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Abstract

We propose a new method for projective de-001
pendency parsing based on headed spans. In002
a projective dependency tree, the largest sub-003
tree rooted at each word covers a contiguous004
sequence (i.e., a span) in the surface order.005
We call such a span marked by a root word006
headed span. A projective dependency tree007
can be represented as a collection of headed008
spans. We decompose the score of a depen-009
dency tree into the scores of the headed spans010
and design a novel O(n3) dynamic program-011
ming algorithm to enable global training and012
exact inference. We evaluate our method on013
PTB, CTB, and UD and it achieves state-of-014
the-art or competitive results. We will release015
our code at github.com.016

1 Introduction017

Dependency parsing is an important task in natu-018

ral language processing, which has numerous ap-019

plications in downstream tasks, such as opinion020

mining (Zhang et al., 2020a), relation extraction021

(Jin et al., 2020), named entity recognition (Jie and022

Lu, 2019), machine translation (Bugliarello and023

Okazaki, 2020), among others.024

There are two main paradigms in dependency025

parsing: graph-based and transition-based meth-026

ods. Graph-based methods decompose the score027

of a tree into the scores of parts. In the simplest028

first-order graph-based methods (McDonald et al.,029

2005, inter alia), the parts are single dependency030

arcs. In higher-order graph-based methods (Mc-031

Donald and Pereira, 2006; Carreras, 2007; Koo and032

Collins, 2010; Ma and Zhao, 2012), the parts are033

combinations of multiple arcs. Transition-based034

methods (Nivre and Scholz, 2004; Chen and Man-035

ning, 2014, inter alia) read the sentence sequen-036

tially and conduct a series of local decisions to037

build the final parse. Recently, transition-based038

methods with Pointer Networks (Vinyals et al.,039

2015) have obtained competitive performance to040
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Figure 1: Illustration of a projective dependency parse
tree. Each rectangle represents a headed span.

graph-based methods (Ma et al., 2018; Liu et al., 041

2019; Fernández-González and Gómez-Rodríguez, 042

2019; Fernández-González and Gómez-Rodríguez, 043

2021). 044

A main limitation of first-order graph-based 045

methods is that they independently score each arc 046

based solely on the two words connected by the 047

arc. Ideally, the appropriateness of an arc should 048

depend on the whole parse tree, particularly the sub- 049

trees rooted at the two words connected by the arc. 050

Although subtree information could be implicitly 051

encoded (Falenska and Kuhn, 2019) in powerful 052

neural encoders such as LSTMs (Hochreiter and 053

Schmidhuber, 1997) and Transformers (Vaswani 054

et al., 2017), there is evidence that their encoding 055

of such information is inadequate. For example, 056

higher-order graph-based methods, which capture 057

more subtree information by simultaneously con- 058

sidering multiple arcs, have been found to outper- 059

form first-order methods despite using powerful 060

encoders (Fonseca and Martins, 2020; Zhang et al., 061

2020b). In contrast to the line of work on higher- 062

order parsing, we propose a different way to in- 063

corporate more subtree information as discussed 064

later. 065

Transition-based methods, on the other hand, can 066

easily utilize information from partially built sub- 067

trees, but they have their own shortcomings. For 068

instance, most of them cannot perform global opti- 069
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mization during decoding 1 and rely on greedy or070

