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ABSTRACT

Modern learning frameworks often train deep neural networks with massive
amounts of unlabeled data to learn representations by solving simple pretext tasks,
then use the representations as foundations for downstream tasks. These networks
are empirically designed; as such, they are usually not interpretable, their repre-
sentations are not structured, and their designs are potentially redundant. White-
box deep networks, in which each layer explicitly identifies and transforms struc-
tures in the data, present a promising alternative. However, existing white-box
architectures have only been shown to work at scale in supervised settings with
labeled data, such as classification. In this work, we provide the first instantia-
tion of the white-box design paradigm that can be applied to large-scale unsuper-
vised representation learning. We do this by exploiting a fundamental connec-
tion between diffusion, compression, and (masked) completion, deriving a deep
transformer-like masked autoencoder architecture, called CRATE-MAE, in which
the role of each layer is mathematically fully interpretable: they transform the data
distribution to and from a structured representation. Extensive empirical evalua-
tions confirm our analytical insights. CRATE-MAE demonstrates highly promis-
ing performance on large-scale imagery datasets while using only ∼30% of the
parameters compared to the standard masked autoencoder with the same model
configuration. The representations learned by CRATE-MAE have explicit structure
and also contain semantic meaning. Code is available on GitHub.

1 INTRODUCTION

In recent years, deep learning has been called upon to process continually larger quantities of high-
dimensional, noisy, and unlabeled data. A key property which makes these ever-larger tasks tractable
is that the high-dimensional data tends to have low-dimensional geometric and statistical structure.
Modern deep networks tend to learn (implicit or explicit) representations of this structure, which
are then used to efficiently perform downstream tasks. Learning these representations is thus of
central importance in machine learning, and there are so far several common methodologies for this
task. We focus our attention below on approaches that incrementally transform the data towards
the end representation with simple, mathematically-interpretable primitives. Discussion of popular
alternatives is postponed to Appendix A.

Denoising-diffusion models for high-dimensional data. A popular method for learning implicit
representations of high-dimensional data is learning to denoise: a model that can denoise, i.e.,
remove noise from a corrupted observation from the data distribution (to the extent information-
theoretically possible), can be chained across noise levels to transform the data distribution to and
from certain highly structured distributions, such as an isotropic Gaussian, enabling efficient sam-
pling (Ho et al., 2020; Hyvärinen, 2005; Kadkhodaie & Simoncelli, 2021; Sohl-Dickstein et al.,
2015; Song et al., 2021; 2023; Vincent, 2011). Crucially, in the case of data with low-dimensional
structure—including the highly nonlinear structure characteristic of natural images—these models
can be learned efficiently (Chen et al., 2023; Moitra & Risteski, 2020; Oko et al., 2023), and as a
result this framework has significant practical impact (Rombach et al., 2022). Despite this progress,
these techniques have been largely limited to use in generative modeling; a key reason is the un-
structured nature of the final ‘noisy’ state of the diffusion process, which makes it challenging to
control and interpret the model’s learned implicit representation of the data.
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White-box models and structured representation learning. In contrast, white-box models are
designed to produce explicit and structured representations of the data distribution according to a
desired parsimonious configuration, such as sparsity (Gregor & LeCun, 2010; Zhai et al., 2020) or
(piecewise) linearity (Chan et al., 2022). Recent work (Chan et al., 2022; Yu et al., 2023a) has
built white-box deep networks via unrolled optimization: namely, to obtain representations with a
desired set of properties, one constructs an objective function which encourages these desiderata,
then constructs a deep network where each layer is designed to iteratively optimize the objective.
This builds deep networks as a chain of operators, representing well-understood optimization prim-
itives, which iteratively transform the representations to the desired structure. For example, Yu et al.
(2023a) uses an information-theoretic objective promoting lossy compression of the data towards a
fixed statistical structure to build a transformer-like architecture named CRATE in the above manner.
However, such-obtained deep networks have yet to be constructed for most unsupervised contexts.
The fundamental difficulty here is that decoder networks must map from representations to data,
and hence invert (in a distributional sense) the transformations made to the data distribution by the
encoder. This renders the unrolled optimization approach used to construct white-box encoders such
as CRATE infeasible for constructing decoders, and instead demands a fine-grained understanding of
the operators that implement the encoder, and their (distributional) inverses.

Our contributions. To overcome this difficulty and extend the applicability of white-box models
to unsupervised settings, we demonstrate in this work that these two paradigms have more in com-
mon than previously appreciated. First, we show quantitatively that under certain natural regimes,
denoising and compression are highly similar primitive data processing operations: when the target
distribution has low-dimensional structure, both operations implement a projection operation onto
this structure. Second, using this insight, we demonstrate a quantitative connection between unrolled
discretized diffusion models and unrolled optimization-constructed deep networks. This leads to a
significant expansion of the existing conceptual toolkit for developing white-box neural network
architectures, which we use to derive white-box transformer-like encoder and decoder architectures
that together form an autoencoding model that we call CRATE-MAE, illustrated in Fig.1. We eval-
uate CRATE-MAE on the challenging masked autoencoding task (He et al., 2022) and demonstrate
promising performance with large parameter savings over traditional masked autoencoders, along
with many side benefits such as emergence of semantic meaning in the representations.

2 APPROACH

2.1 SETUP AND NOTATION

We use the same notation and basic problem setup as in Yu et al. (2023a). Namely, we have some
matrix-valued random variable X = [x1, . . . ,xN ] ∈ RD×N representing the data, where the xi ∈
RD are called “tokens” and may be arbitrarily correlated. To obtain representations of the input, we
learn an encoder f : RD×N → Rd×N ; our representations are denoted by the random variable Z =
f(X) = [z1, . . . ,zN ] ∈ Rd×N , where the token representations are zi ∈ Rd. In the autoencoding
setup, we also learn a decoder g : Rd×N → RD×N , such that X ≈ X̂ = [x̂1, . . . , x̂N ]

.
= g(Z).

Our encoder and decoder will be deep neural networks, and as such they will be composed of sev-
eral, say L, layers each. Write f = fL ◦ · · · ◦ f1 ◦ fpre and g = gpost ◦ gL−1 ◦ · · · ◦ g0, where
f ℓ : Rd×N → Rd×N and gℓ : Rd×N → Rd×N are the ℓth layer of the encoder and decoder respec-
tively, and fpre : RD×N → Rd×N and gpost : Rd×N → RD×N are the pre- and post-processing lay-
ers respectively. The input to the ℓth layer of the encoder is denoted Zℓ .

=
[
zℓ1, . . . ,z

ℓ
N

]
∈ Rd×N ,

and the input to the ℓth layer of the decoder is denoted Y ℓ .
=
[
yℓ1, . . . ,y

ℓ
N

]
∈ Rd×N .

2.2 DESIDERATA, OBJECTIVE, AND OPTIMIZATION

Our goal is to use the encoder f and decoder g to learn representations Z which are parsimonious
(Ma et al., 2022) and invertible; namely, they have low-dimensional, sparse, (piecewise) linear geo-
metric and statistical structure, and are (approximately) bijective with the original data X . Yu et al.
(2023a) proposes to implement these desiderata by positing a signal model for the representations:

Low-Dimensional Gaussian Mixture Codebook. Let Z = [z1, . . . ,zN ] ∈ Rd×N be a random
matrix. We impose the following statistical model on Z, parameterized by orthonormal bases
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Figure 1: Diagram of the overall white-box CRATE-MAE pipeline, illustrating the end-to-end (masked)
autoencoding process. The token representations are transformed iteratively towards a parsimonious (e.g.,
compressed and sparse) representation by each encoder layer f ℓ. Furthermore, such representations are trans-
formed back to the original image by the decoder layers gℓ. Each encoder layer f ℓ is meant to be (partially)
inverted by a corresponding decoder layer gL−ℓ.

U[K] = (Uk)k∈[K] ∈ (Rd×p)K: each token zi has marginal distribution given by

zi
d
= Usiαi, ∀i ∈ [N ] (2.1)

where (si)i∈[N ] ∈ [K]N are random variables corresponding to the subspace indices, and
(αi)i∈[N ] ∈ (Rp)N are zero-mean Gaussian variables. If we optionally specify a noise parame-
ter σ ≥ 0, we mean that we “diffuse” the tokens with Gaussian noise: by an abuse of notation, each
token zi has marginal distribution given by

zi
d
= Usiαi + σwi, ∀i ∈ [N ] (2.2)

where (wi)i∈[N ] ∈ (Rd)N are i.i.d. standard Gaussian variables, independent of si and αi.

If the Uk are sufficiently incoherent and axis-aligned, we expect such representations to maximize
the sparse rate reduction objective function (Yu et al., 2023a):

EZ [∆R(Z | U[K])− λ∥Z∥0] = EZ [R(Z)−Rc(Z | U[K])− λ∥Z∥0], (2.3)

where R and Rc are lossy coding rates, or rate distortions (Cover, 1999), which are estimates for
the number of bits required to encode the sample up to precision ϵ > 0 using a Gaussian codebook,
both unconditionally (for R), and conditioned on the samples being drawn from Uk summed over
all k (for Rc). Closed-form estimates (Ma et al., 2007; Yu et al., 2023a) for such rate distortions are:

R(Z) =
1

2
log det

(
IN + αZ⊤Z

)
, α

.
=

d

Nϵ2
(2.4)

Rc(Z | U[K]) =
1

2

K∑
k=1

log det
(
IN + β(U⊤k Z)⊤(U⊤k Z)

)
, β

.
=

p

Nϵ2
. (2.5)

Notably, Rc is a measure of compression against our statistical structure — it measures how closely
the overall distribution of tokens in Z fit a Gaussian mixture on U[K]. Meanwhile, the other two
terms R and ∥ · ∥0 ensure non-collapse and sparsity of the representations, respectively.

Following Yu et al. (2023a), one then constructs a deep network that incrementally optimizes the
sparse rate reduction in order to transform the data distribution towards the desired parsimonious
configuration (2.1). Specifically, Yu et al. (2023a) proposed to construct the deep neural network f
as a two-step alternating optimization procedure which compresses the input against the (learned)
local signal model U ℓ

[K] at layer ℓ, by taking a step of gradient descent on Rc(Z | U ℓ
[K]), and

subsequently taking a step of proximal gradient descent on a LASSO objective (Tibshirani, 1996;
Wright & Ma, 2022) to sparsify the data in a (learned) dictionary Dℓ ∈ Rd×d:

Zℓ+1/2 = Zℓ + MSSA(Zℓ | U ℓ
[K]) ≈ Zℓ − κ∇ZR

c(Zℓ | U ℓ
[K]) (2.6)

Zℓ+1 = ISTA(Zℓ+1/2 | Dℓ) ≈ argmin
Z≥0

[
1

2
∥Zℓ+1/2 −DℓZ∥22 + λ∥Z∥1

]
, (2.7)
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Figure 2: The compression-sparsification iteration implemented by each layer of CRATE, and each en-
coder layer of CRATE-MAE. The compression step, implemented by the MSSA operator, projects the tokens
Zℓ towards the subspace model U ℓ

[K] to form Zℓ+1/2. The sparsification step, implemented by the ISTA
operator, rotates the tokens in Zℓ+1/2 towards the coordinate axes, using the sparsifying dictionary Dℓ, to get
Zℓ+1. The steps are performed in sequence and comprise a single of the CRATE-MAE encoder.

where MSSA(·), the Multi-head Subspace Self-Attention block (Yu et al., 2023a), is defined as

MSSA(Z | U[K])
.
=

p

Nϵ2
[U1 · · · UK ]

(U
⊤
1 Z) softmax((U⊤1 Z)⊤(U⊤1 Z))

...
(U⊤KZ) softmax((U⊤KZ)⊤(U⊤KZ))

 , (2.8)

and ISTA(·), the Iterative Shrinkage-Thresholding Algorithm block (Yu et al., 2023a), is defined as

ISTA(Z | D)
.
= ReLU(Z − ηD⊤(DZ −Z)− ηλ1). (2.9)

The MSSA block is exactly the same as a multi-head self-attention block in a transformer, with the
changes that the Qk/Kk/Vk blocks are replaced by a single matrix Uk in each head k. The resulting
layer f ℓ thus bears significant resemblance to a transformer-like block, and so the CRATE model is a
white-box transformer-like architecture constructed via unrolled optimization. Such CRATE models
obtain competitive performance on standard tasks while enjoying many side benefits (Yu et al.,
2023a;b), yet they have so far only been trained for supervised learning. In the sequel, we introduce
a paradigm to obtain fully white-box networks for unsupervised learning, such as autoencoding,
through a novel understanding of the CRATE model’s distributional layerwise inverse.

2.3 UNIFYING COMPRESSION AND DENOISING

To transform our representations to the idealized signal model given by (2.1), we seek to iteratively
remove the disturbances or deviations of each sample from this signal model. One way to perform
this task is to perform lossy data compression (Ma et al., 2007; Psenka et al., 2023; Yu et al., 2020;
2023a): compressed versions of the data, without ancillary disturbances, form the representations.
This approach has been favored in the construction of previous white-box deep networks, such as
CRATE described above, due to the existence of explicit information-theoretic criteria for compres-
sion. In this case, the term Rc(Z | U[K]), defined in (2.5), measures the lossy compression of
the representations Z against the class of statistical models given by (2.1). Thus, an operation to
minimize Rc, such as (2.6), implements a step of compression to learn better representations.

Another way to remove disturbances from the signal model (2.1), especially if the perturbed model
has the noisy structure given in (2.2), is to denoise. When the data is highly structured or low-
dimensional, one-step denoising becomes statistically and computationally difficult (Pedregosa,
2023). Hence the modern solution to this problem is via denoising diffusion models, which take
many small denoising steps towards the data distribution at progressively decreasing noise levels
(Ho et al., 2020; Karras et al., 2022; Song et al., 2021). Such models use estimates of the so-called
score function ∇ log pσ (Hyvärinen, 2005), where pσ is the probability density function of the noised
input when the noise has standard deviation σ > 0. At all sufficiently small values of σ, the score
function ∇ log pσ(Z̃) for a particular noised input Z̃ points towards the closest point to Z̃ on the
data distribution support (Chen et al., 2023; Lu et al., 2023; Yu et al., 2023a), or more generally the
modes of the true data distribution, which guides the denoising diffusion model to project Z onto
the support of the data distribution and diffuse it within this support.1

1A more mathematical exposition of diffusion models may be found in Appendix A.1.
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Figure 3: Compression and denoising against the low-dimensional Gaussian mixture token model (2.1)
are equivalent. Left: the effect of compression against the low-dimensional Gaussian mixture model for tokens
(2.1), i.e., taking gradient steps on the coding rate Rc(· | U[K]) — or equivalently, using the MSSA(· | U[K])
operator — which is shown in Theorem 1 to be equivalent to projecting onto the U[K]. Right: the effect of
denoising against (2.1), i.e., taking gradient steps on the score function of the noisy model (2.2) at small noise
levels σ, or equivalently small times t. Up to scaling factors (not pictured), these two operations are equivalent,
and have similar geometric and statistical interpretations as a projection onto the support of the data distribution.
This connection motivates our structured denoising-diffusion framework, as elaborated in Section 2.3.

