997) (the third line). The last line is the resulting deduction rules after applying head-
splitting on ES-L-CONC and ES-R-CONC. All deduction items are annotated with their scores. We only consider
the pure dependency versions of these algorithms. We omit axiom items for simplicity.

same parse, although this does not affect finding229

the optimal parse.230

Comparison with previous parsing algorithms.231

We compare our algorithm with three classical pars-232

ing algorithms (Collins, 1996; Eisner and Satta,233

1999; Eisner, 1997) in order to help readers better234

understand our algorithm. We only consider their235

pure dependency versions2 for the convenience of236

discussion. Fig. 2 shows the deductive rules of the237

three algorithms.238

Collins (1996) adapt the CYK algorithm by239

maintaining head positions for both sides, thereby240

increasing the parsing complexity from O(n3) to241

O(n5). Their parsing items are identified by two242

endpoints and a head position, which is similar to243

our concept of headed spans superficially. How-244

ever, in their algorithm, there could be multiple245

spans sharing the same head position within a sin-246

gle parse. For instance, (i, j) and (k, j) share the247

same head position h in C-L-CONC. In contrast,248

2The parsing algorithms of Collins (1996) and Eisner and
Satta (1999) are defined with (lexicalized) context-free gra-
mars. Gómez-Rodríguez et al. (2008, 2011) provide their pure
dependency versions, which amounts to considering arc scores
only.

spans cannot share a head position in a single parse 249

under our definition, because there is exactly one 250

headed span for each word. Besides, the concate- 251

nation order of subtrees differs. 252

Eisner and Satta (1999) note that the linking of 253

heads and the concatenation of subtrees can be sep- 254

arated (e.g., C-R-CONC can be decomposed into 255

two rules, ES-R-CONC and ES-R-LINK) so that 256

the parsing complexity can be reduced to O(n4). 257

This strategy is also known as the hook trick, which 258

reduces subtrees to headless spans (e.g., (i, c, j) to 259

(i, j) in ES-L-LINK and ES-R-LINK). 260

Eisner (1997) uses the head-splitting trick to de- 261

crease parsing complexity to O(n3). The key idea 262

is to split each subtree into a left and a right frag- 263

ment, so that the head is always placed at one of 264

the two boundaries of a fragment instead of an 265

internal position, thereby eliminating the need of 266

maintaining the head positions. 267

Our algorithm adopts a combination of the hook 268

trick and the head-splitting trick. Starting from the 269

rules of Eisner and Satta (1999) that apply the hook 270

trick, we can rewrite ES-L-CONC, ES-R-CONC as 271

L-CONC, R-CONC and COMB. It is easy to verify 272

4

the equivalence of the rules before and after the273

rewrite3. The key difference is in the concatenation274

order of subtrees. We concatenate all subtrees to275

the left/right of the new head first, which can be276

viewed as adopting the head-splitting trick. Then,277

note that the position of the head is uniquely de-278

termined by the two concatenations of subtrees,279

and that our model does not consider sarc. Conse-280

quently, we have no need to maintain head position281

h in L-CONC and R-CONC and can merge these282

two rules to S-CONC of fig. 2. Accordingly, CONC283

can be modified to C-CONC of fig. 2. Eliminat-284

ing bookkeeping of h is how we can obtain better285

parsing complexity than Eisner and Satta (1999).286

Finally, we can incorporate span score sspan
i,j,h into287

C-CONC.288

3 Model289

3.1 Neural encoding and scoring290

We add <bos> (beginning of sentence) at x0 and291

<eos> (end of sentence) at xn+1. In the embedding292

layer, we apply mean-pooling to the last layer of293

BERT (Devlin et al., 2019) (i.e., taking the mean294

value of all subword embeddings) to generate dense295

word-level representation ei for each token xi 4.296

Then we feed e0, ..., en+1 into a 3-layer bidirec-297

tional LSTM (BiLSTM) to get c0, ..., cn+1, where298

ci = [fi; bi] and fi and bi are the forward and back-299

ward hidden states of the last BiLSTM layer at300

position i respectively. We then use ei,j to repre-301

sent span (i, j):302

hk = [fk, bk+1]303

ei,j = hj − hi304

After obtaining the word and span representa-305

tions, we use deep biaffine function (Dozat and306

Manning, 2017) to score headed spans:307

c′k = MLPword(ck)308

e′i,j = MLPspan(ei,j)309

s
span
i,j,k =

[
c′k; 1

]>
W span [e′i,j ; 1

]
310

where MLPword and MLPspan are multi-layer per-311

ceptrons (MLPs) that project word and span repre-312

sentations into d-dimensional spaces respectively;313

W span ∈ R(d+1)×(d+1).314

3Note that this only holds for the pure dependency version,
since otherwise we cannot track some intermediate constituent
spans after changing the concatenation order of subtrees.

4For some datasets (e.g., Chinese Treebank), we concate-
nate the POS tag embedding with the BERT embedding as
ei.