beam search to find a locally optimal parse, and071

their sequential decoding may cause error propaga-072

tion as past decision mistakes will negatively affect073

the decisions in the future.074

To overcome the aforementioned limitations of075

first-order graph-based and transition-based meth-076

ods, we propose a new method for projective de-077

pendency parsing based on so-called headed spans.078

A projective dependency tree has a nice structural079

property that the largest subtree rooted at each080

word covers a contiguous sequence (i.e., a span)081

in the surface order. We call such a span marked082

with its root word a headed span. A projective083

dependency tree can be treated as a collection of084

headed spans such that each word corresponds to085

exactly one headed span, as illustrated in Figure086

1. For example, (0, 5, inventory) is a headed span,087

in which span (0, 5) has a head word inventory. In088

this view, projective dependency parsing is similar089

to constituency parsing as a constituency tree can090

be treated as a collection of constituent spans. The091

main difference is that in a binary constituency tree,092

a constituent span (i, k) is made up by two adjacent093

spans (i, j) and (j, k), while in a projective depen-094

dency tree, a headed span (i, k, xh) is made up by095

one or more smaller headed spans and a single word096

span (h − 1, h). For instance, (0, 5, inventory) is097

made up by (0, 1,An), (1, 2) and (2, 5, of). There098

are a few constraints between headed spans to force099

projectivity (section 3). These structural constraints100

are the key to designing an efficient dynamic pro-101

gramming algorithm for exact inference.102

Because of the similarity between constituency103

parsing and our head-span-based view of projec-104

tive dependency parsing, we can draw inspirations105

from the constituency parsing literature to design106

our dependency parsing method. Specifically, span-107

based constituency parsers (Stern et al., 2017; Ki-108

taev and Klein, 2018; Zhang et al., 2020c; Xin109

et al., 2021) decompose the score of a constituency110

tree into the scores of its constituent spans and111

use the CYK algorithm (Cocke, 1969; Younger,112

1967; Kasami, 1965) for global training and infer-113

ence. Built upon powerful neural encoders, they114

have obtained state-of-the-art performance in con-115

stituency parsing. Inspired by them, we propose116

to decompose the score of a projective dependency117

1We are aware of few transition-based parsers performing
global optimization via dynamic programming algorithms, cf.
Kuhlmann et al. (2011); Shi et al. (2017); Gómez-Rodríguez
et al. (2018).

tree into the scores of headed spans and design 118

a novel O(n3) dynamic programming algorithm 119

for global training and exact inference, which is 120

on par with the Eisner algorithm (Eisner, 1996) in 121

time complexity for projective dependency parsing. 122

We make a departure from existing graph-based 123

methods since we do not model dependency arcs 124

directly. Instead, the dependency arcs are induced 125

from the collection of headed spans (section 3). 126

Compared with first-order graph-based methods, 127

our method can utilize more subtree information 128

since a headed span contains all children (if any) of 129

the corresponding headword (and all words within 130

the subtree). Compared with most of transition- 131

based methods, our method allows global training 132

and exact inference and does not suffer from error 133

propagation or exposure bias. 134

Our contributions can be summarized as follows: 135

• We treat a projective dependency tree as a 136

collection of headed spans, providing a new 137

perspective of projective dependency parsing. 138

• We design a novel O(n3) dynamic program- 139

ming algorithm to enable global training and 140

exact inference for our proposed model. 141

• We have obtained the state-of-the-art or com- 142

petitive results on PTB, CTB, and UD v2.2, 143

showing the effectiveness of our proposed 144

method. 145

2 Parsing 146

We adopt the two-stage parsing strategy, i.e., we 147

first predict an unlabeled tree and then predict the 148

dependency labels. Given a sentence x1, ..., xn, 149

its unlabeled projective dependency parse tree y 150

can be regarded as a collection of headed spans 151

(li, ri, xi) where 1 ≤ i ≤ n. For each word xi, we 152

can find exactly one headed span (li, ri, i) (where li 153

and ri are the left and right span boundaries) given 154

parse tree y, so there are totally n headed spans in 155

y as we can see in Figure 1. We can use a simple 156

post-order traversal algorithm to obtain all headed 157

spans in O(n) time. We then define the score of y 158

as: 159

s(y) =
∑

i=1,...,n

s
span
li,ri,i

160

and we show how to compute them using neural 161

networks in the next section. 162

Our parsing algorithm is based on the following 163

key observations: 164

• For a given parent word xk, if it has any chil- 165

dren to the left (right), then all headed spans of 166
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Figure 2: Deduction rules for our proposed parsing algorithm. All deduction items are annotated with their scores.
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Figure 3: An example subtree.