In the context of (2.1) and (2.2), both denoising and compression operations conceptually remove
additive disturbances from the data, as visualized in Figure 3. In the following result, we make
this qualitative observation mathematically precise: we show that under a simplified version of the
signal model (2.1), taking a gradient step on Rc, a compression primitive, acts as a projection onto
the local signal model U[K], just as with the denoising primitive of taking a gradient step on log pσ .

Theorem 1 (Informal version of Theorem 3 in Appendix A.2). Suppose Z follows the noisy Gaus-
sian codebook model (2.2), with infinitesimal noise level σℓ > 0 and subspace memberships si
distributed as i.i.d. categorical random variables on the set of subspace indices {1, . . . ,K}, inde-
pendently of all other sources of randomness. Suppose in addition that the number of tokens N , the
representation dimension d, the number of subspaces K, and the subspace dimensions p have rela-
tive sizes matching those of practical transformer architectures including the CRATE-MAE encoder
(specified in detail in Assumption 2). Then the negative compression gradient −∇ziR

c(Zℓ | U ℓ
[K])

points from zℓi to the nearest U ℓ
k.

Theorem 1 establishes in a representative special case of the Gaussian codebook model (2.1) that at
low noise levels, compression against the signal model (2.1) is equivalent to denoising against (2.1).
In the sequel, we use this connection to understand the MSSA operators of the CRATE-MAE encoder,
derived in Section 2.2 from a different perspective, as realizing an incremental transformation of
the data distribution towards the signal model (2.1) via approximate denoising. This important
property guarantees that a corresponding deterministic diffusion process—namely, the time reversal
of the denoising process—implies an inverse operator for the compression operation implemented
by MSSA. Because these approximate denoising processes transform the data towards a parametric
structure, we call them structured denoising-diffusion processes.

2.4 CONSTRUCTING A DISTRIBUTIONALLY-INVERTIBLE TRANSFORMER LAYER

In Section 2.1, we described a method to construct a white-box transformer-like encoder network via
unrolled optimization meant to compress the data against learned geometric and statistical structures,
say against a distribution of tokens where each token is marginally distributed as a Gaussian mixture
supported on U[K]. In Section 2.3, we described in general terms an approach that relates denoising
and compression to yield a conceptually similar network using the formalism of diffusion models,
this time trainable via autoencoding. In this section, we carry out this procedure concretely to obtain
an encoder and decoder layer with similarly interpretable operational characteristics.

To measure compression, we use the Rc function defined in (2.5). By using a standard (reverse-time)
diffusion process with a scaling of Rc as a drop-in replacement for the score (see Appendix A.3
for details), we obtain that such a denoising diffusion process may be described by the following
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stochastic differential equation (SDE) (Song et al., 2021).

dZ(t) = − 1

T − t
∇Rc(Z(t) | U[K]) dt+

√
2 dB(t), ∀t ∈ [0, T ], (2.10)

where (B(t))t∈[0,T ] is a Brownian motion. As a design choice, we wish to assert that our encoder
and decoder ought to be deterministic, in particular preferring that our encoder-decoder architecture
achieves sample-wise autoencoding as opposed to distribution-wise autoencoding or generation.
Thus we need to construct some ordinary differential equation (ODE) which transports the input
probability distribution in the same way as (2.10). Such an equation is readily obtained as the
probability flow ODE (Song et al., 2021), which itself is commonly used for denoising and sampling
(Lu et al., 2022; Song et al., 2021; 2023) and has the form

dZ(t) = − 1

2(T − t)
∇Rc(Z(t) | U[K]) dt, ∀t ∈ [0, T ]. (2.11)

In particular, the Z(t) generated by (2.10) and (2.11) have the same law. A first-order discretization
(see Appendix A.3) of (2.11) with step size κ obtains the iteration:

Zℓ+1/2 = Zℓ + MSSA(Zℓ | U ℓ
[K]) ≈ Zℓ − κ∇Rc(Zℓ | U ℓ

[K]), (2.12)

where MSSA(·) was defined in (2.8). Similar to Yu et al. (2023a), in order to optimize the sparse
rate reduction of the features, and in particular to sparsify them, we instantiate a learnable dictionary
Dℓ ∈ Rd×d and sparsify against it, obtaining

Zℓ+1 = ISTA(Zℓ+1/2 | Dℓ), (2.13)
where ISTA(·) was defined in (2.9). Thus, we obtain a two step iteration for the ℓth encoder layer
f ℓ, where Zℓ+1 = f ℓ(Zℓ):

Zℓ+1/2 = Zℓ + MSSA(Zℓ | U ℓ
[K]), Zℓ+1 = ISTA(Zℓ+1/2 | Dℓ). (2.14)

This is the same layer as in CRATE, whose conceptual behavior is illustrated in Figure 2. This equiv-
alence stems from the fact that the diffusion probability flow (2.11) is conceptually and mechanically
similar to gradient flow on the compression objective in certain regimes, and so it demonstrates a
useful conceptual connection between discretized diffusion and unrolled optimization as iteratively
compressing or denoising the signal against the learned data structures.

Note that we parameterized a different local signal model U ℓ
[K] and dictionary Dℓ at each layer,

despite the continuous-time flows in (2.11) using only one (i.e., the final) local signal model. This is
because the sparsification step (2.13) transforms the data distribution, and so we require a different
local signal model at each layer to model the new (more sparse) data distribution; see Figure 1 for
intuition on the iterative transformations. Also, having a different signal model at each layer may
allow for more efficient iterative linearization and compression of highly nonlinear structures.

Now that we have shown how the structured diffusion approach can recover the original CRATE
architecture (Yu et al., 2023a) as an encoder in our autoencoding problem, we use our new approach
to construct a novel matching decoder. The time reversal of the ODE (2.11) is:

dY (t) =
1

2t
∇Rc(Y (t) | U[K]) dt, ∀t ∈ [0, T ], (2.15)

in the sense that the Y (T − t) generated by (2.15) has the same law as the Z(t) generated by (2.11),
assuming compatible initial conditions. A first-order discretization of (2.15) obtains the iteration:

Y ℓ+1 = Y ℓ+1/2 − MSSA(Y ℓ+1/2 | V ℓ
[K]) ≈ Y ℓ+1/2 + κ∇Rc(Y ℓ+1/2 | V ℓ

[K]), (2.16)

where V ℓ
[K] = (V ℓ

1 , . . . ,V
ℓ
K) and each V ℓ

k ∈ Rd×p are the bases of the subspaces to “anti-compress”

against. In our work, we treat them as different from the corresponding UL−ℓ
k , because the dis-

cretization of (2.11) and (2.15) is imperfect, and thus we should not expect a 1-1 correspondence
between local signal models in the encoder and decoder. To invert the effect of a sparsifying ISTA
step, which our mental model in Figure 2 portrays as a rotation of the subspace supports to a more
incoherent configuration, we multiply by another learnable dictionary Eℓ ∈ Rd×d, obtaining

Y ℓ+1/2 = EℓY ℓ, Y ℓ+1 = Y ℓ+1/2 − MSSA(Y ℓ+1/2 | V ℓ
[K]). (2.17)

This constructs the (ℓ + 1)st layer gℓ of our decoder. In the implementation, we add layer normal-
izations to ensure that the features are roughly constant-size so that the above approximations hold.
Figure 4 has a graphical depiction of the encoder and decoder layers.
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Figure 4: Diagram of each encoder layer (top) and decoder layer (bottom) in CRATE-MAE. Notice that
the two layers are highly anti-parallel — each is constructed to do the operations of the other in reverse order.
That is, in the decoder layer gℓ, the ISTA block of fL−ℓ is partially inverted first using a linear layer, then the
MSSA block of fL−ℓ is reversed; this order unravels the transformation done in fL−ℓ.

2.5 A COMPLETE WHITE-BOX TRANSFORMER-LIKE ARCHITECTURE FOR AUTOENCODING

As previously discussed, the encoder is the concatenation of a preprocessing map fpre : RD×N →
Rd×N , which has learnable parameters W pre ∈ Rd×D and Epos ∈ Rd×N , and has the form:

fpre(X)
.
= W preX +Epos, (2.18)

and L transformer-like layers f ℓ : Rd×N → Rd×N given by

f ℓ(Zℓ)
.
= ISTA(Zℓ + MSSA(Zℓ | U ℓ

[K]) | D
ℓ), ∀ℓ ∈ [L], (2.19)

omitting normalization for simplicity. The decoder is the concatenation of L transformer-like layers
gℓ : Rd×N → Rd×N given by

gℓ(Y ℓ)
.
= EℓY ℓ − MSSA(EℓY ℓ | V ℓ

[K]), ∀ℓ ∈ [L]− 1, (2.20)

with a postprocessing map gpost : Rd×N → RD×N which is a learnable linear map W post ∈ RD×d:

gpost(Y L)
.
= W postY L. (2.21)

A full diagram of the autoencoding procedure is given in Figure 1.

Our training procedure seeks to learn and represent the structures in the data distribution. For this,
we use a pretext task that measures the degree to which these structures have been learned: masked
autoencoding (He et al., 2022), which “masks out” a large percentage of randomly selected tokens
in the input X and then attempts to reconstruct the whole image, measuring success by the resulting
autoencoding performance. Conceptually, masked autoencoding can be seen as a nonlinear general-
ization of the classical matrix completion task, which exploits low-dimensional structure to impute
missing entries in incomplete data; classical matrix completion can be solved efficiently if and only
if the data have low-dimensional structure (Amelunxen et al., 2014; Candès & Recht, 2009; Wright
& Ma, 2022). The masked autoencoding loss writes

LMAE(f, g)
.
= E

[
∥(g ◦ f)(Mask(X))−X∥22]. (2.22)

Further implementation details of this architecture are discussed in Appendices B.1 and B.2.

3 EMPIRICAL EVALUATIONS

In this section, we conduct experiments to evaluate CRATE-MAE on real-world datasets and both
supervised and unsupervised tasks. Similarly to Yu et al. (2023a), CRATE-MAE is built using sim-
ple design choices that we do not claim are optimal. We also do not claim that our results are
optimally engineered; in particular, we do not use the extreme amount of computational resources
required to obtain state-of-the-art performance using vision transformer-backed masked autoen-
coders (MAEs) (He et al., 2022). Our goals in this section are to verify that our white-box masked
autoencoding model CRATE-MAE has promising performance and learns semantically meaningful
representations, and that each operator in CRATE-MAE aligns with our theoretical design. We pro-
vide additional experimental details in Appendices B.1 and B.2.

Network architecture and training configuration. We implement the encoder and decoder archi-
tectures described in Section 2, with a few changes detailed in Appendix B.1. We consider different
model sizes of CRATE-MAE by varying the token dimension d, number of heads K, and number of
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Table 1: Model configurations for different sizes of CRATE-MAE, parameter counts, and comparisons to
ViT-MAE models from Gandelsman et al. (2022); He et al. (2022). We observe that CRATE-MAE-Base uses
around 30% of the parameters of ViT-MAE-Base, and a similar number of parameters as ViT-MAE-Small.

Model Configuration L d K N CRATE-MAE # Parameters ViT-MAE # Parameters

Small (-S) 12 576 12 196 25.4M 47.6M

Base (-B) 12 768 12 196 44.6M 143.8M
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Figure 5: Left: The compression measure Rc(Zℓ+1/2 | U ℓ
[K]) at different layers of the encoder. Right:

the sparsity measure ∥Zℓ+1∥0/(d·N), at different layers of the encoder. Measurements were collected from
CRATE-MAE-Base averaged over 10000 randomly chosen ImageNet samples. We observe that the compression
and sparsity improve consistently over each layer and through the whole network.

Masked ViT-MAE CRATE-MAE Original Masked ViT-MAE CRATE-MAE Original

Figure 6: Autoencoding visualizations of CRATE-MAE-Base and ViT-MAE-Base (He et al., 2022) with
75% patches masked. We observe that the reconstructions from CRATE-MAE-Base are on par with the recon-
structions from ViT-MAE-Base, despite using < 1/3 of the parameters.

layers L; such parameters will be kept the same for the encoder and decoder, which is contrary to He
et al. (2022) but in line with our white-box derivation. Table 1 displays the CRATE-MAE model con-
figurations and number of parameters, and compares with equivalent ViT-MAE model sizes (Gan-
delsman et al., 2022; He et al., 2022), showing that CRATE-MAE uses around 30% of the parameters
of MAE with the same model configuration. We consider ImageNet-1K (Deng et al., 2009) as the
main experimental setting for our architecture. We apply the AdamW (Loshchilov & Hutter, 2019)
optimizer to train CRATE-MAE models for both pre-training and fine-tuning. When fine-tuning, we
also use several commonly used downstream datasets: CIFAR10, CIFAR100 (Krizhevsky et al.,
2009), Oxford Flowers (Nilsback & Zisserman, 2008), and Oxford-IIT-Pets (Parkhi et al., 2012).

Layer-wise function analysis. First, we confirm that our model actually does do layer-wise com-
pression and sparsification, confirming our conceptual understanding as described in Section 2. In
Figure 5, we observe that each layer of the encoder tends to compress and sparsify the input features,
confirming our theoretical designing of the role of each operator in the network.

Autoencoding performance. In Figure 6, we qualitatively compare the masked autoencoding per-
formance of CRATE-MAE-Base to ViT-MAE-Base (He et al., 2022). We observe that both models
are able to reconstruct the data well, despite CRATE-MAE using less than a third of the parameters
of ViT-MAE. In Table 4 (deferred to Appendix B.4) we display the average reconstruction loss of
CRATE-MAE-Base and ViT-MAE-Base, showing a similar quantitative conclusion.
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Table 2: Top-1 classification accuracy of CRATE-MAE models when pre-trained on ImageNet-1K and
evaluated via fine-tuning or linear probing for various datasets. We compare CRATE-MAE to standard
ViT-MAE models with many more parameters. Our results show that CRATE-MAE achieves competitive per-
formance on this transfer learning task when either fine-tuning the whole model or just the classification head.

Classification Accuracy CRATE-MAE-S CRATE-MAE-B ViT-MAE-S ViT-MAE-B

Fine-Tuning
CIFAR10 96.2 96.8 97.6 98.5
CIFAR100 79.0 80.3 83.0 87.0
Oxford Flowers-102 71.7 78.5 84.2 92.5
Oxford-IIIT-Pets 73.7 76.7 81.7 90.3

Linear Probing
CIFAR10 79.4 80.9 79.9 87.9
CIFAR100 56.6 60.1 62.3 68.0
Oxford Flowers-102 57.7 61.8 66.8 66.4
Oxford-IIIT-Pets 40.6 46.2 51.8 80.1

(a) Visualizing PCA of token representations. (b) Visualizing selected attention head outputs.