Similarly, we use deep biaffine functions to score 315

the labels of dependency arcs for a given gold or 316

predicted tree 5: 317

c′i = MLPparent(ci) 318

c′j = MLPchild(cj) 319

slabel
i,j,r =

[
c′i; 1

]>
W label

r

[
c′j ; 1

]
320

where MLPparent and MLPchild are MLPs that map 321

word representations into d′-dimensional spaces; 322

W label
r ∈ R(d′+1)×(d′+1) for each relation type r ∈ 323

R in which R is the set of all relation types. 324

3.2 Training loss 325

Following previous work, we decompose the train- 326

ing loss into the unlabeled parse loss and arc label 327

loss: 328

L = Lparse + Llabel 329

For Lparse, we can either design a local span- 330

selection loss: 331

Llocal
parse =

∑
(i,j,k)∈y

− log
exp(s

span
i,j,k)∑

0≤p≤k<q≤n
exp(s

span
p,q,k)

332

which is akin to the head-selection loss (Dozat and 333

Manning, 2017), or use global structural loss. Ex- 334

perimentally, we find that the max-margin loss 335

(Taskar et al., 2004) performs best. The max- 336

margin loss aims to maximize the margin between 337

the score of the gold tree y and the incorrect tree y′ 338

of the highest score: 339

Lparse = max(0,max
y′ 6=y

(s(y′) + ∆(y′, y)− s(y))

(5) 340

where ∆ measures the difference between the in- 341

correct tree and gold tree. Here we let ∆ to be 342

the Hamming distance (i.e., the total number of 343

mismatches of headed spans). We can perform 344

loss-augmented inference (Taskar et al., 2005) to 345

calculate Eq. 5. 346

Finally, we use cross entropy for Llabel: 347

Llabel =
∑

(xi→xj ,r)∈y

− log
exp(slabel

i,j,r)∑
r′∈R

exp(slabel
i,j,r′)

348

5In our preliminary experiments, we find that directly cal-
culating the scores based on parent-child word representations
leads to a slightly better result (< 0.1 LAS) than those based
on span representations. A possible reason is that, since LAS
is arc-factorized, even if we predict a correct parent-child
pair, we can predict the wrong headed spans for the parent or
child or both, thereby negatively affecting the labeling scores
and resulting in worse LAS. Therefore, in our work we use
arc-based label scores to suit the LAS metric.

5

where (xi → xj , r) ∈ y denotes every dependency349

arc from xi to xj with label r in y.350

4 Experiments351

4.1 Data and setting352

Following Wang and Tu (2020), we evaluate our353

proposed method on Penn Treebank (PTB) 3.0354

(Marcus et al., 1993), Chinese Treebank (CTB) 5.1355

(Xue et al., 2005) and 12 languages on Universal356

Dependencies (UD) 2.2: BG-btb, CA-ancora, CS-357

pdt, DE-gsd, EN-ewt, ES-ancora, FR-gsd, IT-isdt,358

NL-alpino, NO-rrt, RO-rrt, RU-syntagrus 6. For359

PTB, we use the Stanford Dependencies conver-360

sion software of version 3.3 to obtain dependency361

trees. For CTB, we use head-rules from Zhang362

and Clark (2008) and Penn2Malt7 to obtain depen-363

dency trees. Following Wang and Tu (2020), we364

use gold POS tags for CTB and UD. We do not use365

POS tags in PTB. For PTB/CTB, we drop all non-366

projective trees during training. For UD, we use367

MaltParser v1.9.2 8 to adopt the pseudo-projective368

transformation (Nivre and Nilsson, 2005) to con-369

vert nonprojective trees into projective trees when370

training, and convert back when evaluating, for371

both our model and reimplemented baseline model.372

See Appd. B for implementation details.373

4.2 Evaluation methods374

We report the unlabeled attachment score (UAS)375

and labeled attachment score (LAS) averaged from376

three runs with different random seeds. In each377

run, we select the model based on the performance378

on the development set. Following Wang and Tu379

(2020), we ignore all punctuation marks during380

evaluation.381

4.3 Main result382

Table 1 shows the results on PTB and CTB. Note383

that Biaffine+MM is our reimplementation of the384

Biaffine Parser that uses the same setting as in385

our method, including the use of the max-margin386

loss instead of the local head-selection loss. Inter-387

estingly, we find that Biaffine+MM has already388

surpassed many strong baselines, and this may389

be due to the proper choices of hyperparameters390

and the use of the max-margin loss (we observe391

6We do not concatenate all datasets during training. We
train on each dataset separately.

7https://cl.lingfil.uu.se/~nivre/
research/Penn2Malt.html

8http://www.maltparser.org/download.
html

PTB CTB
UAS LAS UAS LAS

MFVI2O 95.98 94.34 90.81 89.57
TreeCRF2O 96.14 94.49 - -
HierPtr 96.18 94.59 90.76 89.67

+BERTbase +BERTbase
RNGTr 96.66 95.01 92.98 91.18

+BERTlarge +BERTbase

MFVI2O 96.91 95.34 92.55 91.69
HierPtr 97.01 95.48 92.65 91.47
Biaffine+MM† 97.22 95.71 93.18 92.10
Ours 97.24 95.73 93.33 92.30

For reference
+XLNetlarge +BERTbase

HPSG[97.20 95.72 - -
HPSG+LAL[97.42 96.26 94.56 89.28

Table 1: Results for different model on PTB and
CTB. [indicate that they use additional annotated
constituency trees in training. † means our reim-
plementation. Biaffine: Dozat and Manning (2017).
MFVI2O: Wang and Tu (2020). TreeCRF2O: Zhang
et al. (2020b). RNGTr: Mohammadshahi and Hender-
son (2021). HierPtr: Fernández-González and Gómez-
Rodríguez (2021). HPSG: Zhou and Zhao (2019).
HPSG+LAL: Mrini et al. (2020).