its children in this direction should be consec-167

utive and form a larger span, which we refer168

to as the left (right) child span. The left (right)169

boundary of the headed span of xk is the left170

(right) boundary of the leftmost (rightmost)171

child span, or k − 1 (k) if xk has no child to172

the left (right).173

• If a parent word xk has children in both di-174

rections, then its left span and right span are175

separated by the single word span (k − 1, k).176

Figure 3 shows an example subtree. The left177

child span is (i, j − 1) and the right child span is178

(j, k). They are separated by the single word span179

(j − 1, j). The headed span (i, k, j) can be gen-180

erated by concatenating the left child span, right181

child span, and the single word span. Note that182

the left (right) child span can contain one or more183

headed spans. Based on these observations, we184

design the following parsing items: (1) αi,j : the185

accumulated score of span (i, j) serving as a left or186

right child span. (2) βi,j,k: the accumulated score187

of the headed span (i, j, k). We use the parsing-as-188

deduction framework (Pereira and Warren, 1983)189

to describe our algorithm in Fig. 2. We draw αi,j as190

rectangles and βi,j,k as triangles. The rule S-CONC191

is used to concatenate two consecutive child spans192

into a single child span; C-CONC is used to concate-193

nate left and right child span (i, k − 1) and (k, j)194

along with the root word-span (k − 1, k) to form a195

headed span (i, j, k); HEADLESS is used to obtain 196

a headless child span from a headed span. Fig. 2 197

corresponds to the following recursive formulas: 198

βi,i+1,i+1 = s
span
i,i+1,i+1 (1) 199

αi,i = 0 (2) 200

βi,j,k = αi,k−1 + αk,j + s
span
i,j,k (3) 201

αi,j = max( max
i<k<j

(αi,k + αk,j), 202

max
i<h≤j

(βi,j,h)) (4) 203

We set αi,i = 0 for the convenience of calculating 204

βi,j,k when xk does not have children on either side. 205

In Eq. 4, we can see that the child span comes from 206

either multiple smaller consecutive child spans (i.e., 207

max
i<k<j

(α(i, k) + α(k, j))) or a single headed span 208

(i.e., max
i<h≤j

(β(i, j, h)))). We also maintain back- 209

pointers based on these equations (i.e., maintain all 210

arg max) for parsing. 211

A key point of our parsing algorithm is that, dur- 212

ing backtracking, we add arcs emanated from the 213

headword of a large headed span to every head- 214

word of (zero or more) smaller headed spans within 215

the left/right child span, so that we can induce a 216

dependency tree. Finding all smaller headed spans 217

within left and right child spans requires finding 218

the best segmentation, which is similar to the in- 219

ference procedure of the semi-Markov CRF model 220

(Sarawagi and Cohen, 2004). We provide the pseu- 221

docode of our parsing algorithm in Appd. A. 222

Parsing complexity. From Eq. 1 to 4, we can see 223

that at most three variables (i.e., i, j, k) are required 224

to iterate over and therefore the total parsing time 225

complexity is O(n3). 226

Spurious ambiguity. Note that different order 227

of concatenation of child spans can result in the 228
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k j h
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i j h

s1 + s2
CONC:

i h h

s1

h+ 1 jh

s2
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Figure 4: Deductive rules of the parsing algorithms of Collins (1996) (the first line), Eisner and Satta (1999)
(the second line), Eisner (1997) (the third line). The last line is the resulting deduction rules after applying head-
splitting on ES-L-CONC and ES-R-CONC. All deduction items are annotated with their scores. We only consider
the pure dependency versions of these algorithms. We omit axiom items for simplicity.

same parse, although this does not affect finding229

the optimal parse.230

Comparison with previous parsing algorithms.231

We compare our algorithm with three classical pars-232

ing algorithms (Collins, 1996; Eisner and Satta,233

1999; Eisner, 1997) in order to help readers better234

understand our algorithm. We only consider their235

pure dependency versions2 for the convenience of236

discussion. Fig. 2 shows the deductive rules of the237

three algorithms.238

Collins (1996) adapt the CYK algorithm by239

maintaining head positions for both sides, thereby240

increasing the parsing complexity from O(n3) to241

O(n5). Their parsing items are identified by two242

endpoints and a head position, which is similar to243

our concept of headed spans superficially. How-244

ever, in their algorithm, there could be multiple245

spans sharing the same head position within a sin-246

gle parse. For instance, (i, j) and (k, j) share the247

same head position h in C-L-CONC. In contrast,248

2The parsing algorithms of Collins (1996) and Eisner and
Satta (1999) are defined with (lexicalized) context-free gra-
mars. Gómez-Rodríguez et al. (2008, 2011) provide their pure
dependency versions, which amounts to considering arc scores
only.