Figure 7: Left: Visualizations of the alignment of each image’s token representations with the top three
principal components (in red, blue, and green respectively) of all token representations of images in the
given class. Right: Visualizations of hand-picked attention map across all attention heads in the last layer
of the CRATE-MAE encoder for each image. We observe in Figure 7a that the top three principal components
are aligned with tokens from parts of the image that carry its semantics, and in Figure 7b that the attention maps
correctly “attend to” (activate strongly on) exactly the parts of the image which are semantically meaningful.

Representation learning and emerging semantic properties. In Table 2, we display the perfor-
mance of CRATE-MAE models when fine-tuned or linear probed for supervised classification (precise
method in Appendix B.1) on a variety of datasets. We observe that the classification accuracies of
CRATE-MAE models are competitive with much larger ViT-MAE models. Moreover, the learned
representations of CRATE-MAE carry useful semantic content. By taking the alignment of the rep-
resentations of each token with the top few principal components of the representations of tokens
in each class (precise details in Appendix B.3), we observe in Figure 7 (left) that the representa-
tions are linearized, and that the top few principal components carry semantic structure. In Figure 7
(right), we observe that the attention heads in the MSSA operator in CRATE-MAE capture the se-
mantics of the input images. These properties have previously been observed in white-box models
trained with supervised cross-entropy losses (Yu et al., 2023b); our results demonstrate that they are
consequences of the white-box architecture, rather than the loss function.

4 CONCLUSION

In this work, we uncover a quantitative connection between denoising and compression, and use it to
design a conceptual framework for building white-box (mathematically interpretable) transformer-
like deep neural networks which can learn using unsupervised pretext tasks, such as masked au-
toencoding. We show that such models are more parameter-efficient over their empirically designed
cousins, achieve promising performance on large-scale real-world imagery datasets, and learn struc-
tured representations that contain semantic meaning. This work demonstrates the potential and
practicality of white-box networks derived from first principles for tasks outside supervised classi-
fication. We thus believe that this work helps to bridge the theory and practice of deep learning, by
unifying on both the conceptual and technical level many previously separated approaches includ-
ing, but not limited to, diffusion and denoising, compression and rate reduction, transformers, and
(masked) autoencoding.
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A OTHER RELATED WORK

In Section 1, we described the approaches to unsupervised learning of low-dimensional structures
in the data that were most relevant to the rest of the work. Here, we discuss some other popular
alternatives for completeness.

Black-box unsupervised representation learning. On the other end from white-box models,
which learn representations from data that have a priori desired structures, are black-box unsuper-
vised learning methods which learn fully data-driven representations. One implementation of this
principle includes contrastive learning, which learns representations from computing the statistics of
multiple augmentations of the same data point (Bardes et al., 2022; Chen et al., 2020). Another an-
gle is to seek a representation with desirable characteristics for a specific task, such as classification;
prior works have considered diffusion models as “representation learners” from this angle (Chen
et al., 2024; Xiang et al., 2023). The notion of representation learning we are interested in in this
work, namely the transformation of the data distribution towards a structured form that preserves its
essential information content, is different from the notion in this latter group of works. Still another
implementation is that of autoencoding models, the most recently popular of which is the masked
autoencoder (MAE) (He et al., 2022). Autoencoders attempt to build low-dimensional representa-
tions of the data and use them to reconstruct input data (Hinton & Zemel, 1993; Kingma & Welling,
2014; Rezende et al., 2014; Tishby & Zaslavsky, 2015); masked autoencoders specifically mask the
input data in training and attempt to impute the missing entries through reconstruction.

The common point in all such unsupervised learning methods so far is that they use black-box
neural networks, such as ResNets (Chen et al., 2020) or transformers (Caron et al., 2021), as their
back-end. Thus, although they sometimes develop semantically meaningful representations of the
data (Bardes et al., 2022; Caron et al., 2021; Chen et al., 2020), they are uninterpretable, and their
training procedures and internal mechanisms are opaque.

Deep networks and stochastic dynamics. There are many quantitative rapprochements of deep
learning and stochastic dynamics. The most well-known of these is diffusion models, which can
be modeled as discretizations of Itö diffusion processes (Song et al., 2021). The neural network
is usually trained to estimate the so-called score function. Diffusion models can be thought of as
implementing a particular approximation to optimal transport between a template distribution and
the true data distribution (Khrulkov et al., 2023). Different types of stochastic dynamics useful for
generative modeling may be derived from optimal transport between the data distribution and a pre-
specified template (Albergo et al., 2023; De Bortoli et al., 2021). However, diffusion models are
unique among these methods in that they have an iterative denoising interpretation (Karras et al.,
2022), which this work draws on. Such an interpretation has previously been used to construct deep
denoising networks from unrolled diffusion processes (Mei & Wu, 2023), instead of just using the
deep networks to do black-box estimation of the score function. Similar studies have interpreted
deep networks as discretizations of diffusion processes without this particular denoising interpreta-
tion (Li et al., 2022), but the aforementioned unrolled iterative denoising strategy is what we draw
upon in this work.

Other related work. Here we also discuss some related work with regards to different modifica-
tions of the transformer architecture and training procedures which interface well with our white-box
design. For example, Kitaev et al. (2020) suggests that sharing the Q and K matrices in the regular
transformer is a mechanism to make the transformer more efficient at no performance cost. This
choice is a heuristic, whereas our white-box design suggests that Q, K, and V should be set equal,
and as we see in the paper this comes with some small tradeoffs. Also, since white-box models are
derived such that each layer has a defined and understood role, it is natural to ask if such models can
be trained layer-wise, i.e., one layer at a time (Bengio et al., 2006). While this is also possible, we
leave it to future work; our experiments show that with end-to-end training, a vastly more common
method to train deep networks, each layer still follows the role it was designed for.

A.1 AN OVERVIEW OF DIFFUSION PROCESSES

In this section, we give an overview of the basics of time-reversible Itô diffusion processes, the
mathematical foundation for diffusion models. This is to make this paper more self-contained by
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providing knowledge about general diffusion processes that we will apply to our special models.
The coverage adapts that of Karras et al. (2022); Millet et al. (1989); Song et al. (2021).

Consider a generic Itô diffusion process (z(t))t∈[0,T ], where z(t) is an Rm-valued random variable,
given by the SDE

dz(t) = b(z(t), t) dt+Σ(z(t), t) dw(t), z(0) ∼ P, ∀t ∈ [0, T ] (A.1)

where w is a Brownian motion and P is some probability measure on Rm (in this case representing
the data distribution). Here the drift coefficient b : Rm×R → Rm and diffusion coefficient Σ: Rm×
R → Rm×m are functions. To make sense of (A.1) and also verify the existence of strong (i.e.,
pathwise well-defined) solutions, we need some regularity on them, and we choose the following
assumption:

A1. b and Σ have some spatial smoothness and do not grow too fast, i.e., there is a constant K ≥ 0
such that for all x, z̃ ∈ Rm we have

sup
t∈[0,T ]

[∥Σ(x, t)− Σ(z̃, t)∥F + ∥b(x, t)− b(z̃, t)∥2] ≤ K∥x− z̃∥2 (A.2)

sup
t∈[0,T ]

[∥Σ(x, t)∥F + ∥b(x, t)∥2] ≤ K(1 + ∥x∥2). (A.3)

In general, z(t) may not have a density w.r.t. the Lebesgue measure on Rm. For example, suppose
that P is supported on some low-dimensional linear subspace (or even a Dirac delta measure), and
take Σ to be the orthoprojector onto this subspace. Then z(t) will be supported on this subspace
for all t and thus not have a density w.r.t. the Lebesgue measure. Thus, when further discussing
processes of the type (A.1), we make the following assumption

A2. z(t) has a probability density function p(·, t) for all t > 0.
This is guaranteed by either of the following conditions (Millet et al., 1989):

A2.1 b and Σ are differentiable in (x, t) and have Hölder-continuous derivatives, and P has a
density w.r.t. the Lebesgue measure;

A2.2 The event

{rank(Σ(z(s), s)) = m for all s in some neighborhood of 0} (A.4)

happens P -almost surely.

Define Ψ: Rm × R → Rm×m by

Ψ(x, t)
.
= Σ(x, t)Σ(x, t)⊤. (A.5)

To discuss time-reversibility, we also need the following local integrability condition, which is an-
other measure of sharp growth of the coefficients (or precisely their derivatives):

A3. The functions (x, t) 7→ ∇x · (Ψ(x, t)p(x, t)) are integrable on sets of the form D × [t0, 1] for
t0 > 0 and D a bounded measurable subset of Rm:∫ 1

t0

∫
D

∥∇x · (Ψ(x, t)p(x, t))∥2 dx dt < ∞. (A.6)

To write the notation out more explicitly,

∇x · (Ψ(x, t)p(x, t)) =

∇x · (Ψ1(x, t)p(x, t))
...

∇x · (Ψm(x, t)p(x, t))

 (A.7)

where ∇x · (Ψi(x, t)p(x, t)) =
m∑
j=1

∂

∂xj
[Ψij(x, t)p(x, t)] (A.8)

where Ψi is the ith row of Ψ transposed to a column, and Ψij is the (i, j)th entry of Ψ.
Note that Millet et al. (1989) phrases this in terms of an local integrability condition on each
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|∇x · (Ψi(x, t)p(x, t))|, which would naturally give a local integrability condition on ∥∇x ·
(Ψ(x, t)p(x, t))∥∞. However, all norms on Rm are equivalent, and so this leads to a local inte-
grability condition for ∥∇x · (Ψ(x, t)p(x, t))∥2 as produced. Note that the assumptions do not
guarantee that the involved derivatives exist, in which case they are taken in the distributional (e.g.,
weak) sense, whence they should exist (Millet et al., 1989).

Under assumptions A1—A3, Millet et al. (1989) guarantees the existence of another process
(z̃(t))t∈[0,T ] such that the laws of z(t) and z̃(T − t) are the same for all t ∈ [0, T ]. This pro-
cess (z̃(t))t∈[0,T ] is called the time reversal of (z(t))t∈[0,T ], and is shown to have law given by

dz̃(t) = b←(z̃(t), t) dt+Σ←(z̃(t), t) dw←(t), z̃(0) ∼ p(·, T ), ∀t ∈ [0, T ] (A.9)

where w←(t) is an independent Brownian motion and

b←(x, t) = −b(x, T − t) +
∇x · [Ψ(x, T − t)p(x, T − t)]

p(x, T − t)
(A.10)

= −b(x, T − t) +∇x ·Ψ(x, T − t) + Ψ(x, T − t)[∇x log p(x, T − t)], (A.11)
Σ←(x, t) = Σ(x, T − t). (A.12)

We would next like to develop an ODE which transports the probability mass P in the same way
as (A.1) — namely, find another process (z(t))t∈[0,T ] which has deterministic dynamics, yet has
the same law as (z(t))t∈[0,T ]. Song et al. (2021) looks at the Fokker-Planck equations (which can
be defined, at least in a weak sense, under assumptions A1–A2) and manipulates them to get the
following dynamics for z(t):

dz(t) = b(z(t), t) dt, z(0) ∼ P, ∀t ∈ [0, T ], (A.13)

where b(x, t) = b(x, t)− 1

2
· ∇x · [Ψ(x, t)p(x, t)]

p(x, t)
(A.14)

= b(x, t)− 1

2
∇x ·Ψ(x, t)− 1

2
Ψ(x, t)[∇x log p(x, t)]. (A.15)

Now to get a similar process for z̃(t), namely a process (z̃(t))t∈[0,T ] which evolves deterministically
yet has the same law as (z̃(t))t∈[0,T ], we may either take the time reversal of (A.13) or apply the
Fokker-Planck method to (A.9), in both cases obtaining the same dynamics:

dz̃(t) = b←(z̃(t), t) dt, z̃(0) ∼ p(·, T ), ∀t ∈ [0, T ], (A.16)

where

b←(x, t) = −b(x, T − t) (A.17)

= −b(x, T − t) +
1

2
· ∇x · [Ψ(x, T − t)p(x, T − t)]

p(x, T − t)
(A.18)

= −b(x, t) +
1

2
∇x ·Ψ(x, T − t) +

1

2
Ψ(x, T − t)[∇x log p(x, T − t)]. (A.19)

The quantity ∇x log p(x, t) is of central importance; it is denoted the score at time t, and we use the
notation s(x, t)

.
= ∇x log p(x, t) for it. With this substitution, we have the following dynamics for

our four processes:

dz(t) = b(z(t), t) dt+Σ(z(t), t) dw(t), z(0) ∼ P (A.20)
dz̃(t) = [−b(z̃(t), T − t) +∇x ·Ψ(z̃(t), T − t) + Ψ(z̃(t), T − t)s(z̃(t), T − t)] dt (A.21)

+Σ(z̃(t), T − t) dw←(t), z̃(0) ∼ p(·, T ) (A.22)

dz(t) =

[
b(z(t), t)− 1

2
∇x ·Ψ(z(t), t)− 1

2
Ψ(z(t), t)s(z(t), t)

]
dt, z(0) ∼ P (A.23)

dz̃(t) =

[
− b(z̃(t), T − t) +

1

2
∇x ·Ψ(z̃(t), T − t) (A.24)

+
1

2
Ψ(z̃(t), T − t)s(z̃(t), T − t)

]
dt, z̃(0) ∼ p(·, T ). (A.25)
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In practice, one fits an estimator for s(·, ·) and estimates p(·, T ) and runs a discretization of either
(A.9) or (A.16) to sample approximately from P . One common instantiation used in diffusion
models (Karras et al., 2022) is the so-called variance-exploding diffusion process, which has the
coefficient settings

b(x, t) = 0, Σ(x, t) =
√
2I (A.26)

which implies that
Ψ(x, t) = 2I. (A.27)

This means that the four specified processes are of the form

dz(t) =
√
2 dw(t), z(0) ∼ P (A.28)

dz̃(t) = s(z̃(t), T − t) dt+
√
2 dw←(t), z̃(0) ∼ p(·, T ) (A.29)

dz(t) = s(z(t), t) dt, z(0) ∼ P (A.30)

dz̃(t) = −s(z̃(t), T − t), z̃(0) ∼ p(·, T ). (A.31)
Notice that the determinstic flows are actually gradient flows on the score, which concretely reveals a
connection between sampling and optimization, and thus between diffusion models (precisely those
which use the probability flow ODE to sample) and unrolled optimization networks.