1-9 10-19 20-29 30-39 ≥40
92

93

94

95

96

Sentence length

U
A

S
(1

00
%

)

Ours
Biaffine+MM

(a)

ROOT 1 2 3 4 5 6 ≥7

90

91

92

93

94

Distance to root

F1
sc

or
e

(1
00

%
)

Ours
Biaffine+MM

(b)

1 2 3 4 5 6 7 ≥8
80

85

90

95

Dependency length

F1
sc

or
e

(1
00

%
)

Ours
Biaffine+MM

(c)

1-10 11-20 21-30 31-40 ≥40
80

85

90

95

Span length

F1
sc

or
e

(1
00

%
)

Ours
Biaffine+MM

(d)

Figure 5: Error analysis on the CTB test set.

that using the max-margin loss leads to a bet- 392

ter performance compared with the original head- 393

selection loss), so Biaffine+MM is a very strong 394

baseline. It also has the same number of param- 395

eters as our methods. Our method surpasses Bi- 396

affine+MM on both datasets, showing the competi- 397

tiveness of our headed-span-based method in a fair 398

comparison with first-order graph-based parsing. 399

6

https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
http://www.maltparser.org/download.html
http://www.maltparser.org/download.html

bg ca cs de en es fr it nl no ro ru Avg

TreeCRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
MFVI2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

+BERTmultilingual

MFVI2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Biaffine+MM† 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Ours 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96

Table 2: Labeled Attachment Score (LAS) on twelve languages in UD 2.2. We use ISO 639-1 codes to represent
languages. † means our implementation.

PTB CTB
UAS LAS UAS LAS

max-margin loss 97.24 95.73 93.33 92.30
span-selection loss 97.07 95.50 93.28 92.20

Table 3: The influence of training loss function on PTB
and CTB.