spans cannot share a head position in a single parse 249

under our definition, because there is exactly one 250

headed span for each word. Besides, the concate- 251

nation order of subtrees differs. 252

Eisner and Satta (1999) note that the linking of 253

heads and the concatenation of subtrees can be sep- 254

arated (e.g., C-R-CONC can be decomposed into 255

two rules, ES-R-CONC and ES-R-LINK) so that 256

the parsing complexity can be reduced to O(n4). 257

This strategy is also known as the hook trick, which 258

reduces subtrees to headless spans (e.g., (i, c, j) to 259

(i, j) in ES-L-LINK and ES-R-LINK). 260

Eisner (1997) uses the head-splitting trick to de- 261

crease parsing complexity to O(n3). The key idea 262

is to split each subtree into a left and a right frag- 263

ment, so that the head is always placed at one of 264

the two boundaries of a fragment instead of an 265

internal position, thereby eliminating the need of 266

maintaining the head positions. 267

Our algorithm adopts a combination of the hook 268

trick and the head-splitting trick. Starting from the 269

rules of Eisner and Satta (1999) that apply the hook 270

trick, we can rewrite ES-L-CONC, ES-R-CONC as 271

L-CONC, R-CONC and COMB. It is easy to verify 272
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the equivalence of the rules before and after the273

rewrite3. The key difference is in the concatenation274

order of subtrees. We concatenate all subtrees to275

the left/right of the new head first, which can be276

viewed as adopting the head-splitting trick. Then,277

note that the position of the head is uniquely de-278

termined by the two concatenations of subtrees,279

and that our model does not consider sarc. Conse-280

quently, we have no need to maintain head position281

h in L-CONC and R-CONC and can merge these282

two rules to S-CONC of fig. 2. Accordingly, CONC283

can be modified to C-CONC of fig. 2. Eliminat-284

ing bookkeeping of h is how we can obtain better285

parsing complexity than Eisner and Satta (1999).286

Finally, we can incorporate span score sspan
i,j,h into287

C-CONC.288

3 Model289

3.1 Neural encoding and scoring290

We add <bos> (beginning of sentence) at x0 and291

<eos> (end of sentence) at xn+1. In the embedding292

layer, we apply mean-pooling to the last layer of293

BERT (Devlin et al., 2019) (i.e., taking the mean294

value of all subword embeddings) to generate dense295

word-level representation ei for each token xi 4.296

Then we feed e0, ..., en+1 into a 3-layer bidirec-297

tional LSTM (BiLSTM) to get c0, ..., cn+1, where298

ci = [fi; bi] and fi and bi are the forward and back-299

ward hidden states of the last BiLSTM layer at300

position i respectively. We then use ei,j to repre-301

sent span (i, j):302

hk = [fk, bk+1]303

ei,j = hj − hi304

After obtaining the word and span representa-305

tions, we use deep biaffine function (Dozat and306

Manning, 2017) to score headed spans:307

c′k = MLPword(ck)308

e′i,j = MLPspan(ei,j)309

s
span
i,j,k =

[
c′k; 1

]>
W span [e′i,j ; 1

]
310

where MLPword and MLPspan are multi-layer per-311

ceptrons (MLPs) that project word and span repre-312

sentations into d-dimensional spaces respectively;313

W span ∈ R(d+1)×(d+1).314

3Note that this only holds for the pure dependency version,
since otherwise we cannot track some intermediate constituent
spans after changing the concatenation order of subtrees.

4For some datasets (e.g., Chinese Treebank), we concate-
nate the POS tag embedding with the BERT embedding as
ei.

Similarly, we use deep biaffine functions to score 315

the labels of dependency arcs for a given gold or 316

predicted tree 5: 317

c′i = MLPparent(ci) 318

c′j = MLPchild(cj) 319

slabel
i,j,r =

[
c′i; 1

]>
W label

r

[
c′j ; 1

]
320

where MLPparent and MLPchild are MLPs that map 321

word representations into d′-dimensional spaces; 322

W label
r ∈ R(d′+1)×(d′+1) for each relation type r ∈ 323

R in which R is the set of all relation types. 324

3.2 Training loss 325

Following previous work, we decompose the train- 326

ing loss into the unlabeled parse loss and arc label 327

loss: 328

L = Lparse + Llabel 329

For Lparse, we can either design a local span- 330

selection loss: 331

Llocal
parse =

∑
(i,j,k)∈y

− log
exp(s

span
i,j,k)∑

0≤p≤k<q≤n
exp(s

span
p,q,k)