In this context, we can also establish the connection between diffusion networks and iterative de-
noising. In the variance-exploding setting, we have

z(t) ∼ N (z(0), 2tI), (A.32)
which can be easily computed using results from, e.g., Särkkä & Solin (2019). Thus z(t) is a noisy
version of z(0), with noise level increasing monotonically with t, and sampling z(0) from z(t)
conceptually removes this noise. Concretely, Tweedie’s formula (Efron, 2011) says that the optimal
denoising function E[z(0) | z(t)] has a simple form in terms of the score function:

E[z(0) | z(t)] = z(t) + 2t · s(z(t), t). (A.33)
In other words, the score function s points from the current iterate z(t) to the value of the optimal
denoising function, so it is a negative multiple of the conditionally-expected noise. Following the
score by (stochastic) gradient flow or its discretization is thus equivalent to iterative denoising.

A.2 COMPANION TO SECTION 2.3

In this section, we prove a formal version of the result Theorem 1 stated in Section 2.3. That
is, we examine a basic yet representative instantiation of the signal model (2.2), and show that
under this model, in a natural regime of parameter scales motivated by the architecture of CRATE-
MAE applied to standard image classification benchmarks, the operation implemented by taking a
gradient step on the compression term of the sparse rate reduction objective (2.3) corresponds to a
projection operation at quantization scales ε2 proportional to the size of the deviation. This leads us
in particular to a formal version of the result Theorem 1.

Signal model. We consider an instantiation of the model (2.2), elaborated here. That is, we fix a
distribution over tokens Z ∈ Rd×N induced by the following natural signal model: each token zi is
drawn independently from the normalized isotropic Gaussian measure on one of K p-dimensional
subspaces with orthonormal bases U1, . . . ,UK ∈ Rd×p,2 which comprise the low-dimensional
structure in the observed tokens, then corrupted with i.i.d. Gaussian noise N (0, σ

2

d I); the subspace
each token is drawn from is selected uniformly at random, independently of all other randomness
in the problem. This signal model therefore corresponds to the setting of uncorrelated tokens, with
maximum entropy coordinate distributions within subspaces. It is natural to first develop our theoret-
ical understanding of the connection between compression and the score function in the uncorrelated
setting, although in general, the ability of CRATE-MAE to capture correlations in the data through
the MSSA block is essential. In connection with the latter issue, we note that our proofs will gen-
eralize straightforwardly to the setting of “well-dispersed” correlated tokens: see the discussion in
Remark 5.

We make the further following assumptions within this model:
2More precisely, zi is distributed according to the pushforward of the normalized isotropic Gaussian mea-

sure N (0, 1
p
I) on Rp by the bases Uk.
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1. Inspired by an ablation in Yu et al. (2023a), which suggests that the learned CRATE-MAE
model on supervised classification on ImageNet has signal models Uk which are near-
incoherent, we will assume that the subspaces Uk have pairwise orthogonal column spaces.
Our proofs will generalize straightforwardly to the setting where the subspaces are merely
incoherent: see the discussion in Remark 5.

2. We assume that the relative scales of these parameters conform to the CRATE-MAE-Base
settings, trained on ImageNet: from Table 1, these parameters are

(a) d = 768;
(b) N = 196;
(c) K = 12;
(d) p = d/K = 64.

In particular, d ≫ N ≫ p and Kp = d.

These precise parameter values will not play a role in our analysis. We merely require the following
quantitative relationships between the parameter values, which are more general than the above
precise settings.

Assumption 2. We have ε ≤ 1, U⊤k Uk′ = 1k=k′I for all k ̸= k′, and the following parameter
settings and scales:

• d ≥ N ≥ p ≥ K ≥ 2;

• Kp = d;

• C1

√
N logN ≤ 1

2N/K, where C1 is the same as the universal constant C1 in the statement
of Proposition 12;

• 6C2
2N ≤ d, where C2 is the same as the universal constant C3 in the statement of Propo-

sition 15;

• 2C2
4N ≤ d, where C4 is the same as the universal constant C1 in Proposition 11;

Note: there is no self-reference, as the third inequality is not used to prove Proposition 12, the fourth
is not used to prove Proposition 15, and the fifth is not used to prove Proposition 11.

The first and second inequalities together imply in particular that p ≥ N/K. The third inequality
implies that C1

√
N logN < N/K. The first, second, and and third inequalities together imply that

p > C1

√
N logN , and that 0 < N/K − C1

√
N logN < N/K < N/K + C1

√
N logN < N .

These inequalities are verifiable in practice if one wishes to explicitly compute the absolute constants
C1, C2, C3, C4, and indeed they hold for our CRATE-MAE-Base model.

Formally, let µ(K, p, σ2) denote the probability measure on Rd×N corresponding to the noisy Gaus-
sian mixture distribution specified above. We let Z♮ ∼ µ denote an observation distributed according
to this signal model: formally, there exists a (random) map i 7→ si, for i ∈ [N ] and si ∈ [K], such
that

z♮i = Usiαi + δi, i = 1, . . . , n, (A.34)

where ∆ = [δ1 . . . δN ] ∼i.i.d. N (0, σ
2

d I), and (independently) αi ∼i.i.d. N (0, 1
pI). It is

convenient to write this observation model in block form. To this end, let Kk =
∑N
i=1 1si=k for

k ∈ [K] denote the number of times the k-th subspace is represented amongst the columns of Z♮ (a
random variable). Then by rotational invariance of the Gaussian distribution, we have

Z♮
d
= [U1A1 . . . UKAK ]Π+∆, (A.35)

where d
= denotes equality in distribution, Π ∈ RN×N is a uniformly random permutation matrix,

and each Ak ∈ Rp×Kk . We also define X♮ to be the noise-free version of Z♮.

Because of this equality in distribution, we will commit the mild abuse of notation of identifying the
block representation (A.35) with the observation model (A.34) that follows the distribution µ.
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Denoising in the uncorrelated tokens model. In the uncorrelated tokens model (A.35), the
marginal distribution of each column of Z♮ is identical, and equal to an equiproportional mixture of
(normalized) isotropic Gaussians on the subspaces U1, . . .Uk, convolved with the noise distribution
N (0, σ

2

d I). This marginal distribution was studied in Yu et al. (2023a), where it was shown that
when the perturbation level σ2 → 0, the score function for this marginal distribution approximately
implements a projection operation onto the nearest subspace Uk.

Hence, we can connect compression, as implemented in the MSSA block of the CRATE-MAE archi-
tecture, to denoising in the uncorrelated tokens model by showing that at similar local scales, and
for suitable settings of the model parameters, the compression operation implements a projection
onto the low-dimensional structure of the distribution, as well.

Compression operation. The MSSA block of the CRATE-MAE architecture arises from taking an
(approximate) gradient step on the Rc term of the sparse rate reduction objective (2.3). This term
writes

Rc(Z | U[K]) =
1

2

K∑
k=1

log det
(
I + β(U⊤k Z)⊤U⊤k Z

)
, (A.36)

where

β =
p

Nε2
, (A.37)

and ε > 0 is the quantization error. Calculating the gradient, we have

∇ZR
c(Z | U[K]) =

K∑
k=1

UkU
⊤
k Z

(
β−1I + (U⊤k Z)⊤U⊤k Z

)−1
. (A.38)

Minimizing the sparse rate reduction objective corresponds to taking a gradient descent step on
Rc( · | U[K]). Performing this operation at the observation from the uncorrelated tokens model Z♮,
the output can be written as

Z+ = Z♮ − η∇Rc(Z♮ | U[K]), (A.39)

where η > 0 is the step size.

Main result on projection. We will see shortly that the behavior of the compression output (A.39)
depends on the relative scales of the perturbation about the low-dimensional structure σ2 and the
target quantization error ε2.

Theorem 3. There are universal constants C1, C2, C3, C4 > 0 such that the following holds. Sup-
pose Assumption 2 holds, and moreover suppose that σ ≤ 1 and C1βσ ≤ 1

2 . Then with probability
at least 1−KC2

(
e−C3d + e−C4N/K +N−2

)
, it holds∥∥∥∥Z+ −

[(
∆− ηPU[K]

(β∆Π⊤)Π
)
+

1 + β−1 − η

1 + β−1
X♮

]∥∥∥∥ (A.40)

≤ C5Kη
(
σ2β2 + σ(1 +

√
N/d) +

√
Kβσ2(1 +

√
N/d) +

√
N/d

)
. (A.41)

Here, PU[K]
implements a projection onto the relevant subspaces for each token in the limiting case

as ε → 0, and is precisely defined in (A.116) and (A.117).

We give the proof of Theorem 3 below. First, we make three remarks on interpreting the result, our
technical assumptions, and our analysis.

Remark 4. Theorem 3 admits the following interesting interpretation in an asymptotic setting, where
we can identify the leading-order behavior of the gradient and confirm our hypothesis about the
connection between compression and score-following. Choose η = β−1, so that the guarantee in
Theorem 3 incurs some cancellation, and moreover delineate more precise dependencies on the RHS
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of the guarantee:∥∥∥∥Z+ −
[(
∆− PU[K]

(∆Π⊤)Π
)
+

1

1 + β−1
X♮

]∥∥∥∥ (A.42)

≲
NK2ε2

d

(
σ2d2

N2K2ε4
+ σ(1 +

√
N/d) +

dσ2

N
√
Kε2

(1 +
√
N/d) +

√
N/d

)
(A.43)

≲ K3/2σ2 +
σ2d

Nε2
+

NK2

d

(
σ +

√
N

d

)
ε2, (A.44)

where we used Assumption 2, which implies p = d/K and N/d ≤ 1. We will check in due course
whether we have satisfied the hypotheses of Theorem 3, so that this guarantee indeed applies. To
this end, we optimize this bound as a function of ε > 0, since this is a parameter of the compression
model. The optimal ε is straightforward to compute using calculus: it satisfies

ε2 =

√√√√ σ2d

N

/
K2N

d

(
σ +

√
N

d

)
(A.45)

=
σd

NK

√
σ +

√
N
d

, (A.46)

and the value of the residual arising from Theorem 3 with this choice of ε is no larger than an
absolute constant multiple of

K3/2σ2 +

√√√√K2σ2d

N

(
Nσ

d
+

(
N

d

)3/2
)

= Kσ

√
Kσ +

√
σ +

√
N

d

 . (A.47)

Moreover, with this choice of ε, β satisfies

β−1 =
ε2NK

d
=

√√√√ σ

1 +
√

N
dσ2

. (A.48)

In particular, the condition βσ ≲ 1 in Theorem 3 demands√
σ +

√
N

d
≲ 1, (A.49)

which holds for sufficiently small σ and sufficiently large d ≥ N , showing that Theorem 3 can
be nontrivially applied in this setting. If we consider a simplifying limiting regime where N, d →
+∞ such that N/d → 0 and N/K → +∞, we observe the following asymptotic behavior of the
guarantee of Theorem 3:∥∥∥∥Z+ −

[(
∆− PU[K]

(∆Π⊤)Π
)
+

1

1 +
√
σ
X♮

]∥∥∥∥ ≲ Kσ3/2
(
1 +

√
Kσ
)
. (A.50)

This demonstrates that a gradient step on Rc performs denoising: there is a noise-level-dependent
shrinkage effect applied to the signal X♮, which vanishes as σ → 0, and meanwhile the noise term
∆ is reduced.

Moreover, as σ → 0, we can express the limiting form of PU[K]
exactly as an orthogonal projection,

since this drives β−1 → 0: following (A.116) and (A.117), we have here

PU[K]
= [P1 . . . PK ] , (A.51)

where
Pk →

∑
k′ ̸=k

Uk′ projim(Ak′ )⊥ U⊤k′ . (A.52)

This shows that, in an asymptotic sense, a gradient step on Rc serves to suppress the effect of the
perturbation applied to the observations Z♮ about the local signal model X♮. This verifies our claim

22



Published as a conference paper at ICLR 2024

previously that in this setting, there is a correspondence between a score-following algorithm and a
compression-based approach: locally, both project the observations onto the structures of the signal
model.

It can be shown moreover that the shrinkage effect on X♮ demonstrated here appears as a conse-
quence of using the Rc “compression” term for the gradient step in CRATE-MAE; when the gradient
step is taken instead on the full ∆R rate reduction objective (which is computationally prohibitive,
of course), there is zero shrinkage, and perfect denoising is performed for a wider variety of step
sizes η than the choice made here. We see the introduction of this shrinkage effect this as the price
of constructing an efficient and interpretable network architecture. In practice, the ISTA block of
CRATE-MAE counteracts this shrinkage effect, which is anyways minor at reasonable parameter
scales.

Remark 5. We have made two assumptions which may not hold exactly in practice: namely, we
have assumed that the Uk’s have orthogonal columns, namely U⊤k Uk′ = 1k=k′I , and we have
assumed that the linear combination coefficients Ak that form the matrix X♮ are i.i.d. samples from
Gaussian distributions. Both these assumptions can be made more realistic, at the cost of additional
(non-instructive) complexity in the analysis; we briefly go over how.

Relaxing the orthogonality condition U⊤k Uk′ = 1k=k′I to near-orthogonality, namely ∥U⊤k Uk′ −
1k=k′I∥ ≤ ν for a small ν, as observed in practice (Yu et al., 2023a) would introduce additional
small error terms in the proof, say polynomial in ν. The magnitudes of these errors could in principle
be precisely tracked, whence one could obtain a similar result to Theorem 3.

Secondly, we have assumed that the Ak’s have independent columns which are sampled from (the
same) Gaussian distribution. However, in the conceptual framework for CRATE-MAE, we exploit
the joint distribution (and in particular the correlations) between the tokens in order to obtain good
performance for our model. Our analysis is not completely agnostic to this fact; as we will see,
the proof of Theorem 3 only leverages the independence of the columns of each Ak’s in order
to obtain high-probability upper bounds on the smallest and largest singular value of the token
matrices. If these bounds were ensured by some other method, such as appropriate normalization
and incoherence, a similar conclusion to Theorem 3 could hold in the more realistic correlated tokens
model. Going beyond well-conditioned token matrices for each subspace would require additional
modeling assumptions, and additional investigative experimental work to determine a realistic basis
for such assumptions.

Remark 6. We have not attempted to optimize constants or rates of concentration in the proof of
Theorem 3, preferring instead to pursue a straightforward analysis that leads to a qualitative inter-
pretation of the behavior of the rate reduction gradient in our model problem. Minor improvements
to the concentration analysis would enable the parameter scaling requirements in Assumption 2 to be
relaxed slightly, and the probability bound in Theorem 3 that scales as K/N2 can easily be improved
to any positive power of 1/N .

Proof of Theorem 3. We start by noticing that, by orthonormality of the subspaces Uk, we have by
(A.35)

U⊤k Z♮ = [0 . . . Ak . . . 0]Π+U⊤k ∆, (A.53)

so that

(
β−1I + (U⊤

k Z♮)
⊤U⊤

k Z♮

)−1

= Π⊤





β−1I
. . .

β−1I +A⊤
k Ak

. . .
β−1I


︸ ︷︷ ︸

Dk

+Ξk



−1

Π,

(A.54)
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because permutation matrices are orthogonal matrices, and where the perturbation Ξk is defined by

Ξk = Π∆⊤UkU
⊤
k ∆Π⊤ +


0 . . . ∆⊤1 UkAk . . . 0
...