Our method also obtains the state-of-the-art result400

among methods that only use dependency train-401

ing data (HPSG+LAL uses additional constituency402

trees as training data, so it is not directly compara-403

ble with the other systems.).404

Table 2 shows the results on UD. We can see405

that our reimplemented Biaffine+MM has already406

surpassed MFVI2O, which utilizes higher-order in-407

formation. Our method outperforms Biaffine+MM408

by 0.14 LAS on average, validating the effective-409

ness of our proposed method in the multilingual410

scenarios.411

5 Analysis412

5.1 Influence of training loss function413

Table 3 shows the influence of the training loss414

function. We find that the max-margin loss per-415

forms better on both datasets: 0.17 UAS improve-416

ment on PTB and 0.05 UAS improvement on CTB417

comparing to the local span-selection loss, which418

shows the effectiveness of using global loss.419

5.2 Error analysis420

As previously argued, first-order graph-based meth-421

ods are insufficient to model complex subtrees, so422

they may have difficulties in parsing long sentences423

and handling long-range dependencies. To verify424

this, we follow (McDonald and Nivre, 2011) to plot425

UAS as a function of the sentence length and plot426

F1 scores as functions of the distance to root and427

dependency length on the CTB test set. We addi-428

tionally plot the F1 score of the predicted headed429

spans against the gold headed spans with different430

span lengths. 431

From Figure 5a, we can see that Biaffine+MM 432

has a better UAS score on short sentences (of length 433

<=20), while for long sentences (of length >=30), 434

our headed span-based method has a higher perfor- 435

mance, which validates our conjecture. 436

Figure 5b shows the F1 score for arcs of varying 437

distances to root. Our model is better at predict- 438

ing arcs of almost all distances to root in the de- 439

pendency tree, which reveals our model’s superior 440

ability to predict complex subtrees. 441

Figure 5c shows the F1 score for arcs of varying 442

lengths. Both Biaffine+MM and our model have 443

a very similar performance in predicting arcs of 444

distance < 7, while our model is better at predicting 445

arcs of distance >= 7, which validates the ability of 446

our model at capturing long-range dependencies. 447

Figure 5d shows the F1 score for headed spans 448

of varying lengths. We can see that when the 449

span length is small (<=10), Biaffine+MM and our 450

model have a very similar performance. However, 451

our model is much better in predicting longer spans 452

(especially for spans of length >30). 453

5.3 Parsing speed 454

Inspired by Zhang et al. (2020b) and Rush (2020) 455

who independently propose to batchify the Eis- 456

ner algorithm using Pytorch, we batchify our 457

proposed method so that O(n2) out of O(n3) can 458

be computed in parallel, which greatly accelerates 459

parsing. We achieve a similar parsing speed of our 460

method to the fast implementation of the Eisner 461

algorithm by Zhang et al. (2020b): it parses 273 462

sentences per second, using BERT as the encoder 463

under a single TITAN RTX GPU. 464

6 Related work 465

Dependency parsing with more complex sub- 466

tree information. There has always been an in- 467

terest to incorporate more complex subtree infor- 468

mation into graph-based and transition-based meth- 469

ods since their invention. Before the deep learning 470

7

era, it was difficult to incorporate sufficient contex-471

tual information in first-order graph-based parsers.472

To mitigate this, researchers develop higher-order473

dependency parsers to capture more contextual474

information (McDonald and Pereira, 2006; Car-475

reras, 2007; Koo and Collins, 2010; Ma and Zhao,476

2012). However, incorporating more complex fac-477

tors worsens inference time complexity. For ex-478

ample, exact inference for third-order projective479

dependency parsing has a O(n4) time complexity480

and exact inference for higher-order non-projective481

dependency parsing is NP-hard (McDonald and482

Pereira, 2006). To decrease inference complex-483

ity, researchers use approximate parsing methods.484

Smith and Eisner (2008) use belief propagation485

(BP) framework for approximate inference to trade486

accuracy for efficiency. They show that third-order487

parsing can be done inO(n3) time using BP. Gorm-488

ley et al. (2015) unfold the BP process and use gra-489

dient descent to train their parser in an end-to-end490

manner. Wang and Tu (2020) extend their work by491

using neural scoring functions to score factors. For492

higher-order non-projective parsing, researchers re-493

sort to dual decomposition algorithm (e.g., AD3)494

for decoding (Martins et al., 2011, 2013). They495

observe that the approximate decoding algorithm496

often obtains exact solutions. Fonseca and Mar-497

tins (2020) combine neural scoring functions and498

their decoding algorithms for non-projective higher-499

order parsing. Zheng (2017) proposes a incremen-500

tal graph-based method to utilize higher-order in-501

formation without hurting the advantage of global502

inference. Ji et al. (2019) use a graph attention net-503

work to incorporate higher-order information into504

the Biaffine Parser. Zhang et al. (2020b) enhance505

the Biaffine Parser by using a deep triaffine func-506

tion to score sibling factors. Mohammadshahi and507

Henderson (2021) propose an iterative refinement508

network that injects the predicted soft trees from509

the previous iteration to the self-attention layers510

to predict the soft trees of the next iteration, so511

that information of the whole tree is considered512

in parsing. As for transition-based methods, Ma513

et al. (2018); Liu et al. (2019); Fernández-González514

and Gómez-Rodríguez (2021) incorporate sibling515

and grandparent information into transition-based516

parsing with Pointer Networks.517

The hook trick and the head-splitting trick.518

These two tricks have been used in the parsing liter-519

ature to accelerate parsing. Eisner and Satta (1999,520

2000) use the hook trick to decrease the parsing521

complexity of lexicalized PCFGs and Tree Adjoin- 522

ing Grammars. Huang et al. (2005, 2009) adapt 523

the hook trick to accelerate machine translation de- 524

coding. The parsing algorithms of Corro (2020) 525

and Xin et al. (2021) can be viewed as adapting the 526

hook trick to accelerate discontinuous and continu- 527

ous constituency parsing. Eisner (1997); Satta and 528

Kuhlmann (2013) use the head-splitting trick to ac- 529

celerate projective and nonprojective dependency 530

parsing. 531

Span-based constituency parsing. Span-based 532

parsing is originally proposed in continuous con- 533

stituency parsing (Stern et al., 2017; Kitaev and 534

Klein, 2018; Zhang et al., 2020c; Xin et al., 2021). 535

Span-based constituency parsers decompose the 536

score of a constituency tree into the scores of its 537

constituents. Recovering the highest-scoring tree 538

can be done via the exact CYK algorithm or greedy 539

top-down approximate inference algorithm (Stern 540

et al., 2017). Kitaev and Klein (2018) propose a 541

self-attentive network to improve the parsing ac- 542

curacy. They separate content and positional at- 543

tentions and show the improvement. Zhang et al. 544

(2020c) use a two-stage bracketing-then-labeling 545

framework and replace the max-margin loss with 546

the TreeCRF loss (Finkel et al., 2008). Xin et al. 547

(2021) recently propose a recursive semi-Markov 548

model, incorporating sibling factor scores into the 549

score of a tree to explicitly model n-ary branching 550

structures. Corro (2020) adapts span-based parsing 551

to discontinuous constituency parsing and obtains 552

the state-of-the-art result. 553

7 Conclusion 554

In this work, we have presented a headed-span- 555

based method for projective dependency parsing. 556

Our proposed method can utilize more subtree in- 557

formation and meanwhile enjoy global training and 558

exact inference. Experiments show the competitive 559

performance of our method in multiple datasets. 560

In addition to its empirical competitiveness, we 561

believe our work provides a novel perspective of 562

projective dependency parsing and could lay the 563

foundation for further algorithmic advancements 564

in the future. 565

References 566

Emanuele Bugliarello and Naoaki Okazaki. 2020. En- 567
hancing machine translation with dependency-aware 568
self-attention. In Proceedings of the 58th Annual 569

8

https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147

Meeting of the Association for Computational Lin-570
guistics, pages 1618–1627, Online. Association for571
Computational Linguistics.572

Xavier Carreras. 2007. Experiments with a higher-573
order projective dependency parser. In Proceed-574
ings of the 2007 Joint Conference on Empirical575
Methods in Natural Language Processing and Com-576
putational Natural Language Learning (EMNLP-577
CoNLL), pages 957–961, Prague, Czech Republic.578
Association for Computational Linguistics.579

Danqi Chen and Christopher Manning. 2014. A fast580
and accurate dependency parser using neural net-581
works. In Proceedings of the 2014 Conference on582
Empirical Methods in Natural Language Processing583
(EMNLP), pages 740–750, Doha, Qatar. Association584
for Computational Linguistics.585

J. Cocke. 1969. Programming languages and their com-586
pilers: Preliminary notes.587

Michael John Collins. 1996. A new statistical parser588
based on bigram lexical dependencies. In 34th An-589
nual Meeting of the Association for Computational590
Linguistics, pages 184–191, Santa Cruz, California,591
USA. Association for Computational Linguistics.592

Caio Corro. 2020. Span-based discontinuous con-593
stituency parsing: a family of exact chart-based al-594
gorithms with time complexities from O(nˆ6) down595
to O(nˆ3). In Proceedings of the 2020 Conference596
on Empirical Methods in Natural Language Process-597
ing (EMNLP), pages 2753–2764, Online. Associa-598
tion for Computational Linguistics.599

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and600
Kristina Toutanova. 2019. BERT: Pre-training of601
deep bidirectional transformers for language under-602
standing. In Proceedings of the 2019 Conference603
of the North American Chapter of the Association604
for Computational Linguistics: Human Language605
Technologies, Volume 1 (Long and Short Papers),606
pages 4171–4186, Minneapolis, Minnesota. Associ-607
ation for Computational Linguistics.608

Timothy Dozat and Christopher D. Manning. 2017.609
Deep biaffine attention for neural dependency pars-610
ing. In 5th International Conference on Learning611
Representations, ICLR 2017, Toulon, France, April612
24-26, 2017, Conference Track Proceedings. Open-613
Review.net.614

Jason Eisner. 1997. Bilexical grammars and a cubic-615
time probabilistic parser. In Proceedings of the Fifth616
International Workshop on Parsing Technologies,617
pages 54–65, Boston/Cambridge, Massachusetts,618
USA. Association for Computational Linguistics.619