332

which is akin to the head-selection loss (Dozat and 333

Manning, 2017), or use global structural loss. Ex- 334

perimentally, we find that the max-margin loss 335

(Taskar et al., 2004) performs best. The max- 336

margin loss aims to maximize the margin between 337

the score of the gold tree y and the incorrect tree y′ 338

of the highest score: 339

Lparse = max(0,max
y′ 6=y

(s(y′) + ∆(y′, y)− s(y))

(5) 340

where ∆ measures the difference between the in- 341

correct tree and gold tree. Here we let ∆ to be 342

the Hamming distance (i.e., the total number of 343

mismatches of headed spans). We can perform 344

loss-augmented inference (Taskar et al., 2005) to 345

calculate Eq. 5. 346

Finally, we use cross entropy for Llabel: 347

Llabel =
∑

(xi→xj ,r)∈y

− log
exp(slabel

i,j,r)∑
r′∈R

exp(slabel
i,j,r′)

348

5In our preliminary experiments, we find that directly cal-
culating the scores based on parent-child word representations
leads to a slightly better result (< 0.1 LAS) than those based
on span representations. A possible reason is that, since LAS
is arc-factorized, even if we predict a correct parent-child
pair, we can predict the wrong headed spans for the parent or
child or both, thereby negatively affecting the labeling scores
and resulting in worse LAS. Therefore, in our work we use
arc-based label scores to suit the LAS metric.
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where (xi → xj , r) ∈ y denotes every dependency349

arc from xi to xj with label r in y.350

4 Experiments351

4.1 Data and setting352

Following Wang and Tu (2020), we evaluate our353

proposed method on Penn Treebank (PTB) 3.0354

(Marcus et al., 1993), Chinese Treebank (CTB) 5.1355

(Xue et al., 2005) and 12 languages on Universal356

Dependencies (UD) 2.2: BG-btb, CA-ancora, CS-357

pdt, DE-gsd, EN-ewt, ES-ancora, FR-gsd, IT-isdt,358

NL-alpino, NO-rrt, RO-rrt, RU-syntagrus 6. For359

PTB, we use the Stanford Dependencies conver-360

sion software of version 3.3 to obtain dependency361

trees. For CTB, we use head-rules from Zhang362

and Clark (2008) and Penn2Malt7 to obtain depen-363

dency trees. Following Wang and Tu (2020), we364

use gold POS tags for CTB and UD. We do not use365

POS tags in PTB. For PTB/CTB, we drop all non-366

projective trees during training. For UD, we use367

MaltParser v1.9.2 8 to adopt the pseudo-projective368

transformation (Nivre and Nilsson, 2005) to con-369

vert nonprojective trees into projective trees when370

training, and convert back when evaluating, for371

both our model and reimplemented baseline model.372

See Appd. B for implementation details.373

4.2 Evaluation methods374

We report the unlabeled attachment score (UAS)375

and labeled attachment score (LAS) averaged from376

three runs with different random seeds. In each377

run, we select the model based on the performance378

on the development set. Following Wang and Tu379

(2020), we ignore all punctuation marks during380

evaluation.381

4.3 Main result382

Table 1 shows the results on PTB and CTB. Note383

that Biaffine+MM is our reimplementation of the384

Biaffine Parser that uses the same setting as in385

our method, including the use of the max-margin386

loss instead of the local head-selection loss. Inter-387

estingly, we find that Biaffine+MM has already388

surpassed many strong baselines, and this may389

be due to the proper choices of hyperparameters390

and the use of the max-margin loss (we observe391

6We do not concatenate all datasets during training. We
train on each dataset separately.