...
...

A⊤k U
⊤
k ∆1 . . . ∆⊤k UkAk +A⊤k U

⊤
k ∆k . . . A⊤k U

⊤
k ∆K

...
...

...
0 . . . ∆⊤KUkAk . . . 0

 ,

(A.55)
and where we have defined (implicitly) in addition

[∆1 . . . ∆K ] = ∆Π⊤. (A.56)

The matrix Dk ≻ 0, so we can write(
β−1I + (U⊤k Z♮)

⊤U⊤k Z♮
)−1

= Π⊤D−1k
(
I +ΞkD

−1
k

)−1
Π, (A.57)

from which it follows

U⊤k Z♮
(
β−1I + (U⊤k Z♮)

⊤U⊤k Z♮
)−1

(A.58)

=
([
0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

]
+U⊤k ∆Π⊤D−1k

) (
I +ΞkD

−1
k

)−1
Π.
(A.59)

The task before us is therefore to control ∥ΞkD−1k ∥ < 1, in order to apply the Neumann series to
further simplify this expression. We will do this in stages: first, we invoke several auxiliary lemmas
to construct a high-probability event on which the random quantities in the preceding expression are
controlled about their nominal values; next, we show that the Neumann series can be applied on this
event and a main term extracted; finally, we simplify this main term further in order to establish the
claimed expression.

High-probability event construction. In order to achieve the appropriate control on all random
quantities, we would like to construct a high-probability event on which the random quantities are
not too large. By Propositions 9, 10 and 11 and union bound, there exist universal constants Ci > 0
for which

P

 ∥∆∥ ≤ σ(C1 +
√
N/d)

∀k ∈ [K] : ∥Ak∥ ≤ 1 + C2

√
N/d

∀k ∈ [K] : ∥A⊤kAk − I∥ ≤ C3

√
N/d

 ≥ 1−C4K(e−C5d+ e−C6N/K +N−2). (A.60)

The event we compute the probability of, which we denote E⋆, is precisely the good event that we
want. Formally,

E⋆ .
=

 ∥∆∥ ≤ σ(C1 +
√
N/d)

∀k ∈ [K] : ∥Ak∥ ≤ 1 + C2

√
N/d

∀k ∈ [K] : ∥A⊤kAk − I∥ ≤ C3

√
N/d

 . (A.61)

We know that E⋆ occurs with high probability, and are able to strongly control the random quantities
to the degree desired.

Main term extraction. By Lemma 8 and our hypotheses on the problem parameters, we have on
E⋆ that

∥ΞkD−1k ∥ ≤ Cβσ < 1. (A.62)
We can therefore apply the Neumann series to obtain

U⊤k Z♮
(
β−1I + (U⊤k Z♮)

⊤U⊤k Z♮
)−1

(A.63)

=
([
0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

]
+U⊤k ∆Π⊤D−1k

) (
I −ΞkD

−1
k +

∑∞
j=2(−1)j

(
ΞkD

−1
k

)j)
Π.

(A.64)

Again on E⋆, we have∥∥∥∥∥∥
∞∑
j=2

(−1)j
(
ΞkD

−1
k

)j∥∥∥∥∥∥ ≤
∞∑
j=2

∥∥ΞkD−1k ∥∥j ≤ C(βσ)2
1

1− Cβσ
≤ C ′(βσ)2. (A.65)
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Moreover, as in the proof of Lemma 8, we have on the previous event that∥∥U⊤k ∆Π⊤D−1k
∥∥ ≤ Cβσ. (A.66)

Thus, if we define a “main term”
Mk =

[[
0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

] (
I −ΞkD

−1
k

)
+U⊤k ∆Π⊤D−1k

]
Π,
(A.67)

we have on the same event as previously∥∥∥U⊤k Z♮
(
β−1I + (U⊤k Z♮)

⊤U⊤k Z♮
)−1 −Mk

∥∥∥ ≤ C(βσ)2. (A.68)

To conclude, we need only study this main term, since Uk has operator norm 1.

Simplifying the main term. Our approach will be to control the main term Mk around a simpler
expression, using basic perturbation theory; by the triangle inequality for the operator norm, this
will give control of the desired gradient term. After distributing, Mk is a sum of three terms; we
will start with the simplest term. We first compute

U⊤k ∆Π⊤D−1k = U⊤k

[
β∆1 . . .∆k

(
β−1I +A⊤kAk

)−1
. . . β∆K

]
. (A.69)

We are going to argue that the residual∥∥U⊤k ∆Π⊤D−1k −U⊤k [β∆1 . . . 0 . . . β∆K ]
∥∥ (A.70)

is small. To this end, note that by the fact that Uk has unit operator norm,∥∥U⊤k ∆Π⊤D−1k −U⊤k [β∆1 . . . 0 . . . β∆K ]
∥∥ (A.71)

≤
∥∥∥[0 . . . ∆k

(
β−1I +A⊤kAk

)−1
. . . 0

]∥∥∥ (A.72)

=
∥∥∥∆k

(
β−1I +A⊤kAk

)−1∥∥∥ (A.73)

≤ ∥∆k∥
∥∥∥(β−1I +A⊤kAk

)−1∥∥∥. (A.74)

By (A.61) and (A.120) from Lemma 7, the second term here is controlled on E⋆. For the first term,
we note that by definition and the fact that the unit sphere is invariant to rotations (and permutations
are rotations),

∥∆∥ = sup
∥u∥2≤1

∥∆u∥2 = sup
∥u∥2≤1

∥[∆1 . . . ∆K ]u∥
2

(A.75)

= sup
∥u∥2≤1

∥∥∥∥∥
K∑
i=1

∆iui

∥∥∥∥∥
2

, (A.76)

where ui are coordinate-subset-induced partitions of the vector u induced by those of ∆Π⊤. This
yields immediately

∥∆∥ ≤ sup
∥u∥2≤1

K∑
i=1

∥∆iui∥2 ≤
(
max
k∈[K]

∥∆k∥
)

sup
∥u∥2≤1

K∑
i=1

∥ui∥2 ≤
√
K

(
max
k∈[K]

∥∆k∥
)
, (A.77)

by the triangle inequality and inequalities for ℓp norms. Similarly, choosing a specific u in the
operator norm expression, namely one that is supported entirely on one of the coordinate partitions
ui, shows that

∥∆∥ ≥ ∥∆iui∥2 (A.78)
for any i, whence

max
k∈[K]

∥∆k∥ ≤ ∥∆∥. (A.79)

It follows that we control the first term above on E⋆. Combining this reasoning, we conclude from
the above ∥∥U⊤k ∆Π⊤D−1k −U⊤k [β∆1 . . . 0 . . . β∆K ]

∥∥ (A.80)

≤σ(C +
√
N/d)

(
1

1 + β−1
+

C ′
√
N/d

1 + β−1

)
(A.81)

≲σ(1 + C
√
N/d), (A.82)
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where the second line uses Assumption 2 to remove the higher-order residual.

Next, we recall that Ξk is a sum of two terms; we will do one term at a time for concision. We have
first [

0 . . . Ak(β
−1I +A⊤kAk)

−1 . . . 0
]
Π∆⊤UkU

⊤
k ∆Π⊤ (A.83)

=
[
0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

] ∆
⊤
1

...
∆⊤K

UkU
⊤
k

∆
⊤
1

...
∆⊤K


⊤

(A.84)

= Ak(β
−1I +A⊤kAk)

−1∆⊤k UkU
⊤
k [∆1 . . . ∆K ] . (A.85)

We then multiply this term by D−1k on the right to get the term that appears in Mk (ignoring the
multiplication on the right by Π, because it does not change operator norms). In particular, we will
control ∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k [∆1 . . . ∆K ]D−1k

∥∥, (A.86)

showing that this term is small. We will accomplish this with the block diagonal structure of Dk:
indeed, this gives that D−1k is obtained by blockwise inversion, and hence∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k [∆1 . . . ∆K ]D−1k

∥∥ (A.87)

=
∥∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k

[
β∆1 . . . ∆k

(
β−1I +A⊤kAk

)−1
. . . β∆K

]∥∥∥ (A.88)

≤
√
Kmax

{∥∥Ak(β
−1I +A⊤kAk)

−1∆⊤k UkU
⊤
k ∆k(β

−1I +A⊤kAk)
−1∥∥, (A.89)

max
k′ ̸=k

β
∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k ∆k′

∥∥}, (A.90)

where the second line uses (A.77). We will give a coarse control of this term—the error could
be improved further by exploiting more thoroughly independence of the blocks ∆k to show that
the maximum over k′ ̸= k in the last line of the preceding expression is smaller. We have by
submultiplicativity of the operator norm and the triangle inequality∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k ∆k(β

−1I +A⊤kAk)
−1∥∥ (A.91)

≤

(
1

1 + β−1
+

C
√
N/d

1 + β−1

)2 ∥∥∆⊤k UkU
⊤
k ∆k

∥∥ (A.92)

≤
(
1 + C

√
N/d

)∥∥∆⊤k UkU
⊤
k ∆k

∥∥, (A.93)

where the first line uses Lemma 7, and the second line uses Assumption 2 to simplify the residual
as above. We have meanwhile from the definition of E⋆∥∥∆⊤k UkU

⊤
k ∆k

∥∥ ≤ ∥∆k∥2 ≲ σ2
(
1 +

√
N/d

)
, (A.94)

because UkU
⊤
k is an orthogonal projection, and again using Assumption 2 to simplify the residual.

We can argue analogously to simplify the other term in the maximum appearing above, and this
yields ∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k [∆1 . . . ∆K ]D−1k

∥∥ (A.95)

≲
√
Kβσ2

(
1 + C

√
N/d

)(
1 +

√
N/d

)
, (A.96)

where we used the fact that ε ≤ 1 and the rest of Assumption 2 implies that β ≥ 1. This residual
simplifies using Assumption 2 to∥∥Ak(β

−1I +A⊤kAk)
−1∆⊤k UkU

⊤
k [∆1 . . . ∆K ]D−1k

∥∥ ≲
√
Kβσ2

(
1 + C

√
N/d

)
.

(A.97)
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Next, we examine the last term, which is the other summand arising in the definition of Ξk. We
have

[
0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

]


0 . . . ∆⊤1 UkAk . . . 0
...

...
...

A⊤k U
⊤
k ∆1 . . . ∆⊤k UkAk +A⊤k U

⊤
k ∆k . . . A⊤k U

⊤
k ∆K

...
...

...
0 . . . ∆⊤KUkAk . . . 0


(A.98)

= Ak(β
−1I +A⊤kAk)

−1 [A⊤k U⊤k ∆1 . . .
(
∆⊤k UkAk +A⊤k U

⊤
k ∆k

)
. . . A⊤k U

⊤
k ∆K

]
.

(A.99)

Now multiplying on the right by D−1k gives the term (again ignoring the right-multiplication by Π,
which does not affect the operator norm)

Ak(β
−1I +A⊤kAk)

−1
[
βA⊤k U

⊤
k ∆1 . . .

(
∆⊤k UkAk +A⊤k U

⊤
k ∆k

) (
β−1I +A⊤kAk

)−1
. . . βA⊤k U

⊤
k ∆K

]
.

(A.100)
We will argue that this term is close to the term

Ak(β
−1I +A⊤kAk)

−1 [βA⊤k U⊤k ∆1 . . . 0 . . . βA⊤k U
⊤
k ∆K

]
(A.101)

in operator norm. The argument is similar to the preceding arguments: for this, it suffices to bound∥∥∥[0 . . . Ak(β
−1I +A⊤kAk)

−1 (∆⊤k UkAk +A⊤k U
⊤
k ∆k

) (
β−1I +A⊤kAk

)−1
. . . 0

]∥∥∥, (A.102)

which is the same as controlling the operator norm of the nonzero block. Using submultiplicativity
and Lemma 7 along with the simplifications we have done above leveraging Assumption 2, we
obtain ∥∥∥Ak(β

−1I +A⊤kAk)
−1 (∆⊤k UkAk +A⊤k U

⊤
k ∆k

) (
β−1I +A⊤kAk

)−1∥∥∥ (A.103)

≤
(
1 + C

√
N/d

)∥∥∆⊤k UkAk +A⊤k U
⊤
k ∆k

∥∥. (A.104)

Meanwhile, on E⋆ we have the operator norm of ∆k and Ak controlled, using again (A.79). Ap-
plying then the triangle inequality and submultiplicativity, we obtain∥∥∆⊤k UkAk +A⊤k U

⊤
k ∆k

∥∥ ≲ σ
(
1 +

√
N/d

)
, (A.105)

again simplifying with Assumption 2. This shows that (A.100) is close to (A.101) with deviations
of the order ≲ σ(1 +

√
N/d).

Aggregating the previous results. Combining our perturbation analysis above, we have estab-
lished control∥∥∥Mk −

[(
I −Ak(β

−1I +A⊤kAk)
−1A⊤k

)
U⊤k [β∆1 . . . 0 . . . β∆K ] (A.106)

+
[
0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

]]
Π
∥∥∥ (A.107)

≲ σ(1 +
√

N/d) +
√
Kβσ2(1 +

√
N/d). (A.108)

It is convenient to include one additional stage of simplification here: namely, we use Lemma 7
once more to simplify the second term in the nominal value of Mk appearing here. Namely, we
have (arguing as we have above, once again)∥∥[0 . . . Ak(β

−1I +A⊤kAk)
−1 . . . 0

]
−
[
0 . . . 1

1+β−1Ak . . . 0
]∥∥ (A.109)

=

∥∥∥∥ 1

1 + β−1
Ak −Ak

(
β−1I +A⊤kAk

)−1∥∥∥∥ (A.110)

≲
√

N/d, (A.111)
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from which it follows∥∥∥Mk −
[(
I −Ak(β

−1I +A⊤kAk)
−1A⊤k

)
U⊤k [β∆1 . . . 0 . . . β∆K ] (A.112)

+
[
0 . . . 1

1+β−1Ak . . . 0
]]
Π
∥∥∥ (A.113)

≲ σ(1 +
√
N/d) +

√
Kβσ2(1 +

√
N/d) +

√
N/d. (A.114)

Meanwhile, recall the residual of scale ≲ (σβ)2 arising when we controlled the gradient term around
Mk: ∥∥∥U⊤k Z♮

(
β−1I + (U⊤k Z♮)

⊤U⊤k Z♮
)−1 −Mk

∥∥∥ ≤ C(βσ)2. (A.115)

Combining these two bounds with the triangle inequality controls the gradient term around its nom-
inal value. Now, we sum these errors over k (again with the triangle inequality) to obtain control
of the aggregate gradient around its nominal value. We introduce notation to concisely capture the
accumulations of the (approximate) orthogonal projections arising in the nominal value of the main
term: for each k ∈ [K], define

Pk =
∑
k′ ̸=k

Uk′
(
I −Ak′(β

−1I +A⊤k′Ak′)
−1A⊤k′

)
U⊤k′ , (A.116)

and define an overall (approximate) projection operator (which acts on block matrices partitioned
compatibly with the class sizes Nk, as in (A.35)) by

PU[K]
= [P1 . . . PK ] . (A.117)

Then the above argument implies∥∥∥∥∇ZR
c(Z♮ | U[K])− PU[K]

(β∆Π⊤)Π− 1

1 + β−1
X♮

∥∥∥∥ (A.118)

≲ K
(
σ2β2 + σ(1 +

√
N/d) +

√
Kβσ2(1 +

√
N/d) +

√
N/d

)
, (A.119)

which is enough to conclude.