Jason Eisner and Giorgio Satta. 1999. Efficient pars-620
ing for bilexical context-free grammars and head au-621
tomaton grammars. In Proceedings of the 37th An-622
nual Meeting of the Association for Computational623
Linguistics, pages 457–464, College Park, Maryland,624
USA. Association for Computational Linguistics.625

Jason Eisner and Giorgio Satta. 2000. A faster pars- 626
ing algorithm for Lexicalized Tree-Adjoining Gram- 627
mars. In Proceedings of the Fifth International 628
Workshop on Tree Adjoining Grammar and Re- 629
lated Frameworks (TAG+5), pages 79–84, Univer- 630
sité Paris 7. 631

Jason M. Eisner. 1996. Three new probabilistic models 632
for dependency parsing: An exploration. In COL- 633
ING 1996 Volume 1: The 16th International Confer- 634
ence on Computational Linguistics. 635

Agnieszka Falenska and Jonas Kuhn. 2019. The (non- 636
)utility of structural features in BiLSTM-based de- 637
pendency parsers. In Proceedings of the 57th An- 638
nual Meeting of the Association for Computational 639
Linguistics, pages 117–128, Florence, Italy. Associ- 640
ation for Computational Linguistics. 641

Daniel Fernández-González and Carlos Gómez- 642
Rodríguez. 2019. Left-to-right dependency parsing 643
with pointer networks. In Proceedings of the 2019 644
Conference of the North American Chapter of the 645
Association for Computational Linguistics: Human 646
Language Technologies, Volume 1 (Long and Short 647
Papers), pages 710–716, Minneapolis, Minnesota. 648
Association for Computational Linguistics. 649

Daniel Fernández-González and Carlos Gómez- 650
Rodríguez. 2021. Dependency parsing with 651
bottom-up hierarchical pointer networks. CoRR, 652
abs/2105.09611. 653

Jenny Rose Finkel, Alex Kleeman, and Christopher D. 654
Manning. 2008. Efficient, feature-based, condi- 655
tional random field parsing. In Proceedings of ACL- 656
08: HLT, pages 959–967, Columbus, Ohio. Associa- 657
tion for Computational Linguistics. 658

Erick Fonseca and André F. T. Martins. 2020. Re- 659
visiting higher-order dependency parsers. In Pro- 660
ceedings of the 58th Annual Meeting of the Asso- 661
ciation for Computational Linguistics, pages 8795– 662
8800, Online. Association for Computational Lin- 663
guistics. 664

Carlos Gómez-Rodríguez, John Carroll, and David 665
Weir. 2008. A deductive approach to dependency 666
parsing. In Proceedings of ACL-08: HLT, pages 667
968–976, Columbus, Ohio. Association for Compu- 668
tational Linguistics. 669

Carlos Gómez-Rodríguez, John Carroll, and David 670
Weir. 2011. Dependency parsing schemata and 671
mildly non-projective dependency parsing. Compu- 672
tational Linguistics, 37(3):541–586. 673

Carlos Gómez-Rodríguez, Tianze Shi, and Lillian Lee. 674
2018. Global transition-based non-projective de- 675
pendency parsing. In Proceedings of the 56th An- 676
nual Meeting of the Association for Computational 677
Linguistics (Volume 1: Long Papers), pages 2664– 678
2675, Melbourne, Australia. Association for Com- 679
putational Linguistics. 680

9

https://aclanthology.org/D07-1101
https://aclanthology.org/D07-1101
https://aclanthology.org/D07-1101
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/981863.981888
https://doi.org/10.3115/981863.981888
https://doi.org/10.3115/981863.981888
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/1997.iwpt-1.10
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://aclanthology.org/W00-2011
https://aclanthology.org/W00-2011
https://aclanthology.org/W00-2011
https://aclanthology.org/W00-2011
https://aclanthology.org/W00-2011
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
https://aclanthology.org/P08-1109
https://aclanthology.org/P08-1109
https://aclanthology.org/P08-1109
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://aclanthology.org/P08-1110
https://aclanthology.org/P08-1110
https://aclanthology.org/P08-1110
https://doi.org/10.1162/COLI_a_00060
https://doi.org/10.1162/COLI_a_00060
https://doi.org/10.1162/COLI_a_00060
https://doi.org/10.18653/v1/P18-1248
https://doi.org/10.18653/v1/P18-1248
https://doi.org/10.18653/v1/P18-1248

Matthew R. Gormley, Mark Dredze, and Jason Eisner.681
2015. Approximation-aware dependency parsing by682
belief propagation. Transactions of the Association683
for Computational Linguistics, 3:489–501.684

Sepp Hochreiter and Jürgen Schmidhuber. 1997.685
Long short-term memory. Neural computation,686
9(8):1735–1780.687

Liang Huang, Hao Zhang, and Daniel Gildea. 2005.688
Machine translation as lexicalized parsing with689
hooks. In Proceedings of the Ninth International690
Workshop on Parsing Technology, pages 65–73, Van-691
couver, British Columbia. Association for Computa-692
tional Linguistics.693

Liang Huang, Hao Zhang, Daniel Gildea, and694
Kevin Knight. 2009. Binarization of synchronous695
context-free grammars. Computational Linguistics,696
35(4):559–595.697

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-698
based dependency parsing with graph neural net-699
works. In Proceedings of the 57th Annual Meet-700
ing of the Association for Computational Linguis-701
tics, pages 2475–2485, Florence, Italy. Association702
for Computational Linguistics.703

Zhanming Jie and Wei Lu. 2019. Dependency-guided704
LSTM-CRF for named entity recognition. In Pro-705
ceedings of the 2019 Conference on Empirical Meth-706
ods in Natural Language Processing and the 9th In-707
ternational Joint Conference on Natural Language708
Processing (EMNLP-IJCNLP), pages 3862–3872,709
Hong Kong, China. Association for Computational710
Linguistics.711