7https://cl.lingfil.uu.se/~nivre/
research/Penn2Malt.html

8http://www.maltparser.org/download.
html

PTB CTB
UAS LAS UAS LAS

MFVI2O 95.98 94.34 90.81 89.57
TreeCRF2O 96.14 94.49 - -
HierPtr 96.18 94.59 90.76 89.67

+BERTbase +BERTbase
RNGTr 96.66 95.01 92.98 91.18

+BERTlarge +BERTbase

MFVI2O 96.91 95.34 92.55 91.69
HierPtr 97.01 95.48 92.65 91.47
Biaffine+MM† 97.22 95.71 93.18 92.10
Ours 97.24 95.73 93.33 92.30

For reference
+XLNetlarge +BERTbase

HPSG[ 97.20 95.72 - -
HPSG+LAL[ 97.42 96.26 94.56 89.28

Table 1: Results for different model on PTB and
CTB. [ indicate that they use additional annotated
constituency trees in training. † means our reim-
plementation. Biaffine: Dozat and Manning (2017).
MFVI2O: Wang and Tu (2020). TreeCRF2O: Zhang
et al. (2020b). RNGTr: Mohammadshahi and Hender-
son (2021). HierPtr: Fernández-González and Gómez-
Rodríguez (2021). HPSG: Zhou and Zhao (2019).
HPSG+LAL: Mrini et al. (2020).
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Figure 5: Error analysis on the CTB test set.

that using the max-margin loss leads to a bet- 392

ter performance compared with the original head- 393

selection loss), so Biaffine+MM is a very strong 394

baseline. It also has the same number of param- 395

eters as our methods. Our method surpasses Bi- 396

affine+MM on both datasets, showing the competi- 397

tiveness of our headed-span-based method in a fair 398

comparison with first-order graph-based parsing. 399
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bg ca cs de en es fr it nl no ro ru Avg

TreeCRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
MFVI2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

+BERTmultilingual

MFVI2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Biaffine+MM† 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Ours 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96

Table 2: Labeled Attachment Score (LAS) on twelve languages in UD 2.2. We use ISO 639-1 codes to represent
languages. † means our implementation.

PTB CTB
UAS LAS UAS LAS

max-margin loss 97.24 95.73 93.33 92.30
span-selection loss 97.07 95.50 93.28 92.20

Table 3: The influence of training loss function on PTB
and CTB.