A.2.1 KEY AUXILIARY LEMMAS

In this section we state and prove two key concentration inequalities that are used in the proof of the
main theorem. They rely on simpler results which will be conveyed in subsequent subsections.

Lemma 7. There exist universal constants C,C ′ > 0 such that the following holds. Let d, p,N,K ∈
N be such that Assumption 2 holds. Let Ak, k ∈ [K], be defined as above. Let E⋆ be the good event
defined in (A.61). If E⋆ occurs, then for k ∈ [K] we have∥∥∥∥(β−1I +A⊤kAk)

−1 − 1

1 + β−1
I

∥∥∥∥ ≤
C
√
N/d

(1 + β−1)
. (A.120)

and in addition ∥∥∥∥Ak(β
−1I +A⊤kAk)

−1 − 1

1 + β−1
Ak

∥∥∥∥ ≤
C ′
√
N/d

(1 + β−1)
. (A.121)

Proof. Since E⋆ holds, for all k ∈ [K] we have

∥Ak∥ ≤ 1 + C1

√
N/d, ∥A⊤kAk − I∥ ≤ C2

√
N/d. (A.122)

By Assumption 2, we have ∥A⊤kAk − I∥ < 1, so A⊤kAk is well-conditioned. Write

Ξ
.
= A⊤kAk − I, (A.123)
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so that

(β−1I +A⊤kAk)
−1 = ((1 + β−1)I +Ξ)−1 (A.124)

=
1

1 + β−1

(
I +

1

1 + β−1
Ξ

)−1
(A.125)

=
1

1 + β−1

∞∑
j=0

(
− 1

1 + β−1

)j
Ξj (A.126)

=
1

1 + β−1
I +

1

1 + β−1

∞∑
j=1

(
− 1

1 + β−1

)j
Ξj (A.127)

by the Neumann series. This gives us∥∥∥∥(β−1I +A⊤kAk)
−1 − 1

1 + β−1
I

∥∥∥∥ =

∥∥∥∥∥∥ 1

1 + β−1

∞∑
j=1

(
− 1

1 + β−1

)j
Ξj

∥∥∥∥∥∥ (A.128)

≤ 1

1 + β−1

∞∑
j=1

(
1

1 + β−1

)j
∥Ξ∥j (A.129)

≤ 1

1 + β−1

∞∑
j=1

(
C2

√
N/d

1 + β−1

)j
(A.130)

=
C2

√
N/d

(1 + β−1)(1 + β−1 − C2

√
N/d)

. (A.131)

Meanwhile, by Assumption 2, it holds

C2

√
N/d ≤

√
1/6, (A.132)

so it follows
C2

√
N/d

1 + β−1 − C2

√
N/d

≤ 2C2

√
N/d. (A.133)

By the submultiplicativity of the operator norm, we thus have∥∥∥∥Ak(β
−1I +A⊤kAk)

−1 − 1

1 + β−1
Ak

∥∥∥∥ ≤ ∥Ak∥
∥∥∥∥(β−1I +A⊤kAk)

−1 − 1

1 + β−1
I

∥∥∥∥ (A.134)

≤
[1 + C1

√
N/d]C2

√
N/d

(1 + β−1)(1 + β−1 − C2

√
N/d)

(A.135)

≤ 2
[1 + C1

√
N/d]C2

√
N/d

1 + β−1
(A.136)

= 2
C2

√
N/d+ C1C2N/d

1 + β−1
. (A.137)

By Assumption 2, we have that there exists some absolute constant C3 > 0 with C3 ·N/d ≤
√

N/d,
which gives∥∥∥∥Ak(β

−1I +A⊤kAk)
−1 − 1

1 + β−1
Ak

∥∥∥∥ ≤ 2
(C2 + C1C2C

−1
3 )
√
N/d

1 + β−1
, (A.138)

as desired.

Lemma 8. There exist universal constants C1, C2 > 0 such that the following holds. Let
d, p,N,K ∈ N be such that Assumption 2 holds. Let Ak, k ∈ [K], be defined as above. Let
Dk be defined as in (A.54). Let Ξk be defined as in (A.55). Let E⋆ be the good event defined in
(A.61). If E⋆ occurs, then for k ∈ [K] we have

∥ΞkDk∥−1 ≤ C1β[σ
2 + σ(C2 +

√
N/d)]. (A.139)
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Proof. Since we have

Dk =


β−1I

. . .
β−1I +A⊤kAk

. . .
β−1I

 (A.140)

it holds that

D−1k =


βI

. . .
(β−1I +A⊤kAk)

−1

. . .
βI

 . (A.141)

We will use the straightforward estimate ∥ΞkD−1k ∥ ≤ ∥Ξk∥∥D−1k ∥ and bound the two matrices’
operator norms individually. By the previous expression,

∥D−1k ∥ = max{β, ∥(β−1I +A⊤kAk)
−1∥} ≤ β, (A.142)

because A⊤kAk ⪰ 0, so we need only control the operator norm of Ξk. To this end, note the
convenient expression

Ξk = Π∆⊤UkU
⊤
k ∆Π⊤ + 2 sym

(
(∆Π⊤)⊤ [0 . . . UkAk . . . 0]

)
, (A.143)

where sym( · ) denotes the symmetric part operator. By the triangle inequality, the operator norm
of Ξk is no larger than the sum of the operator norms of each term in the previous expression.
The operator norm of the first term is no larger than ∥∆∥2, because Π is a permutation matrix
and UU⊤k is an orthogonal projection. Meanwhile, using that the symmetric part operator is the
orthogonal projection onto the space of symmetric matrices, it follows∥∥2 sym ((∆Π⊤)⊤ [0 . . . UkAk . . . 0]

)∥∥ ≤ 2
∥∥(∆Π⊤)⊤ [0 . . . UkAk . . . 0]

∥∥, (A.144)

and then we find as above that the RHS is no larger than 2∥∆∥∥Ak∥. Since the good event E⋆

defined in (A.61) holds by assumption, we have that there are constants C1, C2 > 0 such that

∥∆∥ ≤ σ

(
C1 +

√
N

d

)
(A.145)

∥Ak∥ ≤ 1 + C2

√
N

d
. (A.146)

By Assumption 2 we have d ≥ N , so that
√
N/d ≤ 1. Therefore we have

∥∆∥ ≤ σ (C1 + 1) = C3σ (A.147)

for C3
.
= C1 + 1 another universal constant. Thus on this good event we have

2∥∆∥∥Ak∥ ≤ C3σ
(
1 + C2

√
N/d

)
. (A.148)

Therefore, we have

∥Ξk∥ ≤ ∥∆∥2 + 2∥∆∥∥Ak∥ (A.149)

≤ C2
3σ

2 + C3σ(1 + C2

√
N/d) (A.150)

≤ C4[σ
2 + σ(1 + C2

√
N/d)] (A.151)

where C4 = max{C3, C
2
3} is another universal constant. Thus on E⋆ we have

∥ΞkD−1k ∥ ≤ C4β[σ
2 + σ(1 + C2

√
N/d)] ≤ C5β[σ

2 + σ(1 +
√
N/d)] (A.152)

for C5 > 0 another obvious universal constant.
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A.2.2 CONCENTRATION INEQUALITIES FOR OUR SETTING

In this section we prove some simple concentration inequalities that are adapted to the problem
setting. These results are used to prove the key lemmata above, and indeed are also invoked in the
main theorem. They follow from even simpler concentration inequalities that are abstracted away
from the problem setting, which we discuss in the following subsections.

Proposition 9. There are universal constants C1, C2, C3 > 0 such that the following holds. Let
d,N ∈ N be such that Assumption 2 holds. Let ∆ ∈ Rd×N be defined as above. Then

P

[
∥∆∥ > σ

(
C1 +

√
N

d

)]
≤ C2e

−C3d. (A.153)

Proof. We use Proposition 14 with the parameters q = d, n = N , and x = σ/
√
d, which obtains

P[∥∆∥ > s] ≤ C1 exp

−d

{
s
√
d/σ −

√
N

C2

√
d

− 1

}2
, ∀s > σ√

d
(
√
N + C2

√
d) (A.154)

Notice that we have

s
√
d/σ −

√
N

C2

√
d

− 1 =
1

C2

(
s

σ
−
√

N

d

)
− 1,

σ√
d
(
√
N + C2

√
d) = σ

(√
N

d
+ C2

)
.

(A.155)
To make the squared term equal to 1, we pick

s = σ

(√
N

d
+ 2C2

)
, (A.156)

which gives

P

[
∥∆∥ > σ

(
2C2 +

√
N

d

)]
≤ C2e

−d. (A.157)

Proposition 10. There are universal constants C1, C2, C3, C4 > 0 such that the following holds.
Let p,N,K ∈ N be such that Assumption 2 holds. Let Ak, k ∈ [K], be defined as above. Then

P

[
∥Ak∥ > 1 + C1

√
N

d

]
≤ C2 exp

(
−C3

N

K

)
+

C4

N2
(A.158)

Proof. By Propositions 12 and 14 with parameters n = n, k = K, q = p, and x = 1/
√
p, if we

define

Nmin
.
=

⌊
N

K
− C1

√
N logN

⌋
, Nmax

.
=

⌈
N

K
+ C1

√
N logN

⌉
(A.159)

then we have

P[∥Ak∥ > s] ≤
Nmax∑
n=Nmin

P[∥Ak∥ > s | Kk = n]P[Kk = n] +
C2

N2
(A.160)

≤
Nmax∑
n=Nmin

C3 exp

(
−n

{
s
√
p−√

p

C4

√
4

− 1

}2
)
P[Kk = n] +

C2

N2
, (A.161)

for all s obeying

s ≥ 1
√
p

(√
p+ C4

√
Nmax

)
(A.162)

= 1 + C4

√
Nmax

p
. (A.163)
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Thus we have that the concentration holds for all s obeying

s ≥ 1 + C4

√
Nmax

p
. (A.164)

In order to cancel out the most interior terms, we choose

s = 1 + 2C4

√
Nmax

p
. (A.165)

This choice obtains

P[∥Ak∥ > s] ≤
Nmax∑
n=Nmin

C3 exp

(
−n

{
s
√
p−√

p

C4
√
n

− 1

}2
)
P[Kk = n] +

C2

N2
(A.166)

=

Nmax∑
n=Nmin

C3 exp


−n

2

√
Nmax

n︸ ︷︷ ︸
≥1

−1


2

︸ ︷︷ ︸
≥1


P[Kk = n] +

C2

N2
(A.167)

≤
Nmax∑
n=Nmin

C3 exp(−n)P[Kk = n] +
C2

N2
(A.168)

≤
Nmax∑
n=Nmin

C3 exp(−Nmin)P[Kk = n] +
C2

N2
(A.169)

≤ C3 exp(−Nmin) +
C2

N2
(A.170)

= C3 exp

(
−N

K
+ C1

√
N logN

)
+

C2

N2
(A.171)

≤ C3 exp

(
−N

K
+

1

2

√
N logN

)
+

C2

N2
(A.172)

≤ C3 exp

(
−1

2
· N
K

)
+

C2

N2
. (A.173)

To obtain the conclusion of the theorem, note that any s such that

s ≥ 1 + 2C4

√
Nmax

p
= 1 + 2C4

√
N/K

p
+ C1

√
N logN

p
= 1 + 2C4

√
N

d
+ C1

√
N logN

p

(A.174)
enjoys the same high-probability bound. By Assumption 2, we have

1 + 2C4

√
N

d
+ C1

√
N logN

p
≤ 1 + 2C4

√
N

d
+

1

2
· N/K

p
(A.175)

= 1 + 2C4

√
N

d
+

1

2
· N
d

= 1 + 2C4

√
3

2
·
√

N

d
(A.176)

whence the ultimate conclusion is obtained by combining constants.

Proposition 11. There are universal constants C1, C2, C3, C4 > 0 such that the following holds.
Let p,N,K ∈ N be such that Assumption 2 holds. Let Ak, k ∈ [K], be defined as above. Then

P

[
∥A⊤kAk − I∥ > C1

√
N

d

]
≤ C2 exp

(
−C3

N

K

)
+

C4

N2
. (A.177)
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Proof. By Propositions 12 and 15 with parameters n = n, k = K, q = p, and x = 1/
√
p, if we

define

Nmin
.
=

⌊
N

K
− C1

√
N logN

⌋
, Nmax

.
=

⌈
N

K
+ C1

√
N logN

⌉
(A.178)

then we have
P[∥A⊤kAk − I∥ > s] (A.179)

≤
Nmax∑
n=Nmin

P[∥A⊤kAk − I∥ > s | Kk = n]P[Kk = n] +
C2

N2
(A.180)

≤ C2

N2
+

Nmax∑
n=Nmin

P[Kk = n] ·


C3 exp

(
−n

{
1

C2
4C5

√
n/p

s− 1

}2
)
, if C2

4C5

√
n/p ≤ s ≤ C2

4

C3 exp

(
−n

{
1

C4C5

√
n/p

√
s− 1

}2
)
, if s ≥ C2

4 .

(A.181)

In order to cancel the most terms, we choose

s = 2C2
4C5

√
Nmax

p
. (A.182)

In order to assure ourselves that this choice still has s ≤ C2
4 (so that we can use the first case for all

n), we have

s = 2C2
4C5

√
Nmax

p
(A.183)

= 2C2
4C5

√
N/K + C1

√
N logN

p
(A.184)

= 2C2
4C5

√
N/K + 1

2N/K

p
(A.185)

= 2

√
3

2
C2

4C5 ·

√
N/K

p
(A.186)

=
√
6C2

4C5 ·
√

N

d
(A.187)

≤ C2
4 when

√
6C5

√
N

d
≤ 1. (A.188)

Of course, this condition is assured by Assumption 2. Now that we have this, we know s falls in the
first, and so we have

P

[
∥A⊤kAk − I∥ > C1

√
N

d

]
(A.189)

≤ C2

N2
+

Nmax∑
n=Nmin

P[Kk = n] ·


C3 exp

(
−n

{
1

C2
4C5

√
n/p

s− 1

}2
)
, if C2

4C5

√
n/p ≤ s ≤ C2

4

C3 exp

(
−n

{
1

C4C5

√
n/p

√
s− 1

}2
)
, if s ≥ C2

4

(A.190)

≤ C2

N2
+

Nmax∑
n=Nmin

C3 exp

−n

{
2C2

4C5

√
Nmax/p

C2
4C5

√
n/p

− 1

}2
P[Kk = n] (A.191)

=
C2

N2
+

Nmax∑
n=Nmin

C3 exp

−n

{
2

√
Nmax

n
− 1

}2
P[Kk = n] (A.192)

≤ C3 exp

(
−1

2
· N
K

)
+

C2

N2
(A.193)

where the last inequality follows from the exact same argument as in Proposition 10.
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A.2.3 GENERIC CONCENTRATION INEQUALITIES

In this subsection we prove the base-level concentration inequalities used throughout the proofs in
this paper.