Lifeng Jin, Linfeng Song, Yue Zhang, Kun Xu, Wei-712
Yun Ma, and Dong Yu. 2020. Relation extraction713
exploiting full dependency forests. In The Thirty-714
Fourth AAAI Conference on Artificial Intelligence,715
AAAI 2020, The Thirty-Second Innovative Appli-716
cations of Artificial Intelligence Conference, IAAI717
2020, The Tenth AAAI Symposium on Educational718
Advances in Artificial Intelligence, EAAI 2020, New719
York, NY, USA, February 7-12, 2020, pages 8034–720
8041. AAAI Press.721

T. Kasami. 1965. An efficient recognition and syntax-722
analysis algorithm for context-free languages.723

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A724
method for stochastic optimization. In 3rd Inter-725
national Conference on Learning Representations,726
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,727
Conference Track Proceedings.728

Nikita Kitaev and Dan Klein. 2018. Constituency pars-729
ing with a self-attentive encoder. In Proceedings730
of the 56th Annual Meeting of the Association for731
Computational Linguistics (Volume 1: Long Papers),732
pages 2676–2686, Melbourne, Australia. Associa-733
tion for Computational Linguistics.734

Terry Koo and Michael Collins. 2010. Efficient third- 735
order dependency parsers. In Proceedings of the 736
48th Annual Meeting of the Association for Compu- 737
tational Linguistics, pages 1–11, Uppsala, Sweden. 738
Association for Computational Linguistics. 739

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior- 740
gio Satta. 2011. Dynamic programming algorithms 741
for transition-based dependency parsers. In Pro- 742
ceedings of the 49th Annual Meeting of the Associ- 743
ation for Computational Linguistics: Human Lan- 744
guage Technologies, pages 673–682, Portland, Ore- 745
gon, USA. Association for Computational Linguis- 746
tics. 747

Linlin Liu, Xiang Lin, Shafiq Joty, Simeng Han, and 748
Lidong Bing. 2019. Hierarchical pointer net parsing. 749
In Proceedings of the 2019 Conference on Empirical 750
Methods in Natural Language Processing and the 751
9th International Joint Conference on Natural Lan- 752
guage Processing (EMNLP-IJCNLP), pages 1007– 753
1017, Hong Kong, China. Association for Computa- 754
tional Linguistics. 755

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, 756
Graham Neubig, and Eduard Hovy. 2018. Stack- 757
pointer networks for dependency parsing. In Pro- 758
ceedings of the 56th Annual Meeting of the Associa- 759
tion for Computational Linguistics (Volume 1: Long 760
Papers), pages 1403–1414, Melbourne, Australia. 761
Association for Computational Linguistics. 762

Xuezhe Ma and Hai Zhao. 2012. Fourth-order depen- 763
dency parsing. In Proceedings of COLING 2012: 764
Posters, pages 785–796, Mumbai, India. The COL- 765
ING 2012 Organizing Committee. 766

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 767
Marcinkiewicz. 1993. Building a large annotated 768
corpus of English: The Penn Treebank. Computa- 769
tional Linguistics, 19(2):313–330. 770

André Martins, Miguel Almeida, and Noah A. Smith. 771
2013. Turning on the turbo: Fast third-order non- 772
projective turbo parsers. In Proceedings of the 51st 773
Annual Meeting of the Association for Computa- 774
tional Linguistics (Volume 2: Short Papers), pages 775
617–622, Sofia, Bulgaria. Association for Computa- 776
tional Linguistics. 777

André Martins, Noah Smith, Mário Figueiredo, and Pe- 778
dro Aguiar. 2011. Dual decomposition with many 779
overlapping components. In Proceedings of the 780
2011 Conference on Empirical Methods in Natural 781
Language Processing, pages 238–249, Edinburgh, 782
Scotland, UK. Association for Computational Lin- 783
guistics. 784

Ryan McDonald, Koby Crammer, and Fernando 785
Pereira. 2005. Online large-margin training of de- 786
pendency parsers. In Proceedings of the 43rd 787
Annual Meeting of the Association for Computa- 788
tional Linguistics (ACL’05), pages 91–98, Ann Ar- 789
bor, Michigan. Association for Computational Lin- 790
guistics. 791

10

https://doi.org/10.1162/tacl_a_00153
https://doi.org/10.1162/tacl_a_00153
https://doi.org/10.1162/tacl_a_00153
https://aclanthology.org/W05-1507
https://aclanthology.org/W05-1507
https://aclanthology.org/W05-1507
https://doi.org/10.1162/coli.2009.35.4.35406
https://doi.org/10.1162/coli.2009.35.4.35406
https://doi.org/10.1162/coli.2009.35.4.35406
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/D19-1399
https://doi.org/10.18653/v1/D19-1399
https://doi.org/10.18653/v1/D19-1399
https://aaai.org/ojs/index.php/AAAI/article/view/6313
https://aaai.org/ojs/index.php/AAAI/article/view/6313
https://aaai.org/ojs/index.php/AAAI/article/view/6313
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://aclanthology.org/P10-1001
https://aclanthology.org/P10-1001
https://aclanthology.org/P10-1001
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://doi.org/10.18653/v1/D19-1093
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://aclanthology.org/C12-2077
https://aclanthology.org/C12-2077
https://aclanthology.org/C12-2077
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/D11-1022
https://aclanthology.org/D11-1022
https://aclanthology.org/D11-1022
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852

Ryan McDonald and Joakim Nivre. 2011. Analyzing792
and integrating dependency parsers. Computational793
Linguistics, 37(1):197–230.794