Our method also obtains the state-of-the-art result400

among methods that only use dependency train-401

ing data (HPSG+LAL uses additional constituency402

trees as training data, so it is not directly compara-403

ble with the other systems.).404

Table 2 shows the results on UD. We can see405

that our reimplemented Biaffine+MM has already406

surpassed MFVI2O, which utilizes higher-order in-407

formation. Our method outperforms Biaffine+MM408

by 0.14 LAS on average, validating the effective-409

ness of our proposed method in the multilingual410

scenarios.411

5 Analysis412

5.1 Influence of training loss function413

Table 3 shows the influence of the training loss414

function. We find that the max-margin loss per-415

forms better on both datasets: 0.17 UAS improve-416

ment on PTB and 0.05 UAS improvement on CTB417

comparing to the local span-selection loss, which418

shows the effectiveness of using global loss.419

5.2 Error analysis420

As previously argued, first-order graph-based meth-421

ods are insufficient to model complex subtrees, so422

they may have difficulties in parsing long sentences423

and handling long-range dependencies. To verify424

this, we follow (McDonald and Nivre, 2011) to plot425

UAS as a function of the sentence length and plot426

F1 scores as functions of the distance to root and427

dependency length on the CTB test set. We addi-428

tionally plot the F1 score of the predicted headed429

spans against the gold headed spans with different430

span lengths. 431

From Figure 5a, we can see that Biaffine+MM 432

has a better UAS score on short sentences (of length 433

<=20), while for long sentences (of length >=30), 434

our headed span-based method has a higher perfor- 435

mance, which validates our conjecture. 436

Figure 5b shows the F1 score for arcs of varying 437

distances to root. Our model is better at predict- 438

ing arcs of almost all distances to root in the de- 439

pendency tree, which reveals our model’s superior 440

ability to predict complex subtrees. 441

Figure 5c shows the F1 score for arcs of varying 442

lengths. Both Biaffine+MM and our model have 443

a very similar performance in predicting arcs of 444

distance < 7, while our model is better at predicting 445

arcs of distance >= 7, which validates the ability of 446

our model at capturing long-range dependencies. 447

Figure 5d shows the F1 score for headed spans 448

of varying lengths. We can see that when the 449

span length is small (<=10), Biaffine+MM and our 450

model have a very similar performance. However, 451

our model is much better in predicting longer spans 452

(especially for spans of length >30). 453

5.3 Parsing speed 454

Inspired by Zhang et al. (2020b) and Rush (2020) 455

who independently propose to batchify the Eis- 456

ner algorithm using Pytorch, we batchify our 457

proposed method so that O(n2) out of O(n3) can 458

be computed in parallel, which greatly accelerates 459

parsing. We achieve a similar parsing speed of our 460

method to the fast implementation of the Eisner 461

algorithm by Zhang et al. (2020b): it parses 273 462

sentences per second, using BERT as the encoder 463

under a single TITAN RTX GPU. 464

6 Related work 465

Dependency parsing with more complex sub- 466

tree information. There has always been an in- 467

terest to incorporate more complex subtree infor- 468

mation into graph-based and transition-based meth- 469

ods since their invention. Before the deep learning 470

7



era, it was difficult to incorporate sufficient contex-471

tual information in first-order graph-based parsers.472

To mitigate this, researchers develop higher-order473

dependency parsers to capture more contextual474

information (McDonald and Pereira, 2006; Car-475

reras, 2007; Koo and Collins, 2010; Ma and Zhao,476

2012). However, incorporating more complex fac-477

tors worsens inference time complexity. For ex-478

ample, exact inference for third-order projective479

dependency parsing has a O(n4) time complexity480

and exact inference for higher-order non-projective481

dependency parsing is NP-hard (McDonald and482

Pereira, 2006). To decrease inference complex-483

ity, researchers use approximate parsing methods.484

Smith and Eisner (2008) use belief propagation485

(BP) framework for approximate inference to trade486

accuracy for efficiency. They show that third-order487

parsing can be done inO(n3) time using BP. Gorm-488

ley et al. (2015) unfold the BP process and use gra-489

dient descent to train their parser in an end-to-end490

manner. Wang and Tu (2020) extend their work by491

using neural scoring functions to score factors. For492

higher-order non-projective parsing, researchers re-493

sort to dual decomposition algorithm (e.g., AD3)494

for decoding (Martins et al., 2011, 2013). They495

observe that the approximate decoding algorithm496

often obtains exact solutions. Fonseca and Mar-497

tins (2020) combine neural scoring functions and498

their decoding algorithms for non-projective higher-499

order parsing. Zheng (2017) proposes a incremen-500

tal graph-based method to utilize higher-order in-501

formation without hurting the advantage of global502

inference. Ji et al. (2019) use a graph attention net-503

work to incorporate higher-order information into504

the Biaffine Parser. Zhang et al. (2020b) enhance505

the Biaffine Parser by using a deep triaffine func-506

tion to score sibling factors. Mohammadshahi and507

Henderson (2021) propose an iterative refinement508

network that injects the predicted soft trees from509

the previous iteration to the self-attention layers510

to predict the soft trees of the next iteration, so511