Binomial concentration.

Proposition 12. There exist universal constants C1, C2 > 0 such that the following holds. Let
n, k ∈ Z. For each i ∈ [k], let Bi ∼ Bin(n, 1/k), such that the Bi are identically (marginally)
distributed but not necessarily independent binomial random variables. Let E be an event. Then for
any i ∈ [k], we have

P[E] ≤
⌈n/k+C1

√
n logn⌉∑

b=⌊n/k−C1

√
n logn⌋

P[E |Bi = b]P[Bi = b] +
C2

n2
. (A.194)

Proof. We have

P[E] = E[E[E | Bi]] =
n∑
b=0

P[E | Bi = b]P[Bi = b]. (A.195)

Each Bi is unconditionally distributed as Bin(n, 1/k). By union bound and Hoeffding’s inequality
(Vershynin, 2018, Theorem 2.2.6), we have

P[|Bi − n/k| ≥ t] ≤ 2 exp

(
−2t2

n

)
. (A.196)

Inverting this inequality obtains that there exists some (simple) universal constants C1, C2 > 0 such
that

P
[
|Bi − n/k| ≥ C1

√
n log n

]
≤ C2

n3
. (A.197)

Thus, if we define

bmin
.
=
⌊n
k
− C1

√
n log n

⌋
, bmax

.
=
⌈n
k
+ C1

√
n log n

⌉
, (A.198)

then we have

P[E] =

n∑
b=0

P[E | Bi = b]P[Bi = b] (A.199)

=

bmin−1∑
b=0

P[E | Bi = b]︸ ︷︷ ︸
≤1

P[Bi = b]︸ ︷︷ ︸
≤C2/n3

+

n∑
b=bmax+1

P[E | Bi = b1]︸ ︷︷ ︸
≤1

P[Bi = b]︸ ︷︷ ︸
≤C2/n3

(A.200)

+

bmax∑
b=bmin

P[E | Bi = b]P[Bi = b] (A.201)

≤
bmin−1∑
b=0

C2

n3
+

n∑
b=bmax+1

C2

n3
+

bmax∑
b=bmin

P[E | Bi = b]P[Bi = b] (A.202)

≤
n∑
b=0

C2

n3
+

bmax∑
b=bmin

P[E | Bi = b]P[Bi = b] (A.203)

=
C2

n2
+

C2

n3
+

bmax∑
b=bmin

P[E | Bi = b]P[Bi = b] (A.204)

≤ 2C2

n2
+

bmax∑
b=bmin

P[E | Bi = b]P[Bi = b]. (A.205)
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Remark 13. Notice that a simple adaptation of this argument can turn the additive probability C3/n
2

into C ′3/n
z for any positive integer z ∈ N (where C ′3 depends on z). However, trying to replace it

with C ′3e
−C′n is more difficult.

Gaussian concentration.

Proposition 14. There are universal constants C1, C2, C3 > 0 such that the following holds. Let
n, q ∈ N, and let M ∈ Rq×n be such that Mij ∼i.i.d. N (0, x2). Then

P[∥M∥ > s] ≤ C1 exp

(
−n

{
s/x−√

q

C2
√
n

− 1

}2
)
, ∀s > x

{√
q + C2

√
n
}

(A.206)

P[∥M∥ > s] ≤ C1 exp

(
−q

{
s/x−

√
n

C3
√
q

− 1

}2
)
, ∀s > x

{√
n+ C3

√
q
}
. (A.207)

Proof. Define M .
= 1

xM , so that Mij ∼i.i.d. N (0, 1). By Vershynin (2018, Example 2.5.8, Lemma
3.4.2), we see that each row M i has Orlicz norm ∥M i∥ψ2

≤ C1 for some universal constant
C1 > 0.

By Vershynin (2018, Theorem 4.6.1) we have for some other universal constant C2 > 0 that for all
t > 0,

√
q − C2

1C2(
√
n+ t) ≤ σmin(n,q)(M) ≤ σ1(M) ≤ √

q + C2
1C2(

√
n+ t) (A.208)

with probability at least 1− 2e−t
2

. Defining C3
.
= C2

1C2 and noting that ∥·∥ = σ1(·), we have with
the same probability that

∥M∥ − √
q ≤ C3

(√
n+ t

)
. (A.209)

Simplifying, we obtain

∥M∥ − √
q ≤ C3

(√
n+ t

)
(A.210)

1

x
∥M∥ − √

q ≤ C3

(√
n+ t

)
(A.211)

∥M∥ − x
√
q ≤ C3x

(√
n+ t

)
(A.212)

∥M∥ ≤ x
{√

q + C3

(√
n+ t

)}
. (A.213)

Define s > 0 by

s
.
= x

{√
q + C3

(√
n+ t

)}
⇐⇒ t =

s/x−√
q

C3
−

√
n. (A.214)

Note that the range of validity is

t > 0 ⇐⇒ s > x
{√

q + C3

√
n
}
. (A.215)

For s in this range, we have

P[∥M∥ > s] ≤ 2 exp

(
−
{
s/x−√

q

C3
−

√
n

}2
)

= 2 exp

(
−n

{
s/x−√

q

C3
√
n

− 1

}2
)
. (A.216)

The other inequality follows from applying this inequality to M⊤.

Proposition 15. There are universal constants C1, C2, C3 > 0 such that the following holds. Let
n, q ∈ N, and let M ∈ Rq×n be such that Mij ∼i.i.d. N (0, x2). Then

P
[∥∥M⊤M − qx2I

∥∥ > s
]

(A.217)

≤


C1 exp

(
−n
{

1
C2

2C3
√
nqx2 s− 1

}2
)
, if C2

2C3
√
nqx2 ≤ s ≤ C2

2qx
2

C1 exp

(
−n
{

1
C2C3

√
nx

√
s− 1

}2
)
, if s ≥ C2

2qx
2.

(A.218)
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Proof. Define M .
= 1

xM , so that M ij ∼i.i.d. N (0, 1). By Vershynin (2018, Example 2.5.8, Lemma
3.4.2), we see that each row has Orlicz norm ∥M i∥ψ2

≤ C1 for some universal constant C1 > 0.

By Vershynin (2018, Eq. 4.22) we have for some other universal constant C2 > 0 that for all t > 0,∥∥∥∥1qM⊤M − I

∥∥∥∥ ≤ C2
1 max{δ, δ2} where δ

.
= C2

√
n+ t
√
q

. (A.219)

with probability at least 1− 2e−t
2

. Simplifying, we obtain∥∥∥∥1qM⊤M − I

∥∥∥∥ ≤ C2
1 max{δ, δ2} (A.220)∥∥M⊤M − qI

∥∥ ≤ C2
1qmax{δ, δ2} (A.221)∥∥(x−1M)⊤(x−1M)− qI

∥∥ ≤ C2
1qmax{δ, δ2} (A.222)∥∥x−2M⊤M − qI

∥∥ ≤ C2
1qmax{δ, δ2} (A.223)∥∥M⊤M − qx2I

∥∥ ≤ C2
1qx

2 ·max{δ, δ2}. (A.224)

Now from simple algebra and the fact that n ≥ 1, we have

max
{
δ, δ2

}
= δ ⇐⇒ 0 ≤ t ≤ C−12

√
q −

√
n (A.225)

max
{
δ, δ2

}
= δ2 ⇐⇒ t ≥ C−12

√
q −

√
n. (A.226)

Now define s ≥ 0 by
s
.
= C2

1qx
2 ·max{δ, δ2}. (A.227)

Thus in the first case we have

s
.
= C2

1C2
√
qx2(

√
n+ t) ⇐⇒ t =

1

C2
1C2

√
qx2

s−
√
n, (A.228)

and in particular the first case holds when

max{δ, δ2} = δ ⇐⇒ 0 ≤ t ≤ C−12

√
q −

√
n ⇐⇒ C2

1C2
√
nqx2 ≤ s ≤ C2

1qx
2. (A.229)

Meanwhile, in the second case, we have

s
.
= C2

1C
2
2 (
√
n+ t)2x2 ⇐⇒ t =

1

C1C2x

√
s−

√
n (A.230)

where we obtain only one solution to the quadratic equation by requiring t ≥ 0, and in particular the
second case holds when

max{δ, δ2} = δ ⇐⇒ t ≥ C−12

√
q −

√
n ⇐⇒ s ≥ C2

1qx
2. (A.231)

Thus we have

P[∥M⊤M − qx2I∥ > s] (A.232)

≤


2 exp

(
−
{

1
C2

1C2
√
qx2 s−

√
n
}2
)
, if C2

1C2
√
nqx2 ≤ s ≤ C2

1qx
2

2 exp

(
−
{

1
C1C2x

√
s−

√
n
}2
)
, if s ≥ C2

1qx
2

(A.233)

=


2 exp

(
−n
{

1
C2

1C2
√
nqx2 s− 1

}2
)
, if C2

1C2
√
nqx2 ≤ s ≤ C2

1qx
2

2 exp

(
−n
{

1
C1C2

√
nx

√
s− 1

}2
)
, if s ≥ C2

1qx
2.

(A.234)
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A.3 COMPANION TO SECTION 2.4

In this section, we justify the scaling applied to ∇Rc in Section 2.4 and supply the discretization
scheme.

First, suppose that Zℓ
♮ satisfies (2.1), and Zt

.
= Zℓ

♮ +σtW , where W is a standard Gaussian matrix,
so that Zt satisfies (2.2) with noise level σt > 0. Let qt be the density of Zt. Theoretical analysis
from (Lu et al., 2023) and empirical analysis from (Song & Ermon, 2019) demonstrates that under
generic conditions, we have that

∥∇qt(Zt)∥2 ∝ 1

σ2
t

, (A.235)

ignoring all terms in the right-hand side except for those involving σt. On the other hand, from the
proof of Theorem 3, we obtain that −∇Rc(Zt) has constant (in σt) magnitude with high probability.
Thus, in order to have them be the same magnitude, we need to divide −∇Rc(Zt) by σ2

t to have it
be a drop-in replacement for the score function, as alluded to in Sections 2.3 and 2.4.

Second, we wish to explicitly state our discretization scheme given in Section 2.4. To wit, we
provide a discretization scheme that turns the structured diffusion ODE (2.15) into its discretized
analogue; the other discretization of the structured denoising ODE (2.11) occurs similarly. To begin
with, define the shorthand notation

f(t,Y (t))
.
= ∇Rc(Y (t) | U[K](T − t)), (A.236)

so that we have
dY (t) =

1

2t
f(t,Y (t)) dt. (2.11)

Fix L, and let 0 < t1 < t2 < · · · < tL = T , such that t1 is small. (These will be specified shortly
in order to supply the discretization scheme.) A suitable first-order discretization is given by

Y ℓ+1 ≈ Y ℓ +
tℓ+1 − tℓ

2tℓ
f(tℓ,Y

ℓ). (A.237)

Thus it remains to set t1, . . . , tL such that

tℓ+1 − tℓ
2tℓ

= κ (A.238)

for some constant κ, we observe that we must set

tℓ+1 = (1 + 2κ)tℓ, (A.239)

so that the time grows exponentially in the index. The reverse process time decays exponentially
in the index, which matches practical discretization schemes for ordinary diffusion models (Song &
Ermon, 2019). Finally, we have T = tL = (1 + 2κ)Lt1, so that t1 = T

(1+2κ)L
.
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B ADDITIONAL EXPERIMENT DETAILS

B.1 EXPERIMENT DETAILS AND CLARIFICATIONS

In all setups, as is standard practice (He et al., 2022), we append a trainable class token z1
cls ∈ Rd

after masking and linear projection, namely,

fpre(X) = [z1
cls,W

preX +Epos]. (B.1)

Everything else goes through with Z having N + 1 instead of N tokens, indexing the N image
tokens’ intermediate representations as zℓi , etc., and indexing the class token intermediate represen-
tation as zℓcls. At the end, the post-processing map is

gpost(Y L) = W postY L
1:N (B.2)

where Y L
1:N ∈ Rd×N is the matrix whose columns are the columns of Y L corresponding to image

tokens, i.e., the second through last columns of Y L. Thus, the class token z1
cls (and its representation

zcls, i.e., the first column of Z) are neither masked or reconstructed.

For training using masked autoencoding, we follow a modified recipe of (He et al., 2022). We mask
a fixed percentage µ ∈ [0, 1] of randomly selected tokens in X; that is, we randomly set (1− µ)N
image tokens xi to 0 ∈ RD, obtaining X . Then X is the input to the encoder. Unlike in (He
et al., 2022), the decoder receives no special treatment, and operates on all token representations.
The loss is computed only on the masked image patches. Refer to He et al. (2022) for more MAE
implementation details.

For fine-tuning using supervised classification, we use the representation zcls of the so-far-vestigial
class token as the feature used for classification. Namely, we obtain the unnormalized log-
probabilities for the classes as u

.
= W head LN(zcls), where LN is a trainable layer-norm and

W head ∈ RC×d is a trainable weight matrix, where C is the number of classes. The output u ∈ RC
is the input to the softmax cross-entropy loss. All model parameters are trainable during fine-tuning,
while in linear probing only the weight matrix W head is trainable (and in fact learned via full-batch
logistic regression).

In all training setups, we average the loss over all samples in the batch.

We pre-train CRATE-MAE on ImageNet-1K (Deng et al., 2009). We employ the AdamW optimizer
(Loshchilov & Hutter, 2019). We configure the learning rate as 3× 10−5, weight decay as 0.1, and
batch size as 4, 096.

We fine-tune and linear probe our pre-trained CRATE-MAE on the following target datasets: CI-
FAR10/CIFAR100 (Krizhevsky et al., 2009), Oxford Flowers-102 (Nilsback & Zisserman, 2008),
Oxford-IIIT-Pets (Parkhi et al., 2012). For each fine-tuning task, we employ the AdamW opti-
mizer (Loshchilov & Hutter, 2019). We configure the learning rate as 5 × 10−5, weight decay
as 0.01, and batch size as 256. For each linear probing task, we use the linear probing function-
ality in Scikit-Learn (Pedregosa et al., 2011). For each evaluation we choose several regularizers
C ∈ {100, 101, 102, 103, 104, 105}, train a logistic regression model on features from the whole
dataset, and choose the logistic regression model with the best performance. All numbers are re-
ported on the test sets.