Ryan McDonald and Fernando Pereira. 2006. Online795
learning of approximate dependency parsing algo-796
rithms. In 11th Conference of the European Chap-797
ter of the Association for Computational Linguis-798
tics, Trento, Italy. Association for Computational799
Linguistics.800

Alireza Mohammadshahi and James Henderson. 2021.801
Recursive non-autoregressive graph-to-graph trans-802
former for dependency parsing with iterative refine-803
ment. Trans. Assoc. Comput. Linguistics, 9:120–804
138.805

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,806
Trung Bui, Walter Chang, and Ndapa Nakashole.807
2020. Rethinking self-attention: Towards inter-808
pretability in neural parsing. In Findings of the As-809
sociation for Computational Linguistics: EMNLP810
2020, pages 731–742, Online. Association for Com-811
putational Linguistics.812

Joakim Nivre and Jens Nilsson. 2005. Pseudo-813
projective dependency parsing. In Proceedings of814
the 43rd Annual Meeting of the Association for Com-815
putational Linguistics (ACL’05), pages 99–106, Ann816
Arbor, Michigan. Association for Computational817
Linguistics.818

Joakim Nivre and Mario Scholz. 2004. Deterministic819
dependency parsing of English text. In COLING820
2004: Proceedings of the 20th International Con-821
ference on Computational Linguistics, pages 64–70,822
Geneva, Switzerland. COLING.823

Fernando C. N. Pereira and David H. D. Warren. 1983.824
Parsing as deduction. In 21st Annual Meeting of the825
Association for Computational Linguistics, pages826
137–144, Cambridge, Massachusetts, USA. Associ-827
ation for Computational Linguistics.828

Alexander Rush. 2020. Torch-struct: Deep structured829
prediction library. In Proceedings of the 58th An-830
nual Meeting of the Association for Computational831
Linguistics: System Demonstrations, pages 335–832
342, Online. Association for Computational Linguis-833
tics.834

Sunita Sarawagi and William W. Cohen. 2004. Semi-835
markov conditional random fields for information836
extraction. In Advances in Neural Information Pro-837
cessing Systems 17 [Neural Information Processing838
Systems, NIPS 2004, December 13-18, 2004, Van-839
couver, British Columbia, Canada], pages 1185–840
1192.841

Giorgio Satta and Marco Kuhlmann. 2013. Efficient842
parsing for head-split dependency trees. Transac-843
tions of the Association for Computational Linguis-844
tics, 1:267–278.845

Tianze Shi, Liang Huang, and Lillian Lee. 2017. 846
Fast(er) exact decoding and global training for 847
transition-based dependency parsing via a minimal 848
feature set. In Proceedings of the 2017 Conference 849
on Empirical Methods in Natural Language Process- 850
ing, pages 12–23, Copenhagen, Denmark. Associa- 851
tion for Computational Linguistics. 852

David Smith and Jason Eisner. 2008. Dependency 853
parsing by belief propagation. In Proceedings of 854
the 2008 Conference on Empirical Methods in Natu- 855
ral Language Processing, pages 145–156, Honolulu, 856
Hawaii. Association for Computational Linguistics. 857

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A 858
minimal span-based neural constituency parser. In 859
Proceedings of the 55th Annual Meeting of the As- 860
sociation for Computational Linguistics (Volume 1: 861
Long Papers), pages 818–827, Vancouver, Canada. 862
Association for Computational Linguistics. 863

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, 864
and Christopher Manning. 2004. Max-margin pars- 865
ing. In Proceedings of the 2004 Conference on Em- 866
pirical Methods in Natural Language Processing, 867
pages 1–8, Barcelona, Spain. Association for Com- 868
putational Linguistics. 869

Benjamin Taskar, Vassil Chatalbashev, Daphne Koller, 870
and Carlos Guestrin. 2005. Learning structured pre- 871
diction models: a large margin approach. In Ma- 872
chine Learning, Proceedings of the Twenty-Second 873
International Conference (ICML 2005), Bonn, Ger- 874
many, August 7-11, 2005, volume 119 of ACM Inter- 875
national Conference Proceeding Series, pages 896– 876
903. ACM. 877

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 878
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 879
Kaiser, and Illia Polosukhin. 2017. Attention is all 880
you need. In Advances in Neural Information Pro- 881
cessing Systems 30: Annual Conference on Neural 882
Information Processing Systems 2017, December 4- 883
9, 2017, Long Beach, CA, USA, pages 5998–6008. 884

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 885
2015. Pointer networks. In Advances in Neural 886
Information Processing Systems 28: Annual Con- 887
ference on Neural Information Processing Systems 888
2015, December 7-12, 2015, Montreal, Quebec, 889
Canada, pages 2692–2700. 890

Xinyu Wang and Kewei Tu. 2020. Second-order neural 891
dependency parsing with message passing and end- 892
to-end training. In Proceedings of the 1st Confer- 893
ence of the Asia-Pacific Chapter of the Association 894
for Computational Linguistics and the 10th Interna- 895
tional Joint Conference on Natural Language Pro- 896
cessing, pages 93–99, Suzhou, China. Association 897
for Computational Linguistics. 898

Xin Xin, Jinlong Li, and Zeqi Tan. 2021. N-ary 899
constituent tree parsing with recursive semi-Markov 900
model. In Proceedings of the 59th Annual Meet- 901
ing of the Association for Computational Linguistics 902