that information of the whole tree is considered512

in parsing. As for transition-based methods, Ma513

et al. (2018); Liu et al. (2019); Fernández-González514

and Gómez-Rodríguez (2021) incorporate sibling515

and grandparent information into transition-based516

parsing with Pointer Networks.517

The hook trick and the head-splitting trick.518

These two tricks have been used in the parsing liter-519

ature to accelerate parsing. Eisner and Satta (1999,520

2000) use the hook trick to decrease the parsing521

complexity of lexicalized PCFGs and Tree Adjoin- 522

ing Grammars. Huang et al. (2005, 2009) adapt 523

the hook trick to accelerate machine translation de- 524

coding. The parsing algorithms of Corro (2020) 525

and Xin et al. (2021) can be viewed as adapting the 526

hook trick to accelerate discontinuous and continu- 527

ous constituency parsing. Eisner (1997); Satta and 528

Kuhlmann (2013) use the head-splitting trick to ac- 529

celerate projective and nonprojective dependency 530

parsing. 531

Span-based constituency parsing. Span-based 532

parsing is originally proposed in continuous con- 533

stituency parsing (Stern et al., 2017; Kitaev and 534

Klein, 2018; Zhang et al., 2020c; Xin et al., 2021). 535

Span-based constituency parsers decompose the 536

score of a constituency tree into the scores of its 537

constituents. Recovering the highest-scoring tree 538

can be done via the exact CYK algorithm or greedy 539

top-down approximate inference algorithm (Stern 540

et al., 2017). Kitaev and Klein (2018) propose a 541

self-attentive network to improve the parsing ac- 542

curacy. They separate content and positional at- 543

tentions and show the improvement. Zhang et al. 544

(2020c) use a two-stage bracketing-then-labeling 545

framework and replace the max-margin loss with 546

the TreeCRF loss (Finkel et al., 2008). Xin et al. 547

(2021) recently propose a recursive semi-Markov 548

model, incorporating sibling factor scores into the 549

score of a tree to explicitly model n-ary branching 550

structures. Corro (2020) adapts span-based parsing 551

to discontinuous constituency parsing and obtains 552

the state-of-the-art result. 553

7 Conclusion 554

In this work, we have presented a headed-span- 555

based method for projective dependency parsing. 556

Our proposed method can utilize more subtree in- 557

formation and meanwhile enjoy global training and 558

exact inference. Experiments show the competitive 559

performance of our method in multiple datasets. 560

In addition to its empirical competitiveness, we 561

believe our work provides a novel perspective of 562

projective dependency parsing and could lay the 563

foundation for further algorithmic advancements 564

in the future. 565
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A Parsing algorithm945

The parsing algorithm first computes all the chart946

items defined above and then recovers the parse947

tree from top down. For a given headed span, it948

finds the best segmentation of left child spans and949

right child spans, and then adds dependency arcs950

from the headword of the given headed span and951

the headword of each child span. Finding the best952

segmentation is similar to the inference procedure953

Algorithm 1 Inference algorithm for headed span-
based projective dependency parsing
Require: Input sentence of length n

Calculate all α, β,B,C,H .
arcs← {(ROOT→ H0,n)}
function FINDARC(i, j)

if i+ 1 = j then
return {j}

else if Bi,j = 1 then
h← Hi,j

if i+1 < h < j then
L← FINDARC(i, h− 1)
R← FINDARC(h, j)
Children← L ∪R

else if h = j then
Children← FINDARC(i, j − 1)

else
Children← FINDARC(i+ 1, j)

end if
for c in Children do

arcs← arcs ∪ (h→ c)
end for
return {h}

else
c← Ci,j

L← FINDARC(i, c)
R← FINDARC(c, j)
return L ∪R

end if
end function
FINDARC(0, n)
return arcs

of the semi-Markov CRF model (Sarawagi and Co- 954

hen, 2004). Then we apply the same procedure to 955

each child headed span (within the best segmenta- 956

tion) recursively. We also maintain the following 957

backtrack points in order to recover the predicted 958

projective tree: 959

Bi,j =

1, αi,j = max
i<h≤j

(βi,j,h)

0, αi,j = max
i<k<j

(αi,k + αk,j)
960

961

Ci,j = arg max
i<k<j

(αi,k + αk,j) 962

Hi,j = arg max
i<h≤j

(βi,j,h) 963

The parsing algorithm is formalized in Alg.1. 964

B Implementation details 965

We use "bert-large-cased" for PTB, "bert-base- 966

chinese" for CTB, and "bert-multilingual-cased" 967

for UD, so the dimension of the input BERT em- 968

bedding is 1024, 768, and 768 respectively. The 969

dimension of POS tag embedding is set to 100 for 970

CTB and UD. The hidden size of BiLSTM is set to 971

1000. The hidden size of biaffine functions is set 972
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to 600 for scoring spans and arcs (used in our reim-973

plemented Biaffine Parser), 300 for scoring labels.974

We add a dropout layer after the embedding layer,975

LSTM layers, and MLP layers. The dropout rate is976

set to 0.33. We use Adam (Kingma and Ba, 2015)977

as the optimizer with β1 = 0.9, β2 = 0.9 to train978

our model for 10 epochs. The maximal learning979

rate is lr = 5e− 5 for BERT and lr = 25e− 5 for980

other components. We linearly warmup the learn-981

ing rate to the maximal value for the first epoch and982

gradually decay it to zero for the rest of the epochs.983

The value of gradient clipping is set to 5. We batch984

sentences of similar lengths to better utilize GPUs.985

The token number is 4000 for each batch, i.e., the986

sum of lengths of sentences is 4000.987
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