For experiments, we use the model configurations reported in Table 1. From this table, there are
two unspecified hyperparameters, namely λ and η. In all experiments we fix η = 0.1, sincce it
only multiplies with a trainable matrix and λ. In numerical experiments we use λ = 0.5, while
figures are generated from models with hyperparameter λ = 5.0, though the difference in numerical
performance and figure quality is marginal between the two settings (Table 6).

To allow transfer learning, in all training and evaluations setups we first resize our input data to 224
height and width. For data augmentations during pre-training and fine-tuning, we also adopt several
standard techniques: random cropping, random horizontal flipping, and random augmentation (with
number of transformations n = 2 and magnitude of transformations m = 14).

B.2 PYTORCH-LIKE PSEUDOCODE
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Listing 1: PyTorch-Like Code for MSSA and ISTA
class ISTA:

# initialization
def __init__(self, dim, hidden_dim, dropout = 0., step_size=0.1,

lambd=0.1):
super().__init__()
self.weight = nn.Parameter(torch.Tensor(dim, dim))
with torch.no_grad():

init.kaiming_uniform_(self.weight)
self.step_size = step_size
self.lambd = lambd

# forward pass
def forward(self, x):

x1 = F.linear(x, self.weight, bias=None)
grad_1 = F.linear(x1, self.weight.t(), bias=None)
grad_2 = F.linear(x, self.weight.t(), bias=None)
grad_update = self.step_size * (grad_2 - grad_1) - self.step_size

* self.lambd
output = F.relu(x + grad_update)
return output

class MSSA:
# initialization
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):

inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = Softmax(dim = -1)
self.dropout = Dropout(dropout)
self.qkv = Linear(dim, inner_dim, bias=False)
self.to_out = Sequential(Linear(inner_dim, dim), Dropout(dropout))

if project_out else nn.Identity()
# forward pass
def forward(self, x):

w = rearrange(self.qkv(x), ’b n (h d) -> b h n d’, h = self.heads)
dots = matmul(w, w.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = matmul(attn, w)
out = rearrange(out, ’b h n d -> b n (h d)’)
return self.to_out(out)

Listing 2: PyTorch-Like Code for CRATE-MAE Encoder
class CRATE_Encoder:

# initialization
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout =

0.):
self.layers = []
self.depth = depth
for _ in range(depth):

self.layers.extend([LayerNorm(dim), MSSA(dim, heads, dim_head,
dropout)])

self.layers.extend([LayerNorm(dim), ISTA(dim, mlp_dim,
dropout)])

# forward pass
def forward(self, x):

for ln1, attn, ln2, ff in self.layers:
x_ = attn(ln1(x)) + x
x = ff(ln2(x_))

return x
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Listing 3: PyTorch-Like Code for CRATE-MAE Decoder
class CRATE_Decoder:

# initialization
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout =

0.):
# define layers
self.layers = []
self.depth = depth
for _ in range(depth):

self.layers.extend([LayerNorm(dim), Linear(in_features=dim,
out_features=dim, bias=False)])

self.layers.extend([LayerNorm(dim), MSSA(dim, heads, dim_head,
dropout)])

# forward pass
def forward(self, x):

for ln1, f_linear, ln2, attn in self.layers:
x_ = f_linear(ln1(x))
x = ln2(x_) - attn(ln2(x_))

return x

B.3 VISUALIZATION METHODOLOGY

In this subsection we formally describe the procedures we used to generate the visualizations used
to evaluate the segmentation property of CRATE-MAE in Figure 7. Much of this evaluation is the
same as in Yu et al. (2023b), which initially demonstrates the emergent segmentation properties of
white-box architectures.

B.3.1 PCA VISUALIZATIONS

We recapitulate the method to visualize the patch representations in Figure 7a using PCA from Amir
et al. (2021); Oquab et al. (2023); Yu et al. (2023b).

We first select J images that belong to the same class, {Xj}Jj=1, and extract the token representa-
tions for each image at layer ℓ, i.e.,

[
zℓj,1, . . . ,z

ℓ
j,N

]
for j ∈ [J ]. In particular, zℓj,i represents the

ith token representation at the ℓth layer for the jth image. We then compute the first principal com-
ponents of Ẑℓ = {ẑℓ1,1, . . . , ẑℓ1,N , . . . , ẑℓJ,1, . . . , ẑ

ℓ
J,N}, and use ẑℓj,i to denote the aggregated token

representation for the i-th token of Xj , i.e., ẑℓj,i = [(U∗1 ẑ
ℓ
j,i)
⊤, . . . , (U∗K ẑℓj,i)

⊤]⊤ ∈ R(p·K)×1.
We denote the first eigenvector of the matrix Ẑ∗Ẑ by u0 and compute the projection values as

{σλ(⟨u0, z
ℓ
j,i⟩)}i,j , where σλ(x) =

{
x, |x| ≥ λ

0, |x| < λ
is the hard-thresholding function. We then se-

lect a subset of token representations from Ẑ with σλ(⟨u0, z
ℓ
j,i⟩) > 0. which correspond to non-zero

projection values after thresholding, and we denote this subset as Ẑs ⊆ Ẑ. This selection step is
used to remove the background (Oquab et al., 2023). We then compute the first three right singular
vectors of Ẑs with the first three eigenvectors of the matrix Ẑ∗s Ẑs denoted as {u1,u2,u3}. We
define the RGB tuple for each token as:

[rj,i, gj,i, bj,i] = [⟨u1, z
ℓ
j,i⟩, ⟨u2, z

ℓ
j,i⟩, ⟨u3, z

ℓ
j,i⟩], i ∈ [N ], j ∈ [J ], zℓj,i ∈ Ẑs. (B.3)

Next, for each image Xj we compute Rj ,Gj ,Bj , where Rj = [rj,1, . . . , rj,N ]⊤ ∈ Rd×1 (similar
for Gj and Bj). Then we reshape the three matrices into

√
N ×

√
N and visualize the “principal

components” of image Xj via the RGB image (Rj ,Gj ,Bj) ∈ R3×
√
N×
√
N .

B.3.2 VISUALIZING ATTENTION MAPS

We recapitulate the method to visualize attention maps in Abnar & Zuidema (2020); Caron et al.
(2021).
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Table 3: Top-1 classification accuracy of CRATE-MAE-Base when pre-trained on ImageNet-1K and fine-
tuned on classification for various datasets. We compare a fine-tuned model which was pre-trained on the
MAE task with a model trained from scratch on classification (“random init”) using exactly the same experi-
mental conditions. Our results show that the representation learning occurring during pre-training substantially
improves performance on downstream tasks.

Classification Performance CIFAR 10 CIFAR 100 Oxford Flowers Oxford-Pets

CRATE-MAE-Base (trained) 96.8 80.3 78.5 76.7
CRATE-MAE-Base (random init) 85.1 58.8 38.0 28.8

Table 4: Average reconstruction loss over the training and validation sets of ImageNet-1K for both
CRATE-MAE-Base and ViT-MAE-Base. We see that the performance of CRATE-MAE-Base, while a bit worse
than ViT-MAE-Base, obtains promising performance on the challenging masked autoencoding task.

Reconstruction Loss Training Loss Validation Loss

CRATE-MAE-Base 0.265 0.302
ViT-MAE-Base 0.240 0.267

Table 5: Top-1 classification accuracy of CRATE-MAE-Base when pre-trained on ImageNet-1K and linear
probed for classification on CIFAR-10, when pre-trained using different mask percentage (i.e., number of
masked tokens in each sample). This shows that CRATE-MAE models with 75% of the tokens masked during
training tend to have the most structured representations that are useful for downstream tasks, an empirical
conclusion that echoes He et al. (2022), but a wide range of mask percentages result in good representations.
(Note: This table uses the hyperparameter setting λ = 5.0.)

Classification Accuracy 25% Masked 50% Masked 75% Masked 90% Masked

CRATE-MAE-Base 69.78 75.97 75.99 73.45

For the kth head at the ℓth layer of the encoder of CRATE-MAE, we compute the self-attention map
Aℓ
k ∈ RN defined as follows:

Aℓ
k =

A
ℓ
k,1
...

Aℓk,N

 ∈ RN , where Aℓk,i =
exp(⟨U ℓ∗

k zℓi ,U
ℓ∗
k zℓcls⟩)∑N

j=1 exp(⟨U ℓ∗
k zℓj ,U

ℓ∗
k zℓcls⟩)

. (B.4)

where zℓcls is the ℓth layer representation of the class token.

For each image, we reshape the attention matrix AL−1
k for the penultimate layer L− 1 into a

√
N ×√

N matrix and visualize the heatmaps as shown in Figure 7b. For example, the ith row and the
jth column element of each heatmap in Figure 7b corresponds to the mth component of Aℓ

k, where
m = (i− 1) ·

√
N + j. In Figure 7b, for each image we select one attention head k of CRATE-MAE

and visualize the attention matrix AL−1
k .

B.4 ADDITIONAL EXPERIMENTS

In this section we perform more experiments to explore properties of the CRATE-MAE architecture.

First, in Table 3, we compare the fine-tuning performance of an CRATE-MAE-Base model with MAE
pretraining against an CRATE-MAE-Base model with no pretraining at all (i.e., randomly initialized).
We apply the same fine-tuning process to both models, and we observe a massive disparity in per-
formance, where the pre-trained model succeeds while the randomly initialized model performs
poorly. This indicates that the organized representations of a pre-trained CRATE-MAE-Base model
are a strong starting point when fine-tuning for downstream tasks.

Next, in Table 4, we evaluate the reconstruction loss (measured in mean-squared error) of CRATE-
MAE-Base versus ViT-MAE-Base, evaluated on the training and test sets of ImageNet-1K. We ob-
serve that while CRATE-MAE-Base performs slightly worse at masked reconstruction, the perfor-
mance is still very reasonable.
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Table 6: Top-1 classification accuracy of CRATE-MAE-Base when pre-trained on ImageNet-1K and linear
probed for classification on various datasets, when pre-trained using different λ. This shows that CRATE-
MAE models perform reasonably well at CRATE-MAE-Base scale across different values of λ.

Classification Accuracy λ = 0.1 λ = 0.5 λ = 5.0

CRATE-MAE-Base 83.33 80.87 75.99

Masked ViT-MAE CRATE-MAE Original Masked ViT-MAE CRATE-MAE Original

Figure 8: More instances of parity between CRATE-MAE-Base and ViT-MAE-Base in the masked au-
toencoding task. Echoing the message of Figure 6, we find that CRATE-MAE-Base and ViT-MAE-Base have
similar performance on the masked autoencoding task, even as the CRATE-MAE-Base model is significantly
more parameter-efficient.

In Table 5, we check the downstream performance and feature learning of CRATE-MAE-Base models
when varying the mask size. We use test accuracy of linear probing on CIFAR10 as a proxy for
the quality of the learned features. Our results show that the performance is maximized when the
number of masked tokens is 75% of the number of total tokens, i.e., when 75% of tokens are maxed
out. This confirms the experiments in He et al. (2022).

In Table 6, we check the downstream performance and feature learning of CRATE-MAE-Base models
when varying the hyperparameter λ. We again use test accuracy of linear probing on CIFAR10 as
a proxy for the quality of the learned features. Our results show that the performance is maximized
when λ = 0.1, but all models perform reasonably well at CRATE-MAE-Base scale.

In Figure 8 we provide more examples of the masked autoencoding efficacy of both CRATE-MAE-
Base and ViT-MAE-Base. Our results confirm those of Figure 6, namely CRATE-MAE-Base achieves
parity with the much larger ViT-MAE-Base on the challenging masked autoencoding task.

In Figure 9, we provide more examples of the linearity of the representations within CRATE-MAE-
Base. We see that over a wide variety of images, the first three principal components of each class
correlate strongly with semantically meaningful patches of the input image. These results extend
Figure 7a.
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Figure 9: More examples of linearized representations in CRATE-MAE-Base. Echoing the message of
Figure 7a, we find that CRATE-MAE-Base has a linear feature space. In particular, the first three principal
components strongly correlate with the main semantic content of the image.

Figure 10: More examples of interpretable attention maps in CRATE-MAE-Base. Echoing the message of
Figure 7b, we find that CRATE-MAE-Base has human-interpretable attention maps which semantically segment
the foreground of input images.

In Figure 10, we provide more examples of the interpretability of selected attention outputs within
CRATE-MAE-Base. We see that over a wide variety of images, the attention map succeeds at captur-
ing many semantics of the input image. These results extend Figure 7b.

In Figure 11 we apply (nearly) the same methodology involved in constructing Figure 7, a qualitative
demonstration of the feature quality of the CRATE-MAE-Base encoder, to evaluate the feature quality
of the ViT-MAE-Base encoder. One necessary difference is that to evaluate the attention maps, the
ViT does not have the U ℓ

[K] matrices that CRATE does, but instead has three sets of matrices Qℓ
[K],

Kℓ
[K], and V ℓ

[K]; thus, we construct the attention maps via the following equation:

Aℓk,i =
exp(⟨Kℓ

kz
ℓ
i ,Q

ℓ
kz

ℓ
cls⟩)∑N

j=1 exp(⟨Kℓ
kz

ℓ
j ,Q

ℓ
kz

ℓ
cls⟩)

. (B.5)
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(a) Visualizing PCA of ViT-MAE-Base. (b) Visualizing attention maps of ViT-MAE-Base.

Figure 11: A comparison of CRATE to ViT-MAE in the setting of Figure 7. We use the visualizations
of PCA on the token representations and attention maps, introduced in Figure 7, to qualitatively evaluate the
representation quality of the ViT-MAE-Base. By comparing this figure (Figure 11) and Figure 7, we observe
that CRATE-MAE-Base attention maps contain more clear semantics than those from ViT-MAE-Base, while both
CRATE-MAE-Base and ViT-MAE-Base have nearly-linear representation spaces wherein semantic concepts
correspond to the first three principal components.

Overall, Figure 7 and Figure 11 demonstrate that, at least empirically, the attention semantics in
CRATE-MAE-Base are significantly better and clearer than ViT-MAE-Base. The reason that CRATE-
MAE models have semantically meaningful attention maps may be due to our white-box design,
namely the fact that in CRATE-MAE we have Qℓ

[K] = Kℓ
[K] = V ℓ

[K] = U ℓ∗
[K]; indeed, the fact that

setting Qℓ
[K] = Kℓ

[K] = V ℓ
[K] = U ℓ∗

[K] yields semantically meaningful attention maps has been
shown in other work, albeit in a different setting (Yu et al., 2023b). The reason that the ViT-MAE
has semantically meaningful attention maps, albeit not as clear and worse than CRATE-MAE, may
be due to several different factors such as using the class token as a register (Darcet et al., 2023).
Nevertheless, the features in both models have linear structures, or at least each class’ representations
have three principal components which correlate strongly with the semantics of the class.
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