11

https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://aclanthology.org/C04-1010
https://aclanthology.org/C04-1010
https://aclanthology.org/C04-1010
https://doi.org/10.3115/981311.981338
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://doi.org/10.1162/tacl_a_00226
https://doi.org/10.1162/tacl_a_00226
https://doi.org/10.1162/tacl_a_00226
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://aclanthology.org/D08-1016
https://aclanthology.org/D08-1016
https://aclanthology.org/D08-1016
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://doi.org/10.1145/1102351.1102464
https://doi.org/10.1145/1102351.1102464
https://doi.org/10.1145/1102351.1102464
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205

and the 11th International Joint Conference on Nat-903
ural Language Processing (Volume 1: Long Papers),904
pages 2631–2642, Online. Association for Computa-905
tional Linguistics.906

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha907
Palmer. 2005. The penn chinese treebank: Phrase908
structure annotation of a large corpus. Nat. Lang.909
Eng., 11(2):207–238.910

D. Younger. 1967. Recognition and parsing of context-
free languages in time n3. Inf. Control., 10 : 189 −
−208.

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and Min911
Zhang. 2020a. Syntax-aware opinion role labeling with912
dependency graph convolutional networks. In Proceed-913
ings of the 58th Annual Meeting of the Association for914
Computational Linguistics, pages 3249–3258, Online.915
Association for Computational Linguistics.916

Yu Zhang, Zhenghua Li, and Min Zhang. 2020b. Efficient917
second-order TreeCRF for neural dependency parsing.918
In Proceedings of the 58th Annual Meeting of the As-919
sociation for Computational Linguistics, pages 3295–920
3305, Online. Association for Computational Linguis-921
tics.922

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020c. Fast923
and accurate neural CRF constituency parsing. In Pro-924
ceedings of the Twenty-Ninth International Joint Con-925
ference on Artificial Intelligence, IJCAI 2020, pages926
4046–4053. ijcai.org.927

Yue Zhang and Stephen Clark. 2008. A tale of two928
parsers: Investigating and combining graph-based and929
transition-based dependency parsing. In Proceedings930
of the 2008 Conference on Empirical Methods in Nat-931
ural Language Processing, pages 562–571, Honolulu,932
Hawaii. Association for Computational Linguistics.933

Xiaoqing Zheng. 2017. Incremental graph-based neural934
dependency parsing. In Proceedings of the 2017 Con-935
ference on Empirical Methods in Natural Language936
Processing, pages 1655–1665, Copenhagen, Denmark.937
Association for Computational Linguistics.938

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase939
Structure Grammar parsing on Penn Treebank. In Pro-940
ceedings of the 57th Annual Meeting of the Associa-941
tion for Computational Linguistics, pages 2396–2408,942
Florence, Italy. Association for Computational Linguis-943
tics.944

A Parsing algorithm945

The parsing algorithm first computes all the chart946

items defined above and then recovers the parse947

tree from top down. For a given headed span, it948

finds the best segmentation of left child spans and949

right child spans, and then adds dependency arcs950

from the headword of the given headed span and951

the headword of each child span. Finding the best952

segmentation is similar to the inference procedure953

Algorithm 1 Inference algorithm for headed span-
based projective dependency parsing
Require: Input sentence of length n

Calculate all α, β,B,C,H .
arcs← {(ROOT→ H0,n)}
function FINDARC(i, j)

if i+ 1 = j then
return {j}

else if Bi,j = 1 then
h← Hi,j

if i+1 < h < j then
L← FINDARC(i, h− 1)
R← FINDARC(h, j)
Children← L ∪R

else if h = j then
Children← FINDARC(i, j − 1)

else
Children← FINDARC(i+ 1, j)

end if
for c in Children do

arcs← arcs ∪ (h→ c)
end for
return {h}

else
c← Ci,j

L← FINDARC(i, c)
R← FINDARC(c, j)
return L ∪R

end if
end function
FINDARC(0, n)
return arcs

of the semi-Markov CRF model (Sarawagi and Co- 954

hen, 2004). Then we apply the same procedure to 955

each child headed span (within the best segmenta- 956

tion) recursively. We also maintain the following 957

backtrack points in order to recover the predicted 958

projective tree: 959

Bi,j =

1, αi,j = max
i<h≤j

(βi,j,h)

0, αi,j = max
i<k<j

(αi,k + αk,j)
960

961

Ci,j = arg max
i<k<j

(αi,k + αk,j) 962

Hi,j = arg max
i<h≤j

(βi,j,h) 963

The parsing algorithm is formalized in Alg.1. 964

B Implementation details 965

We use "bert-large-cased" for PTB, "bert-base- 966

chinese" for CTB, and "bert-multilingual-cased" 967

for UD, so the dimension of the input BERT em- 968

bedding is 1024, 768, and 768 respectively. The 969

dimension of POS tag embedding is set to 100 for 970

CTB and UD. The hidden size of BiLSTM is set to 971

1000. The hidden size of biaffine functions is set 972

12

https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2020.acl-main.297
https://doi.org/10.18653/v1/2020.acl-main.297
https://doi.org/10.18653/v1/2020.acl-main.297
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://doi.org/10.18653/v1/D17-1173
https://doi.org/10.18653/v1/D17-1173
https://doi.org/10.18653/v1/D17-1173
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

to 600 for scoring spans and arcs (used in our reim-973

plemented Biaffine Parser), 300 for scoring labels.974

We add a dropout layer after the embedding layer,975

LSTM layers, and MLP layers. The dropout rate is976

set to 0.33. We use Adam (Kingma and Ba, 2015)977

as the optimizer with β1 = 0.9, β2 = 0.9 to train978

our model for 10 epochs. The maximal learning979

rate is lr = 5e− 5 for BERT and lr = 25e− 5 for980

other components. We linearly warmup the learn-981

ing rate to the maximal value for the first epoch and982

gradually decay it to zero for the rest of the epochs.983

The value of gradient clipping is set to 5. We batch984

sentences of similar lengths to better utilize GPUs.985

The token number is 4000 for each batch, i.e., the986

sum of lengths of sentences is 4000.987

13

